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"... a person’s uncertainty about the future arises not
simply Dbecause of . future random terms but alsc because of
uncertainty  about . current. parameter values and  of  the

model 's ability to’ link  the present to  the future.”
[Harrison and Stevens, 1976, p. 208}
Section I. Introduction

The Lucas hypothesis (1973) predicts a negative relationship . between
the variance of nominal shocks and the magnitude of the cutput-response to
nominal shocks. Lucas (1973), Froyen and Waud (1980), Alberro (1980),
Kormendi = and Meguire (1984) and others have examined the Lucas hypothesis
using the cross-country data, assuming that policy regimes did not change
within  countries, different policy regimes being represented by different
countries. However, the assumption of a constant variance of nominal
shocks  within a country over time is not realistic. The measure of
variance conditional on information available at the time of forecasting
may be time-varying due, for example, to a continuously changing policy
regime which is represented by evolutionary regression coefficients.  This
conditional ' variance, rather . than  the unconditicnal variance which is
based on the whole sample; is what really matters for the behavior of
economic agents, as Engle (1982) has pointed out. A more powerful test of
the Lucas hypothesis may . therefore result. from modeling variation. in
conditional variance through time.

This paper discusses some of the implications. of a ' continuously
changing monetary . policy regime (of the Federal Reserve) on tests of the
Lucas hypothesis and proposes an alternative test in a time series context
using  money - growth  (M1) as an aggregate demand variable. . The key issue
involved in testing the Lucas hypothesis in the time series context is
that of estimating the conditional variance which changes over time.

Calculating a moving variance based  on several past observations (for
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example, Froyen and Waud, 1984, and Lawrence, 1983) is one way of
capturing the changing conditional variance of time series data, =and the
Autoregressive Conditional Heteroscedasticity (hereafter, ARCH) modeling
introduced by Engle (1982) is another way. The former method wusually
gives biased estimates of the cornditional variance, as the mean of the
series is misspecified due to the failure to incorporate the explanatory
variables. On the contrary, a problem with Engle’s ARCH model is that the
specification of the conditional variance is ad-hoc, in the sense that it
is  arbitrarily assumed to depend on past squared innovations. Besides,
neither method specifies the source of changing conditional variance.

In many cases existence of ARCH can be interpreted as evidence of
misspecification. If we suspect that a <changing policy regime is the
cause of an ARCH effect (or the source of misspecification), then, a
time-varying-parameter model (hereafter, a TVP model) may be preferred to
the "ARCH model. The empirical resuits presented in this paper suggest
that the existence of ARCH in a monetary growth function is mainly due to
the evoluticnary rTegression coefficients of the model.

Kalman filtering, which was first introduced in the FEngineering
literature, is applied to estimate the time-varying coefficients of the
TVP model. As by-products of the Kalaman filtering estimation of the TVP
model, recursive forecast errors and their conditional variances are
obtained, which can be used to test the Lucas hypothesis. A mnice thing
about Kalman filtering is that it gives us insight into how a rational
economic agent would revise his estimates of the coefficients of the model
in a Bayesian fashion when new information is available, especially under
the changing policy regime.

An  alternative to the Lucas hypothesis is Milton Friedman’s {(1977)

hypothesis which states that the increased variability of the inflation
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rate . causes a reduction in the allocative efficiency of the price system,
causing . a reduction 1n natural- level of output. By allowing  the natural
level  of ocutput ' to  depend on the conditional variance of the monetary
forecast error, (1! Friedman’s hypothesis is also tested.

The organization of the paper is as follows.  In section II, based on
the stability test results of the regression coefficients, a monetary
growth function 1is specified and  estimated assuming. the regression
coefficients follow random ~walks. Section 11T provides further
justification for TVP modeling of the monetary growth function by showing
that the existence of ARCH in the OLS regression - is = mainly  due  to = the
time-varying. . property .of the coefficients of the model. In section IV,
empirical tests of the Lucas hypothesis and  Friedman’s hypothesis are
performed based on the Kalman filtering estimation of forecast errors and

their conditional variance from section II. Section V' concludes this

paper.

