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This supplementary appendix establishes results to complement and extend the main anal-

ysis of Biais, Hombert, and Weill (2010) (henceforth BHW). Each sections is self-contained and

can be read separately.

Section I, page 3, shows that the preference specification of BHW is consistent with

the main results of Lagos and Rocheteau (2009).

Section II, page 7, considers an equilibrium where traders can only submit market

orders, and compare it to the case in which they can also submit limit orders (Proposition

9 in BHW) and to the case in which they can also submit algorithms (Proposition 1 in

BHW).

Section III, page 12, studies the limiting equilibrium when σ → 0, and shows that this

limit coincides with the indivisible–asset case addressed in Biais and Weill (2009).

Section IV, page 18, analyzes an extension of the paper when liquidity shocks are

anticipated and occur recurrently.

Section V, page 25, considers the case of a positive liquidity shock.

Section VI, page 28, establishes that, with algorithms or limit orders, the price path

must be continuous.

Section VII, page 32, shows that the equilibrium of Proposition 9 is unique in the class

of Markov equilibria.

Lastly, Section VIII, page 44, and Section IX, page 72, gather omitted proofs.
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I Comparison with Lagos and Rocheteau (2009)

One key addition of our new paper (Biais, Hombert, and Weill, 2010, henceforth BHW) over

the earlier work of Biais and Weill (2009) is to relax the restrictive assumption that traders can

only hold one or zero units of the asset.

While we allow unrestricted asset holdings, we restrict attention to a particular functional

form of the utility flow function (see Section 2.1, page 6 in BHW). The reader may be concerned

that our particular functional form is bringing new undesirable restrictions through the back

door. The goal of this section is to demonstrate that, as far as we can tell, this concern is

unwarranted.

To make this argument, we show that our preference specification is consistent with the

main implications of allowing unrestricted asset holdings that have been documented in the

literature. Our benchmark is the analysis of Lagos and Rocheteau (2009, hereafter LR). LR

derive new results about the distribution of asset holdings and measures of liquidity when

investors are allowed unrestricted asset holdings. Some of their results are proved under general

twice continuously differentiable and strictly concave preferences, and others are shown under a

particular iso-elastic preference specification. In this note we show that their findings, the ones

derived for differentiable preferences, and the ones derived for particular iso-elastic preferences,

also hold with BHW’s preference specification.

I.1 Setup

We consider the steady state setup of LR with the preference specification of BHW. First,

investors switch indefinitely between a high valuation type and a low valuation type. As in

BHW, high–valuation investors’ utility flow is v(h, q) = q for q ≤ 1 and v(h, q) = 1 for q ≥ 1.

Low–valuation investors’ utility flow is v(`, q) = q − δq1+σ/(1 + σ) for q ≤ 1 and v(`, q) =

1 − δ/(1 + σ) for q ≥ 1. High–valuation (low–valuation) investors switch to low–valuation

(high–valuation) at rate γ` (γh). Second, as in LR, the market is a dealer market where

investors can only submit market orders. Specifically, investors meet dealers according to a

Poisson process with arrival rate ρ. When an investor and a dealer meet, they bargain over

the size of the market order, and over a trading fee. The outcome of the bargaining process

is given by the generalized Nash-bargaining solution, where the dealer’s bargaining power is η.

In all what follows, we let κ ≡ ρ(1− η). Table 1 provides the correspondence between LR and

BHW’s notations.
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Lagos and Rocheteau Biais, Hombert and Weill
Asset supply A ≥ 0 s ∈ [0, 1)
Asset holdings a q
Set of preference types i ∈ X θ ∈ {h, `}
No. of preference types I 2
Preference switching rate i→ j δπj γj
Discount rate r r
Meeting rate with dealers α ρ
Dealers bargaining power η η

Table 1: Correspondence between notations

I.2 Steady state equilibrium

Let us start by deriving the steady state equilibrium. We cannot apply directly the results

of LR because they require twice continuously differentiable and strictly concave utility flows.

Our utility flows function, by contrast, are not twice continuously differentiable because of the

kink in q = 1, and they are only weakly concave since they are constant for q ≥ 1. However, it

is straightforward to characterize the equilibrium following the same steps as in LR.

In a steady state equilibrium, qθ is the asset holding chosen by a type–θ when she meets a

dealer; the asset price is p; lastly, φθ(q) is the equilibrium fee paid to the dealer by a type–θ

investor holding q unit of the asset before meeting the dealer.

With BHW’s preferences, equilibrium allocations come in only two flavors: either qh is

strictly lower than 1 (“interior” equilibrium allocation) or equal to 1 (“corner” equilibrium

allocation). The following Lemma, proved in Section IX.1.1, characterizes qh and q` in each

case.

Lemma I.1 (Steady state allocation). There exists a unique steady–state equilibrium. If s <

(γh + εγ`)/(γh + γ`), then

q` =
γh + γ`
γh/ε+ γ`

s, and qh =
q`
ε
, (I.1)

where ε ≡ (γ`/(r + κ+ γ`))
1/σ. Otherwise if (γh + εγ`)/(γh + γ`) ≤ s < 1

q` =
γh + γ`
γ`

s− γh
γ`
, and qh = 1 (I.2)

As intuition suggests, a corner equilibrium allocation, qh = 1, arise when the asset supply

is large enough.1

1It is straightforward (but somewhat uninteresting) to extend the analysis to s ≥ 1: in this case all investors
hold more than one unit of the asset with zero marginal utility, and hence p = 0.
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I.3 Counterpart of Proposition 2-4 in LR

To derive their results for trading and liquidity LR assume the Inada condition v′i(0) = +∞.

It is merely a simplifying assumption to keep equilibrium asset holdings strictly positive. With

our preference specification, this condition is not satisfied since vq(h, 0) = vq(`, 0) = 1, but this

causes no complication since, by Lemma I.1, our equilibrium asset holdings are also strictly

positive.

First, LR establish (Proposition 2) that the dispersion of asset holdings increases with the

trading frictions. The following Proposition, proved in Section IX.1.2, reproduce their results

with our preference specification:2

Proposition I.1 (Dispersion of asset holdings). Holding either ρ or η fixed:

(i) qh → s and q` → s as r + κ→ 0.

(ii) An increase in r + κ causes the distribution of asset holdings to become more dispersed.

Second, LR show (Proposition 3) that trade volume increases when trading frictions vanish.

The following Proposition, proved in Section IX.1.3, reproduce their results with our preference

specification:3

Proposition I.2 (Trade volume).

(i) Trade volume goes to zero as r + κ→ 0.

(ii) Trade volume increases with κ.

(iii) For κ′ > κ the distribution of trade sizes associated with κ′ first-order stochastically dom-

inates the one associated with κ.

Lastly, LR show (Lemma 4) that fees – both total and per unit of asset traded – increase

with the size of the trade, and (Proposition 4) that trading frictions have a nonmonotonic effect

on fees. The following Proposition, proved in Section IX.1.4, reproduce their results with our

preference specification:

Proposition I.3 (Transaction costs).

(i) For i ∈ {h, `} and q 6= qi, ∂/∂q[φi(q)] and ∂/∂q[φi(q)/|qi−q|] have the same sign as q−qi.

(ii) There exists r such that for r < r and i 6= j, φi(qj) is nonmonotonic in κ and is largest

for some κ ∈ (0,+∞).

2LR prove point (ii) with iso-elastic preferences and many types. Proposition I.1 shows that it also holds
with two types under our preference specification.

3LR prove (ii) for iso-elastic preferences only, and point (iii) for logarithmic preferences. Both hold with
our preference specification.
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(iii) There exists r such that for r < r, the expected fee earned by a dealer conditional on

meeting an investor is nonmonotonic in κ and is largest for some κ ∈ (0,+∞).
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II Equilibrium with only market orders

In this section we consider the setup of our paper (Biais, Hombert, and Weill, 2010, henceforth

BHW) with one modification: we shut down algorithms and limit order books. Precisely, as

in Section 4, page 25 in BHW, we assume that traders can only submit orders when their

information process jump. Differently from BHW, we assume that traders can only submit

market orders. In this context, we show that the price recovers faster to its fundamental value

than in the equilibria of BHW. However, at the same time, social welfare is lower. We also

provide a discussion of traders’ incentives to submit limit orders, and link our result to earlier

findings from the literature.

In all what follows we call first equilibrium of BHW (Proposition 1, page 18 in BHW)

an Algorithmic Trading Equilibrium, or “ATE”, because it is implemented using algorithms.

Similarly, we call the second equilibrium shown in BHW (Proposition 9, page 30 in BHW) a

Limit Order Equilibrium, or “LOE”, because it is implemented using limit orders only. Lastly,

the equilibrium we are about to solve for, where traders only use market orders, is called a

Market Order Equilibrium, or “MOE.”

II.1 Solving for an equilibrium

We first solve for a MOE. The reader may want to skip the step-by-step analysis and go directly

to Proposition II.1, which describes the MOE.

Because we maintain the imperfect cognition friction, the entire preliminary analysis of

Section 3 in BHW goes through, under the maintained assumption that the price is bounded,

continuous, and piecewise continuously differentiable. The key difference with BHW is that,

upon an information event, a trader can only submit market orders to buy and sell or, equiva-

lently, that a trader’s asset holding has to stay constant in between information events, qt,u = qt,t

for all u ≥ t. Plugging this restriction into the inter-temporal payoff, equation (6) page 14 in

BHW, we obtain:

V (q) = E0

[∫ ∞
0

e−rt
∫ ∞
t

e−(r+ρ)(u−t)
{
Et [v(θu, qt,t)]− ξuqt,t

}
du ρdt

]
. (II.1)

As is the case in the LOE of BHW, it is clear from the above expression that an asset holding

plan is optimal if and only if it maximizes the expected utility of a trader from one information

event to the next. That is, upon an information event at time t, the trader picks a constant
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asset holding plan, qt,t, in order to maximize:

(r + ρ)

∫ ∞
t

e−(r+ρ)(u−t)
{
Et [v(θu, qt,t)]− ξuqt,t

}
du = v(θ, qt,t)− ξtqt,t, (II.2)

where

ξt ≡ (r + ρ)

∫ ∞
t

e−(r+ρ)(u−t)ξu du (II.3)

is the average holding cost incurred by the trader until her next information event and where

direct calculations4 show that

v(h, q) = v(h, q)

v(`, q) =
r + ρ

r + ρ+ γ
v(`, q) +

γ

r + ρ+ γ
v(h, q).

With market order, the market clearing condition becomes:

ρµhtE
[
qt,t | θt = h

]
+ ρ(1− µht)E

[
qt,t | θt = `

]
= ρs, (II.4)

which is obtained by differentiating equation (8) in BHW. The intuition for (II.4) is straight-

forward. At each point in time, there is a flow ρµht of high-valuation investors who experience

an information event, with a gross asset demand equal to E [qt,t | θt = h], which leads to the

first term on the left–hand side of (II.4). The second term is, symmetrically, the gross demand

of low–valuation investors. To calculate the gross supply, we note that, since the investors

experiencing an information event at time t are drawn at random, their average asset holding is

equal to s, the economy–wide per capita asset holding. This results in the (flow) gross supply

ρs, on the right–hand side of (II.4).

After canceling ρ from both sides of (II.4), one finds a market–clearing condition which

is formally the same as the market-clearing condition in the perfect cognition case.5 Taken

together with the objective (II.2), this remark implies that the equilibrium equations for a

MOE are the same as in the perfect cognition case but after replacing ξt by ξ̄t and v(θ, q) by

v(θ, q). Then, all the analysis of Section 2.3 in BHW goes trough. In particular, investors who

4These calculations are special cases of the ones conducted at the beginning of Section IX.1.1, page 72, after
letting γh = γ and γ` = 0.

5Its meaning is different, of course: with imperfect cognition and market orders, the market is not clearing
among all investors, but only among the flow of investors experiencing an information event.
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experience an information event with a low utility hold:

q`,t =

(s− µht)/(1− µht) if t ≤ Ts

0 if t > Ts,
(II.5)

while investors who experience an information event with a high utility hold:

qh,t =

1 if t ≤ Ts

s/qht, on average, if t > Ts,
(II.6)

Also the average holding cost is:

ξt = vq(`, q`,t) =

1− δ r+ρ
r+ρ+γ

(
s−µht
1−µht

)σ
if t < Ts

1 if t ≥ Ts.

