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Appendix

Appendiix A analyzes long difference estimators. Appendix B reports descriptive
statistics for the empirical setting. Appendix C estimates the effects of climate change
by industry. Appendix D derives the indirect least squares estimator when agents
observe forecasts but the empirical researcher does not. Appendix E contains proofs.

A Long Difference Estimators

Recognizing the difficulty of accounting for adaptation, some empirical literature
averages outcomes over long timesteps, a procedure known as “long differences” (e.g.,
Dell et al., 2012; Burke and Emerick, 2016).48 In order to obtain sharper results,
assume temporarily that specialized forecasts are available only one period in advance
and that Σ is diagonal. I use Σij to indicate element (i, j) of Σ. Define

π̆s ≜
1

∆

s+∆−1∑
t=s

πt

as average payoffs over ∆ timesteps beginning with t = s. Define w̆s and f̆1,s analo-
gously. Consider the following regression:

π̆js =ᾰj + Λ̆w̆js + λ̆f̆j1,s + η̆js,

with observations only every ∆ timesteps (i.e., no overlap in averaging intervals).
The next proposition shows that estimating this regression does not generally get us
closer to the effect of climate than did estimating regression (15) with ∆ lags:

Proposition A-1 (Long Differences). Let Assumption 1 hold, or let Assumptions 2
and 3 hold. Also, let Σ be diagonal and Σ33 = 0. Then:

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
= plim

∆−1∑
i=0

∆− i

∆

[
Λ̂i + λ̂i

]
+ plim

1

∆

∆−1∑
i=0

Σ22

Σ11 + Σ22

λ̂i+1. (A-1)

If Ψ > 0, then

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
=π̄w + ω̆

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
,

where ω̆ ∈ (0, ω∆), with ω∆ ∈ (0, ω) from Corollary 3 and ω and Ω from Proposition 2.

Proof. See Appendix E.14.

48The subsequent analysis does not depend on whether the operation is summing or averaging.
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Even though equation (A-1) does not explicitly include lags on the left-hand side, the

estimated coefficients
ˆ̆
Λ and

ˆ̆
λ do incorporate effects of lagged weather and lagged

forecasts owing to correlations between payoffs and lagged weather and forecasts

within a timestep (see also Ghanem and Smith, 2021). As a result,
ˆ̆
Λ+

ˆ̆
λ bears some

resemblance to summing ∆ lags from regression (15). However, only observations at
the very end of each long timestep have a full ∆ lags within the same timestep. All
other observations have fewer than ∆ lags implicitly estimated. Summing the long
difference coefficients is therefore analogous to summing downweighted versions of the
lag coefficients from regression (15).

As in Corollary 3, the bias introduced by ω̆ is particularly easy to sign when
Ψ > 0. In this case, Corollary 3 showed that summing the first ∆ lags amplified
the bias from historical restraints relative to summing infinite lags. We now see
that implicitly summing these lags through long timesteps further amplifies that bias
because nearly all observations within the long timestep have fewer than ∆ lags. Long
differences are not generally superior to simply estimating a standard panel model
with ∆ lags and summing the coefficients.49

Researchers sometimes compare long difference estimates to standard panel esti-
mates in order to learn whether whether short-run adaptation differs from long-run
adaptation. The hope is that the long difference estimator is identified by spatially
heterogeneous rates of climate change that manifest over decades. However, long
difference estimators are in fact identified in the foregoing analysis even though there
is, by construction, no climate change in the present setting (C is here constant over
agents and over time). In fact, they are identified by random differences in sequences
of the same transient weather shocks that identify panel estimators such as (15). This
source of identification is unavoidable in applications, whether or not there is also vari-
ation in C. At best, long difference estimators conflate the identifying variation of
transient weather shocks with differential rates of climate change, but at worst, they
capture nothing but this familiar identifying variation. We should judge the latter
case to be especially likely when long difference and panel estimators produce similar
results, as in fact has been reported in previous work (summarized in Hsiang, 2016).

B Descriptive Statistics

Table A-1 reports descriptive statistics for the empirical application, broken down by
Census Region.

49Comparing long difference estimates to panel estimates with few lags does tell us something
about the importance of historical restraints (ω̆ vs ωI′), which relates to the difference between
long-run and short-run adaptation, but so too would simply changing the number of lags used, per
Corollary 3.
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Table A-1: Descriptive Statistics

Midwest Northeast South West

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev

Output ($Billion) 3.1 13.6 15.2 40.4 3.9 14.2 9.1 37.7
Population (Thous) 63.4 211.9 254.8 375.8 81.8 215.7 169.2 623.2
Output p.c. ($Thous) 40.6 20.1 45.3 25.5 59.7 707.1 48.6 56.2
Temperature (deg C) 9.8 2.9 9.2 2.2 16.6 2.9 9.3 4.1

Years: 2001–2019, excluding 2007 and 2008.
Output is annual, in year 2012 dollars.
Temperature is the unweighted average across counties.

C Industry-Level Results

This appendix extends the primary empirical specification from the main text to assess
effects by industry. Data are again from the Bureau of Economic Analysis, except now
for each industry’s output by county. I group industries using definitions from Table
A2 in Colacito et al. (2019). Climate change calculations use the projected national
change in temperature, of 4.0◦C. Each industry is run in a separate regression. The
only changes to the estimating equations are that they now estimate a single coefficient
across Census regions and that the log-output weights are industry-specific.50

Figure A-1 reports results from the ILS and OLS estimators. Both estimators
project losses across a number of industries, including “Agriculture, forestry, fishing”,
“Mining”, and “Utilities”. Many of these are intuitively exposed to weather. The ILS
estimator tends to be noisier but does produce solidly more negative point estimates
in several important cases (“Mining”, “Transportation”, “Utilities”). Direct effects
again drive the ILS estimates.

Figure A-2 reports the estimated Ψ for each industry. All of the point estimates
are positive, although many are noisy. Finding positive Ψ is consistent with the main
text’s results.

D Analysis When Agents Observe Forecasts but

the Empirical Researcher Does Not

Consider the following regression, which uses leads of weather as proxies for forecasts:

πjt =αj +
2∑

i=−2

Φiwj(t−i) + ηjt. (A-2)

50Results exclude “Finance, insurance, and real estate” due to convergence problems in Stata’s
nlcom and exclude “Communication/Information”, “Retail”, and “Wholesale” because estimates
are rather noisy.
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Figure A-1: Projected end-of-century percentage change in industry output per capita
due to business-as-usual climate change’s effect on temperature.
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Figure A-2: Estimated Ψ by industry.
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The right-hand side contains only the fixed effect, the contemporary effect of weather,
two lags of weather, and two leads of weather. I use Σij to indicate element (i, j) of
Σ. The following proposition presents the indirect least squares estimator for climate
impacts:

Proposition A-2 (Indirect Least Squares With Unobserved Forecasts). Let Assump-
tion 1 hold, or let Assumptions 2 and 3 hold. Consider estimating regression (A-2),
assuming that plim Φ̂1, Φ̂−1 ̸= 0 and plim Φ̂2/Φ̂1 ̸= 1/β. If Σ is diagonal, then:

plim

( direct effects︷ ︸︸ ︷
Φ̂0 −

Φ̂1

Φ̂2

Φ̂1
− 1

β

+
1

β
Φ̂−1 +

1

β2
Φ̂−2

ex-post adaptation︷ ︸︸ ︷
−1− β

β

 Φ̂1

Φ̂2

Φ̂1
− 1

β

− Φ̂−1
Φ̂2

Φ̂1

− 1

β
Φ̂−2

Φ̂2

Φ̂1


ex-ante adaptation (estimated)︷ ︸︸ ︷

−1− β

β

[
Φ̂−1 −

(
Φ̂2

Φ̂1

− 1

β

)
Φ̂−2

]
1

Σ22/trace(Σ)

ex-ante adaptation (Ω adjustment)︷ ︸︸ ︷
+
1− β

β

Φ̂−2

Φ̂−1

 Φ̂1

Φ̂2

Φ̂1
− 1

β

− Φ̂−1
Φ̂2

Φ̂1

− 1

β
Φ̂−2

Φ̂2

Φ̂1

 Σ22/trace(Σ)

Σ33/trace(Σ)

)

=π̄w + ω̃

[
π̄A + π̄S

h′(Ā)

1− g

]
∂Ā(K,C)

∂C
, (A-3)

and

Ψ ∝ plim
Φ̂2

Φ̂1

.

If Ψ > 0, then ω̃ < 1. If Ψ = 0, then ω̃ = 1. If Ψ < 0, then ω̃ > 1.

Proof. See Appendix E.15.

The intuition for identification is as presented following Proposition 5, but now we
have to adjust for forecasts acting as omitted variables. This has a few consequences.
Most are relatively minor, but one can be important in some applications. First,
the derivation requires that weather be serially uncorrelated. This assumption limits
the degree of omitted variables bias in each reduced-form coefficient. Second, all
covariates (other than wt+2) are correlated with some forecast issued prior to time t
and that affects πjt. This correlation introduces additional ex-ante adaptation terms
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into each coefficient, and we need to subtract these off to recover the effects of interest.
The expressions are therefore messier than in Proposition 5.51 Third, we no longer
have forecasts to identify the adjustment to the ex-post adaptation terms seen in
Proposition 5, so we now need to calibrate β in order to make the required adjustment.
This requirement is not too onerous since we needed a value for β to calculate climate
impacts in (17) anyway.