Section II. Kalman Filtering and TVP Estimation of the Monetary Growth

McNees (1986) states, "Policy reaction function is - likely to . be a
fragile creature. Over time, :... the importance attached to conflicting
objectives (of the policy) may ' change,  {policy makers’) views on the
structure of the economy may change, ...." In this section; the TYP model

is applied to  a monetary growth function. Stability  tests for - the

(1} In money oriented Phillips-curve models such as Barro (1976),
unanticipated inflation 1is posited as an intermediate link in the
causal chain connecting unanticipated money growth to real variables
in the system. So, .the conditional variance of monetary forecast
errors. is used as a proxy for the variability of inflation rate.
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regression cocefficients reported in Appendix 1 provide a rationale for <he
TVP modeling. Two different stability tests were performed on the
monetary growth function specified inm (2.1} below, one against the
alternative hypothesis of ’unstable regression ccefficients,’ and the

cther against the alternative hypothesis of ’random walk ceocefficients.’
The null hypothesis of constant regression coefficients is rejected for

both of the tests.

Based on the stability test results, it is assumed that each of the
regression coefficient of the model follows =a random walk.  The TVP
model{2] with estimmated innovation variances for U.S. quarterly data

1964.1 - 1985.4 is

DMI_ = fo, + B DINT, ; + Pp INF__; + B5 SURP, | + B, DMI_ | + e  (2.1)

Pip =Pip g+ Vi (i=0,1,..,4)
ae2 = 0.126284
2 _
7,07 = 0.012133
o .2 - 0000896
vl
o .2 = 0.074544
v2
0. .2 = 0.000683
v3
2 _
0,42 = 0.001184,

where DM1, DINT, INF, and SURP stand for the quarterly Ml growth rate, the
change 1in  the interest rate on Treasury bills, inflation measured by the
CPI, and the full-employment budget surplus, respectively. In estimating

the above non-time-varying parameters of the model, the likelihood value

[2] The specification of the model {i.e., the choice of the right hand
side wvariables) 1is motivated by Mishkin (1981) and Weintraub (1981).
The OLS regression results of the model are very similar to theirs,
except that lagged inflation term is added in our model.
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obtained from the Kalman filter algorithm was maxmized using ' the scoring
method 3] proposed by - Engle . and Watson .. {18981,. 1983). The' Kalman
filtering algorithm and the estimation of the TVP model are  discussed  in
Appendix 2.

Given estimates of the parameters, the next step is to estimate  the
evolutionary coefficients of  the model based on past information.
(ﬁit/t—l’ i=0,1,..,4)..4] At this step, the Kalmwan filter is run again

2,

. ) f . 2 . P
with  the. above estimates of T and a,:"s, for given initial values of

piO/ l(i:O,,A.,4} and their variance-covariance matrix.[5]  The estimates
/- i

of (i=0,:..,4)  are  shown in Figures . 6--10." As by-products of

ﬁit/n—l N

running. the Kalman filtering algorithm, the cone step ahead forecast errors

( and their conditional variances (H ) can be estimated as in {(AZ.5}
Te/e—1 t

and {A2.6) of Appendix 2. These are shown in Figures 11-12.

Once we  estimate - the model,  we need to see whether the model is 3
correctly specified. One useful way of checking the appropriateness of
the  specified  model - is  to check for whiteness or. lack of serial

correlation in the one period ahead forecast errors (n*/t—l) of  equation

[3] A nice feature of the scoring method is that we need only the
first derivatives. A The computer program' was.  written . in = the ' GAUSS
programming language, and the numerical derivatives were used.

[4] Benjamin Friedman (1979) argues’ that "what is typically missing in
rational expectation mechanisms is a clear ocutline of the way in which
economic agents derive their knowledge which they use to formulate
expectation. ... By referring  to the informational availability
assumption - of rational expectations hypothesis, he proposed
least-squares-learning as  an optimal" learning process. Under: a
continuously changing polic regime, however, the
least-squares-learning is no longer optimal. In this circumstance, an
application of the Kalman filter is an appropriate way of proxying the
rational agents’ learning process.