To recover pt from ξ̄t, we take the derivative of (II.3). These calculations lead to:

Proposition II.1 (Market order equilibrium.). There exists a MOE. The equilibrium allocation

is described by equations (II.5) and (II.6), and is unique up to the distribution of asset holdings

among high–valuation investors after Tf . The price is continuous and satisfies the ODE

t < Ts : ξt = rpt − ṗt = 1− δ r + ρ

r + ρ+ γ

(
s− µht
1− µht

)σ [
1 +

σγ(1− s)
r + ρ

1

s− µht

]
,

t > Ts : ξt = rpt = 1.

Note that, if σ ∈ (0, 1), ξt → −∞ when t → T−s . Nevertheless, the integral pt =∫∞
t
e−r(u−t)ξu du remains well defined, because in a left neighborhood of Ts, ξt = O

(
[Ts − t]−(1−σ)

)
.

II.2 Properties of the MOE

Price. One sees that, in the MOE, the price recovers to its long run value of 1/r at time

Ts < Tf , earlier than in either the ATE or the LOE. In some sense, the price appear more

“resilient” in the MOE than in the ATE or the LOE. Also, when the price reaches 1/r, it grows

very quickly: ṗt/pt ≥ r at t = Ts. This property is illustrated in Figure 1 which plots ṗt/pt in

the case where σ = 0.3. Since σ < 1, the holding cost ξt goes to −∞ when t approaches Ts from

the left by Proposition II.1, thus the growth rate of the price becomes infinite. In particular,

the price grows at a much higher pace in the MOE than in the ATE or the LOE just before Ts.

This larger growth rate underlies traders’ incentives to submit limit orders. Indeed, if let us
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Figure 1: Growth rate of the price, when σ = 0.3

allow a single low–valuation investor in the MOE to submit limit orders. Upon an information

event around time Ts, the investor anticipates that the price will grow very quickly. To reap

the associated capital gains, he will find it optimal to buy lots of assets with a market order,

and re-sell them with a limit–order to sell at pTs , executed at time Ts.

If all investors are allowed to submit such limit–orders and engage in the above described

buy-low sell-high trading strategy, two general equilibrium effects arise. First, there is an

increase in demand before Ts and, second, there is an increase in supply after Ts. The first

effect tends to increase the price before Ts, while the second effect tends to decrease it. This

second effect explains why, in the ATE or the LOE, the price takes more than Ts periods to

recover. Taken together, the two effects reduce the growth rate of the price around Ts.

Another property which is worth mentioning is that social welfare in the ATE or the LOE

is strictly higher than in the MOE.6 At the same time, price recovery is slower.

Trading volume. The trading volume in the MOE, in the ATE, and in LOE, are plotted

in Figure 2. We observe that, for u < Tφ, the trading volume in the MOE and in the LOE

are exactly equal. This is because no limit orders are executed before Tφ in the LOE, so the

allocation and the trading volume do not depend upon whether limit orders are available or

not. For u ∈ (Tφ, Tf ), the trading volume is lower in the MOE than in the LOE, because limit

sell orders are executed in the LOE but not in the MOE.

After Tf , the volume falls rapidly to zero in the ATE and in the LOE, while it remains well

above zero for a while in the MOE. This is because in the former cases, low–valuation traders

6This is because the MOE allocation is feasible for the planner in the social welfare maximization problems
of Proposition 2, page 19 in BHW, and for the one of Lemma VII.20, page 43 in this Addendum.
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Figure 2: Trading volume, when σ = 0.3

who already have had an information event have already sold their asset with limit sell orders.

By contrast, in the MOE, they have to wait another information event to sell, which explains

why trading does not stop after Tf . Although the price converges faster in the MOE, trading

lasts longer and the reallocation of asset takes more time.

11



III Indivisible assets

In Biais and Weill (2009, henceforth BW), we solved for an equilibrium with limit orders only,

under the restrictive assumption that traders can hold either zero or one unit of the asset. In

this section we compare the predictions of this indivisible asset model with the predictions of

our new divisible asset model (Biais, Hombert, and Weill, 2010, henceforth BHW).

In all what follows we call the first equilibrium of BHW (Proposition 1, page 18 in BHW)

an Algorithmic Trading Equilibrium, or “ATE”, because it is implemented using algorithms.

Similarly, we call the second equilibrium shown in BHW (Proposition 9, page 30 in BHW) a

Limit Order Equilibrium, or “LOE”, because it is implemented using limit orders only. We

show that the ATE and LOE equilibria of BW and BHW can differ in important ways. First,

the asset holding restriction of BW implies that traders cannot split their orders. In BHW, by

contrast, there is order splitting in equilibrium: traders submit entire sequence of orders so as

to slowly and continuously unwind their holdings. Second, we find that in the ATE of BW,

asset holding plans are always hump shaped, while in some cases of BHW they can be strictly

decreasing. In other cases, however, the asset holding plans and price path of BW and BHW

are very similar: in particular, we show that when σ → 0, the divisible asset equilibrium of

BHW converges to the indivisible asset equilibrium of BW.

III.1 BW vs BHW’s preferences

In BW, traders can hold either zero or one unit of the asset. If they hold zero unit, their utility

is normalized to zero. If they hold one unit, their utility is equal to 1 when in the high state,

θt = h, and equal to 1− δ when in the low state, θt = `.

In BHW, by contrast, investors can hold any positive quantity of the asset. When in the

high state, θt = h, their flow utility is:

v(h, q) = q, for all q ≤ 1, and v(h, q) = 1, for all q > 1.

When in the low state, θt = `, the flow utility is:

v(`, q) = q − δ q
1+σ

1 + σ
, for all q ≤ 1, and v(`, q) = 1− δ/(1 + σ), for all q > 1,

where δ ∈ (0, 1) and σ > 0.

To understand the convergence results of this section, it useful to note that, when σ → 0 in

BHW, the flow utilities becomes v(h, q) = min{q, 1} and v(`, q) = (1− δ) min{q, 1}. This lim-

iting “Leontief” specification is evidently closely related to the “indivisible asset” specification
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of BW. On the one hand, because of zero marginal utility for q > 1, in equilibrium traders find

it optimal to keep their holdings in [0, 1].7 On the other hand, because of linear utility over

q ∈ [0, 1], in equilibrium traders find it optimal to hold either zero or one unit of the asset.

With this in mind, then, it is not surprising that the equilibria derived in BHW converge to

their BW’s counterparts as σ → 0.

III.2 The ATE

We start by solving for the ATE when assets are indivisible, an equilibrium concept which was

not considered in BW.

Proposition III.1 (ATE with BW’s preferences). For each u ∈ [0, Tf ], let ψ∗u be the unique

solution of:∫ ψ∗u

0

ρe−ρ(u−t) (1− µht) dt =

∫ u

0

e−ρ(u−t) (s− µht) dt.

Let p∗u be the continuous price path solving the ODE:

u < Tf : rp∗u − ṗ∗u = 1− δ 1− µhu
1− µhψ∗u

u ≥ Tf : rp∗u = 1.

Lastly consider the time–t asset holding plan when θt = `:

q∗t,u = I{t≤ψ∗u} if t ∈ (0, Tf ], for all u ∈ [t, Tf )

= 0 if t ∈ (0,∞), for all u ∈ [Tf ∨ t,∞),

and, when θt = h:

q∗t,u = 1 if t ∈ (0, Tf ], for all u ∈ [t,∞)

= 1 with proba
s

µht
, if t ∈ [Tf ,∞), for all u ∈ [t,∞).

Then, the price p∗t and asset holding plan q∗t,u is an ATE with BW’s preferences.

In the proof of the proposition, in Section IX.2.1, page 77 of this supplementary appendix,

we establish two additional results. First, as in BHW, the price is strictly increasing until Tf ,

7This is not true in general, however: zero marginal utility flow above a certain threshold does not imply
that equilibrium asset holding are always less than the threshold. See Weill (2007) for an example.
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Figure 3: The function ψ∗u.

and constant thereafter. Second, as illustrated in Figure 3, the function ψ∗u is less than u,

hump-shaped, and achieves its maximum at u = Ts.

Before turning to the comparison with BHW, let us describe the holding plan of a low–

valuation trader. The only interesting case is when the information event occurs at t ≤ Tf –

the other cases are essentially the same as in BHW. There are two sub-cases:

• If t ≤ ψ∗Tf : from Figure 3 one sees that, when t < ψ∗Ts , there exists two times u1 < u2

such that ψ∗u1 = ψ∗u2 = t. For all u ∈ (u1, u2), we have t ≤ ψ∗u, while for u ∈ [t, u1] and

u ∈ [u2,∞), we have t > ψ∗u. This means that the trader holds zero assets from time t

to time u1, one unit from time u1 to time u2, and zero units after time u2. Because the

price is strictly increasing, this asset holding plan is implemented as follows: sell all your

assets with a market order at the information event time t, buy one unit with a market

order automatically triggered at time u1, and sell one unit with a limit sell order at price

pu2 , executed at time u2.

• If t ∈ (ψ∗Tf , Tf ]: from Figure 3, one sees that ψ∗u < t for all u ∈ [t, Tf ), and so qt,u = 0.

Comparison with BHW. Perhaps the main substantive difference is that, in BW, traders

never split their order. This is because BW exogenously restrict asset holdings to be either

zero or one, implying that all trades must have the same block size of one. In BHW we relax

this restrictive assumption and obtain equilibrium trading strategies featuring order splitting:

traders find it optimal to submit entire sequence of limit and triggers order, so as to slowly and

continuously unwind their asset holdings.8

8Technically, in BW asset holdings are discontinuous, while in BHW they are continuous. Continuity in
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Another difference concerns the asset holding plans of low–valuation traders. In the ATE of

BW, for t < ψ∗Ts , the asset holdings take the form of a hump–shaped step function: first zero,

then one, and then zero, as illustrated in Figure 4. When s ≤ σ/(1 + σ), this step function

is qualitatively different from the asset holding plans of BHW: indeed, with these parameters,

BHW’s asset holdings plans are strictly decreasing, instead of hump–shaped in BW. When

s > σ/(1 + σ), however, BW’s asset holdings can be viewed an extreme version of the smooth

hump–shaped asset holding of BHW. In particular, Figure 4 illustrate that in BHW, for some

parameters, low–valuation traders’ asset holdings increase continuously until reaching qt,u = 1,

then stays equal to one for some time, and then continuously decrease their asset holdings until

reaching qt,u = 0 at time u = Tf . The similarity with BW’s step function is clear from the

figure. Also, in both BHW and BW, there is undercutting: low–valuation traders submit limit

sell orders at lower and lower prices.

As argued before, similarities between BW and BHW should be expected for small σ.

The next proposition makes that point formally and shows that for σ close enough to zero, the

smoothly increasing and decreasing portion of the BHW’s asset holding plan become arbitrarily

close to vertical lines, and BHW’s equilibrium asset holdings converges to that of BW:

Proposition III.2 (Convergence of the ATE.). Consider the ATE in BHW and let σ → 0.

Then the average asset holding plans, E [qt,u | θt], and the price path, pt, converge pointwise,

almost everywhere, towards the average asset holding plans E
[
q∗t,u | θt

]
and price path p∗t of

Proposition III.1.

We have convergence “in average holding plan” because, at t ≥ Tf , high–valuation traders

are indifferent between any holding plan qt,u ∈ [0, 1], and so only the average asset holding plan

is determinate.

Lastly, let us note that an obvious difference between BW and BHW concerns the asset

holding plan of high–valuation traders after time Tf : because they can only hold zero or one

unit, market clearing require that they randomize between a market order for one unit, and

no market order, with probability s/µht. But this difference is inessential: in BHW, such

randomization is also an optimal strategy, given that high–valuation have linear utility and,

after Tf , are indifferent between holding any quantity q ∈ [0, 1].

III.3 The LOE

Turning to the LOE, we start by recalling the main result of BW:

BHW arises because marginal utility decreases strictly and continuously in q ∈ [0, 1]: this implies that, in
response to continuous changes in the holding cost ξu, traders change their asset holdings, qt,u, continuously.

15



0 u

qt,u

t Tfu1 u2

1

BHW
BW

Figure 4: ATE asset holdings for low–valuation traders who experience an information event at
time t. The red dashed curve represent a typical equilibrium asset holding from BHW, and the
blue thick curve represent the typical equilibrium asset holding in BW.

Proposition III.3 (LOE in BW.). For each t ∈ [0, Tf ], let φ∗t be the unique solution of∫ φ∗t

t

ρe−ρ(φ∗t−u) (s− µhu) du = 0.

Let p∗u be the continuous price path solving the ODE:

t < Ts : rp∗t − ṗ∗t = 1− δ + δ
d

dt

[
1

1− µht

] ∫ φ∗t

t

e−(r+ρ)(u−t)(1− µhu) du

t ∈ (Ts, Tf ) : rp∗t − ṗ∗t = 1− δ 1− µht
1− µh(φ∗)−1

t

t ≥ Tf : rp∗u = 1.