Most importantly, our estimate of ex-ante adaptation from the coefficient Φ̂−1

on the lead of weather tends to be too small in magnitude: Φ̂−1 reflects the total
variation in weather, but only a fraction Σ22/trace(Σ) of that variation was forecasted
one period ahead of time. The bias from proxying forecasts with the lead of weather
vanishes as the fraction goes to 1. In contrast, if time t+1 weather is largely unknown
at time t, then we estimate very little ex-ante adaptation even though an agent might
undertake substantial ex-ante adaptation to climate change. (Analogous comments
apply to the estimated correction factor for Ω.)

With a calibrated Σ in hand, we are left with the same biases as in Proposition 5,
involving having fixed K and the adjustments due to ω̃ (which we again sign using
the estimated sign of Ψ).

E Formal Analysis and Proofs

E.1 Deriving equation (6)

With At defined implicitly from the first-order condition πA = 0, approximate At

around wt = C and use either Assumption 1 or Assumption 2:

At = Ā+
π̄wA

−π̄AA

(wt − C). (A-4)

Therefore,
E0[At] = Ā.

Approximating the payoff function around wt = C and using either Assumption 1 or
Assumption 2, we have:

E0[π(wt, At, St;K)] =π̄ + π̄w (E0[wt]− C)︸ ︷︷ ︸
=0

+π̄A (E0[At]− Ā)︸ ︷︷ ︸
=0

+
1

2
π̄wwE0[(wt − C)2] +

1

2
π̄AAE0[(At − Ā)2] + π̄wACov0[At, wt],

(A-5)

for t > 2. Differentiating with respect to C, applying either Assumption 1 or As-
sumption 2 again, and using that these assumptions imply Ā = E0[At], we have the
expression given in the text.

51If forecasts are available to the agent only one period ahead, then the terms with Φ̂−2 vanish.
If forecasts are available more than two periods ahead, then results generalize straightforwardly.
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E.2 Proof of Proposition 1

Following the derivation of equation (A-5) and applying the first-order condition, we
have:

π(wt, At, St;K) =π̄ + π̄w(wt − C) +
1

2
π̄ww(wt − C)2 +

1

2
π̄AA(At − Ā)2 + π̄wA(wt − C)(At − Ā).

Therefore,

Cov[πjt, wjt − C] =π̄wζ
2trace(Σ) +

1

2
π̄wwCov[wjt − C, (wjt − C)2]

+
1

2
π̄AACov[wjt − C, (Ajt − Ā)2] + π̄wACov[wjt − C, (wjt − C)(Ajt − Ā)]

=π̄wζ
2trace(Σ) +

1

2
π̄wwCov[wjt − C, (wjt − C)2] +

1

2
π̄AACov[wjt − C, (Ajt − Ā)2]

+ π̄wACov[wjt − C,wjtAjt]− Āπ̄wAV ar[wjt]− Cπ̄wACov[wjt − C,Ajt].

If Assumption 3 holds, then Cov[wjt − C, (wjt − C)2] = 0, or if Assumption 1 holds,
then Cov[wjt − C, (wjt − C)2] ≈ 0 because it is of order ζ3. Using results from
Bohrnstedt and Goldberger (1969),

Cov[wjt, wjtAjt] = E[Ajt]V ar[wjt] + C Cov[Ajt, wjt] + E[(wjt − C)2(Ajt − E[At])].

If either Assumption 3 or Assumption 1 holds, then this becomes:

Cov[wjt, wjtAjt] = E[Ajt]V ar[wjt] + C Cov[Ajt, wjt].

Using E[Ajt] = Ā, we find:

Cov[πjt, wjt − C] =π̄wζ
2trace(Σ) +

1

2
π̄AACov[wjt − C, (Ajt − Ā)2].

Using (A-4), observe that:

Cov[wjt − C, (Ajt − Ā)2] =

(
π̄wA

−π̄AA

)2

Cov[wjt − C, (wjt − C)2],

which is 0 if either Assumption 1 or Assumption 3 holds. We therefore have:

Cov[πjt, wjt − C] =π̄wζ
2trace(Σ).

The result follows from observing that V ar[wjt − C] = ζ2trace(Σ).
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E.3 Proof that there is a unique maximizer in the determin-
istic model (ζ = 0)

With ζ = 0, rewrite payoffs as a function of St and St+1 by using At = h−1(St+1−gSt):
π̃(St, St+1) ≜ π(C,At, St;K). If the payoff function is strictly concave and bounded,
then there is a unique maximizer by Theorem 4.8 in Stokey and Lucas (1989). Strict
concavity requires that π̃StSt < 0 and π̃StSt π̃St+1St+1 − (π̃StSt+1)

2 > 0. We have:

π̃StSt π̃St+1St+1 − (π̃StSt+1)
2 =(1/h′)4

[
(h′)2πSS + 2h′πAS + πAA − (h′′/h′)πA

]
[πAA − (h′′/h′)πA]

− (1/h′)4 [h′πAS + πAA − (h′′/h′)πA]
2

=(1/h′)4
[
(h′)2πSS

]
[πAA − (h′′/h′)πA]− (1/h′)4(h′πAS)

2.

This is strictly positive if and only if inequality (1) holds. By the inequality of
arithmetic and geometric means, inequality (1) in turn implies

h′πAS <
1

2
(−πAA + (h′′/h′)πA)−

1

2
(h′)2πSS,

which is equivalent to π̃StSt < 0. We have therefore established that inequality (1)
implies that payoffs are strictly concave in St and St+1.

E.4 Proof that deterministic model (ζ = 0) has a unique
steady state and is saddle-path stable

Fix ζ = 0, in which case wt = f1,t = f2,t = C at all times t.
The first-order condition for the deterministic model is:

0 = πA(C,At, St;K) + βh′(At)VS(St+1, C, C, C; 0, K).

This implies:

VS(St+1, C, C, C; 0, K) =
−πA(C,At, St;K)

βh′(At)
.

The envelope theorem yields:

VS(St+1, C, C, C; 0, K) = πS(C,At+1, St+1;K) + β g VS(St+2, C, C, C; 0, K).

Advancing the first-order condition by one timestep and substituting in, we have the
Euler equation:

−πA(C,At, St;K) = β h′(At)πS(C,At+1, St+1;K) + β h′(At) g
−πA(C,At+1, St+1;K)

h′(At+1)
.

(A-6)
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The steady state (denoted with a bar) is defined by the following pair of equations:

−πA(C, Ā, S̄;K) =β h′(Ā)πS(C, Ā, S̄;K)− β g πA(C, Ā, S̄;K),

S̄ =gS̄ + h(Ā).

The second implies:

S̄ =
h(Ā)

1− g
. (A-7)

Substituting into the first equation and rearranging, we have:

−(1− βg)πA

(
C, Ā,

h(Ā)

1− g
;K

)
− βh′(Ā)πS

(
C, Ā,

h(Ā)

1− g
;K

)
= 0. (A-8)

The derivative of the left-hand side with respect to Ā is

− (1− βg)π̄AA − β

1− g
[h′(Ā)]2π̄SS − βh′′(Ā)π̄S − (1− βg)

h′(Ā)

1− g
π̄AS − βh′(Ā)π̄AS.

Substituting for βπ̄S from (A-6), this becomes:

(1− βg)

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− β

1− g
[h′(Ā)]2π̄SS −

[
1− βg

1− g
+ β

]
h′(Ā)π̄AS.

This expression is strictly positive if and only if

h′(Ā)π̄AS <
[1− (1 + β)g + βg2]

[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β[h′(Ā)]2π̄SS

1 + β − 2βg
. (A-9)

From (5), we have

h′(Ā)π̄AS <
[1− 2g(1 + β) + 3βg2]

[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β[h′(Ā)]2π̄SS

1 + β − 2βg
.

The right-hand side of this last inequality is weakly less than the right-hand side
of inequality (A-9). Therefore inequality (A-9) holds, which in turn implies that a
steady state exists by (3) and (4) and that this steady state is unique.