[5] These initial values were estimated at the expense  of  first 16
observations.
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(A2.5), =as suggested by Watson and Engle (1981). The null hypothesis of
nc serial correlation in the forecast errors was not reiected at the 3%
significance level, which shows the appropriateness of the model

specification. [B]

Section III. A TVP Model and ARCH: The Existence of ARCH as Evidence of

Misspecification.

The ARCH model introcduced by Engle {1982), explicitly models varying
conditional wvariances by rtelating them to variables known from the past
pericds. For example, the varying conditional variances are assumed to be
dependent upon past squared innovations. Thus, Engle argues that by
considering the heteroscedastic conditional variances, one could get more
efficient estimates of the coefficients. But a problem with the ARCH
model is that this specification of the conditional variances is ad-hoc.
1f one knows the factors that may cause conditional variances to vary,
more efficient estimates could be obtained than with the ARCH
specification by explicitly considering these factors. It is argued in
this paper that one very likely source of ARCH is a continucusly changing
policy regime as represented by time-varying regressicn coefficients of a
model .

There are two channels through which a TVP model and ARCH are
related. First, in financial markets in which the risk premium plays an
important role, the mean in the regression model could be time varying due

to ARCH. Engle, Lilien, and Robins (1987), for example, postulated that

[6] Box-Pierce test statistics for the one period ahead forecast error
from the TVP specification are Q(12)=15.8, Q(24)=26.7, and R(38)=33.9.
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the -expectation of ' the excess . holding yield —on  a long term bond is
dependent upon its conditional variance, and proposed & TVP model. In
their model,  the evolutionary coefficient (in their case; a time-varying
risk premium} of the model is dependent wupon the conditional variance.
(ARCH-M  model}).[7} .. This is the. case in which ARCH induces a time varying
parameter model.

The second channel is  one in  which a TVP model induces an ARCH
effect, which is of current concern. Engle {1982) proposed a test of ARCH
based ' on the OLS regression of the model. But if the coefficients of the

true model are continucusly changing due to. a  continuous  change  in . the

policy  regime,  the  ARCH test  based on 0LS regression tends to show
existence - of  ARCH, ' even when —the true  disturbance term is not
heteroscedastic. In other  words,; the existence  of  ARCH  from : OLS

+

regression could be interpreted as evidence ' of " misspecification = of = the
model. . If this is the case, though the ARCH model gives us more efficient
estimates than OLS regression does, a time-varying parameter = (TVP) @ model
is - superior to  the ARCH model, in the sense that cone need not make an
ad-hoc assumption about' the structure of varying conditional ' variance : as
in-the ARCH specification.

When the ARCH tests were performed based on' the OLS regression of the

[7] Their model. can be summarized as. follows:

Rt = ag + alht Ty TV
vy == N(O,hy)
B o2 - 2
ht = bo + blvt + oL+ bpvt—p 5
where Rt is is ex-post one period holding yield on long term bond and
T is” the  certain return  one period  treasury bills. If  the

coefficient a; is constrained to be zero the model reduces to  the
usual ARCH moéel,
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monetary growth function (2.1), very strong evidence of an ARCH =ffect wa
found. In order to determine if the source of the ARCH effect is the
varying coefficients of the model, we mneed to <check if the serial
correlation still remains in the sguared error terms after taking +the
evolutionary coefficients into account.

In doing so, prediction errors based on the whole sample, nt/T’ were
estimated using Kalman filtering and the TVP model, where

Neyr = DML, - 2.0, -

Here, Xy is a vector of regressors in (2.1} and ﬁt/T is the estimate of
ﬁt based on the whole sample (sometimes called *SMOOTHING’).[8] In Table
3, the ARCH test results based on OLS errors and those based on the errors

from TVP estimation with the whole sample are shown. After the time
varying property of the regression coefficients is accounted for, the null

hypothesis of no serial correlation in the squared error terms was not

rejected. This shows that the existence of the ARCH in the monetary

growth function is mainly due to the changing regression coefficients of

the model.

