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BLISS POINTS IN MEAN-VARTANCE PORTFOLIO MODELS
David S. Jones and V. Vance Roley*

Mean-variance portfolio models have played a major role in the develop-
ment of financial economics. In monetary theory, for example, Tobin's [31]
theory of liquidity preference formally justified the speculative demand for
money in terms of diversified portfolios including both money and a risky
security. In the theory of finance, the Sharpe [30]-Lintner [16] capital-
asset-pricing model demonstrated the importance of risk in the equilibrium
pricing of securities. Two important assumptions are uniformly employed in
these pathbreaking studies. First, it is assumed that investors' preferences
may be represented exactly by mean-variance (or mean-standard deviation)
preference orderings. Second, although Markowitz [18] originally examines
portfolio selection for the case in which all assets are risky, these early
applications and extensions of the mean-variance approach proceed under the
assumpt;on that a riskless financial asset exists.

In the current economic environment of persistent and uncertain price
inflation, and with the absence of an indexed security with zero default risk,
the assumption that an asset with a riskless real return exists is clearly not
applicable;i/ By dropping the riskless—asset assumption, however, mean-
variance analysis is subject to two potential bliss points. One bliss point
is widely acknowledged and follows from Borch [5], who proves that the only
von Neumann-Morgenstern [34] utility function which induces mean-variance
preferences for all probability distributions of end-of-period is the qua-
dratic utility function, which has a finite maximum with a corresponding

satiation level of end-of-period wealth. The possible existence of a different




bliss point is presented by Bierwag and Grove [4], who show that a bliss point
exists in mean-variance portfolio models if a riskless asset is not available
and indifference curves are convex in variance-mean space. The untenable
implication of this second bliss point is that a satiation level of beginning-
of-period wealth exists. In other words, there exist levels of initial

wealth such that an investor maximizes utility by disposing of some of his
wealth before selecting his portfolio.

The existence and implications of initial wealth satiation have been
misinterpreted frequently. For example, both Borch [5] and Hakansson [10]
apparently interpret initial wealth satiation as being the same as end-of-
period wealth satiation in quadratic utility;gl However, as is shown in this
paper, these bliss points are distinct. Indeed, in the quadratic utility
case, initial wealth satiation occurs‘at a lower level of expected utility
than end-of-period wealth satiation. Thus, those researchers who place
importance on restricting the range of application of quadratic utility
because of end-of-period wealth satiation—e.g., Hakansson [10]—should
logically restrict its application further because of initial wealth satia-
tion. Moreover, initial wealth satiation not only limits the usefulness of
quadratic utility, but also many other common mean-variance utility functions.

The purpose of this paper is to investigate the conditions that generate
initial wealth satiation in mean-variance portfolio models, and to clarify
its implications. Following this introductory section, the mean-variance
model is briefly reviewed and the notation used throughout the remainder of
the paper is introduced. In the second section, the Bierwag and Grove [4]

result is generalized, and the initial wealth satiation property is examined




under alternative assumptions about the existence of a riskless asset and the
specification of the mean-variance preference ordering. Examples of specific
mean-variance preference orderings that do and do not display the initial
wealth satiation property are presented in the third section. 1In the fourth
section, Samuelson's [29] Fundamental Approximation Theorem is employed to
construct a mean-variance model that does not display initial wealth satiation
when viewéd as a rigorous approximation to a well-behaved general expected
utility model. The main conclusions of the paper are summarized in the final
section.

I. The Mean-Variance Portfolio Choice Problem

The mean-variance portfolio choice model assumes that an investor's
preference ordering over probability distributions of end-of-period wealth is

represented by a function

U[E(W.), V(W.)] (L
1 1
where . Wl = end-of-period wealth (Wl = A“R)

A = N x 1 vector of asset holdings in dollar amounts
(A1 = WO), with typical element Ai (i=1,2,...,N)

R = N x 1 vector of gross rates of return equal to 1 + r
with typical element Ri (i =1,2,...,N)

WO = beginning-of-period (or initial) wealth

‘T = N x 1 vector of net after-tax yields with typical
element T, (i =1,2,...,N)

1l = N x 1 vector with each element equal to unity.