Lastly consider the time–t asset holding plan when θt = `:

q∗t,u = I{u≤φ∗t } with proba
s− µht
1− µht

if t ∈ (0, Ts), for all u ∈ [t,∞)

= 0 if t ∈ [Ts,∞), for all u ∈ [t,∞),

and, for θt = h:

q∗t,u = 1 if t ∈ (0, Tf ], for all u ∈ [t,∞)

= 1 with proba
s

µht
, if t ∈ [Tf ,∞), for all u ∈ [t,∞).
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Then, the price p∗t and asset holding plan q∗t,u is an LOE with BW’s preferences.

The comparison between BW and BHW goes along the same lines as in the previous section.

First, in BW, traders never split their orders. In BHW, by contrast, there is order splitting:

traders submit entire sequences of limit sell orders so as to be able to unwind their asset

holding slowly and continuously. Second, in both BW and BHW (for small enough σ), there is

undercutting: limit sell orders are being submitted at lower and lower prices.

Lastly, in BW, we have randomization: to clear the market with indivisible assets, it is

sometimes necessary to have identical investors behave differently. But, as argued earlier, this

difference is somewhat inessential.9 We conclude this section with the convergence result:

Proposition III.4 (Convergence of the LOE.). Consider the LOE in BHW and let σ → 0.

Then the average asset holding plans, E [qt,u | θt], and the price path, pt, converge pointwise,

almost everywhere, to the average asset holding plans E
[
q∗t,u | θt

]
and price path p∗t of Proposition

III.3.

We have convergence “in average holding plan” for two reasons. First, as before, after time

Tf high–valuation traders are indifferent between any holding plan qt,u ∈ [0, 1], so only the

average asset holding is determinate. Second, before time Ts, low–valuation traders choose the

same holding plan in BHW, while they randomize between different holding plans in BW.

9Randomization occurs, as in the ATE, for high–valuation traders who experience an information event at
time t ∈ (Tf ,∞). But, differently from the ATE, it also occurs for low–valuation traders who experience an
information event at time t ∈ (0, Tf ). As shown in BW, a fraction of low–valuation trader hold on to their asset
and submit a limit sell order, while the complementary fraction sells. In BHW, by contrast, since low–valuation
traders utility flow is strictly concave, randomization is strictly suboptimal. In particular, instead of randomizing
between 0 and 1, all low–valuation traders choose the same asset holding plan. But this difference is somewhat
inessential: if one were to replace the indivisible asset preference of BW by the essentially equivalent “Leontieff”
specification, v(h, q) = min{q, 1} and v(`, q) = (1− δ) min{q, 1}, then we could construct an equilibrium based
on the same price path as in Proposition III.3 and without randomization.
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IV Equilibrium with recurrent liquidity shocks

In this section we propose an extension Biais, Hombert, and Weill’s (2010, henceforth BHW)

model with recurrent aggregate liquidity shocks. We solve for a limited cognition equilibrium (as

in Proposition 1, page 18 in BHW), and we provide closed–form expressions for all equilibrium

objects. A numerical example illustrates that the results of the basic model are robust to the

introduction of recurrent aggregate liquidity shocks. Our example also suggests that recurrent

liquidity shocks have quantitatively important effects on the long–run level of the asset price.

BHW makes the simplifying assumption that high–valuation traders derive linear utility

flows for the asset forever. With recurrent shocks, this assumption is relaxed, as high–valuation

traders “effective” utility flow becomes non linear. Indeed, they anticipate the arrival of periodic

liquidity shock, causing them to derive strictly concave utility for the asset. We find however

that our results remain qualitatively similar with linear and non–linear high–valuation utility

flow. This suggests that BHW’s conclusion are robust to the introduction of non–linear utility

flows.

IV.1 The setup

We consider the model of Biais, Hombert, and Weill (2010, henceforth BHW) with one modifi-

cation: instead of assuming that the liquidity shock occurs only once and is unanticipated, we

assume liquidity shocks occur recurrently at random times, and are rationally anticipated by

traders.

Our model of recurrent aggregate liquidity shocks is similar to that of Duffie, Gârleanu,

and Pedersen (2007). We assume that aggregate liquidity shocks hit the economy at Poisson

arrival times with intensity κ > 0. As in our basic model, when a shock hits, investors switch

to the low–valuation state and recover later at independent exponential times with intensity γ.

Differently from the basic model, however, traders rationally anticipate a new liquidity shock

may hit at any time.

We consider the market setup of Section 3, page 11 in BHW. That is, the only constraint

on traders’ asset holding plans is the limited cognition friction. We assume, however, that

when an aggregate liquidity shock occurs, a trader cancels all of her unfilled orders, and keep

her asset holding constant until her next information event. This assumption simplifies the

analysis, and it also captures the intuitive notion that, when a large aggregate liquidity event

occurs, institutions may “withdraw” from the market in order to analyze the new shock until

they reach a trading decision. This is in line with evidence from the “flash crash” that hit the

US equity markets on May 6th, 2010: the Securities and Exchanges Commission (SEC, 2010)

reports that automated trading systems paused in reaction to the sudden price decline in order

18



to allow traders and risk managers to fully assess the risks before trading was resumed.

In all what follows, the time index, either “t” or “u”, denotes the time elapsed since the last

aggregate shock. We focus on stationary equilibria in which:

• The price only depends on the time t elapsed since the last aggregate shock.

• Time–t low–valuation traders choose the same asset holding plan, q`,t,u.

• Time–t high–valuation traders choose the same asset holding plan, qh,t,u.

IV.2 Market clearing

Consider the economy at time u, i.e., u periods after the last liquidity shock. The population

of traders can be partitioned in two sub-population:

• First, there is a measure 1−e−ρu of traders who have not yet received an information event.

By assumption these traders have kept their asset holding constant since the last liquidity

shock. Thus, they constitute a representative sample of the asset holding distribution one

instant before the last liquidity shock. In particular, since the market clears one instant

before the last liquidity shock, their average asset holding must be equal to s.

• Second, there is a density ρe−ρ(u−t) of investors who had their last information event t

periods after the last liquidity shock. Among these traders, a fraction 1 − µht have a

low valuation and hold q`,t,u at time u, and the complementary fraction µht has a high

valuation and hold qh,t,u at time u.

Taken together, the above remarks imply that the market clearing condition is:

(
1− e−ρu

)
s+

∫ u

0

ρe−ρ(u−t)
{

(1− µht)q`,t,u + µhtqh,t,u

}
dt = s,

which becomes, after rearranging:∫ u

0

ρe−ρ(u−t)
{

(1− µht)q`,t,u + µhtqh,t,u

}
dt =

∫ u

0

ρe−ρ(u−t)s dt, (IV.1)

the exact same market–clearing condition as in BHW.

IV.3 The trader’s problem

When an information event occurs at time t, a trader picks her asset holding plan until her

next information event. The plan is unrestricted, as long as no further liquidity shock occurs.
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If a liquidity shock occurs, the trader cancels all her unfilled orders and keeps her asset holding

constant until her next information event. With this in mind, we show in Section IX.3.1 that

a trader’s expected utility from time t until her next information event is:∫ ∞
t

e−(r+ρ+κ)(u−t)
{
Et [v(θu, qt,u)] + κW (qt,u)− ξuqt,u

}
du, (IV.2)

where ξu = rpu − ṗu − κ(p0 − pu) (IV.3)

is an adjusted holding cost at time u, and where W (q) is the continuation value (net of holding

costs) of a trader who holds q units of assets from the beginning of a liquidity shock, until her

next information event. As was the case in BHW, an optimal asset holding plan maximize the

objective (IV.2) pointwise. That is, qt,u maximizes:

E [v(θu, qt,u) | θt] + κW (qt,u)− ξuqt,u.

Note that this problem is very similar to that of BHW, with adjustments reflecting the trader’s

rational expectations about future liquidity shocks. Namely, when a liquidity shock occurs at

time u with intensity κ, the trader’s continuation utility is W (qt,u), and the drop in asset price

results in the capital loss pu − p0.

We conclude this section with an explicit expression for the marginal continuation value,

Wq(q), derived in Section IX.3.1, page 81:

Lemma IV.1 (An expression for Wq(q)). The derivative of W (q) with respect to q writes:

Wq(q) = −C +
1

r + ρ
− δ(r + ρ+ κ)

r + ρ+ κ+ γ
qσ when q ≤ 1; and Wq(q) = −C when q > 1, (IV.4)

where C ≡ r+ρ+κ
r+ρ

∫∞
0
e−(r+ρ+κ)uξu du.

The discontinuity of the marginal continuation value, Wq(q), arises because traders’ utility

flow functions have a kink at q = 1. This is just as in BHW. Note however that, in contrast with

BHW, the continuation value W (q) injects some curvature in the problem of a high–valuation

investor.

IV.4 Solving for equilibrium

We already noted two striking similarities with BHW: the market–clearing condition is the

same, and the trader’s problem takes a similar form. This suggests that the equilibrium with

anticipated recurrent shock is likely to resemble the equilibrium with a one–time unanticipated
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shock. To make this point more formally, in this section we provide closed–form formulas for

equilibrium objects.

First, let us note that, if θt = h, the trader’s objective does not depend on t, which allows

us to write qh,t,u = qh,u. Also, as in BHW:

Lemma IV.2 (Bounded holdings). In equilibrium, at all times, qh,u and q`,t,u lie in [0, 1].

Otherwise, if some trader found it optimal to hold a quantity strictly greater than 1, then

given our preference specification all investors would find it optimal to hold at least 1, which

would contradicting market clearing. Therefore

qh,u = min{Qh,u , 1} and q`,u,t = min{Q`,t,u , 1},

where Qh,u and Q`,t,u solve the first–order condition of an “unconstrained” trader’s problem:10

0 = 1 +κ

(
−C +

1

r + ρ
− δ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)
Qσ
h,u

)
− ξu

0 = 1− δe−γ(u−t)Qσ
`,t,u +κ

(
−C +

1

r + ρ
− δ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)
Qσ
`,t,u

)
− ξu

Subtracting one equation from the other, one immediately sees that:

Lemma IV.3. In equilibrium, at all times, Q`,t,u = αt,uQh,u, where:

αt,u ≡
(

1 +
(r + ρ)(r + ρ+ κ+ γ)

κ(r + ρ+ κ)
e−γ(u−t)

)−1/σ

. (IV.5)

The next step is to substitute qh,u = min{Qh,u , 1} and q`,t,u = min{αt,uQh,u , 1} into the

market–clearing condition (IV.1). This leads to a simple one–equation–in-one–unknown prob-

lem for Qh,u:∫ u

0

ρe−ρ(u−t)
{

(1− µht) min{αt,uQh,u , 1}+ µht min{Qh,u , 1} − s
}
du = 0. (IV.6)

This equation is easily shown to have a unique solution – all the details are in Section IX.3.2,

page 83. Next, using the first–order condition for Qh,u, we obtain that the price solves the

ODE:

rpu − ṗu − κ(p0 − pu) = ξu =
r + ρ+ κ

r + ρ
− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)
Qσ
h,u − κC. (IV.7)

10Precisely, this “unconstrained problem” ignores the kink at q = 1 and artificially assumes that, for q ≥ 1,
the utility flow and the continuation value have the same functional form as for q ∈ [0, 1].
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We are not done yet, however: indeed, p0 appears on the left–hand side of the equation, and

the constant C is a function of the the entire path of ξt, which is itself a function of C. In

Section IX.3.3, page 84, we show that these fixed–point problems can be solved analytically,

leading to:

Lemma IV.4. The price process satisfies the ODE, for all t:

(r + κ)pu − ṗu =1 +
κ

r
− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)
Qσ
h,u

− δκ2(r + κ)(r + ρ+ κ)

r(r + ρ)(r + ρ+ κ+ γ)

∫ ∞
0

(
e−(r+κ)z − e−(r+ρ+κ)z

)
Qσ
h,z dz.

IV.5 Comparison with BHW

We can solve numerically for the equilibrium Qh,u by following the steps outlined in Section

IX.3.2. To solve numerically the ODE for the price, we go in two steps: first, we compute pTmax

for some Tmax > 0 large enough. Second, we solve the ODE for t ∈ [0, Tmax] using a Runge-

Kutta algorithm. In both steps we need to integrate the function of Qh,u in the neighborhood

of infinity. For this we solve numerically for Qh,u for all u ∈ [0, Tmax], and we use a first-order

approximation for u > Tmax. The details are explained in Section IX.3.4, page 84.