The estimates of conditional variances of monetary forecast errors
based on the ARCH specification and those based on the TVP specification
are shown in Figure 12. The conditional variances from the ARCH
estimation reasonably approximate those from the TVP estimation. But it
is interesting to note in Figure 12 that the TVP estimation results show
higher wuncertainty about future monetary policy during the oil shock

(around 1874), while the ARCH estimation results barely pick wup this

{8] The smoothing algorithm, from which we can get estimates of the
coefficients based on the whole sample, is defined in Appendix 2. The
idea of the smoothing is running the filter backwards.
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point. This  is because, in the ARCH model, in so far as forecast errors
in the near past are small, the uncertainty about the future is assumed to
be  small  {(regardless . of  the current . state of the economy.}:. Under a
continuocusly changing policy regime,  however,  the . uncertainty about a
future policy variable is very closely related to the current state of the
economy, and this is explicitly taken into account in the TVP.  estimation
of - the model, - without . any ad-hoc assumption about the structure of the
conditional variance as in the ARCH model. This argument is apparent from
the following equaticn for conditional variance of forecast errcrs,; which
is part of the Kalman filtering algorithm in Appendix 2:

v o2 (3.1)

- ,
He = Py /e 1% e’

where Pt/tAl is' variance-covariance matrix. of pt/t~1 and Uez is variance
of the .disturbance  term ey in (2.1) . Under the changing poliy regime,
there are two scurces of uncertainty: uncertainty that arises  because of
future random  terms and uncertainty that arises because of evolutionary
regression coefficients.

The empirical .results in this section, in addition to the stability
test results in Appendix 1, further justify TVP modeling of '~ the' monetary

growth: function.

Section IV. ' An Empirical Test of : the ' Lucas ' Hypothesis and ' Friedman’s
Hypothesis

This section presents empirical results from a Lucas-type reduced
form: - output  equation  which also allows conditional uncertainty to have
direct effect on' output -as hypothesized by  Friedman. The ' recursive
forecast. errors (vt/t41) and - the conditional variance (Ht) estimated in

section Il are used to test the Lucas and Friedman  hypotheses. Consider
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the following model.

oy, = ag + a SBOCK_ + a2CVt T Agey, v My (4.1}

ay, = £(OV), (4.2)

where cy, is time-detrended output, [9] SHOCKt is a recursive forecast

error in wmonetary growth, =and CVt is the conditional variance of the
forecast error. The functional form of the time-varying coefficient @y,
in equation (4.2) was chosen in such a way to minimize the
multicolinearity problem in OLS regression of equation (4.1). Thus, the

specification Xy = Y * 711n(CVt) was chosen. Testing the Lucas hypothesis
is equivalent to testing 7, > O and 71 ¢ O, and testing the Friedman’s
hypothesis is equivalent to testing as< 0 . Test results based on the OLS
regresion of equation (4.1) are reported in Table 4 and Table 5.

In most of the regressions, To is positive and significantly
different from zero. ' The estimated values of Y15 ©n the contrary, = have
the wrong signs and are not significantly different from zero. {When a
SHGCKt*ln(CVt) term 1is added to the regression, there is little
improvement in R2.) So the Lucas hypothesis is not supported by the data.