The Euler equation (A-6) implicitly defines A∗
t+1(At, St). Using the implicit func-

tion theorem:

∂At+1

∂St

=
h′(At+1)

[
−πAS(C,At,St;K)

h′(At)
− βgπSS(C,At+1, St+1;K) + βg2 πAS(C,At+1,St+1;K)

h′(At+1)

]
βh′(At+1)πAS(C,At+1, St+1;K) + βg

(
−πAA(C,At+1, St+1;K) + h′′(At+1)

πA(C,At+1,St+1;K)
h′(At+1)

) ,
∂At+1

∂At

=
h′(At+1)

[
−βh′(At) πSS(C,At+1, St+1;K) + −πAA(C,At,St;K)

h′(At)
+ h′′(At)

πA(C,At,St;K)
[h′(At)]2

]
βh′(At+1)πAS(C,At+1, St+1;K) + βg

(
−πAA(C,At+1, St+1;K) + h′′(At+1)

πA(C,At+1,St+1;K)
h′(At+1)

)
+

h′(At+1)βgh
′(At)

πAS(C,At+1,St+1;K)
h′(At+1)

βh′(At+1)πAS(C,At+1, St+1;K) + βg
(
−πAA(C,At+1, St+1;K) + h′′(At+1)

πA(C,At+1,St+1;K)
h′(At+1)

) .
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Approximate At+1 around the steady state:

At+1 ≈Ā+
−(1− βg2)π̄AS − βgh′(Ā)π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

)(St − S̄)

+
−π̄AA + h′′(Ā) π̄A

h′(Ā)
+ βgh′(Ā)π̄AS − β[h′(Ā)]2 π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) (At − Ā).

Linearize the dynamic system around the steady state:

[
At+1 − Ā
St+1 − S̄

]
≈

−π̄AA+h′′(Ā)
π̄A

h′(Ā)
+βgh′(Ā)π̄AS−β[h′(Ā)]2 π̄SS

βh′(Ā)π̄AS+βg
(
−π̄AA+h′′(Ā)

π̄A
h′(Ā)

) −(1−βg2)π̄AS−βgh′(Ā)π̄SS

βh′(Ā)π̄AS+βg
(
−π̄AA+h′′(Ā)

π̄A
h′(Ā)

)
h′(Ā) g

[At − Ā
St − S̄

]
.

The determinant is 1/β, which is > 1. Therefore both eigenvalues have the same sign.
The characteristic equation is

0 =z2 −

−π̄AA + h′′(Ā) π̄A

h′(Ā)
+ βgh′(Ā)π̄AS − β[h′(Ā)]2 π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) + g

 z +
1

β
.

This is a parabola that opens up. At z = 1, its value is:

−
(1− g)(1− βg)

(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

)
− (1 + β − 2βg)h′(Ā)π̄AS − β[h′(Ā)]2 π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) .

By inequality (A-9), the numerator is positive. If the denominator is positive, then
the expression is negative, so there is one root ∈ (0, 1) and one root > 1, making
the system saddle-path stable. If the denominator is negative, then the analogous
expression for z = −1 is negative, so there is one root ∈ (−1, 0) and one root < −1,
making the system again saddle-path stable.

E.5 Optimal actions in the stochastic system

The first-order condition is:

0 = πA(wt, At, St;K) + βh′(At)Et[VS(St+1, wt+1, f1,t+1, f2,t+1; ζ,K)].

This implies:

Et[VS(St+1, wt+1, f1,t+1, f2,t+1; ζ,K)] =
−πA(wt, At, St;K)

βh′(At)
.
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The envelope theorem yields:

VS(St+1, wt+1, f1,t+1, f2,t+1; ζ,K) = πS(wt+1, At+1, St+1;K)+βgEt+1[VS(St+2, wt+2, f1,t+2, f2,t+2; ζ,K)].

Advancing the first-order condition by one timestep and substituting in, we have the
stochastic Euler equation:

−πA(wt, At, St;K)

h′(At)
=β Et[πS(wt+1, At+1, St+1;K)] + β g Et

[
−πA(wt+1, At+1, St+1;K)

h′(At+1)

]
.

(A-10)

For ζ = 0, the weather in period t + 2 matches the forecast f2,t and the weather
is always C after period t + 2. So we are back to the deterministic system in period
t+3. Consider some distant time T at which the world ends. We will work backwards
from there, solving for time t+ 3 policy as T → ∞. Once we have that, we solve for
time t + 2 policy given wt+2 = f2,t and f1,t+2 = f2,t+2 = C; then we solve for time
t + 1 policy given wt+1 = f1,t, f1,t+1 = f2,t, and f2,t+1 = C; and finally we solve for
time t policy given wt, f1,t, and f2,t.

Write At as A(St, wt, f1,t, f2,t; ζ) and define Ãt ≜ A(St, wt, f1,t, f2,t; 0). At time T ,
we have a static problem. The first-order condition is πA = 0. Note that ∂ÃT/∂ST =
πAS/[−πAA]. Using the time T − 1 Euler equation, first-order approximate ÃT−1

around ST−1 = S̄. This approximation is exact when either Assumption 1 or 2 holds
and (ST−1 − S̄)2 is small. We thereby obtain ÃT−1 as a function of ST−1:

ÃT−1 =Ā+
βgπ̄SS + (1− βg2) π̄AS

h′(Ā)
+
[
βgπ̄AS + βg2

(
−π̄AA

h′(Ā)
+ h′′(Ā) π̄A

[h′(Ā)]2

)]
π̄AS

−π̄AA

χT−1

(ST−1 − S̄),

where

χT−1 ≜
−π̄AA

h′(Ā)
+ h′′(Ā)

−π̄A

[h′(Ā)]2
− βh′(Ā)π̄SS + βgπ̄AS

−
[
βh′(Ā)π̄AS + βgh′(Ā)

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
π̄AS

−π̄AA

.

Denote the coefficient on St − S̄ in Ãt as Zt. Stepping backwards through time, we
find the following relationships:

Zt =
βgπ̄SS + (1− βg2) π̄AS

h′(Ā)
+
[
βgπ̄AS + βg2

(
−π̄AA

h′(Ā)
+ h′′(Ā) π̄A

[h′(Ā)]2

)]
Zt+1

χt

,

χt =
−π̄AA

h′(Ā)
+ h′′(Ā)

−π̄A

[h′(Ā)]2
− βh′(Ā)π̄SS + βgπ̄AS

−
[
βh′(Ā)π̄AS + βgh′(Ā)

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
Zt+1.
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Consider the fate of Zt and χt as the terminal time T recedes to infinity. The steady
state is:

Z̄ =
βgπ̄SS + (1− βg2) π̄AS

h′(Ā)
+
[
βgπ̄AS + βg2

(
−π̄AA

h′(Ā)
+ h′′(Ā) π̄A

[h′(Ā)]2

)]
Z̄

χ̄
,

χ̄ =
−π̄AA

h′(Ā)
+ h′′(Ā)

−π̄A

[h′(Ā)]2
− βh′(Ā)π̄SS + βgπ̄AS

−
[
βh′(Ā)π̄AS + βgh′(Ā)

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
Z̄.

Substitute χ̄ into Z̄ and rearrange:

0 =Z̄2 −
(1− βg2)

(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) 1

h′(Ā)
Z̄

− 1

[h′(Ā)]2
−βg[h′(Ā)]2π̄SS − (1− βg2)h′(Ā)π̄AS

βh′(Ā)π̄AS + βg
(
−π̄AA + h′′(Ā) π̄A

h′(Ā)

) .
From the quadratic formula, the solution is

Z̄ =

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS ±

√
discrim

]
[
2h′(Ā)

(
βh′(Ā)π̄AS + βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

))]−1

,

where the discriminant is

discrim =

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)2

+ 4
(
−βg[h′(Ā)]2π̄SS − (1− βg2)h′(Ā)π̄AS

)(
βh′(Ā)π̄AS + βg

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

])
.

(A-11)

The proof of Lemma 2 will show that (5) implies that discrim is positive.
In order to analyze stability, linearize the difference equations. Substituting χt

into Zt, we find:

Zt =

[
βgπ̄SS + (1− βg2)

π̄AS

h′(Ā)
+

[
βgπ̄AS + βg2

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
Zt+1

]
[
−π̄AA

h′(Ā)
+ h′′(Ā)

−π̄A

[h′(Ā)]2
− βh′(Ā)π̄SS + βgh′(Ā)

π̄AS

h′(Ā)

−
[
βh′(Ā)π̄AS + βgh′(Ā)

(
−π̄AA

h′(Ā)
+ h′′(Ā)

π̄A

[h′(Ā)]2

)]
Zt+1

]−1

.

A-12



Lemoine Estimating Climate from Weather November 2023

Linearizing and evaluating at the steady state:

∂Zt

∂Zt+1

∣∣∣∣
Z̄

=

[
2βgh′(Ā)π̄AS + (1 + βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS ±

√
discrim

]
[
2βgh′(Ā)π̄AS + (1 + βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS −

(
±
√
discrim

)]−1

.

(A-12)

The terms outside the square root are positive if

−2βgh′(Ā)π̄AS < (1 + βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS. (A-13)

The following lemma establishes that those terms are in fact positive:

Lemma 1. Inequality (1) implies inequality (A-13).

Proof. By the inequality of arithmetic and geometric means, inequality (1) implies

− h′(At)πAS <
1

2

(
−πAA +

h′′(At)

h′(At)
πA

)
− 1

2
[h′(At)]

2πSS.

Multiplying both sides by β and using inequality (2) and 1+βg2 > β, this inequality
implies

−βh′(At)πAS <
1

2
(1 + βg2)

(
−πAA +

h′′(At)

h′(At)
πA

)
− 1

2
β[h′(At)]

2πSS.

Using g < 1, this last inequality in turn implies inequality (A-13).