The investor's subjective assessment of the N X 1 mean vector and the
N x N variance-covariance matrix of asset rates of return may be represented
as —

E(R) = u




VR = E[R-WEW’] = I

implying that the mean and variance of end-of-period wealth are
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In the derivations below, all.assets are assumed to be risky unless otherwise
specified, and the variance-covariance matrix is taken as positive definite
implying that stochastic domination does not exist. In -addition, the mean-
variance function (1) is assumed to be continuous and twice differentiable,

and all investors are assumed to prefer less variance and more mean:
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implying risk-averse behavior. (See Tobin [31].)

The Borch [5]-Feldstein [6]-Tobin [32] exchange indicates that suffi-
cient conditions for an exact mean-variance preference ordering to be consis-
tent with expected utility maximization are either that the utility function
is quadratic, asset rates of return are distributed joint normally, or end-of~
period wealth is distributed lognormally and the utility function is
logarithmic;él Alternatively, the mean-variance portfolio model may be viewed
as an entity separate from the expected utility paradigm and stand on its own
merits as an alternative criterion of portfolio selection. (See Markowitz
[19].)

Under either of these interpretations, the Lagrangian expression asso-—
ciated with the constrained maximization of (1) is

L = U[A"u, AIA] - X(17A - W,). (2)

0

Differentiating this expression with respect to A yields the first-order-con-




ditions for a constrained optimum:

U u + 2-vazA -1x=0 (3a)
1A-W, 20 (3b)
Ae(L’A-W)) =0 . (3¢)
A > 0. (3d)

v

For future reference, note that the Lagrangian multiplier A solved from (3a)
- (3d) may be interpreted as marginal mean-variance utility with respect to
an increment of initial wealth WO. In the remainder of this section, all
initial wealth is assumed to be invested so that 17A = WO. This assumption
will be relaxed shortly.

The second-order conditions of the constrained optimum are satisfied if
the indifference curves associated with the mean-variance utility function (1)
are convex with respect to the origin in variance-mean space. Following Tobin
[31], this convexity assumption implies that investors are risk-averse diver-
sifiers;é/ To facilitate the discussion of bliss points, it will prove useful
to represent the solution to the mean-variance problem graphically, which is

done immediately below.

Geometric Solution. The solution to the mean-variance portfolio choice

problem (2) is displayed in Figure l;é/ A family of three indifference curves
. 1 2 3 1.2 .3 . .

is represented as U, U, and U”, where U <U <U . Previous assumptions about
the marginal expected utilities of the mean and variance of end-of-period

wealth guarantee that the slope of a given indifference curve is positive—i.e.,

dE = -(u,/u_) > 0. (4)
= V' "E
Vi 4u=0

The strict convexity of the indifference curves in Figure 1 further implies
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FIGURE 1

SOLUTION TO THE MEAN-VARTANCE PORTFOLIO
CHOICE PROBLEM WHEN ALL ASSETS ARE RISKY
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2 = - 2. 2. . . 3
‘g E [ (UE UVV + UV UEE) + 2UE UV UEV]/(UE)>O. (5)
v du=0

The optimal portfolio A* is associated with the point of tangency of the
efficiency locus c[WO] with the indifference curve Ul, which represents the
point of highest attainable mean-variance utility. Following Markowitz [18],
the efficiency locus is the boundary of feasible portfolios which have the
smallest variance for a given mean value of end-of-period wealth. Analyti-
cally, the efficiency locus may be derived from the problem

minimize A“ZIA subject to A"y = E and A"l = Wy (6)
A .

The solution to (6) is a parabola in variance-mean space dependent on the
level of initial wealth and the parameters of the joint-probability distribu-
tion of asset rates of return:
2/, .a—l _ -1 o1 E2
WO(H W ZWO(E I DE+ (172D 7

V = A“TA = .
= o= o1 -1 Lo-1
: QI DWW - (wr o2

From the parabolic curvature of the efficiency locus the well-known result that
investors with convex indifference curves will always select efficient port-
folios is readily apparent.

v

II.. Conditions for the Existence of Initial Wealth Satiation

Bierwag and Grove [4] were the first to demonstrate that mean-variance
preference functions having strictly convex indifference curves display
initial wealth satiation. This result is generalized below to include some
preference orderings represented by concave indifference curves. In addition,
the possible existence of initial wealth satiation is considered for different

permutations of the mean-variance problem.