IV.5.1 When aggregate shocks occur on average every 4 months

We plot in Figure 5 the equilibrium strategies and the price path for aggregate shocks occurring

at a quarterly frequency on average: κ = 4. We let σ = 0.3 and otherwise choose the same

parameter values as in Table 1. Our computations illustrate that, although equilibrium objects

are analytically more complicated than in BHW, they are qualitatively very similar. The

computations also indicate that the effects of recurrent liquidity shocks on the long-run price

level are quantitatively significant.

High–valuation traders. As in BHW, high–valuation traders hold one unit before Tf , and

have a decreasing average holding after Tf . There is one difference with BHW: because of

the curvature induced by the continuation value W (q), high–valuation traders are no longer

indifferent between any asset holding after Tf .

Low–valuation traders. The holdings of low–valuation traders are hump–shaped, just as in

BHW.
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Figure 5: Asset holdings (top panel) and price path (bottom panel) with recurrent shocks when
κ = 4

Price path. There are some notable differences for the price path. First, the expectation

of future liquidity shock results in a permanent negative level effect – the long–run price level

decreases by 9.5%. Another difference arises because of the curvature due to the continuation

value W (q) in the utility flow: after time Tf , high–valuation traders’ holdings decrease, their

marginal utility flow increases, and hence the price path continues to increase. This last feature

of the price path is, however, not discernible at the scale of the figure. This is because shocks

are not very frequent, so the prospect of future liquidity shocks injects very little curvature into

high–valuation traders’ utility flow.

IV.5.2 When aggregate shocks occur on average every 10 days

Figure 6 plots the same objects when aggregate shocks occur every 10 days on average: κ = 25,

keeping all other parameter values the same as before. Since the intensity at which traders

switch from low– to high–valuation is also γ = 25, a trader has a 50% chance to recover from

a liquidity shock before the next liquidity shock hits, and a 50% chance that a new aggregate

shock occurs before he has recovered from the previous one. The equilibrium objects are

quite similar to the previous case, with two noticeable difference. First, recurrent shocks have a

quantitatively large impact on the long-run price level: it is now about 42% lower than in BHW.
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Figure 6: Asset holdings (top) and price path (bottom) with recurrent shocks when κ = 25

Second, low–valuation traders have strictly positive and increasing asset holdings after time Tf .

Intuitively, the long-run price level is lower than before and so low–valuation investors find it

profitable to hold some asset. To put it differently, all traders anticipate to receive aggregate

shocks frequently and have their valuation “re–set” to the low state. This reduces the difference

between the expected utility flows of high– and low–valuation traders. As a result equilibrium

holdings of high–valuation traders decrease and the holdings of low–valuation traders increase.
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V Positive liquidity shocks

In this section we show that our setup features a natural symmetry: an equilibrium with positive

liquidity shock can be deduced from the equilibrium with negative liquidity shock after a simple

change of variable. In particular, the price with positive liquidity shock is just the symmetric

of the price with negative liquidity shock, with respect to the long run value of 1/r.

In all what follows, we use the tilde “ ˜ ” notation to distinguish variables in the positive

liquidity shock model from their negative liquidity shock counterparts. To simplify the expo-

sition we consider a setup where asset holdings must belong to the interval [0, 1]. Clearly, this

is without loss of generality in Biais, Hombert, and Weill (2010, henceforth BHW) as traders

always find it optimal to keep their asset holdings less than one.

V.1 The positive liquidity shock model

The setup is exactly the same as BHW’s, except for the fact that the liquidity shock is positive

instead of negative: at time zero, investors make a transition to a high-marginal valuation state,

and keep a high–valuation for independent random exponential times with intensity γ. When

in the high state, an investor’s flow utility for holding q ∈ [0, 1] shares of the asset is:

ṽ(h̃, q̃) = q̃ + δ
1− (1− q̃)1+σ

1 + σ
(V.1)

When in the low state, it is ṽ(˜̀, q̃) = q̃. Relative to the low state, the high state has both higher

utility and higher marginal utility. Also, note that the high and the low state play opposite

role as in BHW.

As in BHW, after defining the holding cost ξ̃ ≡ rp̃u − ˙̃pu, we obtain the trader’s inter-

temporal valuation net of the cost of buying and selling assets:

E
[∫ ∞

0

e−rt
∫ ∞
t

Et
[
ṽ
(
θ̃u, q̃t,u

)
− ξ̃uqt,u

]
du ρ dt

]
. (V.2)

The market-clearing condition is exactly as in BHW after replacing h by ˜̀ and ` by h̃:∫ u

0

ρe−ρ(u−t)
{

(1− µ˜̀t)E
[
q̃t,u | θ̃t = h̃

]
+ µ˜̀tE

[
q̃t,u | θ̃t = ˜̀

]
− s̃
}
du = 0, (V.3)

where s̃ ≡ 1− s. Equilibria with limited cognition are defined in the same way as in BHW.
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Positive liquidity shock Negative liquidity shock

θ̃u = h̃ → θu ≡ `
θ̃u = ˜̀ → θu ≡ h
ξ̃u → ξu ≡ 1 + (1− ξ̃u)
s̃ → s ≡ 1− s̃
q̃t,u → qt,u ≡ 1− q̃t,u

Table 2: The change of variables.

V.2 The change of variables

To solve for an equilibrium, we make the change of variables summarized in Table 2. The

details are intuitive: we interchange the role of the high and the low state, we replace 1− q̃ in

the utility flow functions by q, and we take the symmetric of the holding cost ξ̃u around the

long run value of 1, i.e. ξu = 1 + (1− ξ̃u).
First, let us make the change of variables in the utility flow net of cost, ṽ(θ̃, q̃t,u)− ξ̃uq̃t,u, in

terms of our newly defined variables.

ṽ(θ̃u, q̃t,u)− ξ̃uq̃t,u = q̃t,u + I{θ̃u=h̃}δ
1− (1− q̃t,u)1+σ

1 + σ
− ξ̃uq̃t,u

= (1− qt,u) + I{θu=`}δ
1− q1+σ

t,u

1 + σ
−
[
1 + (1− ξu)

]
(1− qt,u)

= q − I{θu=`}δ
q1+σ

1 + σ
− ξuqt,u +

(
δ

1 + σ
I{θu=`} − 2 + ξu

)
︸ ︷︷ ︸

≡k(θu)

= v(θu, qt,u)− ξuqt,u + k(θu).

But k(θu) is a constant function of the valuation state, over which the trader has no control.

Clearly, this means that, after making the change of variable, the investors’ objective is, up to

a constant, the same as in BHW. Furthermore, the constraints on asset holding plans are also

the same as in BHW. When the only constraint on asset holding plans is the limited cognition

friction (as in Proposition 1, page 18 in BHW) this is obvious. When traders can only submit

limit orders at the time of information events (as in Proposition 9, page 30 in BHW), this is

also true: indeed, the change of variable simultaneously switches the monotonicity of both the

price and asset holding plans. Suppose, for instance, that p̃u is strictly decreasing for some set

of times. In that case only limit–buy orders can be executed and so the asset holding plan, q̃t,u,

has to be increasing. But then the transformed price, pu = 2/r − p̃u is strictly increasing, only

limit-sell orders can be executed so that the transformed holding plan, qt,u = 1− q̃t,u, has to be

decreasing.
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Second, let us make the change of variable in the market–clearing condition (V.3):∫ u

0

ρe−ρ(u−t)
{

(1− µ˜̀t)E
[
q̃t,u | θ̃t = h̃

]
+ µ˜̀tE

[
q̃t,u | θ̃t = ˜̀

]
− s̃
}
du =0

⇐⇒
∫ u

0

ρe−ρ(u−t)
{

(1− µht)E [1− qt,u | θt = `] + µhtE [1− qt,u | θt = h]− (1− s)
}
du=0

⇐⇒
∫ u

0

ρe−ρ(u−t)
{

(1− µht)E [qt,u | θt = `] + µhtE [qt,u | θt = h]− s
}
du =0

which is the same as the market–clearing condition of BHW.

Taken together, we find that, after making the change of variables, the trader’s problem

and the market–clearing conditions are the same as in BHW. This allows us to conclude that:

Proposition V.1 (Positive liquidity shocks). Given the equilibria of Proposition 1 and 9 in

BHW’s negative liquidity shock model, one obtains corresponding equilibria in the positive liq-

uidity shock model after making the change of variables of Table 2.
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VI Continuity of the price path

In this section we establish that, with limited cognition, when traders can submit algorithms

and/or limit orders, the price path must to be continuous. We consider price paths which

can be non-monotonic, have kinks, and jumps. But to simplify the analysis we rule out some

pathological cases. Namely, we impose two regularity conditions. First, at any point, the price

is either left– or right–continuous: i.e., if pu+ 6= pu, then pu− exists and is equal to pu and vice

versa if pu− 6= pu. The second regularity condition is that, in any finite time, the price has finite

(but possibly arbitrarily large) number of monotonicity changes, jumps, and kinks. Formally:

Condition 1 (Well-behaved price path). At any time u, the price pu is either left– or right-

continuous. And, for any finite time t, there exists 0 = t0 < t1 < t2 < . . . < tK = t such that:

in every interval (tk, tk+1), ṗu exists, is continuous, has finite limit to the right of tk and to the

left of tk+1, and does not change sign, i.e., either ṗu = 0, ṗu < 0, or ṗu > 0.

After imposing these regularity conditions, we are left with a broad class of admissible price

paths. To the best of our knowledge it includes all the price paths arising in the various models

studied in the finance–search literature. In particular, it includes the equilibrium price path of

Weill (2007) which in some cases features one kink or one jump.

We let t0 < t1 < t2 . . . < tk < . . . be the boundary points of the maximal intervals where

the above properties hold. That is, for all tk, the price has either a kink, a discontinuity, or

its derivative is zero. We call these maximal intervals spots. We let an increasing spot be an

interval where the price is strictly increasing. Similarly, we let a decreasing spot be an interval

where the price is strictly decreasing. And, lastly, we let a flat spot be an interval where the

price is constant.

In all what follows we call the first equilibrium concept of BHW (Proposition 1, page 17

in BHW) an Algorithmic Trading Equilibrium, or “ATE”, because it corresponds to the case

where traders can implement their asset holding plans using algorithms. Similarly, we call the

second equilibrium concept of BHW (Proposition 8, page 27) a Limit Order Equilibrium, or

“LOE”, because it correspond to the case where traders can only submit limit and market

orders when their information event process jumps.

VI.1 Continuity of the price in a ATE

Suppose by contradiction that the price path jumps upwards at some u > 0. Consider for

instance that pu < pu+ (the case pu− < pu is identical after replacing u by u− and u+ by u

everywhere in the following arguments). We show that investors’ asset demand is unbounded

at time u which contradicts market clearing given that investors’ can’t short-sell. Formally, we
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show that given any K > 0, for almost all ω ∈ Ω, if τu ∈ (0, u) then qτu,u ≥ K. Indeed, for any

given K consider

C =

{
ω ∈ Ω : τu > 0, and qτu,u < K

}
,

and the following deviation. At your first information event before u, submit a trigger order

to buy K additional unit of the asset at time u, executed at price pu, and a trigger order to

sell these assets just after time u, executed at price pu+ . Then, asset holdings at time u are

qτu,u + K ≥ K. Since the investor enjoys some positive utility from holding these extra K

units, the net change in expected utility is greater than the profit from buying at price pu and

re-selling at price pu+ . Thus the expected utility of the deviation is more than

E
[
ICe−ru(pu+ − pu)K

]
= P (C)e−ru(pu+ − pu)K ≥ 0.

But the expected utility of the deviation is negative when the holding plan is optimal, implying

that P (C) = 0. Since the other investors have τu = 0 and thus hold s unit of the asset, this

contradicts market clearing.

Similarly, if the price jumps downwards at some u > 0, we can follow the same lines of

reasoning to show that for any ε > 0, for almost all ω ∈ Ω, if τu ∈ (0, u] then qτu,u < ε, implying

that qτu,u = 0. Again, this contradicts market clearing.

VI.2 Continuity of the price in an LOE

In the case of a LOE, the proof has a similar logic but turns out to be much longer. The reason

is that traders have access to a smaller menu of orders than in the ATE, so it is not as easy,

and sometimes not possible, to “arbitrage the jump.” To see why, suppose that pu+ > pu, but

that the price is increasing before time u. In the ATE, investors could “arbitrage the jump”

by submitting a trigger order to buy at time u, executed at price pu, and a trigger order to sell

at time u+, executed at price pu+ . In a pure limit order market, while may still be possible

to “sell high” with a limit sell order at price pu+ , it is no longer possible to “buy low” with a

trigger buy order just before u, as triggers are not available.