Because the terms outside the square root in (A-12) are positive, the numerator and
denominator are both larger when the square root is added rather than subtracted.
The stable steady state (with eigenvalue < 1 in magnitude) is therefore the one with
a negative sign in the numerator of (A-12). The steady state of interest is therefore

Z̄ =

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS −

√
discrim

]
[
2h′(Ā)

(
βh′(Ā)π̄AS + βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

))]−1

. (A-14)

Substituting into χ̄, we find:

χ̄ =
1

2h′(Ā)

[
(1 + βg2)

(
−π̄AA + h′′(Ā)

−π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS + 2βgh′(Ā)π̄AS +

√
discrim

]
.

(A-15)
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From Lemma 1 and inequality (1), h′(Ā) χ̄ > 0.
Now return to the case in which ζ = 0 from some time t onward. We have derived

an expression for Ãt as T → ∞. Using this,

Ãt+3 = Ā+ Z̄(St+2 − S̄).

At time t+ 2, the relevant Euler equation is:

0 =
πA(f2,t, Ãt+2, St+2;K)

h′(Ãt+2)
+ βπS(C, Ãt+3, St+3;K) + βg

−πA(C, Ãt+3, St+3;K)

h′(Ãt+3)
,

where we recognize that wt+2 = f2,t. A first-order approximation to Ãt+2 around
St+2 = S̄ and f2,t = C is exact when either Assumption 1 or 2 holds and (St+2 − S̄)2

is small. We thereby obtain

Ãt+2 =Ā+ Z̄(St+2 − S̄) +
π̄wA

h′(Ā) χ̄
(f2,t − C).

If (St+1 − S̄)2 is small and either Assumption 1 or 2 holds, then approximating At+1

around St+1 = S̄, wt+1 = f1,t = C, f1,t+1 = f2,t = C, and ζ = 0 in a version of the
stochastic Euler equation (A-10) advanced by one timestep yields:

At+1 =Ā+ Z̄(St+1 − S̄) +
π̄wA

h′(Ā) χ̄
(f1,t − C) +

βΓ

h′(Ā)χ̄
(f2,t − C),

where

βΓ ≜ βh′(Ā)π̄wS − βgπ̄wA + β

≜Ψ︷ ︸︸ ︷[
h′(Ā)π̄AS + g

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)]
π̄wA

h′(Ā) χ̄
.

(A-16)

If (St−S̄)2 is small and either Assumption 1 or 2 holds, then approximating At around
St = S̄, wt = C, f1,t = C, f2,t = C, and ζ = 0 in the stochastic Euler equation (A-10)
yields:

At =Ā+ Z̄(St − S̄) +
π̄wA

h′(Ā) χ̄
(wt − C) +

βΓ

h′(Ā)χ̄
(f1,t − C) +

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
(f2,t − C).

(A-17)

Throughout, the terms with ζ drop out due to the expectation operator in the stochas-
tic Euler equation, and the terms with ζ2 drop out due to the assumptions.
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E.6 Evolution of expected actions and states

For t ≥ 2,

E0[At] =Ā+ Z̄(E0[St]− S̄).

Approximate St around At−1 = Ā and St−1 = S̄:

St ≈S̄ + h′(Ā)(At−1 − Ā) + g(St−1 − S̄).

We then have:

E0[At] =Ā+ Z̄h′(Ā)(E0[At−1]− Ā) + Z̄g (E0[St−1]− S̄]).

Repeatedly substituting, we find:

E0[At] =Ā+ [Z̄h′(Ā) + g]x−1

[
Z̄h′(Ā)(E0[At−x]− Ā) + Z̄g(E0[St−x]− S̄])

]
for x ∈ {1, ..., t− 1}. Analogously,

E0[St] =S̄ + [Z̄h′(Ā) + g]x−1

[
h′(Ā)(E0[At−x]− Ā) + g(E0[St−x]− S̄])

]
.

We have geometric series. The following lemma establishes that the common ratio is
less than 1 in magnitude.

Lemma 2. (5) implies |Z̄h′(Ā) + g| < 1.

Proof. Observe that:

Z̄h′(Ā) + g =

=2Ψ︷ ︸︸ ︷
2g

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
+ 2h′(Ā)π̄AS

(1 + βg2)
(
−π̄AA + h′′(Ā) −π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS + 2βgh′(Ā)π̄AS +

√
discrim

,

(A-18)

where the numerator is equal to 2Ψ by (A-16). Recalling that inequality (1) implies
inequality (A-13) (Lemma 1), the denominator is clearly positive. Rewrite (A-18) as:

Z̄h′(Ā) + g =

[
g

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
+ h′(Ā)π̄AS

]
[(

−π̄AA + h′′(Ā)
−π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS + βgh′(Ā)π̄AS

+
1

2

√
discrim− 1

2

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)]−1

.

(A-19)
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We desire to show Z̄h′(Ā) + g < 1 if Z̄h′(Ā) + g > 0 and to show Z̄h′(Ā) + g > −1 if
Z̄h′(Ā) + g < 0.

First consider Z̄h′(Ā) + g > 0. The first line of the denominator in (A-19) is
positive and is larger than the numerator. The second line in the denominator is
positive if and only if{
−βg[h′(Ā)]2π̄SS−(1−βg2)h′(Ā)π̄AS

}{
βh′(Ā)π̄AS+βg

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]}
> 0.

The expression contained in the second curly braces is positive because it is propor-
tional to Z̄h′(Ā) + g. The expression contained in the first curly braces is positive if
h′(Ā)π̄AS ≤ 0. In this case, the inequality does hold and the second line of the de-
nominator reinforces the first. So Z̄h′(Ā)+g < 1 if Z̄h′(Ā)+g > 0 and h′(Ā)π̄AS ≤ 0.

If, instead, Z̄h′(Ā)+ g > 0 with h′(Ā)π̄AS > 0, the second line of the denominator
in (A-19) can be negative if h′(Ā)π̄AS is sufficiently large. So we seek the largest
value of h′(Ā)π̄AS compatible with Z̄h′(Ā) + g ≤ 1. Rearranging the inequality
Z̄h′(Ā) + g < 1, we find:52

1 >Z̄h′(Ā) + g

⇔
√
discrim > [2g − 1− βg2]

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
+ β[h′(Ā)]2π̄SS + 2(1− βg)h′(Ā)π̄AS.

The right-hand side is positive in the region of interest, around where the inequality
binds. Squaring both sides, this inequality becomes:

0 <g(1− g)(1− βg)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)2

− βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
[h′(Ā)]2π̄SS

− β[h′(Ā)]2π̄SSh
′(Ā)π̄AS + [1− 2g(1 + β) + 3βg2]h′(Ā)π̄AS

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− [1 + β − 2βg]

(
h′(Ā)π̄AS

)2
. (A-20)

This is a quadratic in h′(Ā)π̄AS. It opens down. So the acceptable values of h′(Ā)π̄AS

will be in an intermediate range (if they exist). We already saw that the inequality
must hold for small positive values of h′(Ā)π̄AS, so it should be the case that any
roots are on either side of zero with the y-intercept strictly positive (as is easy to
verify).53 So Z̄h′(Ā) + g < 1 only if h′(Ā)π̄AS is less than the positive root. Observe
that the product of the constant and the quadratic coefficient is negative. Therefore,

52Doing so, it is easy to see that discrim > 0 if Z̄h′(Ā) + g < 1 which validates one half of an
earlier claim (i.e., only for the case with Z̄h′(Ā) + g > 0) once we establish that Z̄h′(Ā) + g < 1.

53We also saw that the inequality must hold for negative values of h′(Ā)π̄AS , so readers may be
confused by the fact that there is a negative root as well. But observe that sufficiently negative
h′(Ā)π̄AS is incompatible with Z̄h′(Ā) + g > 0.
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from the quadratic formula, inequality (A-20) holds if

h′(Ā)π̄AS <
[1− 2g(1 + β) + 3βg2]

[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β[h′(Ā)]2π̄SS

1 + β − 2βg
.

Indeed, this holds by (5). Therefore Z̄h′(Ā)+g < 1 if Z̄h′(Ā)+g > 0 and h′(Ā)π̄AS >
0.

Finally, consider the case with Z̄h′(Ā)+g < 0. It must be true that h′(Ā)π̄AS < 0.
Rearranging the inequality Z̄h′(Ā) + g > −1, we find:54

1 >− [Z̄h′(Ā) + g]

⇔
√
discrim >[−2g − 1− βg2]

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
+ β[h′(Ā)]2π̄SS + 2(−1− βg)h′(Ā)π̄AS.

The right-hand side must be positive in the region where h′(Ā)π̄AS is sufficiently large
in magnitude to make this inequality bind. Squaring both sides, this becomes:

0 <− g(1 + g)(1 + βg)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)2

+ βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
[h′(Ā)]2π̄SS

+ β[h′(Ā)]2π̄SSh
′(Ā)π̄AS + [−1− 2g(1 + β)− 3βg2]h′(Ā)π̄AS

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− [1 + β + 2βg]

(
h′(Ā)π̄AS

)2
. (A-21)

This quadratic opens down. The y-intercept is strictly negative. The derivative at
the y-intercept is:

β[h′(Ā)]2π̄SS + [−1− 2g(1 + β)− 3βg2]

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
< 0.