Before considering the conditions that give rise to initial wealth




satiation, it is useful to define this concept in more precise terms,

Definition: Initial wealth satiation is attained at initial wealth WS

if all levels of initial wealth W, < W% yield lower mean-variance

0 0
utility, and if Wo > WS, an investor will maximize utility by disposing
an amount of initial wealth equal to WO - WS.

Notice that this bliss point is similar to the wealth-satiation property
inherent in quadratic utility as discussed by Borch [5]. However, this bliss
point is defined in terms of initial wealth WO, while wealth satiation in
quadratic utility is more naturally defined in terms of end-of-period wealth

W Furthermore, as is shown in section III, the level of initial wealth at

1
the unconstrained global maximum of expected quadratic utility is actually
greater than the level of initial wealth at the bliss point defined above.
Despite the differences, the implications of initial wealth satiation
are nevertheless similar to those of end-of-period wealth satiation in the
quadratic utility case. In particular, for levels of initial wealth above
that consistent Qith initial wealth satiation, an‘investor maximizes
expected utility by disposing an amount of initial wealth equal to the
difference. In other words, at sufficiently high levels of initial wealth,
marginal mean-variance utility is negative with respect to increments of
initial wealth. The implication of this bliss point is therefore highly
untenable if limited-liability assets exist. In such a world, the axiom that
more end-of-period wealth is always preferred to less also implies that more
initial wealth is always preferred to less. To the extent that a mean-

variance preference ordering is inconsistent with this latter proposition it

is also inconsistent with a generally accepted norm of rational behavior.




To find the conditions that lead to initial wealth satiation - in mean-
variance portfolio models, it is eésiest to proceed in a manner parallel to
the previous section. Recall that in solving an investor's portfolio selec-
tion problem, initial wealth was assumed to be fully invested. This assump-
tion is now relaxed, and the level ofkinvested wealth will be allowed to vary.
By varying the level of invested wealth, a family of efficiency loci
representing sets of feasible portfolios is obtained, each parameterized by
the same joint-probability distribution of asset rates of return and by
different levels of invested wealth. Two efficiency loci corresponding to
invested wealth levels WS and Wg are‘displayed as c[WS] and c[Wg] in Figure
2a. The boundary of the set of all feasible portfolios is given by the
envelope of the efficiency loci—such as c*[wo] in Figure 2a. Analytically,

7/

this envelope may be expressed as — ,

"y 8)

V= EZ(H’Z
Each point on the boundary of this envelope corresponds to the unique level
of invested wealth given by
W o= (V/E)ur lD). (9
As is apparent from Figure 2a, initial wealth satiation exists if and
only if mean-variance utility has a maximum along the parabola representing

the envelope of all efficiency loci. This yields the following theorem:

Theorem 1: Initial wealth satiation exists if and only if the problem

maximize U[E,V] subject to (9) ‘ ' (10)
W
has a finite solution WB.

Geometrically, Theorem 1 merely states that a necessary and sufficient condi-

tion for initial wealth satiation is the existence of a level of invested
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FIGURE 2a

THE EXISTENCE OF INITIAL WEALTH SATIATION
IN A MEAN-VARTANCE PORTFOLIO CHOICE PROBLEM
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wealth Wg such that an indifference curve is tangent to the envelope of the
efficiency loci. 1In Figure 2a, this bliss level of initial wealth corresponds

to point A. If an investor has initial wealth equal to W+ for example, and

0’
invests the entire amount, the optimal portfolio decision would be the port-
folio represented by point B. Clearly, the level of utility could be made
higher in this case by disposing an amount of initial wealth equal to Wg - Wg,
and moving to point A. It is easy to show that if initial wealth exceeds the
satiation level, then marginal mean—variance utility of wealth (A) is negative
when the investor is fully invested, thus implying that some initial wealth
should divested.