But when the conditional variance term (CVt) is included directly 1in the

regression equation, the R% increased significantly, and its ccefficient

(8] In order to test Friedman’s (1977) hypothesis =as well, it is
assumed that the natural level of output is affected by CV term, a
proxy for inflation uncertainty. That is, following Froyen “and Waud
(1984), the following is assumed:

Yo, = ¥nt ¥ Yy
Yot = 60 + §1t + EZCVE’

where y,, Yot Yot represent log of real output, natural output, and
cyclicaf ou%put{ respectively. Therefore, the time-detrended output,
cy is the sum of cyclical output and the portion of natural output
which is dependent upon the inflation uncertainty.
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4 ag ) is significantly different from zero with a negative ‘value.[10]
This suggests that the conditional variance of. forecast errors affects the
output level directly, and not through the coefficient on the SHOCK term:
Coefficients on lagged detrended output in Table 4 are close to one
(ranges from 0.9188 to 0.9368). = This could be due to downward bias in the
coefficients when there is a unit root, as explained by Dickey and Fuller
(1979) . - So the regressions were performed by using the first. difference
of detrended. output as a dependent variable (Table 5).  The test results
were not significantly different from those  using detrended output : in
levels. The R? from regression using differenced datd ranges from 0.1456
to 0.2775 after correcting for serial ' correlation: This  suggests' = that

monetary - shocks and their conditional  wvariance alone cannot provide a

complete picture of short term business fluctuations.

Section V. Conclusion

A conventional fixed coefficient model of a monetary growth = functiom
understates  .the degree of learning by economic agents. A typical test of
rational expectations hypothesis is performed based on the whole sample,
but ' at  time t, agents do not have information on t+1,...,T.  Especially,

when the policy regime changes continuously, the correct specification : of

the ~learning = process by  agents . is. crucial to the test result and its

interpretation.

A time-varying-parameter model = was proposed in modeling a monetary

{107 When the tests were performed wusing the  conditional variances
from the ARCH specification, both g and a were not significantly
different from zero. The test results based on”the ARCH specification
is sometimes inconclusive because of the ad-hoc assumption about the

conditional variance.
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growth function, and the Kalman filtering technique was applied to
estimate the model. The Kalman filter shows how rational economic agents

would combine past information and new information to form a new
expectation. The algorithm alsc provides recursive forecast errcrs and
their conditional variance at each point in time.

Based on the estimated forecast errors and conditional variances from
the Kalman filtering estimation of a monetary growth function, the Lucas
hypothesis (in a time-series context) was tested. Test results reject the
hypothesis. But the conditional variance of monetary shocks itself plays
a‘ very important role in explaining the business <cycle in the U.S.
economy between 1964.1--1985.4. That is, the conditional variance affects
real output directly, not through the coefficient on the shock. This
result supports Friedman’s (1977) view that natural output is negatively

dependent upon inflation uncertainty.
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I

Appendix 1. Testing he Constancy of Regression Coefficients in a

Monetary growth Function.

Various methods of testing the stability of regression coefficients
have been proposed by, for example, Lamotte and McWhorter, Jr. - (1978),
Breusch and Pagan (1979), Brown, Durbin and  Evans - (1975),  and others.
Among = those, the simplest. technique  which is  based on the moving
regression proposed by Brown et. al (1975) and the Lagrange multiplier
test: proposed by Breusch and Pagan (1979) were applied to the monetary
growth. function in (2.1):

With the alternative hypothesis of unstable regression coefficients;
the first step in the moving regression method is to calculate confidence
intervals for each of the coefficients from successive moving regressions.
If all the confidence intervals overlap with one another,  we may accept
the null hypothesis that the regression coefficients are stable. This
procedure at least. gives us an  insight into the periods  .in:' which
significant  structural ' changes have occurred.  Next, a significance test
for the constancy of coefficients, sometimes called a homogeneity test, is
derived from the results of regressions'  based on non-overlapping
subsamples, using analysis of variance. By splitting the entire sample
into non-overlapping . subsamples, the ’between groups over within groups’
ratio of mean squares is calculated. . Under the null hypothess . of  stable
coefficients, this test statistic is distributed as F(kp-k,T-kp), where k
is number: of regressors, p is number of non-overlapping subsamples, and T
is the whole-sample size.