So both roots are negative. The root that is closer to zero does not bind the inequality
of ultimate interest. (Indeed, Z̄h′(Ā) + g is not even negative for h′(Ā)π̄AS close to
0.) Observe that the product of the constant and the quadratic coefficient is positive.
Therefore, from the quadratic formula, inequality (A-21) holds if

h′(Ā)π̄AS >
[−1− 2g(1 + β)− 3βg2]

[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
+ β[h′(Ā)]2π̄SS

1 + β + 2βg
.

Indeed, this holds by (5). Therefore Z̄h′(Ā) + g > −1 if Z̄h′(Ā) + g < 0.

We therefore have, for (S0 − S̄)2 not too large and under either Assumption 1 or 2,

lim
t→∞

E0[At] = Ā and lim
t→∞

E0[St] = S̄.

54Doing so, it is easy to see that discrim > 0 if Z̄h′(Ā)+g > −1 which validates the remaining half
of an earlier claim (i.e., now for the case with Z̄h′(Ā)+g < 0) once we establish that Z̄h′(Ā)+g > −1.
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E.7 Deriving equation (8)

Expand πt around wt = C, At = Ā, and St = S̄:

πt =π̄ + π̄w(wt − C) + π̄A(At − Ā) + π̄S(St − S̄)

+
1

2
π̄ww(wt − C)2 +

1

2
π̄AA(At − Ā)2 +

1

2
π̄SS(St − S̄)2

+ π̄wA(wt − C)(At − Ā) + π̄wS(wt − C)(St − S̄) + π̄AS(At − Ā)(St − S̄),
(A-22)

where higher order terms vanish under either Assumption 1 or Assumption 2. Ap-
pendix E.6 showed that

lim
t→∞

E0[At] = Ā and lim
t→∞

E0[St] = S̄

if (S0 − S̄)2 is not too large and either Assumption 1 or 2 holds. Using these and
E0[wt] = C for t > 1, we find:

lim
t→∞

E0[πt] =π̄ +
1

2
π̄wwtrace(Σ)ζ

2 +
1

2
π̄AAE0[(At − Ā)2] +

1

2
π̄SSE0[(St − S̄)2]

+ π̄wAE0[(wt − C)(At − Ā)] + π̄wSE0[(wt − C)(St − S̄)] + π̄ASE0[(At − Ā)(St − S̄)].

Differentiating and using either Assumption 1 or Assumption 2 again, we find

lim
t→∞

dE0[πt]

dC
=π̄w + π̄A

dĀ

dC
+ π̄S

dS̄

dC
+ π̄K

dK

dC
.

Long-run payoffs under expected weather draws are π̄. K is chosen such that π̄K = 0.
From equation (A-7),

dS̄

dC
=

h′(Ā)

1− g

dĀ

dC
.

Therefore

lim
t→∞

dE0[πt]

dC
=π̄w +

[
π̄A + π̄S

h′(Ā)

1− g

]
dĀ

dC
.

E.8 Deriving equation (11)

Implicitly differentiating equation (A-8), we have:

dĀ

dC
=

(1− βg)π̄wA + βh′(Ā)π̄wS

−(1− βg)π̄AA − βh′′(Ā)π̄S − βh′(Ā)h
′(Ā)
1−g

π̄SS − 1−βg
1−g

h′(Ā)π̄AS − βh′(Ā)π̄AS

+
(1− βg)π̄AK + βh′(Ā)π̄SK

−(1− βg)π̄AA − βh′′(Ā)π̄S − βh′(Ā)h
′(Ā)
1−g

π̄SS − 1−βg
1−g

h′(Ā)π̄AS − βh′(Ā)π̄AS

dK

dC
.
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Substitute for βπ̄S from equation (A-8):

dĀ

dC
=

(1− βg)π̄wA + βh′(Ā)π̄wS

(1− βg)
[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β

1−g
[h′(Ā)]2π̄SS − 1+β−2βg

1−g
h′(Ā)π̄AS

+
(1− βg)π̄AK + βh′(Ā)π̄SK

(1− βg)
[
−π̄AA + h′′(Ā) π̄A

h′(Ā)

]
− β

1−g
[h′(Ā)]2π̄SS − 1+β−2βg

1−g
h′(Ā)π̄AS

dK

dC
.

(A-23)

The denominator is strictly positive if and only if inequality (A-9) holds, which we
saw indeeds hold when (5) holds. Therefore

dĀ

dC
∝(1− βg)π̄wA + βh′(Ā)π̄wS + [(1− βg)π̄AK + βh′(Ā)π̄SK ]

dK

dC
.

We have established the result we sought. For later use, note that if (S0 − S̄)2 is not
too large and either Assumption 1 or Assumption 2 holds, then, from equation (10),

lim
t→∞

dE0[πt]

dC
=π̄w − 1− β

β
π̄A

(1− βg)π̄wA + βh′(Ā)π̄wS + [(1− βg)π̄AK + βh′(Ā)π̄SK ]
dK
dC

D
,

(A-24)

where

D ≜ (1− g)(1− βg)

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− β[h′(Ā)]2π̄SS − (1 + β − 2βg)h′(Ā)π̄AS

(A-25)

and D > 0 from (5). And observe that, from equations (A-15) and (A-25),

h′(Ā)χ̄ =D + [1 + β(1− g)]

{
g

[
−π̄AA − h′′(Ā)

π̄A

h′(Ā)

]
+ h′(Ā)π̄AS

}
+

1

2

√
discrim− 1

2

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)
.

(A-26)

E.9 Proof of Proposition 2

Expanding St around Ā and S̄, we have, from Taylor’s theorem,

St = S̄ + h′(Ā)(At−1 − Ā) + g(St−1 − S̄) + higherorderterms1,

where higherorderterms1 is a linear function of terms with (At−1 − Ā)α1(St−1 −
S̄)α2 for α1, α2 ∈ Z+ and α1 + α2 > 1. Substituting for St then St−1 and so on,
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equation (A-22) becomes:

πt =π̄ + π̄w(wt − C) + π̄A(At − Ā) + π̄Sh
′(Ā)

∞∑
i=0

gi(At−1−i − Ā) + higherorderterms2,

(A-27)

where higherorderterms2 is a linear function of terms with (wt − C)α1(At−1−k −
Ā)α2(St−1−k − S̄)α3 for k ≥ 0, α1, α2, α3 ∈ Z+, and α1 + α2 + α3 > 1. If either
Assumption 1 or 2 holds, then, substituting for St and then for At1 and St−1 and so
on, equation (A-17) becomes:

At =Ā+
π̄wA

h′(Ā) χ̄
(wt − C) +

βΓ

h′(Ā)χ̄
(f1,t − C) +

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
(f2,t − C)

+ Z̄h′(Ā)
∞∑
i=0

[Z̄h′(Ā) + g]i
[

π̄wA

h′(Ā) χ̄
(wt−1−i − C) +

βΓ

h′(Ā)χ̄
(f1,t−1−i − C)

+
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
(f2,t−1−i − C)

]
+ higherorderterms3,

where higherorderterms3 is a linear function of terms with (wt−k − C)α1(f1,t−k −
C)α2(f2,t−k − C)α3 for k > 0, α1, α2, α3 ∈ Z+, and α1 + α2 + α3 > 1. Using this and
its analogues in (A-27), we find

πt =π̄ +

[
π̄w + π̄A

π̄wA

h′(Ā) χ̄

]
(wt − C) + π̄A

βΓ

h′(Ā)χ̄
(f1,t − C) + π̄A

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
(f2,t − C)

+

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
[

π̄wA

h′(Ā) χ̄
(wt−1 − C) +

βΓ

h′(Ā)χ̄
(f1,t−1 − C) +

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
(f2,t−1 − C)

]
+

∞∑
i=2

{
π̄AZ̄h

′(Ā)[Z̄h′(Ā) + g]i−1 + π̄Sh
′(Ā)gi−1 + π̄SZ̄[h

′(Ā)]2
i−1∑
j=1

[Z̄h′(Ā) + g]i−j−1gj−1

}
[

π̄wA

h′(Ā) χ̄
(wt−i − C) +

βΓ

h′(Ā)χ̄
(f1,t−i − C) +

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
(f2,t−i − C)

]
+ higherorderterms4, (A-28)

where higherorderterms4 is a linear function of higherorderterms2 and higherorderterms3.
The vector of estimated coefficients is

α̂

Λ̂

λ̂
γ̂

 = E[X⊺X]−1E[X⊺π],
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where α̂ is a J × 1 vector stacking the α̂j; Λ̂, λ̂, and γ̂ are I × 1 vectors stacking the

Λ̂i, λ̂i, and γ̂i; π is a JT × 1 vector with rows πjt; and X is a JT × (J + 3I) matrix
with the final 3I columns of each row being[

wjt ... wj(t−I) fj1,t ... fj1,t−I fj2,t ... fj2,t−I

]
.