The Bierwag and Grove [4] result immediately follows as a straight-
forward application of Theorem 1:

Corollary 1: Initial wealth satiation exists for all mean-variance

utility functions exhibiting convex indifference curves in variance-

mean space.
Again, this case conforms precisely to the family of indifference curves in
Figure 2a. Notice, however, that this corollary describes a sufficient but
not a necessary condition. In particular, if iﬁitial wealth satiation

exists at W%, then the second-order condition associated with the problem in

O’
Theorem 1 may be expressed as
4% 1 {dE|?
v > T E [’[ﬁ] (1)
du=0 du=0
WO WO WO WO

where the left-hand side is the curvature of the indifference curve repre-
senting highest attainable mean-variance utility, evaluated at its tangency

to the envelope of the efficiency loci, such as Point A in Figure 2a. From
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this condition it is apparent that some concave mean-variance indifference
curve mappings also imply initial wealth satiation. Such a case is illus-
trated in Figure 2b. This latter fact has interesting implications for mean-
varianceé models formulated in standard deviation-mean space, which are
discussed below.

Permutations of Two-Moment Portfolio Selection Problems. Instead of

representing an investor's objective function in terms of the mean and

A

'* variance of end-of-period wealth, some researchers specify mean-standard

deviation preference orderings. (See, for example, Tobin [31] and Sharpe
[30].) 1In standard deviation-mean space, the sufficient conditions for a
satiation level of initial wealth are slightly different. (See Jones [12].)
In this case, the analogue of the envelope of the efficiency loci (7) is the
straight line

S = E@’T w (87)

where S = Vl/z. Convex indifference curves in standard deviation-mean space
are not sufficient to ensure a satiation level of initial wealth in this
model. Instead, a sufficient condition for such a satiation point to exist

is that the indifference curves are convex and at least one indifference curve
cuts the efficient portfolio line (87) at two points. This latter condition
holds if the marginal rate of substitution of variance for mean tends to
infinity as the level of variance increases without bound. Geometrically,
this is equivalent to the proposition that the indifference curves become
vertical for large values of the standard deviation.

The results of the previous subsection may also be interpreted in

standard deviation-mean (S-E) space. As a preliminary step, it is useful to
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indicate the relationship between indifference-curve mappings of the same
preference ordering in S-E and V-E spaces. In terms of slope and curvature,

this relationship is as follows:

_
@) o]
dU=0 - WYWq4u=0
d2E (a2g dE
352 = 4V dV%] + 2{?5 '
du=0 LV qu=0 dU=0

One implication of‘the above is that convex indifference curves inis—E

space, implying risk-averse diversifying behavior, do not necessarily imply
convex indifference curves in V-E space. In particular, following Tobin [31],
an investor is a risk-averse diversifier if

d2E
ds? > 0
du=0

which implies

avZ| o 2V {4V 00

Combining these results with the second-order condition (11) leads to the

following:
Corollary 2: Not all preference orderings consistent with risk-averse
diversifying behavior imply initial wealth satiation.
An example of this situation is illustrated in Figure 3, w@ere indifference
curves consistent with risk-averse diversifying behavior in S-E space, but
not consistent with initial wealth satiation, are transformed into V-E space.
Note that by Corollary 1, convex indifference curveé in S-E space that do not
imply initial wealth satiation must correspond to concave indifference
curves in V-E space;é/

Another possible specification of the mean-variance utility problem is




FIGURE 3

RISK-AVERSE DIVERSIFYING PORTFOLIO BEHAVIOR AND
THE ABSENCE OF INITIAL WEALTH SATIATION
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that with portfolio rate of return—instead of end-of-period wealth—as the
argument of the mean-variance objective function. 1In this case, the mean-

variance portfolio-choice problem is

maximize U[E(Rp), V(Rp)] subject to 0<1”h<l (27)
N == 1=
where
h = N x 1 vector of proportional holdings of assets
(h = (l/WO){é), with typical element hi (i=1,2,...,N)
Rp = portfolio rate of return (Rp = wl/wo).

This specification differs from the end-of-period wealth case analyzed above
in only one respect: the efficiency loci are conditional on the fraction of
the portfolio invested (Oélfhél) rather than on WO. Moréover, if 1’h = 1 at
the optimum of (27), any increases in initial wealth will not result in wealth
satiation because portfolio composition is selected independently from the
level of initial wealth. (See Roley [26].) Conversely, if maximum mean-
variance utility occurs for a less-than-fully invested portfolio (h<1); wealth
satiation analogous to the end-of-period wealth case arises, although in this
instance it is in terms of a proportion of initial wealth and not the level.