Confidence intervals for the coefficients from the moving regressions
based on 12 observations are shown in Figures 1-5. There is strong
evidence that regression coefficients are not: stable; for most of  the

coefficients, we can pick up the cases in which conficence intervals (95%)
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do not overlap. F-statistics for the homogeneity tests are reported in

table 1. The null hypothesis is rejected at the 5% significance level in
all cases.[11]

Having rejected the stability of regression coefficients, of further
interest is the actual structural form of +the time-varying regression
coefficients. Engle and Watson (1985) suggest unit roots for the
coefficients in cases of structural change in which agents adjust their
estimation of +the state only when new information becomes available.
Therefore, a stability test can be performed against the alternative

hypothesis that the coefficients feollow random walks.

Under +the alternative hypothesis of random walk coefficients,
residuals from an an OLS regressiocn have a particular heteroscedasticic
form, which ‘depends upon t*xtz. (xt is a vector of regressors.)
Breusch and Pagan (1979) have shown that one half of the explained sum
of squarés from a regression of ;t2/0u2 on txxtz, where

;tQ is +the vector of residuals from an OLS regression of (2.1), is
distributed as XQ(k) under the null hypothesis. The test results are
shown in Table 2. First, under the assumed constancy of other
coefficients, the test was performed for each of the coefficients. The

test results show that the null hypothesis of stable coefficients is
rejected for coefficients on DINTt—l’ INFt—l’ and the intercept term. But
the joint hypothesis that all the coefficients are stable (against the
alternative hypothesis .of random walks) is rejected at the 1 %

significance level.

{11] The test of regression stability based on .moving .regression
suffers from a low power, because the test assumes that the regression
«coefficients are stable within a subsample.
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Appendix 2. Kalman Filtering and Estimation of =a Time-Varying-Parameter

Model

In this Appendix, a state-space representation of a TVP model and the
Kalman filtering: estimation of the coefficients  are introduced.  The
state-space model and Kalman filtering has a wide range of applications in
econometrics. and. time . series analysis. Two of the examples are the TVP
model and the unobserved component model. [12]

The basic linear regression model with a changing coefficient vector

ﬂt is represented in terms of state space model by

Measurement equation: y . = xtﬂt +oeg (A2.1)
Transition equation: ﬁt= Aﬁt—l Ve, (A2.2)
2
el f (o 01
P% NI o 1® H
Lovd L Lo QJ4 ,

where @ is is a positive definite matrix. . The coefficients. [, . . of  the

above = TVP model can be estimated by Aitken’s GLS procedure; assuming that

the parameters of the transition equation A and @ and aez are known. The
GLS ' estimation  of  (AZ2.1), however,  requires  an enormous amount’ of
computation, as we need inverse  of very large matrices. Thus,;. this

procedure sometimes is inoperational.

But by applying Kalman filtering recursively to equations (A2.1)  and
(A2.2); the  estimation procedure becomes dramatically ' easier. The
equivalence of Kalman filter estimates of ﬂb in. (A2.1) and GLS  estimates

is' ' well  explained ' in Los - (1984). The main ' difference between GLS

[12] See Clark (1987), Watson (1988), and Nelson (1987) for the
application of the state space model and the Kalman filter to
unobserved component model, see Rosenberg (1973) and Chow (1984) for
recent surveys of TVP model.
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estimates and Kalman filtering estimates of B, is that in the former all
the observations wup to time t are simultaneously taken account, while in
the latter, we are interested in ’what a new observation contribute to cur

existing knowledge.’

The Kalman filtering algorithm is described below; for =a detailed
derivation of the  algorithm, see Los (1984) and Andrerson and Moore

(1979) .