By the Frisch-Waugh Theorem,Λ̂λ̂
γ̂

 = E[X̃⊺X̃]−1E[X̃⊺π̃],

where X̃ is a JT × 3I matrix with rows[
wjt − C ... wj(t−I) − C fj1,t − C ... fj1,t−I − C fj2,t − C ... fj2,t−I − C

]
and π̃ is demeaned π. Observe that:

E[X̃⊺π̃] =JT



Cov[wjt − C, πjt]
...

Cov[wj(t−I) − C, πjt]
Cov[fj1,t − C, πjt]

...
Cov[fj1,t−I − C, πjt]
Cov[fj2,t − C, πjt]

...
Cov[fj2,t−I − C, πjt]


.

Following the proof of Proposition 1, Λ̂, λ̂, and γ̂ are independent of higherorderterms4
if either Assumption 1 or Assumption 3 holds. From here, drop the j subscript to
save on unnecessary notation.

Observe that Cov[wt−k, wt−k−j] = Cov[wt−k, f1,t−k−j] = Cov[wt−k, f2,t−k−j] = 0 for
j > 2, that Cov[f1,t−k, wt−k−j] = Cov[f1,t−k, f1,t−k−j] = Cov[f1,t−k, f2,t−k−j] = 0 for
j > 1, and that Cov[f2,t−k, wt−k−j] = Cov[f2,t−k, f1,t−k−j] = Cov[f2,t−k, f2,t−k−j] = 0
for j > 0. It is obvious from standard regression results on omitted variables bias
(and verifiable through tedious algebra) that, for i < I − 1, the probability limits of
Λ̂i, λ̂i, and γ̂i are identical to the coefficients on, respectively, wt−i − C, f1,t−i − C,
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and f2,t−i − C in equation (A-28). We then find:

lim
I→∞

plim
I−2∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+
[
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

] [ π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

∞∑
i=2

{
π̄AZ̄h

′(Ā)[Z̄h′(Ā) + g]i−1 + π̄Sh
′(Ā)gi−1 + π̄SZ̄[h

′(Ā)]2
i−1∑
j=1

[Z̄h′(Ā) + g]i−j−1gj−1

}
[

π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+
[
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

] [ π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

∞∑
i=2

{
π̄AZ̄h

′(Ā)[Z̄h′(Ā) + g]i−1 + π̄Sh
′(Ā)(Z̄h′(Ā) + g)i−1

}[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

π̄AZ̄h
′(Ā) + π̄Sh

′(Ā)

1− [Z̄h′(Ā) + g]

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
,

where we used Lemma 2 to establish that the common ratio is less than 1 in magni-
tude. Substituting for π̄S from equation (A-8),

π̄AZ̄h
′(Ā) + π̄Sh

′(Ā)

1− [Z̄h′(Ā) + g]
=− 1

β
π̄A

1− β[Z̄h′(Ā) + g]

1− [Z̄h′(Ā) + g]
.

Then, using equations (A-15) and (A-18),

lim
I→∞

plim
I−2∑
i=0

[
Λ̂i + λ̂i

]
=π̄w

− 1− β

β
π̄A

{
(1− βg)π̄wA + βh′(Ā)π̄wS +

[
βh′(Ā)π̄AS + βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)]
π̄wA

h′(Ā) χ̄

}
{
1

2

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄AA

h′(Ā)

)
− β[h′(Ā)]2π̄SS +

√
discrim

]
− g(1− βg)

(
−π̄AA + h′′(Ā)

π̄AA

h′(Ā)

)
− (1− βg)h′(Ā)π̄AS

}−1

=π̄w

− 1− β

β
π̄A

{
(1− βg)π̄wA + βh′(Ā)π̄wS +

[
βh′(Ā)π̄AS + βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)]
π̄wA

h′(Ā) χ̄

}
{
D + β(1− g)Ψ +

1

2

√
discrim− 1

2

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

]}−1

,
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where the last equality uses equation (A-25). Using equations (A-8), (A-23), and (A-24),

lim
I→∞

plim
I−2∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + ω

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
,

where

Ω ≜
βΨ π̄wA

h′(Ā) χ̄

D/(1− g)
, (A-29)

ω ≜D

{
D

+ β(1− g)Ψ

+
1

2

√
discrim− 1

2

[
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

]}−1

,

(A-30)

and, from equation (14),

Ψ ≜ h′(Ā)π̄AS + g

(
−π̄AA +

h′′(Ā)

h′(Ā)
π̄A

)
︸ ︷︷ ︸

>0 by (2)

.

D, from equation (A-25), is positive if and only if inequality (A-9) holds, which we
saw indeeds hold by (5). Observe that, from (A-23), the denominator of dĀ/ dC is
D/(1− g).

Analyze ω by considering the divergence between the terms in curly braces in (A-30)
and D. First, if βΨ = 0, then the second line in curly braces is zero and, from equa-
tion (A-11), so is the third line in curly braces. Therefore ω = 1 if βΨ = 0.

Next, if βΨ < 0, then the second line in curly braces is strictly negative. Further,
h′(Ā)π̄AS must be weakly negative. From equation (A-11), βΨ < 0 and h′(Ā)π̄AS ≤ 0
imply that the third line in curly braces is negative. Using (A-26), the denominator
of ω is strictly greater than h′(Ā)χ̄ when Ψ < 0. From equation (A-15), Lemma 1,
and inequality (1), h′(Ā) χ̄ > 0. Therefore the denominator of ω is strictly positive
when Ψ < 0. And because the combined terms in curly braces in (A-30) are strictly
less than D, we have established that ω > 1 if βΨ < 0.

If βΨ > 0, then the second line in curly braces in (A-30) is strictly positive. From
equation (A-11), the third line in curly braces is positive if βΨ > 0 and h′(Ā)π̄AS is
not too much greater than 0. In that case, ω < 1.

Finally, consider βΨ > 0 with h′(Ā)π̄AS strictly positive and sufficiently large to
make the third line in curly braces negative. Consider whether that line can be so
negative as to overwhelm the positive second line in curly braces and make ω > 1.
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Those final two lines in curly braces are strictly positive with h′(Ā)π̄AS > 0 if and
only if

√
discrim > [1 + βg2 − 2βg]

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− 2β(1− g)h′(Ā)π̄AS − β[h′(Ā)]2π̄SS.

Squaring both sides, this inequality holds if and only if

0 <g(1− g)(1− βg)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)2

− βg

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
[h′(Ā)]2π̄SS

− β[h′(Ā)]2π̄SSh
′(Ā)π̄AS + [1− 2g(1 + β) + 3βg2]h′(Ā)π̄AS

[
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

]
− [1 + β − 2βg]

(
h′(Ā)π̄AS

)2
.

This last inequality is identical to inequality (A-20), which we saw holds by (5).
Therefore ω < 1 if βΨ > 0.

E.10 Proof of Corollary 3

First consider I ′ > 1. As described in the proof of Proposition 2, the probability
limits of Λ̂i and λ̂i are, for i < I − 1, identical to the coefficients on wt−i − C and
ft−i − C in equation (A-28). Using Lemma 2 to establish that the common ratio is
not equal to 1, we obtain:

plim
I′∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+
[
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

] [ π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]

+
I′∑
i=2

{
π̄AZ̄h

′(Ā)[Z̄h′(Ā) + g]i−1 + π̄Sh
′(Ā)(Z̄h′(Ā) + g)i−1

}[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

[
1− [Z̄h′(Ā) + g]I

′
]
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

1− [Z̄h′(Ā) + g]

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
.

Substituting for π̄S from equation (A-8),

π̄A +

[
1− [Z̄h′(Ā) + g]I

′
]
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

1− [Z̄h′(Ā) + g]

=− 1− β

β
π̄A

1

1− [Z̄h′(Ā) + g]

{
1− [Z̄h′(Ā) + g]I

′ 1− β[Z̄h′(Ā) + g]

1− β

}
.

For I ′ = 1, we have:

plim
1∑

i=0

[
Λ̂i + λ̂i

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+
[
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

] [ π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
.
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Substituting for π̄S from equation (A-8) and rearranging, we find:

π̄A + [π̄AZ̄h
′(Ā) + π̄Sh

′(Ā)] =− 1− β

β
π̄A

1

1− [Z̄h′(Ā) + g]

[
1− [Z̄h′(Ā) + g]

1− β[Z̄h′(Ā) + g]

1− β

]
.

Using these results and following the analysis of Proposition 2, we have, for I ′ ≥ 1,

plim
I′∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + ωI′

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
,

where

ωI′ ≜

{
1− [Z̄h′(Ā) + g]I

′ 1− β[Z̄h′(Ā) + g]

1− β

}
ω. (A-31)

and where Ω and ω are as in Proposition 2. From equation (A-18), Z̄h′(Ā) + g ∝ Ψ.
Thus Z̄h′(Ā) + g = 0 if g = π̄AS = 0. In that case, ωI′ = ω for all I ′ ≥ 1. If Ψ > 0,
then, using Lemma 2, the combined terms in curly braces in (A-31) are strictly
positive, strictly less than 1, and strictly increasing in I ′. In that case, following the
analysis in Proposition 2, ωI′ ∈ (0, ω) and ωI′ increases in I ′. If Ψ < 0, then the
combined terms in curly braces in (A-31) are strictly greater than 1 for I ′ odd. The
statement of the corollary follows from the analysis of Proposition 2.