Mean-Variance Analysis with a Riskless Asset. With the existence of a

riskless asset, the mean-variance portfolio-choice problem does not generally
have an initial wealth satiation point. Specifically, the conditions that
imply the absence of initial wealth satiation may be summarized as follows:
Theorem 2: Initial wealth satiation does not exist if a riskless asset
with positive rate of return RF is available.
Proof: This may be shown by respecifying (2) for the one-riskless—-asset
case. By suitably partitioning the variance-covariance matrix I and the mean

vector of asset rates of return u to conform with the availability of a risk-




~13-

less asset, the first-order conditions of the constrained optimum may be
solved for the Lagrangian multiplier
A = U_°R_.
E F
Again, A may be interpreted as the marginal mean-variance utility of initial
wealth, and for initial wealth satiation to exist it must admit negative

values. However, with the assumed signs of U_ and RF’ A is always positive.

E
Geometrically, if a riskless asset exists, then any point in variance-
mean space is obtainable with a sufficiently large level of initial wealth.
Hence, in this case a boundary analogous to the envelope of the efficiency
loci (8) does not exist and the problem analogous to that in Theorem 1 does

not have a finite solution.

III. Specific Mean-Variance Expected-Utility Models and Initial Wealth Satiation

In this section the possible existence of initial wealth satiation is
examinéd in three common expected-utility models which reduce to exact mean-
preference orderings. These three models are quadratic utility, negative
exponential utility with joint-normally distributed asset rates of return, and
logarithmic utility with lognormally distributed end-of-period wealth. It is
shown below that the first two expected-utility models imply initial wealth
satiation while the latter is not.

Quadratic Utility. Perhaps the most interesting example of initial

wealth satiation involves the case of quadratic utility
_ _ 2
U[Wl] W1 le , b >0, (12)
While this utility function has been severely criticized by Hicks [11], Arrow
[1], and Samuelson [28] for displaying increasing absolute risk aversion, it

nevertheless is the only von Neumann-Morgenstern utility function that reduces

to an exact mean-variance preference ordering for all probability distributions
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of end-of-period wealth., (See Borch [5].) The quadratic utility function
also possesses a global maximum at
% =
Wl 1/2b

implying the existence of a satiation level of end-of-period wealth.

Expected quadratic utility immediately follows from (12) and may be
written as
= — . 2 pu— . 4

E(U[wl]) E(wl) b E(Wl) b V(Wl). (127)
To demonstrate that expected quadratic utility has a point of initial wealth
satiation Theorem 1 may be applied directly. The first- and second-order
conditions associated with problem (10) are

P R |
1 - 2b-(1+(u"Z ") )-E(Wl) = 0
- 2bo(1+(g'z‘¥g’l) < 0.

These conditions are jointly satisfied for the unique level of invested wealth

Ws = (1/2b)-1"(Z+u u”)u.
Consequently, a satiation level of initial wealth exists at Wé, and all initial

wealth above this level will be divested.
The existence of initial wealth satiation in the quadratic utility case
is illustrated in Figure 4, where the indifference curves, the efficiency

locus for WS, and the envelope of the efficiency loci are labeled as before.

By setting W. equal to W* in (127), the maximum possible level of expected

1 1

utility is
Ux = 1/4b.

The level of expected utility associated with initial wealth Ws is
Utk = (oL L) [4be Q4 z ) 1Tt

which is always less than that of the unconstrained maximum (U*>U%*¥*). Thus,
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contrary to Borch [5] and Hakansson [10] among others, it is initial wealth
satiation, not end-of-period wealth satiation, that effectively places the
uppér limit on the level of expected quadratic utility. Moreover, those
researchers who place restrictions on the subjective probability distribution

of rates of return and initial wealth to ensure that W1<Wf misdirect their

focus. Restrictions ensuring that W1<Wf do not necessarily preclude WO>W6.

Hence, initial wealth should be restricted to be less than Wg in order to

circumvent the effective bliss point problem in the quadratic utility model.