To rule out an upward jump, in Section VI.2.1, we restrict attention to the subpopulation of

investors who have an information event shortly before u, and who can arbitrage the jump by

submitting a market order to buy and a limit–sell order at price pu+ . Namely, we show that if

pu+ > pu, then the asset demand of this subpopulation would be unbounded, which is sufficient

to contradict market clearing.

The case of downward jumps creates additional complications: indeed, because of the short-
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selling constraint we can’t rely on making the symmetric argument that the supply would be

unbounded. To rule out a downward jump, in Section VI.2.3 we make a different argument.

We show that while traders who have an information event can’t supply unbounded amount of

the asset, they find it optimal to supply all of their holdings. On the other side of the market,

no other trader want to buy: because of the downward jump, all these potential buyers find it

optimal to buy at the lower post-jump price.

VI.2.1 The price cannot jump up

Suppose by contradiction that pu < pu+ . Then, there exist some t and η > 0 such that

e−rzpz < e−ru(pu+ − η) for all z ∈ (t, u]. (VI.1)

We now show that investors’ asset demand is unbounded at time u. Given any K > 0, for

almost all ω ∈ Ω, if τu ∈ (t, u] then qτu,u ≥ K. Indeed, for any given K consider

C =

{
ω ∈ Ω : τu ∈ (t, u], and qτu,u < K

}
,

and the following deviation. Buy K additional unit of the asset when the information process

jumps at date z for the first time during (t, u), and re-sell these assets at time u+ with a limit

order at price pu+ − η/2 which, by our choice of t and η, is executed at time u+. Then, asset

holdings at time u are qτu,u + K ≥ K. Since the investor enjoys some positive utility from

holding these extra K units, the net change in expected utility is greater than the capital gain

(e−ru(pu+ − η/2)− e−rzpz)K > e−ru(η/2)K. Thus the expected utility of the deviation is more

than P (C)e−ru(η/2)K. Optimality of the holding plan then implies that P (C) = 0. Because

there is a positive measure of investors whose information proces has jumped during (t, u], and

because of the short-selling constraint, this contradicts market clearing.

VI.2.2 The price cannot grow at a rate greater than r

Before proving that the price cannot jump downwards, we establish a useful result:

Lemma VI.1. In all spots, rpu − ṗu ≥ 0.

Suppose by contradiction that ṗu > rpu over some interval [u1, u2]. Note that the price is

strictly increasing over [u1, u2]. Then let us fix some u ∈ (u1, u2). We can do the same reasoning

as in the proof that the price cannot jump up, in Section VI.2.1 above: investors always want

to demand an additional unit of the asset if they have an information event during [u1, u), and

sell it back at time u. Indeed, given any K > 0, then for almost all ω such that the information
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process jumps at least once during [u1, u], then qτu2 ,u > K. Otherwise, an investor could profit

from buying K additional units at his first information event time during [u1, u] and selling

back at u2. As above, this contradicts market clearing.

VI.2.3 The price cannot jump down

Consider by contradiction some u > 0 such that pu > pu+ (as before the case pu− > pu is

identical after replacing u by u− and u+ by u). Then, we pick t < u close to u, and η > 0

and K > 0 small enough so that: z 7→ pz is continuous and either strictly increasing, strictly

decreasing, or constant on the interval [t, u]; and, for all z ∈ [t, u], pz > pu+ + η; and

−
∫ u

t

e−(r+ρ)z dz + e−(r+ρ)u(pu − pu+ − η) > K. (VI.2)

Keeping in mind that marginal utility is bounded above by one, the intuition of this inequality

is the following: at any possible margin and at any time z ∈ [t, u], it is optimal to decrease

the asset holding by one unit until the next jump of the information process, and buy back at

time u+ with a limit sell order at price pu+ + η or at the next jump of the information process,

whichever comes first. In Section IX.4.1, page 86, we prove the following two results:

Lemma VI.2. For almost all ω ∈ Ω:

1. If τu ∈ [t, u], then qτu,u = 0.

2. If τu ∈ (0, t), then qτu,u ≤ qτu,t

Point 1 says that, if the trader has an information event at a date sufficiently close to u,

then she wants to take advantage of the price jump by reducing his asset holding as much as

possible, and buying everything back after the jump with a limit order. Point 2 says that, by

the same token, if the trader does not have an information event at a date sufficiently close to

u, she will prefer to delay all his purchases until after the jump.

Lemma VI.2 implies that the market cannot clear. Indeed,

E [qτu,u] < E
[
qτt,tI{τu<t}

]
= E

[
qτt,tI{τ ′t−τt>u−τt}

]
= E

[
qτt,te

−ρ(u−τt)
]

≤ E
[
qτt,te

−ρ(u−t)] = se−ρ(u−t) < s,

where τ ′t denote the next information event time after t. In the first line, the first inequality

comes from the fact that, by Point 1 and 2 of Lemma VI.2, qτu,u = 0 if τu > t, qτu,u ≤ qτu,t if

τu < t and, of course, τu = τt if τu ≤ t. The following equality on the first line follows from the

fact that τu ≤ t ⇔ τ ′t > u, and the next equality uses the fact that the random inter-arrival

time τ ′t − τt is independent from Fτt while qτt,t belongs to Fτt .
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VII Uniqueness of a Markov Limit Order Equilibrium

In this section we assume, as in Proposition 9, page 30 in Biais, Hombert, and Weill (2010)

(henceforth BHW), that traders can only submit market and limit orders when their information

jump process jumps. But, in contrast with BHW, we do not make any a priori monotonicity

restriction on the shape of the price path. In this context, we show that there exists a unique

Markov equilibrium, i.e., an equilibrium where traders’ holding plan, qt,u, only depend on time

(the aggregate state), and on the trader idiosyncratic state, θt, at the information event time.

In all what follows we assume that traders face a pure limit order book operating according to

the price priority, time priority, and volume maximization rules explained in the first paragraph

of Section 4, page 25 in BHW.

VII.1 Preliminary comments and overview

We start with some general comments on the proof and an overview of the results. In all

what follows, we let a Limit Order Equilibrium, or “LOE”, be the equilibrium concept of

Proposition 9 page 30 in BHW, where traders can only submit market and limit orders when

their information jump process jumps.

VII.1.1 What makes proving uniqueness difficult

As noted in BHW, in a pure limit order market, the shape of the price path imposes constraints

on the holding plan of traders. For instance, when the price path is strictly increasing (decreas-

ing), then the price priority rule implies that only limit sell (buy) orders can be executed, and

so holding plan have to be decreasing (increasing). When the price path is flat, then the type of

orders that can be executed is determined by time priority and volume maximization. Namely,

if there are limit sell (buy) orders in the book, then only limit sell (buy) orders can be executed,

in a first–in–first–out basis.

With some a priori monotonicity restrictions on the price, it can be relatively easy to

prove uniqueness. For instance, suppose that we restrict attention to prices that are strictly

increasing. Then, only limit sell orders can be executed, and asset holding plans have to be

decreasing. In that context, one can show that the equilibrium allocation must solve a social

planning problem, subject to the constraints that asset holding plans are decreasing, and by

concavity arguments that this social planning problem has a unique solution. This, of course,

would only provide a partial result: it would establish uniqueness of a LOE with a strictly

increasing price path.

In this section, instead of imposing a priori monotonicity restrictions, we establish mono-
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tonicity properties directly using elementary optimality and market clearing arguments. Once

sufficiently many properties are established, we can prove uniqueness based on a social–planning

argument similar to the one outlined above.

VII.1.2 Markov versus non-Markov LOE

Why is it sometimes easier to establish results for Markov LOE? Our proofs often require to

exhibit profitable deviations from a candidate equilibrium holding plan. As we explain below,

it is easier to construct one–stage deviations starting from a Markovian candidate equilibrium

holding plan than from a non–Markovian one.

A typical deviation consists in changing the orders submitted at some information event,

and reverting to the candidate equilibrium holding plan at some later information event. To

make things concrete, suppose for instance that the deviation requires that, at the information

event τk, a trader does not submit some limit order to sell at the ask price a. In order to revert

to the original holding plan at the next information event, τk+1, it may be necessary to resubmit

these limit sell orders. However, it can be the case that the “new” limit order to sell at price

a, submitted at τk+1, has a different time priority than an “old” limit sell orders at price a

submitted at time τk: it will be executed at a later time because it has been submitted later.

Clearly, in this example, it is not possible to revert to the original holding plan at τk+1.11

Note however that, if the candidate equilibrium holding plan is Markov, the problem de-

scribed in the previous paragraph never arises: that is, it is always possible to engineer “one

stage” deviations, which are started at some information event τk and reverted at the next

information event τk+1. Indeed, in a Markov holding plan, at any information event time τk,

the trader’s order only depend on his current type, not on his particular history up to time

τk. Therefore, with a Markov holding plan, we can always assume that a trader cancels all

her previously submitted orders and submits new ones, as if it was her first information event

time ever. In particular, the holding plan at time τk+1 does not rely on the time priority of

previously submitted limit orders, so the problem identified in the previous paragraph does not

arise.

VII.1.3 Overview of the proof

We start by establishing basic results on the price path that must hold in any LOE: we show

that the price is always less than 1/r, that it is weakly increasing for t ≥ Ts, and that it reaches

its long run value of 1/r in finite time, Tf . Then, we move to a result that we were only able to

11We encountered such situation in the continuity proof of Section VI and had to engineer more complex
deviation, we were reverted after a multiple, and sometimes random, number of subsequent information event.
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prove in the case of a Markov LOE: the price is weakly increasing before Ts as well. Together

with features of the dynamics of preferences, this last result allows us to prove that, in a Markov

LOE, investor asset holding plans are decreasing. Depending on the equilibrium price path,

however, they may be subject to additional constraints: namely, traders’ holding plan cannot

decrease in an arbitrary fashion when the price has a flat spot.

Then, we temporarily abstract from these additional constraints and study a “relaxed”

problem, where traders can choose any decreasing holding plan. This is a relaxed problem

because limit orders may impose additional constraints on the holding plan during flat spot

(for instance, that it can only decrease at specific times). We show however that, due to the

dynamics of preferences, these additional constraints are not binding: even if traders were

allowed to choose from any kind of decreasing holding plan, they would choose to keep their

holding plan flat when the price has a flat spot. In other words, traders do not need limit orders

during flat spot. This shows that a Markov LOE is a “relaxed” equilibrium, i..e, an equilibrium

for a “relaxed” economy where traders can choose any decreasing holding plan. Then, based on

the social planning argument outline above, we show that such a relaxed equilibrium is unique.

This establishes the uniqueness of a Markov LOE.

VII.2 Intermediate results

First, we establish in Section IX.5.1, page 93, that:

Lemma VII.1. In all spots, ṗt ≥ 0 or 1− rpt + ṗt ≥ 0.

The intuition is the following. If there is an interval where ṗt < 0 and 1− rpt + ṗt < 0, then

since marginal utility is bounded by 1, investors prefer to postpone any purchase until the end

of the interval, which is possible since the price decreases. This contradicts market clearing. A

corollary of Lemma VII.1 is:

Corollary VII.1. If pt > 1/r for some t, then ṗu ≥ 0 in all subsequent spots.

Indeed, consider by contradiction the earlier time interval (u1, u2) after t such that ṗu < 0.

Since pu is increasing before that interval, we have pu > 1/r in the right neighborhood of u1.

This implies that ṗu < 0 and 1− rpu + ṗu < 0, which is a contradiction by Lemma VII.1.

We then prove in Section IX.5.2, page 95, that:

Lemma VII.2. For all t, pt ≤ 1/r.

The idea of the proof is the following. Suppose there is some t such that pt > 1/r. First note

that, by Corollary VII.1, the price is increasing for all u ≥ t. But since the price is bounded,

it follows that it converges to some finite limit p∞ > 1/r. At the same time, the capital gains
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from buying and selling becomes very small, so the benefit from speculative buy-low-sell-high

strategies vanish, and investors demand is mostly driven by the value of holding the asset. Since

the PV of utility flows from holding are always less than 1/r, we find that, eventually, investors’

demand has to be equal to zero, which contradicts market clearing.

We continue with a corollary of Lemma VII.2:

Corollary VII.2. In all spots, 1− rpt + ṗt ≥ 0.

Indeed, Lemma VII.2 implies that if 1− rpt + ṗt < 0, then ṗt < 0. But, at the same time,

Lemma VII.1 implies that, if 1 − rpt + ṗt < 0, then ṗt ≥ 0, which is a contradiction. Another

corollary we prove in Section IX.5.3, page 99, is:

Corollary VII.3. Consider some [u1, u3] where the price is either strictly increasing, strictly

decreasing, or flat, and such that 1−rpz+ ṗz > 0 for all z ∈ [u1, u3]. Then, for all u2 ∈ (u1, u3),

τu2 ∈ [u1, u2) and θτu2 = h imply that qτu2 ,u2 ≥ 1 almost surely.