Predictien

Pejr1 = Aoy ey (A2.3)
(estimate of [, based on information up to t-1)
Peje-1 = AProg/e-1? +Q
(A2.4)
{variance covariance matrix of ﬁt/t—l)
Nese-1 = Yo ~ %P jeq (AZ.5)
(forecast error based on information up to t-1)
_ 2
Hy = X¢Pespo1®y’ + 0, (AZ.6)
(conditional variance of forecast error, ”t/t-l)
Updating
Poje = Poje1 + Kneyeq (A2.7)
k - — b
Pese = (I Kx )Py p-1 o
(A2.8)
where szt/b-lxt7Ht_1 (Kalrman gain).
Smoothing
Boyr = Peye * Py Perqyr - AP e (a2.5)
. * Ed
Pe/T = Pese * Py (Peagyr = Pry1/e)Py (A2.10)

* -1
where p,~ = Pe A Peoq e

Notice that the estimate of ﬁt based on information up to t, ﬂL/t’



21
is an - optimal combination of the prior on ﬁt ie., £ ;- and th
, t/t-17
forecast error Te jeotr the weight being K, which is sometimes  called . the
"Kal i ? X iv i i
Kalman  gain. Thus, ' for given starting values of ﬂO/—l and pO/—l’ if
the values of UPZ, @, and A are known, the  above  filter recursively
produces estimates of the mean and variance of the state vector ﬂt using

observations on Ve and X -

In the engineering = literature, the values. of the time-invariant
parameters of the TVP model( A, Jez, and Q) are sometimes kpown a priori.
In  economics, however, these values are seldom known, and need to be
estimated. [13] To estimated these parameters, the following log
likelihood  function, ~which  is  based  on'' the forecast errors and their
conditional  variance from . the Kalman filtering algorithm, can be
maximized:

In L = constant - 0.5+LT,_ {lnl H I+ ”t/t—fﬁs_l"t/t—ﬁ (A2.11)

[13] In estimating the monetary growth function in Section II, the
parameter A is constrained to be an identity matrix, based on the

stability test result in Appendix 1.
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TABLE 1. Testing constancy of regression coefficients in monetary
reaction function {3 year moving regressions)

F={(T-pk)={(S(1,T)-%}] /[ (pk-k)~¥W] --—-F(kp-k,T-kp), where

W=S(1,n)+8(n+1, 2r)+4...TS(pn n+1,T)

n= number of observation in subsamples=12
= number of subsamples=8

k= number of regressors=5

S(r1,r2): RSS of regression from observation Ty to
Ty
Whole sample period F-statistic
1959.3--1983.2 1.929
1959.4--1983.3 1.961
1960.1--1983 .4 1.975
1960.2--1984.1 1.834
1960.3--1984.2 1.806
1860.4--1984.3 1.862
1861.1--1984 .4 1.774
1961.2--1985.1 1.772
1961.3--1985.2 1.772
1961.4--1985.3 1.787
1962.1--1985.4 1.793

= Critical values for F(35,56)=2.03(1% significance level)
=1.65(5% significance level)
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TABLE 2. Testing  constancy  of  regression coefficients in the
monetary growth function (Lagrange multiplier test}

EQUATION:

so2 2_ 7 .= - 2 o , 2
up /0u = cg + cqb . c DML %t CBDINTt—l t
2

. > . .
© o INF, %t + ¢ SURP, %t , (t=1,2,...T),

where u is residuals from OLS regression ' of . equation (3.2.4),

t

2 . .
and T, is variance . of ug s

coefficients k XZ(k)‘* R2
cq Cy cy oy cg
017 - - -— - 1 9.77 .04
(1.96)
- -0.00015 - - —_— 1 .008 - .000:
(-.167)
— - .003 —— —= 1 19.2 .07
(2.79)
- -— - .0069 —= 1 92.7 .37
(7.52)
— - —-— - -.0023 1 .79 .003
(~.54)
-.018 -.006 -.00062 .0081 .0071 5 99.6 .38
(-1.47)  (~.73) (.64) (6.40) - (1.49)

*%_ One half of the explained sum of squares is distributed as
x“ (k) under the null hypothesis of stable ccefficients.
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TABLE 3. ARCH Tests

REGRESSION EQUATION:
e = a, + ae 2 4 age e
t (6] 17¢-1 27t-2
i1 1 hesis: = = = =
Null hypothesis: 24 ag Cas a o]
Under the null hypothesis, TxRZ is distributed as Xz(p}, where

T is number of observations.