" Negative Exponential Utility with Joint-Normally Distributed Asset Rates
of Return. An expected-utility model that also enjoys widespread use is |
derived from the combined assumptions of negative exponential utility and
joint-normally distributed asset rates of return

U[Wl] = - exp(—bwl) 13

R v N(u,Z).
One of the attractive features of this specification is that absolute risk
aversion is nondecreasing. This model does, however, exhibit increasing
relative risk aversion;g/ Another unattractive feature of this model is that
it is inconsistent with the limited liability status of many financial assets
because the‘range of the normal variate is unbounded below.

The expected-utility model consistent with the above assumptions can be

shown to be maximized if the following is maximized:

UIEGH), VO] = E@W) - (b/2)-V(W)). (13°)
To obtain the satiation level of initial wealth, equation (137) may be substi-

tuted into Theorem 1, with the constrained optimum yielding the following

first— and second-order conditions:
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So=1 -1
1-5b(uZ " E(Wl) = Q
.-l
-be(u°Z "w) <0
which are satisfied for the unique level of initial wealth
W o= (1/b)- (L M.
The initial wealth satiation point inherent in this expected-utility
model is illustrated in Figure 5. This example serves to highlight the impor-
tant fact that initial wealth satiation is an issue completely unrelated to

whether the von Neumann-Morgenstern utility function possesses an unconstrained

maximum, since U[Wl] in (13) is monotonically increasing in Wl.

. Logarithmic Utility with Lognormally-Distributed End-of-Period Wealth.

Feldstein [6]>proposed the logarithmic utility function with lognormally dis-
tributed end-of-period wealth

U[Wl] = 108(W1) (14)

log(W)) ~ N(E[log(W)], V[log(W)])
as an alternative to the quadratic utility function used by Tobin [31] in the
analysis of liquidity preference. Combining the above two assumptions and
taking the expected value of the utility function yields

E(UIW, 1) = loglE(W)] - (1/2)-1og[(V(W )/E(W ) D+1]. (147
This mean-variance preference ordering embodies decreasing abolute risk aver-—
sion and constant relative risk aversion, which implies investor behavior at
least as plausible as that in the other two cases considered. (See, for
example, Friend and Blume [8], Lintner [17], and Rubinstein [27].) However,
the model is also based on the assumption of lognormally-distributed end-of-
period wealth, and it is well known that a linear combination of lognormally-

distributed asset rates of return—such as that representing end-of-period




FIGURE 5

NEGATIVE EXPONENTIAL UTILITY WITH JOINT-
NORMALLY DISTRIBUTED ASSET RATES OF RETURN
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wealth—is not distributed lognormally.

The possible existence of initial wealth satiation in this specification
may again be investigatedvby applying Theorem 1, which yields the following
necessary first- and second-order conditions:

1/EW,) = 0

—1/E(w1)2< 0.
In this case the first-order condition is not satisfied for finite values of
expected end-of-period wealth, and the expected-utility maximization problem
does not have a bliss point. Geometrically, the mean-variance indifference
curves implied by (14°) are strictly concave, as illustrated in Figure 6;19/
Moreover, the curvature of each indifference curve is sufficiently flat so that
the conditions implied by Theorem 1 are not satisfied. In contrast to the
other two models considered, therefore, this model does not have either an

unconstrained maximum or a point of initial wealth satiation.

IV. The Fundamental Approximation Theorem and Initial Wealth Satiation

In this section, Samuelson's [29] Fundamental Approximation Theorem is
used to show that if the conditions which enable a particular mean-variance
model to closely approximate an arbitrary expected-utility model are satisfied,
then the initial wealth satiation level inherent in the model should be ignored
and the optimal portfolio should be calculated assuming the investor remains
fully invested. The restrictiveness of the assumptions used to obtain this
result are discussed in turn following the basic derivation.