E.11 Proof of Corollary 4

First, observe that
lim

g,π̄AS→0
Ω = 0

because
lim

g,π̄AS→0
Ψ = 0.

It is also obvious that
lim
β→0

Ω = 0

Second, from equation (A-11),

lim
β→0

discrim = lim
g,π̄AS→0

discrim =

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)2

.

Using (A-30), this implies

lim
β→0

ω = lim
g,π̄AS→0

ω = 1.

Third, observe that
lim
β→0

λ̂i = 0

because
lim
β→0

βΓ = 0.

Finally, recall that Corollary 3 established that ωI′ = ω when g = π̄AS = 0.
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E.12 Proof of Proposition 5

Following the proof of Proposition 2 and using equation (A-28), we have:

plim Λ̂0 =π̄w + π̄A
π̄wA

h′(Ā) χ̄
,

plim Λ̂1 =

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄
,

plim Λ̂2 =[Z̄h′(Ā) + g]

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄
,

plim λ̂0 =π̄A
βΓ

h′(Ā)χ̄
,

plim λ̂1 =

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄
,

plim λ̂2 =[Z̄h′(Ā) + g]

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄
.

Observe that

plim
λ̂0

λ̂1

=
π̄A

π̄AZ̄h′(Ā) + π̄Sh′(Ā)
,

plim
Λ̂2

Λ̂1

= Z̄h′(Ā) + g,

and, using equation (A-18),
Ψ ∝ Z̄h′(Ā) + g.

Substituting for dĀ/ dC from Appendix E.8, equation (10) becomes:

lim
t→∞

dE0[πt]

dC
=

direct effects︷︸︸︷
π̄w

ex-post adaptation︷ ︸︸ ︷
− 1− β

β
π̄A

π̄wA

D

ex-ante adaptation︷ ︸︸ ︷
− 1− β

β
π̄A

β[h′(Ā)π̄wS − g π̄wA]

D

−1− β

β

π̄A

D

[
(1− βg)π̄AK + βh′(Ā)π̄SK

] dK

dC︸ ︷︷ ︸
interactions with long-lived infrastructure

, (A-32)

with D > 0 itself a function of cross-partials.55

Rearranging the foregoing results, we find:

π̄A
βΓ

h′(Ā) χ̄
=plim λ̂0, π̄A

π̄wA

h′(Ā) χ̄
= plim Λ̂1

λ̂0

λ̂1

, π̄w = plim

(
Λ̂0 − Λ̂1

λ̂0

λ̂1

)
.

55See equations (A-24) and (A-25) in Appendix E.8. Note that D absorbs the 1 − g in the
denominator of (10).
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Using these results and labeling pieces as in (A-32), we can calculate the overall effect
of climate:

plim

(
Λ̂0 − Λ̂1

λ̂0

λ̂1

− 1− β

β

[
Λ̂1

λ̂0

λ̂1

+ λ̂0

])

=π̄w − 1− β

β
π̄A

{
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā) χ̄

}
=π̄w − D

h′(Ā)χ̄

1− β

β
π̄A

(
π̄wA

D
+

β[h′(Ā)π̄wS − g π̄wA]

D
+

Ω

1− g

)
=π̄w +

D

h′(Ā)χ̄

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
. (A-33)

The second line uses foregoing results to express the calculation in terms of model
primitives. The third line substitutes for Γ. Substituting dĀ/ dC and also π̄S from
the Euler equation (9), the final line indicates how close we get to the true effect of
climate from (8).

Consider the bias Ω. Following the proof of Proposition 2 and using equa-
tion (A-28), we have:

plim γ̂0 = π̄A
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
.

Therefore

plim
γ̂0

λ̂0

=
βΨ

h′(Ā)χ̄
.

From equation (A-29),

π̄A
Ω

1− g
= π̄A

h′(Ā)χ̄

D

γ̂0

λ̂0

π̄wA

h′(Ā) χ̄
.

Substituting from foregoing results for π̄Aπ̄wA/[h
′(Ā) χ̄], we find:

D

h′(Ā)χ̄
π̄A

Ω

1− g
= plim

γ̂0

λ̂0

Λ̂1
λ̂0

λ̂1

.

Combining this with (A-33) and defining ω̃ ≜ D/[h′(Ā)χ̄] yields equation (17) in the
proposition.

Using equation (A-26), we have:

D

h′(Ā)χ̄
=D

{
D

+ [1 + β(1− g)]Ψ

+
1

2

√
discrim− 1

2

(
(1− βg2)

(
−π̄AA + h′′(Ā)

π̄A

h′(Ā)

)
− β[h′(Ā)]2π̄SS

)}−1

.
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Comparing to equation (A-30), we here have a coefficient of [1+β(1−g)] on Ψ instead
of β(1−g). The analysis of Ψ ≤ 0 is as in the case of βΨ ≤ 0 from before, except now
β = 0 does not bring the second line in curly braces to zero. For Ψ > 0, note that
it is now even harder for the third line in curly braces to overwhelm the second line,
so if that could not happen for ω with βΨ > 0, then it cannot happen here either for
Ψ > 0.

E.13 Proof of Proposition 6

Following the proof of Proposition 2 and using equation (A-28), we have:

plim ϕ̂0 =π̄w + π̄A
π̄wA

h′(Ā) χ̄
,

plim ϕ̂1 =

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄
,

plim ϕ̂2 =[Z̄h′(Ā) + g]

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄
.

Substitute for π̄Sh
′(Ā) from (A-8):

plim ϕ̂1 =

{
Z̄h′(Ā) + g − 1

β

}
π̄A

π̄wA

h′(Ā) χ̄

Observe that

plim
ϕ̂2

ϕ̂1

=Z̄h′(Ā) + g.

And using equation (A-18),
Ψ ∝ Z̄h′(Ā) + g.

Rearranging the foregoing results, we have:

π̄A
π̄wA

h′(Ā) χ̄
= plim

ϕ̂1

ϕ̂2

ϕ̂1
− 1

β

, π̄w = plim

ϕ̂0 −
ϕ̂1

ϕ̂2

ϕ̂1
− 1

β

 .

The proposition follows the proof of Proposition 5 from here.

E.14 Proof of Proposition A-1

Let there be N aggregated timesteps in total. We seek[
ˆ̆
Λ
ˆ̆
λ

]
=E[X̃⊺X̃]−1E[X̃⊺ ˜̆π], (A-34)
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where, guided by previous proofs, X̃ is a JN × 2 matrix with rows[
w̆js − C f̆j1,s − C

]
and ˜̆π is demeaned π̆. Observe that:

E[X̃⊺ ˜̆π] =JN

[
Cov[w̆js − C, π̆js]

Cov[f̆j1,s − C, π̆js]

]
.

From here, drop the j subscript to avoid excess notation. After applying the Frisch-
Waugh Theorem to partial out the effects of forecasts, correlations between payoffs
and weather within a timestep are controlled by the coefficients on weather in equa-
tion (A-28). The exception is that variation in ws also picks up the effect of f1,s−1

because the latter variable is missing from f̆1,s. We then have:

plim
ˆ̆
Λ =plim

∆−1∑
i=0

∆− i

∆
Λ̂i + plim

1

∆

∆−1∑
i=0

Σ22

Σ11 + Σ22

λ̂i+1.

Analogously, we find:

plim
ˆ̆
λ =plim

∆−1∑
i=0

∆− i

∆
λ̂i.

Therefore:

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
=plim

(
∆−1∑
i=0

∆− i

∆

[
Λ̂i + λ̂i

]
+

1

∆

∆−1∑
i=0

Σ22

Σ11 + Σ22

λ̂i+1

)

=plim

(
Λ̂0 + λ̂0 +

∆−1∑
i=1

∆− i

∆
Λ̂i +

∆−1∑
i=1

∆− i+ Σ22

Σ11+Σ22

∆
λ̂i +

Σ22

Σ11+Σ22

∆
λ̂∆

)
.

(A-35)

The coefficients on Λ̂i and λ̂i are each ∈ [0, 1]. In the proof of Corollary 3 (Ap-
pendix E.10), we established that

plim
I′∑
i=0

[
Λ̂i + λ̂i

]
=π̄w + π̄A

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
+

[
1− [Z̄h′(Ā) + g]I

′
]
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

1− [Z̄h′(Ā) + g]

[
π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
=π̄w − 1− β

β
π̄A

1

1− [Z̄h′(Ā) + g]

{
1− [Z̄h′(Ā) + g]I

′ 1− β[Z̄h′(Ā) + g]

1− β

}
[

π̄wA

h′(Ā) χ̄
+

βΓ

h′(Ā)χ̄

]
.
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In equation (A-35), each of the coefficients Λ̂i and λ̂i is weighted by a fraction. Using
I ′ = ∆ in the previous expression, there exist x1 ∈ (0, 1) and x2 ∈ (0, 1) such that,
for Ψ > 0,

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
=π̄w − 1− β

β
π̄A

1

1− [Z̄h′(Ā) + g]

{
1− [Z̄h′(Ā) + g]I

′ 1− β[Z̄h′(Ā) + g]

1− β

}
[
x1

π̄wA

h′(Ā) χ̄
+ x2

βΓ

h′(Ā)χ̄

]
.