1) Existence of ARCH from OLS regressiocn of monetary growth function
function.

= DM1, —xtb , where b is (LS estimate based on the whole
sample

2) Serial correlation in the squared error terms from TVP estimation
{based on the whole sample.)

= DMl ~x, f, p, where pt/T is TVP estimate based on the whole
sample %smootﬁ{

P x“(p)

1 1.49
2 1.57
3 3.17
4 3.19
8 4.82
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TABLE 4. Test of the Lucas Hypothesis
EQUATION:

cyy = ag - (g * 711n CVE}SHDCKt - a2CVt + agCy

ot

cy, = time-detrended output
SHDCKt = recursive forecast. error

CVt = conditional forecast error variance

1} Uncorrected for serial correlation

ay To 11 a, ag Rr? DH
.00053 .0026 - - .954 .9188 3.29
(.485) (2.049) (31.944)
.00053 .0026- ~. 00009 - .954 .9198 3.28
(.418) (2.030% " {~-.009) (31.7681)
.0089 .0035 -.013 .967 .9334 2.20
(3.823)  (2.962) (-4.23)  (35.098)
.00798 .0038 0027 -.014 . 968 .9355 2.20
(4.200) . .(3.199) . (1.67) . (-4.59) . .(35.489)

2) Corrected for serial correlation
a a R? DH
0 To T 2 o

. 00009 .0027 -— - 9292 ~.520
(.538) (2.592) (18.022)
.00087 .0026 .00056 - .910 9283 ~-.546
(.547) (2.559) (.39) (17.821)
.00674 .0036 -.012 . 949 .9368 ~.546
(3.208) (3.425) (-3.56).  (25.623)
.00798 .0037 .0025 -.014 .951 .9355 -.112

(3.841)° (3.575) ° {1.72) (-4.01)  (26.240)

= t-values are in parentheses.



EQUATION

Dcyt =ay +
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TABLE 5.

(70 + qlln CVh}SHOCF

Deyy = ceyy = ¥y 4

cy, = time-detrended output
SHOCKt = recursive forecast error
CVt =

) Uncorrected for serial correlaticn

Test of the Lucas Hypothesis

conditional forecast errcr variance

00014 00276" -.00013  ~- 0502
{.134) (2.158)  {-.078)

00684 J00384" - ~.0131  .2186
(2.778 {3.102) {-4.38)

06733 Jo03g2’  .00277  -.0151 2436
{4.169)  (3.342) (1.70)  (-4.74)

j Corrected for serial correlation

_______________________________________________ i —

_____ %o T M % R
00017 0029 - 1456 2.
(.113) (2.640)

1768 0029 00048 —— .1465 2.
(.119) (2.640)  (.3155)

00668 0038 -.012 .2835 2.
(3.164)  (3.499) 13.76)

00788 0038 0026  -.015  .2775 2.
(3.577)  (3.639)  {1.712) (-4.16)

* t-values are in parentheses.



FIGURE 1. Confidence intervals from moving regression (DINTt-1)
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FIGURE 2. Confidence intervals from moving regressions (INFt-1)

5.9

2.5 N N

=253 b e\

BB

-7.5

95

(59.1-62.4)

(83.1-85.4)



FIGURE 3. Confidence intervals frow moving regressions {SURPL-1)
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FIGURE 4.Confidence intervals from moving regressions (DMit-1)
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FIGURE 5.Conf idence intervals from moving regressions(INTERCEPT)
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FIGURE 6. Estimate of time—varying coefficient (INTERCEFT)
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FIGURE 7. Estimate of time-varying coefficient (DINT{-1)
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FIGURE 8. Estimate of time—varying coefficient (INFt-1)
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FIGURE 9. Estimate of time—varying coefficient (SURPt-1)
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FIGURE 18. Estimate of time—varying coefficient (DMit-1)
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FIGURE 1. Forecast errors from TUP wmodel.
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FIGURE 12. Conditional variances of forecast errors,
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