The Fundamental Approximation Theorem may be stated as

Fundamental Approximation Theorem: Assume that the random rate cof

return on each asset, Ri’ for i = 1,2,...,N, belongs to a family of




E(Wl)

FIGURE 6

LOGARITHMIC UTILITY WITH LOGNORMALLY
DISTRIBUTED END-OF-PERIOD WEALTH

V(Wl)




~18-

probability distributions Fi[R;oz] parameterized by 02 such that as
02 tends to zero the distribution Fi[R;oz] tends to the sure event
Prob{Ri = ﬁ)= 1 in the sense that:
1im02_>O E(Ri—m) =0
lim o 0 E(Ri—m)/02 =C; g #0
lim02+0 E[(Ri—mz]/o2 = Ci,2 #0
lim 5., E[(Ri—m)n]/02 = 0, n=3,4,...
where m > 0. Furthermore, assume that the investor's von Neumann-Morgenstern
utility function, U[Wl], satisfies U > 0, U”” < 0, and possesses either an
exact Taylor series expansion about arbitrary levels of wealth or possesses a
bounded derivative of order "k" for some k > 2. Suppose that DGZ solves the

portfolio choice problem

maximize E 2<U[W 'h’R]}subject to 1°h<1 (15)
h o 0—= - =

and .232 solves the associated mean-variance problem

»

lall}

maximize h
h

subject to 1"h =1

2 = (1/2)«(p/m) "h’Z _oh (16)

d

where :r'_oz = E_2(R) - Im
Z2 = Ep[(Bw) (Ry) ]
p = -m~WO-U”[m-w0]/U’[m-WO],
then lim02+0|202 - h;zl = 0.

A proof of this theorem appears in Samuelson [29]. The essential economic
implication of this theorem is the following: if portfolio risk is small, the
solution to the expectéd—utility maximization problem (15) is well approxi-

mated by the solution to the associated mean-variance problem (16).
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Several characteristics of the mean-variance problem (16) are note-
worthy. First, the problem is essentially a quadratic approximation to

/

(15);ll Second, the problem is expressed in terms of portfolio rate of

return. Finally, the parameter p in (16) is nothing more than the investor's

relative risk aversion evaluated at m-Wo.lz/

As discussed in the second section? the problem (15) technically has a
satiation point in terms of portfolio shares if maximum mean-variance utility
occurs for a less-than-fully invested portfolio (1°h<l), rather than for
1°h = 1. However, by the Fundamental Approximation Theorem, problem (16)
should be solved for the optimal portfolio share vector assuming the investor
is fully invested. In a sense, initial wealth satiation should be ignored in
‘this case. An intuitive explanation for this conclusion follows from the
first-order conditions for a constrained optimum of (15)

E2(U"R) = 1A 2 = 0 (a7
where Acz is the Lagrangian multiplier associated with the wealth constraint
in (15). Taking the limit of (17) as 0?2 tends to zero implies

1im°2+0 Acz = m-U’[m-WO].
Thus, for portfolio risk sufficiently small, the marginal‘expected utility of
initial wealth Agz is positive and initial wealth is fully invested. 1In other
words, if the marginal utility with respect to wealth in (15) is positive, the
oétimal portfolio obtained from the mean-variance approximation (16) should be
represented as one that is fully invested.

The usefulness of this result turns on the issue of whether portfolio
risk is, in fact, typically small. This issue has been examined fairly exten-

sively, and it has been shown that portfolio risk is effectively small if asset
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returns follow a Gaussian diffusion. process and if either of the following
conditions are present: (1) the investor's holding period is short, or (2)
asset trading can take place continuously in time;lé/ Jones [12] also shows
that the conditions of the Fundamental Approximation Theorem are effectively
met in the lognormal securities market models of Lintner [15], Bawa and
Chakrin [2], and Ohlson and Ziemba [25].

V. Summarv of Conclusions

When all financial assets are assumed to be risky, arguably the most
relevant case because of persistent and uncertain price inflation, a broad
class of mean-variance utility models is consistent with initial wealth
satiation. Bierwag and Grove [4] first noticed this property, but in subse-
quent studies involving mean-variance utility models, it has either been
ignored or misinterpreted. In these latter instances, end-of-period wealth
satiation inherent in quadratic utility has been mistaken for the Bierwag and
Grove result which instead involves initial wealth satiation.