Following the proof of Corollary E.10, there exists x ∈ [x1, x2] (or x ∈ [x2, x1] if
x2 < x1) such that, for Ψ > 0,

plim
(
ˆ̆
Λ +

ˆ̆
λ
)
=π̄w + xω∆

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
.

The statement of the proposition follows from defining ω̆ ≜ xω∆.

E.15 Proof of Proposition A-2

The vector of estimated coefficients is[
α̂

Φ̂

]
= E[X⊺X]−1E[X⊺π],

where α̂ is a J × 1 vector stacking the α̂j, Φ̂ is a 5× 1 vector stacking the Φ̂i, π is a
JT × 1 vector with rows πjt, and X is a JT × (J +5) matrix with the final 5 columns
of each row being [

wj(t+2) wj(t+1) wjt wj(t−1) wj(t−2)

]
.

By the Frisch-Waugh Theorem,

Φ̂ = E[X̃⊺X̃]−1E[X̃⊺π̃],

where X̃ is a JT × 5 matrix with rows[
wj(t+2) − C wj(t+1) − C wjt − C wj(t−1) − C wj(t−2) − C

]
and π̃ is demeaned π. Observe that:

E[X̃⊺π̃] =JT


Cov[wj(t+2) − C, πjt]
Cov[wj(t+1) − C, πjt]
Cov[wjt − C, πjt]

Cov[wj(t−1) − C, πjt]
Cov[wj(t−2) − C, πjt]

 .
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From here, drop the j subscript to save on unnecessary notation.
Following the proof of Proposition 1, using equation (A-28), and using Σ being

diagonal, we find:

1

ζ2
Cov[wt+2, πt] =Σ33π̄A

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
,

1

ζ2
Cov[wt+1, πt] =Σ22π̄A

βΓ

h′(Ā)χ̄
+ Σ33

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
,

1

ζ2
Cov[wt, πt] =trace(Σ)

[
π̄w + π̄A

π̄wA

h′(Ā) χ̄

]
+ Σ22

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄

+ Σ33

{
Z̄h′(Ā) + g

}{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
,

1

ζ2
Cov[wt−1, πt] =trace(Σ)

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄

+ Σ22

{
Z̄h′(Ā) + g

}{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄

+ Σ33

{
Z̄h′(Ā) + g

}2{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
,

1

ζ2
Cov[wt−2, πt] =trace(Σ)

{
Z̄h′(Ā) + g

}{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄

+ Σ22

{
Z̄h′(Ā) + g

}2{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄

+ Σ33

{
Z̄h′(Ā) + g

}3{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
.

Σ diagonal implies that E[X̃⊺X̃]−1 is a 5× 5 diagonal matrix with 1/[ζ2trace(Σ)] on
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the diagonal. Therefore,

plim Φ̂−2 =
Σ33

trace(Σ)
π̄A

βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
,

plim Φ̂−1 =
Σ22

trace(Σ)
π̄A

βΓ

h′(Ā)χ̄
+

Σ33

trace(Σ)

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
,

plim Φ̂0 =π̄w + π̄A
π̄wA

h′(Ā) χ̄
+

Σ22

trace(Σ)

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄

+
Σ33

trace(Σ)
[Z̄h′(Ā) + g]

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
,

plim Φ̂1 =

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄
+

Σ22

trace(Σ)
[Z̄h′ + g]

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄

+
Σ33

trace(Σ)
[Z̄h′(Ā) + g]2

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
,

plim Φ̂2 =[Z̄h′(Ā) + g]

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
π̄wA

h′(Ā) χ̄

+
Σ22

trace(Σ)
[Z̄h′(Ā) + g]2

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΓ

h′(Ā)χ̄

+
Σ33

trace(Σ)
[Z̄h′(Ā) + g]3

{
π̄AZ̄h

′(Ā) + π̄Sh
′(Ā)

}
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄
.

Using equation (A-8),

π̄AZ̄h
′(Ā) + π̄Sh

′(Ā) = π̄A

[
Z̄h′(Ā) + g − 1

β

]
.

And observe that

plim
Φ̂2

Φ̂1

= Z̄h′(Ā) + g.
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Then:

Σ22

trace(Σ)
π̄A

βΓ

h′(Ā)χ̄
=plim

(
Φ̂−1 −

Σ33

trace(Σ)
π̄A

[
Z̄h′(Ā) + g − 1

β

]
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄

)
=plim

(
Φ̂−1 −

[
Φ̂2

Φ̂1

− 1

β

]
Φ̂−2

)
,

π̄A
π̄wA

h′(Ā) χ̄
=plim

1

Z̄h′(Ā) + g − 1
β

{
Φ̂1 −

Σ22

trace(Σ)
[Z̄h′ + g]π̄A

[
Z̄h′(Ā) + g − 1

β

]
βΓ

h′(Ā)χ̄

− Σ33

trace(Σ)
[Z̄h′ + g]2π̄A

[
Z̄h′(Ā) + g − 1

β

]
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄

}

=plim

 Φ̂1

Φ̂2

Φ̂1
− 1

β

− Φ̂−1
Φ̂2

Φ̂1

+

[
Φ̂2

Φ̂1

− 1

β

]
Φ̂−2

Φ̂2

Φ̂1

− Φ̂−2

(
Φ̂2

Φ̂1

)2


=plim

 Φ̂1

Φ̂2

Φ̂1
− 1

β

− Φ̂−1
Φ̂2

Φ̂1

− 1

β
Φ̂−2

Φ̂2

Φ̂1

 ,

π̄w =plim Φ̂0 − π̄A
π̄wA

h′(Ā) χ̄
− Σ22

trace(Σ)
π̄A

[
Z̄h′(Ā) + g − 1

β

]
βΓ

h′(Ā)χ̄

− Σ33

trace(Σ)
[Z̄h′(Ā) + g]π̄A

[
Z̄h′(Ā) + g − 1

β

]
βΨ

h′(Ā)χ̄

βΓ

h′(Ā)χ̄

=plim

Φ̂0 −
Φ̂1

Φ̂2

Φ̂1
− 1

β

+ Φ̂−1
Φ̂2

Φ̂1

+
1

β
Φ̂−2

Φ̂2

Φ̂1

− Φ̂−1

[
Φ̂2

Φ̂1

− 1

β

]
+

[
Φ̂2

Φ̂1

− 1

β

]2
Φ̂−2


− plim Φ̂−2

[
Φ̂2

Φ̂1

− 1

β

]
Φ̂2

Φ̂1

=plim

Φ̂0 −
Φ̂1

Φ̂2

Φ̂1
− 1

β

+
1

β
Φ̂−1 +

1

β2
Φ̂−2

 .

Finally, using equation (A-18),

Ψ ∝ Z̄h′(Ā) + g = plim
Φ̂2

Φ̂1

.
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We can use these model primitives to calculate the overall effect of climate:

plim

(
Φ̂0 −

Φ̂1

Φ̂2

Φ̂1
− 1

β

+
1

β
Φ̂−1 +

1

β2
Φ̂−2

− 1− β

β

 Φ̂1

Φ̂2

Φ̂1
− 1

β

− Φ̂−1
Φ̂2

Φ̂1

− 1

β
Φ̂−2

Φ̂2

Φ̂1

+ Φ̂−1 −
[
Φ̂2

Φ̂1

− 1

β

]
Φ̂−2

)

=π̄w − 1− β

β

{
π̄A

π̄wA

h′(Ā) χ̄
+

Σ22

trace(Σ)
π̄A

βΓ

h′(Ā) χ̄

}
=π̄w +

D

h′(Ā)χ̄

[
π̄A + π̄S

h′(Ā)

1− g

](
∂Ā(K,C)

∂C
+ Ω

)
−
[
π̄A + π̄S

h′(Ā)

1− g

]
Σ11 + Σ33

trace(Σ)

βΓ

h′(Ā) χ̄
.

Now consider the calculation of Ω. From foregoing results,

plim
Φ̂−2

Φ̂−1

=
Σ33

Σ22

βΨ

h′(Ā)χ̄
.

From equation (A-29),

π̄A
Ω

1− g
= plim

Σ22

Σ33

π̄A
h′(Ā)χ̄

D

Φ̂−2

Φ̂−1

π̄wA

h′(Ā) χ̄
.

Using foregoing results to substitute for π̄Aπ̄wA/[h
′(Ā) χ̄], we find:

D

h′(Ā)χ̄

Σ33

Σ22

π̄A
Ω

1− g
= plim

Φ̂−2

Φ̂−1

 Φ̂1

Φ̂2

Φ̂1
− 1

β

− Φ̂−1
Φ̂2

Φ̂1

− 1

β
Φ̂−2

Φ̂2

Φ̂1

 .

The proposition follows the proof of Proposition 5 from here.
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