In other words, all high-valuation investors with an information event during [u1, u3] find it

optimal to hold at least one unit during that time interval. This is intuitive: they derive positive

net utility, 1− rpz + ṗz, from holding the asset, and strictly positive utility for z ∈ [u1, u3].

VII.3 The price is weakly increasing for t ≥ Ts

We show in Section IX.5.4, page 100, that:

Lemma VII.3. In all spots after Ts, ṗt ≥ 0.

To show this result, we consider the following two cases.

Case 1. Suppose that there is a decreasing spot followed by either a flat or an increasing

spot. Consider u1 < u2 < u3 such that [u1, u2] is at the end of the decreasing spot, and [u2, u4]

is at the beginning of the subsequent flat-or-increasing spot. Choose u1 such that pu1 < 1/r,

which is feasible because the price is strictly decreasing to the left of u2. And, if the subsequent

spot is increasing, choose u1 and u4 such that pu1 < pu4 , and let u3 be the solution of pu3 = pu1 .

Note that all investors who had an information event before u1 have increasing asset holdings

over [u1, u3]. Indeed, their asset holdings can only increase over [u1, u2]. Moreover, by price

priority, their asset holding cannot decrease over [u2, u3] because any limit order to sell at at

price pz ∈ [pu2 , pu3 ] must have been executed before u1. Now, because pz < 1/r and ṗz ≥ 0,

1− rpz + ṗz > 0 for z ∈ [u2, u3]. Corollary VII.3 then implies that all high-valuation investors

with an information event at time z ∈ [u2, u3] hold more than one unit at time u3. But

this is also true for high-valuation with an information event during [u1, u2], because they can
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submit limit order to buy just before u2 (we confirm this in Section IX.5.4). Therefore, all

high-valuation investors who had an information event during [u1, u2] hold one unit at time u3.

Since µhz > s for z ∈ [u1, u3], the only way this can happen is if limit sell order submitted before

u1 are executed. But this is impossible since the price is strictly decreasing for z ∈ [u1, u2], and

remains below pu1 for z ∈ [u2, u3] (we confirm the corresponding violation of market clearing in

Section IX.5.4).

Case 2. The other case to consider is when the price decreases forever after Ts. Then, we use

the following Lemma, proved in Section IX.5.4, page 100:

Lemma VII.4. Suppose that the price is continuously differentiable in the neighborhood of

some t > Ts. Then, either ṗt ≥ 0, or ṗt < 0 and 1− rpt + ṗt = 0.

The intuition is the following. Recall that 1 − rpz + ṗt ≥ 0. Suppose there is some t > Ts

such that ṗt < 0 and 1− rpt + ṗt 6= 0. Then since by Corollary VII.2, 1− ṗt + ṗt ≥ 0, we must

have that 1 − rpt + ṗt > 0. Because the price is continuously differentiable in a neighborhood

of t, there exists some interval [u1, u3] around t such that these two strict inequalities are a

satisfied: for all z ∈ [u1, u3], ṗz and 1 − rpz + ṗz > 0. But by Corollary VII.3 we know that

high-valuation investors with an information event during [u1, t) hold more than one unit at

time t. But this contradicts market clearing since µhz > s over [u1, u3] and, because the price

is strictly decreasing during [u1, t], no limit sell orders can be executed.

Now if the price decrease forever after Ts, the above Lemma shows that 1 − rpt + ṗt = 0

for all t > Ts. Moreover, since pt ≤ 1/r and ṗt < 0, we have that pz < 1/r to the left of t.

Integrating this ODE implies that the price goes to minus infinity, which is a contradiction.

VII.4 The price reaches 1/r in finite time

We define

Tf ≡ inf{t ≥ Ts : pt = 1/r},

with the convention that Tf = ∞ if the set is empty. In Section IX.5.5, page 102, we prove

that:

Lemma VII.5. Then, high-valuation traders who have an information event during (Ts, Tf )

hold at least one unit at all times until T−f , except perhaps at the boundary points of maximal

spots.

Indeed since by Lemma VII.3, ṗt ≥ 0 for t ∈ (Ts, Tf ), it follows that 1 − rpt + ṗt > 0 for

all t ∈ (Ts, Tf ), and thus, by Corollary VII.3, that high-valuation investors with an information
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event after Ts hold more than one unit in the interior of all maximal spots during (Ts, Tf ).

From this result it follows that:

Lemma VII.6. There is some Tf ≥ Ts such that pt = 1/r for all t ≥ Tf .

First, by combining Lemma VII.2 and Lemma VII.3, it is clear that if the price reaches 1/r

at some time after Ts, it stays equal to 1/r forever after. Now suppose that the price never

reaches 1/r. Then Tf = ∞ which implies, by Lemma VII.5, that all high-valuation investors

with an information event after Ts hold one unit. But the asymptotic measure of high-valuation

investors is one, and the asset supply is strictly less than one, which contradicts market clearing.

VII.5 The price grows at a rate strictly less than r

We prove in Section IX.5.7, page 103, that:

Lemma VII.7. Suppose that the price is continuously differentiable in the neighborhood of

some time t and that ṗt > 0. Then, rpt − ṗt ≥ 1− δ.

Otherwise, rpt−ṗt < 1−δ, i.e., the holding cost is strictly less than the minimum flow utility

from the asset. Then the two inequalities ṗz > 0 and rpz − ṗz < 1− δ hold in a neighborhood

[u1, u3] of t. Every investor with an information event during [u1, t] wants to hold at least one

unit of the asset, and perhaps re–sell during (t, u3) with a limit sell order. By the same token,

no investor whose information process last jumped prior to time u1 wants to sell during [u1, t].

This contradicts market clearing at time t.

VII.6 The price is increasing for t ≤ Ts: a partial result

Suppose there are decreasing spots before Ts and consider the latest one. Because this is the

latest one, and because the price is increasing after Ts, it follows that this decreasing spot is

followed by either a flat or a increasing spot. We prove in Section IX.5.8, page 105 that:

Lemma VII.8. In an equilibrium, the last strictly decreasing spot cannot be followed by an

increasing spot.

The intuition is the following. A low-valuation investor with an information event during the

decreasing spot anticipates that, during the subsequent increasing spot, his expected valuation

will rise but he will not be able to buy. This gives him incentive to place a large limit buy order

at the end of the decreasing spot. On the aggregate, this results in a positive measure of limit

buy orders to be executed exactly at the end of the decreasing spot. But this cannot be the

basis of an equilibrium because no limit sell order can be executed and so the measure of asset

supplied at that precise time is zero.
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VII.7 Properties of Markov LOE

Next, we derive properties specific to Markov LOE.

VII.7.1 The price is increasing for t ≤ Ts

We already know from Lemma VII.8 that the last decreasing spot cannot be followed by an

increasing spot. We now show that, in a Markov LOE, it cannot be followed by a flat spot

either:

Lemma VII.9. In a Markov LOE, a strictly decreasing spot cannot be followed by a flat spot.

The proof, shown in Section IX.5.8 page 105, follows a similar logic, but for now we need

to restrict attention to Markov equilibrium. Clearly, a Corollary of Lemma VII.8 and VII.9 is:

Corollary VII.4. In a Markov LOE, the price is weakly increasing.

VII.7.2 Trading strategies in a Markov LOE

In a Markov equilibrium, traders’ holding plan are “Markovian”: they only depend on the

information event time and on their valuation type at the information event time. Therefore,

holding plans are fully described by functions q`,t,u and qh,t,u prescribing the time u asset holdings

of an investor who last contacted the market at time t with a low (“`”) or high (“h”) valuation.

For any Markovian holding plan, the value of the investor’s objective can be simplified

further, since with a Markov holding plan Et [v(θu, qθ,t,u)] only depends on time and on the

investor’s type at time t. Therefore, after conditioning with respect to the type at time t, we

obtain∫ ∞
0

e−rt
∑
θ

Pr(θt = θ)

∫ ∞
t

e−(r+ρ)(u−t)
{
Eθ [v(θu, qθ,t,u)]− qθ,t,u (rpu − ṗu)

}
du dt,

where, in the above, Eθ [ · ] is a shorthand for the expectation conditional on θ(t) being equal

to θ. It then immediately follows that:

Lemma VII.10 (Necessary condition for Optimality). If some Markovian asset holding plan

{q∗`,t,u, q∗h,t,u} is optimal, then it maximizes∫ ∞
t

e−(r+ρ)(u−t)
{
Eθ [v(θu, qθ,t,u)]− qθ,t,u (rpu − ṗu)

}
du (VII.1)

for θ ∈ {`, h} and for almost all t ≥ 0, subject to the constraint of being implementable with

limit and market orders submitted at time t.
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Suppose indeed that {q∗`,t,u, q∗h,t,u} does not maximize (VII.2) for some positive measure set

of time T and some θ ∈ {`, h}. Then, for all t ∈ T and θt = θ, switch to a holding plan that

achieves a higher value in the objective (VII.2), and keep your holding plan for t /∈ T otherwise.

It is important to note that the Markov restriction ensures that it is feasible to keep the holding

plan for some t /∈ T , even if it has been modified for some t′ < t. Indeed, a trader who has an

information event at time t behaves “as if” it was her first information ever. In particular her

asset holding can be implemented without using any order she may have submitted at earlier

information events. Note also that the resulting holding plan is Markovian and clearly achieves

a higher value.

Finally, one should keep in mind that Lemma VII.10 only provides a necessary condition.

To prove optimality, one also needs to compare the holding plan q∗t,u to other holding plans

which are not Markov.

VII.7.3 High–valuation holdings in a Markov LOE

We start with the following Lemma, proved in Section IX.5.9, page 111:

Lemma VII.11. In a Markov LOE, almost surely, high-valuation investors who have an in-

formation event before (after) Tf hold one unit (less than one unit) of the asset.

And, obviously, this implies that:

Corollary VII.5. In a Markov LOE, almost surely, high-valuation investors who have an

information event before Tf demand one unit of the asset.

VII.7.4 Low–valuation holdings in a Markov LOE

First, we have:

Lemma VII.12. In any Markov LOE, low-valuation investors hold zero unit after Tf .

This result is proved in Section IX.5.10, page 111. We already know that, for a low–valuation

trader who has an information event at some time t during an increasing spot, qt,u must be

a decreasing function of time. To show that the same is true if the information event occurs

during a flat spot, in Section IX.5.11, page 112, we show the following Lemma:

Lemma VII.13. Suppose there exists a Markov LOE such that the price path has a flat spot.

Then, at almost all times t during the flat spot, low-valuation traders do not submit any limit

order to buy.
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The reason is that, if limit buy orders were submitted and executed after their submission

times, then strategies would be non-Markovian.

To see why, note that a low-valuation trader’s expected utility flow is increasing and, during

a flat spot, the price is constant. Thus, a low-valuation trader aspires to asset holdings that

are smoothly increasing during the flat spot. But a perfectly smooth increasing holding is not

feasible. Indeed, the first information event time during the flat spot, a low-valuation trader

receives the opportunity to submit a limit buy order at (at most) one execution time, so her

asset holding can only be a step function with (at most) one step. The second information

event time during the flat spot, this low-valuation trader receives the opportunity to submit a

limit-buy order at some “new” execution time. Because of concave utility she wants to smooth

her holding, and so she has incentives to use her previously submitted limit buy order: this

allows her asset holdings to to be “smoother” with two steps instead of one. Obviously, such a

trading strategy is not Markov: the trader is not behaving as if she was contacting the market

for the first time. Therefore, in a Markov LOE, at almost all times during flat spots, low–

valuation traders do not submit limit buy orders. But, by Corollary VII.5, this is also true for

high–valuation traders. Therefore:

Corollary VII.6. In a Markov LOE, at any time during a flat spot, there is a measure zero

of limit buy order outstanding at the the current market price. Consequently, a limit order to

buy at the current market price is executed immediately.

The corollary shows that, for a low–valuation trader who has an information event at some

time t during a flat spot, u 7→ qt,u is decreasing. We already know that this is also true for

information event outside of flat spots. Therefore:

Corollary VII.7. In a Markov LOE, low–valuation traders choose decreasing holding plans.

VII.8 A relaxed Equilibrium

The above results show that, in a Markov equilibrium, high– and low–valuation traders choose

decreasing holding plans. But note that, depending on the price path, there may be additional

constraints: for instance, if an information event occurs during an increasing spot, asset holding

have to be constant during subsequent flat spot.