In this paper, the Bierwag and Grove result was generalized, and specific
case applications involving quadratic utility, negative exponential utility
with joint-normally distributed asset rates of return, and logarithmic utility
with lognormally distributed end-of-period wealth were examined. In the
quadratic utility case, it was shown that initial wealth satiation, not end-
of-period wealth satiation, effectively places an upper bound on the model in
terms of rational investor behavior. Moreover, in general applications
including other utility functions, the existence of initial wealth satiation
was found to be independent of the existence of end—of—pefiod wealth satia-

tion.
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By appealing to Samuelson's [29] defense of mean-variance analysis,
however, it was shown that if a particular mean-variance model is interpreted
as an approximation to a well-behaved expected utility model, the possible
existence of a satiation point‘in the mean-variance approximation is not.
relevant. In this case, the optimum of the mean-variance problem asymptoti-
cally approaches the solution to the expected utility model, and if the
marginal utility with respect to wealth is positive, the optimal portfolio

should be represented as one that is'fully invested.




Footnotes

*Visiting Scholar, Federal Reserve Bank of Kansas City, on leave from North-
western University, and Assistant Vice President and Economist, Federal

Reserve Bank of Kansas City, respectively. The views expressed here are solely
our own and do not necessarily represent the views of the Federal Reserve Bank
of Kansas City or the Federal Reserve System. This paper is a part of the
Financial Markets and Monetary Economics Program of the National Bureau of
Economic Research.

1/ For studies involving the all-risky assets case, see, for example, Merton
[22] and Landskronner [13].

2/ Borch [5] and Hakansson [10] interpret the Bierwag and Grove [4] result
as implying that indifference curves in standard deviation-mean space are
concentric circles with the point of highest utility represented by a single
point at the center. This bliss point corresponds to end-of-period wealth
satiation in quadratic utility. Bierwag and Grove [4], however, do not
examine the case in which indifference curves in standard deviation-mean
space have this representation. Instead, they assume convex indifference
curves in variance-mean space, and show that this assumption implies a pref-
erence ordering in asset space represented by concentric circles. The center
of these circles represents the point of initial wealth satiation.

3/ Throughout this paper all probability-distributions of end-of-period
wealth are assumed to have finite first- and second-moments.

4/ However, the lognormality of end-of-period wealth does not follow from
lognormally~distributed asset rates of return.

5/ Tobin [31] relates this type of risk-averse behavior to indifference
curves in standard deviation-mean space. In variance-mean space, convex
indifference curves are a sufficient but not a necessary condition for risk-
averse~diversifying behavior, as discussed in the next section.

6/ See Merton [22] for graphical presentations of both the all-risky assets
and one-riskless asset cases.

7/ The envelope of the efficiency loci may be derived from the problem

minimize A“ZA subject to A’y = E.
A

8/ Analytically, a risk-averse diversifier does not have a point of initial
wealth satiation if

dE

451 3u=0

E
< =,

S
Thus, the restrictions placed on the portfolio selection problem by Tsiang [33]
guarantee that initial wealth satiation does not occur. In particular, he
assumes that (1) E/S > 1, i.e., the efficiency envelope consists only of

portfolios with greater mean than standard deviation and (2) [dE/dS]dU=0 < 1.

For criticisms of this latter assumption, see Bierwag [3] and Levy [14].




‘ 2/ Nevertheless, Arrow [1] has argued on both theoretical and empirical
grounds that relative risk aversion should be, and is, an increasing function
of wealth.

10/ As demonstrated by Feldstein [6], in standard deviation-mean space the
indifference curves are initially convex and then concave after the inflection
point. In variance-mean space, however, it may be verified that the
indifference curves are strictly concave.

11/ This will be the case if rates of return are generated by any continuous-
time diffusion process.

12/ Tsiang [33] extends the Fundamental Approximation Theorem for utility
functions exhibiting constant absolute and constant relative risk aversion.

He claims that portfolio risk need not be small absolutely for mean-variance
analysis to be a good approximation to expected utility maximization. Rather,
all that is required is that portfolio risk be small relative to the size

of initial wealth. Tsiang claims that this condition will be met for most
individual investors provided that wealth is correctly defined to include both
financial and nonfinancial assets—e.g., human capital.

13/ For examples using condition (1), see Merton and Samuelson [24), Friend,
Landskronner, and Losq [9], Landskronner [13], and Friedman and Roley [7].
For examples using condition (2), see Merton [20, 21, 22].
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