In this section, we temporarily abstract from these additional constraints: we study a “re-

laxed equilibrium” arising when traders can choose any decreasing asset holdings plan. We

show that such a relaxed equilibrium exists, is unique, and that any Markov LOE is a relaxed

equilibrium. Clearly, this shows that a Markov LOE is unique as well.
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VII.8.1 The relaxed problem

Our first result is:

Lemma VII.14. For each time, a holding plan qt,u solves the relaxed problem if and only if it

maximizes∫ ∞
t

e−(r+ρ)(u−t)
{
Et [v(θu, qt,u)]− qt,u (rpu − ṗu)

}
du (VII.2)

for almost all (t, ω) ∈ R+ × Ω.

The “if” part is obvious. To prove the “only if” part, we proceed by contrapositive. Suppose

that {qt,u} does not maximize (VII.2) for some positive measure set of R × Ω. Then, for all

times and events in that set, switch to a plan that achieves a higher value in the objective

(VII.2), and keep your holding plan the same otherwise. This is feasible because, in the relaxed

problem, earlier choices of holding plans do not constraint subsequent ones. Clearly, because

of the expression (6) for the investor’s objective (page 14 in BHW) this new plan achieves a

strictly higher utility.

Lemma VII.15. Assume that the price satisfies Condition 1 as well as all the properties

derived so far. Then, in the relaxed problem, for any optimal asset holding plan and almost all

(t, ω) ∈ R+ × Ω:

• qt,u ∈ [0, 1];

• If t ∈ [0, Tf ], θt = h, then qt,u = 1 for all u ∈ [t, Tf ].

• If t ∈ [0,∞), θt = `, then qt,u = 0 for all u ∈ [Tf ,∞].

• If t ∈ [0, Tf ), θt = `, then {qt,u : u ∈ [t, Tf )} solves the problem:

(R) : sup
qt,u

∫ Tf

t

e−(r+ρ)(u−t) {Et [v(θu, qt,u)]− qt,u (rpu − ṗu)} du, (VII.3)

subject to the constraint that qt,u ∈ [0, 1] and is decreasing over [t, Tf ).

Thus, we are left with the problem of maximizing (VII.3) with respect to some [0, 1]-valued

decreasing function. To study the existence of a maximizer, we relax the problem further: we

allow investor to choose a holding plan qt,u ∈ L2([t, Tf ]) which lie almost everywhere in [0, 1]

and is almost everywhere decreasing. Formally, there exists a set S ⊆ [t, Tf ] of full measure

such that qt,u ∈ [0, 1] and is decreasing over S, i.e., for all (u, u′) ∈ S2, u ≤ u′ implies that

qt,u ≥ qt(u
′). Note that we alter the constraint set in two ways, first, we constraint holdings to

41



be bounded by 1, but we know from VII.15 that this constraint is not binding. Second, instead

of optimizing within the set of [0, 1]-valued decreasing functions, which is included in L2([t, Tf ])

(see, e.g., Theorem 10.11 in Apostol, 1974), we optimize within the larger set of L2([t, Tf ])

functions which are decreasing and [0, 1]-valued almost everywhere instead of everywhere. This

ensures that the constraint set is closed under the L2 norm. Given that the objective is concave,

continuous for the L2 norm, and that the constraint set is clearly convex and bounded, we obtain

that:

Lemma VII.16. The supremum of (VII.3) is achieved by some qt,u such that S = [t, Tf ].

The details are in Section IX.5.13, page 116, but the result follows basically from an applica-

tion of Proposition 1.2, Chapter II in Eckland and Téman (1987). In principle, the maximizer

found in Lemma VII.16 is only decreasing almost everywhere. However, it is easy to show

that given any maximizer of (VII.15), one can construct another maximizer which is decreasing

everywhere. Next, in Section IX.5.14, page 116, we show:

Lemma VII.17. Any maximizer of Lemma VII.16 is constant during flat spots.

This means that low–valuation traders finds it optimal to hold constant asset holding during

flat spot, even when allowed to choose any decreasing asset holding plan. This immediately

implies that:

Lemma VII.18. Suppose there exists a Markov LOE. Then, for almost all information event

times t ∈ (0, Tf ), the holding plan of a low–valuation trader solves the relaxed problem. Con-

versely, any solution of the relaxed problem is an optimal holding plan for a low–valuation trader

in a Markov LOE.

Indeed, we already know from Lemma VII.13 that, in a Markov equilibrium, low-valuation

traders with an information event time before Tf during a flat spot only submit limit sell orders.

Outside of flat spots, the price is strictly increasing so, evidently, limit buy orders are never

submitted because they would be either immediately executed, or never executed. Therefore, a

low-valuation trader’s asset holding plan has to be decreasing. It can be an arbitrary decreasing

function during increasing spots, but it has to stay flat during all or part of flat spots – depending

on when limit orders can be executed during flat spot. But we know from Lemma VII.17 that

if we allow the trader to solve the relaxed problem, i.e. to choose from any decreasing function,

she would find it optimal to keep her holdings constant during flat spot anyway. Thus, the

solution of the traders’ problem must be a solution of the relaxed problem, and vice versa.
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VII.8.2 The relaxed equilibrium

Continuing with the above, we can define a relaxed equilibrium in the obvious way: it is a

piecewise continuously differentiable price path pt and a feasible asset holding plan qt,u which

is decreasing in u for each t > 0, such that given the price the asset holding plan solves the

relaxed problem. We then have the following two properties:

Lemma VII.19. Any Markov LOE is a relaxed equilibrium. In particular, the LOE of Propo-

sition 9, page 30 in BHW, is a relaxed equilibrium.

Consider a Markov equilibrium. Then the strategies of all types of traders solve the relaxed

problem. For high-valuation traders this follows from Lemma VII.11 and VII.15. For low-

valuation traders who have an information event time after Tf , this follows from Lemma VII.12

and VII.15. And, finally, for low-valuation traders with an information event before Tf , this

follows from Lemma VII.18. Lastly, the asset holding plan of a Markov equilibrium is, obviously,

feasible.

Next, consider the relaxed planning problem consisting in choosing decreasing asset holding

plans, qt,u ∈ [0, 1], in order to maximize:

W (q) = E0

[∫ ∞
0

e−ruv(θu, qτu,u) du

]
, (VII.4)

subject to the feasibility constraints (8) for all u, page 15 in BHW. Then, we have:

Lemma VII.20. A relaxed equilibrium solves the relaxed planning problem.

The proof is omitted as it follows the exact same argument as in the proof of Proposition

2. Next, we establish (essential) uniqueness of a planning solution, and hence of a Markov

equilibrium:

Lemma VII.21. Consider the BHW-LOE asset holding plan q and any other solution q′ of

the planning problem. Then

• For almost all (t, u, ω) ∈ R2
+ × Ω such that 0 < t ≤ u, if θt = `, then q′t,u = qt,u.

• For almost all (t, u, ω) ∈ R2
+ × Ω such that 0 < t < u < Tf , if θt = h, then q′t,u = 1.

The first point follows from the strict concavity of low-valuation traders’ objective. The

second point follows from the fact that, once the allocation of low-valuation traders is set, then

given that qt,u ≤ 1 feasibility implies that all high-valuation traders hold one unit.

43



VIII Proofs omitted in the appendix of the paper

VIII.1 Proof of Lemma A.1

We first note that, by the law of iterated expectations:

E [v(θu, qt,u)− ξuqt,u | τu = t] = E
[
E [v(θu, qt,u)− ξuqt,u | Ft− , τu = t]

∣∣∣∣ τu = t

]
(VIII.1)

where, as usual, Ft− is the sigma algebra generated by all the Fz, z < t, representing the trader

information “one instant prior to t.” Now recall that:

v(θu, qt,u) = min{qt,u, 1} − I{θu=`}δ
min{qt,u, 1}1+σ

1 + σ
.

Therefore, the inner expectation on the right-hand side of (VIII.1) writes as:

E
[
min{qt,u, 1} − I{θu=`}δ

min{qt,u, 1}1+σ

1 + σ
− ξuqt,u

∣∣∣∣Ft− , τu]
= min{qt,u, 1} − E

[
I{θu=`} | Ft− , τu

] min{qt,u, 1}1+σ

1 + σ
− ξuqt,u

= min{qt,u, 1} − E
[
I{θu=`} | Ft−

] min{qt,u, 1}1+σ

1 + σ
− ξuqt,u

=E
[

min{qt,u, 1} − I{θu=`}
min{qt,u, 1}1+σ

1 + σ
− ξuqt,u

∣∣∣∣Ft−] (VIII.2)

where the first equality follows because qt,u is Ft-predictable, and thus measurable with respect to

Ft− (see Exercise E10, Chapter I, in Brémaud, 1981). The second equality, on the other hand, follows

because the type process is independent from the information event process: this allows to freely add or

remove any information generated by the information event process from the conditioning information.

Now the random variable of equation (VIII.2) is Ft−-measurable. Since {τu = t} = {Nt −Nt− =

1 and Nu − Nt = 0} and because the information event process has independent increment and is

independent from the type process, it follows that {τu = t} is independent Ft− . Thus, the expectation

of (VIII.2) conditional on {τu = t}, is equal to its unconditional expectation, which proves the claim.

VIII.2 Proof of Lemma A.2

The left-hand side of (17) is continuous, strictly increasing for Qu < (1 − µhu)−1/σ and constant for

Qu ≥ (1− µhu)−1/σ. It is zero when Qu = 0, and, when Qu = (1− µhu)−1/σ, it is equal to:∫ u

0
(1− µht) ρe−ρ(u−t) dt > Su =

∫ u

0
(s− µht) ρe−ρ(u−t) dt,

since s < 1. Therefore, equation (17) has a unique solution, Qu, and the solution satisfies 0 ≤ Qu <

(1−µhu)−1/σ. To prove that Qu is continuously differentiable we apply the Implicit Function Theorem
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(see, e.g., Theorem 13.7 Apostol, 1974). We note that (17) writes K(u,Qu) = 0, where

K(u,Q) ≡
∫ u

0
eρt(1− µht) min{(1− µht)1/σQ, 1} dt−

∫ u

0
eρt (s− µht) dt. (VIII.3)

Since we know that Qu < (1 − µhu)−1/σ, we restrict attention to the domain {(u,Q) ∈ R2
+ : u >

0 and Q < (1− µhu)−1/σ}. In this domain, Ψ(Q) < u, and so equation (VIII.3) can be written, using

the definition of Ψ(Q):

K(u,Q) =

∫ Ψ(Q)

0
eρt(1− µht) dt+

∫ u

Ψ(Q)
eρt (1− µht)1+1/σ Qdt−

∫ u

0
eρt (s− µht) dt

=

∫ u

0
eρt(1− s) dt−

∫ u

Ψ(Q)
eρt (1− µht)

[
1− (1− µht)1/σ Q

]
dt, (VIII.4)

To apply the Implicit Function Theorem, we need to show that K(u,Q) is continuously differentiable.

To see this, first note that the partial derivative of K(u,Q) with respect to u is, using (VIII.3):

∂K

∂u
= eρu(1− µhu) min{(1− µhu)1/σQ, 1} − eρu(s− µhu).

and is clearly continuous. To calculate the partial derivative with respect to Q, we consider two cases.

When Q ∈ [0, 1], then Ψ(Q) = 0, and so, using (VIII.4):

∂K

∂Q
=

∫ u

0
eρt (1− µht)1+1/σ dt =

∫ u

Ψ(Q)
eρt (1− µht)1+1/σ dt,

When, on the other hand, Q ∈ [1, (1−µhu)−1/σ), on the other hand, Ψ(Q) solves (1−µhΨ(Q))
−1/σ = Q

and hence is continuously differentiable. Bearing this in mind when differentiating (VIII.4), we obtain

again that

∂K

∂Q
=

∫ u

Ψ(Q)
eρt (1− µht)1+1/σ dt.

Since Ψ(Q) is continuous, the above calculations show that ∂K/∂Q is continuous for all (u,Q) in its

domain. Next, note that because (1− µhu)1/σQu < 1, we have Ψ(Qu) < u and therefore ∂K/∂Q > 0

at (u,Qu). Taken together, these observations allow to apply the Implicit Function Theorem and state

that

Q′u = − ∂K/∂u
∂K/∂Q

=
eρu(s− µhu)− eρu(1− µhu)1+1/σQu∫ u

ψu
eρt (1− µht)1+1/σ

,

where we used that ψu ≡ Ψ(Qu) and Qu(1− µhu)1/σ < 1.
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VIII.3 Proof of Lemma A.4

The continuity of Qu is obvious. That Q0+ = s follows from an application of l’Hôpital rule, and

QTf = 0 follows by definition of Tf . Next, after taking derivatives with respect to u we find that

sign
[
Q
′
u

]
= sign [Fu], where:

Fu ≡ (s− µhu)

∫ u

0
eρt (1− µht)1+1/σ dt− (1− µhu)1+1/σ

∫ u

0
eρt (s− µht) dt, (VIII.5)

is continuously differentiable. Taking derivatives once more, we find that sign [F ′u] = sign [Gu] where:

Gu ≡
(

1 +
1

σ

)
(1− µhu)1/σ

∫ u

0
eρt (s− µht) dt−

∫ u

0
eρt (1− µht)1+1/σ dt, (VIII.6)

is continuously differentiable. Now suppose that Q
′
u = 0. Then Fu = 0 and, after rearranging (VIII.5):

(1− µhu)1/σ
∫ u

0
eρt (s− µht) dt =

s− µhu
1− µhu

∫ u

0
eρt (1− µht)1+1/σ dt.

Plugging this back into Gu we find that:

RVIII.1. Suppose that Fu = 0 for some u > 0. Then sign [F ′u] = sign
[
s
(
1 + 1

σ

)
− 1− µhu

σ

]
.

Now note that G0 = 0 and G′0 = s(1 + 1/σ)− 1. Thus,

RVIII.2. If s ≤ σ/(1 + σ), then Fu < 0 for all u > 0.

To see this, first note that, from repeated application of the Mean Value Theorem (see, e.g.,

Theorem 5.11 in Apostol, 1974), it follows that Fu < 0 for small u. Indeed, since F0 = 0, Fu = uF ′v,

for some v ∈ (0, u). But sign [F ′v] = sign [Gv]. Now, since G0 = 0, Gv = vG′w for some w ∈ (0, v). But

G′0 < 0 so G′w is negative as long as u is small enough. But if Fu is negative for small u, it has to stay

negative for all u. Otherwise, it would need to cross the x-axis from below at some u > 0, which is

impossible given Result RVIII.1 and the assumption that s ≤ σ/(1 + σ).

RVIII.3. If s > σ/(1 + σ), then Fu > 0 for small u, and Fu < 0 for u ∈ [Ts, Tf ].

The first part follows from applying the same reasoning as in the above paragraph, since when

s > σ/(1 + σ) we have G′0 > 0. The second part follows from noting that, when u ∈ [Ts, Tf ], the first

term of Fu is negative, and strictly negative when u ∈ (Ts, Tf ], while the second term is negative, and

strictly negative when u ∈ [Ts, Tf ). So Fu changes sign in the interval (0, Ts). We now show that:

RVIII.4. If s > σ/(1 + σ), Fu changes sign only once in the interval (0, Ts).

Consider some u0 such that Fu0 = 0. We can rewrite this equation as:

0 = −
∫ u0

0
g(µht, µhu0)eρt dt, where g(x, y) ≡ (s− x)(1− y)1+1/σ − (1− x)1+1/σ(s− y).
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The function x 7→ g(x, y) is strictly concave, and it is such that g(y, y) = 0. Note that, for the above

equation to hold, the function x 7→ g(x, µhu0) has to change sign in the interval (0, µhu0). In particular,

it must be the case that ∂g/∂x(µhu0 , µhu0) < 0. Otherwise, suppose that ∂g/∂x(µhu0 , µhu0) ≥ 0. Then,

by strict concavity, g(x, µhu0) lies strictly below its tangent at x = µhu0 . But since g(x, µhu0) = 0

and is increasing when x = µhu0 , the tangent is negative for x ≤ µhu0 , and so g(x, µhu0) < 0 for all

x ∈ (0, µhu0), a contradiction. After calculating the partial derivative, we find:

∂g

∂x
(µhu0 , µhu0) < 0⇔ s

(
1 +

1

σ

)
− 1− µhu

σ
< 0.

Together with Result RVIII.1 this shows that if Fu0 = 0 for some u0 ∈ (0, Ts), then F ′u0 < 0, implying

Result RVIII.4. We conclude that, over (0, Tf ], Fu is first strictly positive and then strictly negative,

which shows that Qu is hump-shaped.

VIII.4 Proof of Lemma A.5

Given that ∆u = (1− µhu)1/σQu, we have

∆′u = − 1

σ

µ′hu
1− µhu

(1− µhu)1/σQu + (1− µhu)1/σQ′u.

Using the formula (A.3) for Q′u, in Lemma A.2, we obtain:

sign
[
∆′u
]

= sign

[
− 1

σ

µ′hu
1− µhu

Qu +Q′u

]
=sign

[
−e
−ρu

σ

µ′hu
1− µhu

Qu

∫ u

ψu

eρt(1− µht)1+1/σ dt+ s− µhu − (1− µhu)1+1/σQu

]
. (VIII.7)

We first show:

RVIII.5. ∆′u < 0 for u close to zero.

To show this result, first note that when u is close to zero, Qu ' s < 1. Therefore ψu = 0 and,

by Lemma A.3, Qu = Qu. Plugging in ψu = 0 and the the expression (A.4) for Qu in (VIII.7), one

obtains:

sign
[
∆′u
]

= sign

{
− e−ρu

σ

µ′hu
1− µhu

∫ u

0
eρt(s− µht) dt

∫ u

0
eρu(1− µht)1+1/σ dt

+ (s− µhu)

∫ u

0
eρt(1− µht)1+1/σ dt− (1− µhu)1+1/σ

∫ u

0
eρt(s− µht) dt

}
. (VIII.8)

Now let γ ≡ µ′h0. Now, for the various functions appearing in the above formula, we calculate the
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first- and second derivatives at u = 0, and we obtain the following Taylor expansions:

e−ρu

σ

µ′hu
1− µhu

=
γ

σ
(1 + o(1))∫ u

0
eρt(s− µht) dt = u

(
s+ [ρs− γ]

u

2

)
= u (s+ o(1))∫ u

0
eρt(1− µht)1+1/σ dt = u

(
1 +

[
ρ− γ

(
1 +

1

σ

)]
u

2

)
+ o(u) = u (1 + o(1))

s− µhu = s− γu+ o(u)

(1− µht)1+1/σ = 1− γ
(

1 +
1

σ

)
+ o(u).

Plugging these into (VIII.8) we obtain:

sign
[
∆′u
]

= sign

[
− γ

σ
u2 (1 + o(1)) (s+ o(1))

+ u (s− γu+ o(u))

(
1 +

[
ρ− γ

(
1 +

1

σ

)]
u

2

)
− u

(
1− γ

(
1 +

1

σ

)
+ o(u)

)(
s+ [ρs− γ]

u

2

)]
.

After developing and rearranging, we obtain

sign
[
∆′u
]

= −γu
2

2
× sign

[
(1− s) +

s

σ

]
< 0

establishing Result RVIII.5. Next, we show:

RVIII.6. Suppose ∆′u0 = 0 for some u0 ∈ (0, Tf ]. Then, ∆u is strictly decreasing at u0.

For this we first manipulate (VIII.7) as follows:

sign
[
∆′u
]

= sign

[
−e
−ρu

σ

µ′hu
1− µhu

∆u

(1− µhu)1/σ

∫ u

ψu

eρt(1− µht)1+1/σ dt+ s− µhu − (1− µhu)∆u

]
= sign

[
− 1

σ

µ′hu
1− µhu

∆u

∫ u

ψu

e−ρ(u−t)(
1− µht
1− µhu

)1+1/σ dt+
s− µhu
1− µhu

−∆u

]
= sign

[
−γ
σ

∆u

∫
ψu

e[γ(1+ 1
σ )−ρ](u−t) dt+ 1− (1− s)eγu −∆u

]
= sign

[
−γ
σ

∆uG(u− ψu) + 1− (1− s)e−γu −∆u

]
, where G(y) ≡

∫ y

0
e[γ(1+ 1

σ )−ρ]x dx,

and where we obtain the first equality after substituting in the expression for Qu; the second equality

after dividing by 1 − µhu and bringing e−ρu inside the first integral; the third equality by using the

functional form µht = 1−e−γt; and the fourth equality by changing variable (x = u−t) in the integral.
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Now suppose ∆′u = 0 at some u0. From the above we have:

Hu0 ≡ −
γ

σ
∆u0G(u0 − ψu0) + 1− (1− s)e−γu0 −∆u0 = 0.

If Qu0 < 1 then ψu0 = 0 and ψ′u0 = 0. Together with the fact that ∆′u0 = 0, this implies that

H ′u0 = −γ
σ

∆u0G
′(u0)− (1− s)γe−γu0 < 0,

since G(u) is, clearly, a strictly increasing function. If Qu = 1, then ψu0 = 0 and the left-derivative

ψ′
u−0

= 0, so the same calculation implies that H ′
u−0

< 0. If Qu0 > 1 we first note that, around u0,

Qu = (1− µhψu)−1/σ ⇒ ∆u =

(
1− µhψu
1− µhu

)1/σ

= e−γ
ψu−u
σ .

So if ∆′u0 = 0, we must have that ψ′u = 1. Plugging this back into H ′u we obtain that H ′u =

(1 − s)e−γu0 < 0. Lastly, if Qu0 = 1, then the same calculation leads to ψu+0
= 1 and so Hu+0

< 0.

In all cases, we find that Hu has strictly negative left- and right-derivatives when Hu0 = 0. Thus,

whenever it is equal to zero, ∆′u is strictly decreasing. With Result RVIII.6 in mind, we then obtain:

RVIII.7. ∆′u cannot change sign over (0, Tf ].

Suppose it did and let u0 be the first time in (0, Tf ] where ∆′u changes sign. Because ∆′u is

continuous, we have ∆′u0 = 0. But recall that ∆′u < 0 for u ' 0, implying that at u = u0, ∆′u crosses

the x-axis from below and is therefore increasing, contradicting Result RVIII.6.

VIII.5 Proof of Lemma A.7

For u ∈ (T1, T2), we have Qu 6= Qu and therefore and therefore Ψ(Qu) = ψu > 0. By definition of ψu,

we also have

Qu = (1− µhψu)−1/σ. (VIII.9)

Replacing into equation (A.3) for Q′u of Lemma A.2 , one obtains that:

sign
[
Q′u
]

= sign [Xu] where Xu ≡ s− µhu − (1− µhu)

(
1− µhu
1− µhψu

)1/σ

.

As noted above, Qu and thus Xu changes sign at least once over (T1, T2). Now, for any u0 such that

Xu0 = 0, we have Q′u0 = 0 and, given (VIII.9), ψ′u0 = 0. Taking the derivative of Xu at such u0, and
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using Xu0 = 0, leads:

sign
[
X ′u0

]
= sign

−1 +

(
1 +

1

σ

)(
1− µhu0
1− µhψu0

)1/σ
 = sign [Yu0 ] ,

where Yu ≡ −1 +

(
1 +

1

σ

)
s− µhu
1− µhu

,

where the second equality follows by using Xu0 = 0. Now take u0 to be the first time Xu changes

sign during (T1, T2). Since Xu0 = 0, Xu strictly positive to the left of u0, and Xu strictly negative to

the right of u0, we must have that X ′u0 ≤ 0. Suppose, then, that Xu changes sign once more during

(T1, T2) at some time u1. The same reasoning as before implies that, at u1, X ′u1 ≥ 0. But this is

impossible Yu is strictly decreasing.

VIII.6 Proof of Lemma A.8

Proof of the limit of Tf (ρ), in equation (A.7). The defining equation for Tf (ρ) is

H(ρ, Tf (ρ)) = 0 where H(ρ, u) ≡
∫ u

0
eρt (s− µht) dt = 0.

Since Tf > Ts, we have

∂H

∂u
(ρ, Tf (ρ)) = eρTf (ρ)

(
s− µhTf (ρ)

)
< 0.

Turning to the partial derivative with respect to ρ we note that since µht − s changes sign at Ts:

∂H

∂ρ
(ρ, Tf (ρ)) =

∫ Tf (ρ)

0
t× eρt (µht − s) dt

<

∫ Ts

0
Tse

ρt (s− µht) dt+

∫ Ts

0
Tse

ρt (s− µht) dt = TsH(ρ, Tf ) = 0.

Taken together, ∂H/∂u < 0 and ∂H/∂ρ < 0 imply that Tf (ρ) is strictly decreasing in ρ. In particular,

it has a limit, Tf (∞), as ρ goes to infinity. To determine the limit, we integrate by part H(ρ, Tf ):

0 = H(ρ, Tf (ρ)) = s− µhTf (ρ) − se−ρTf +

∫ ∞
0

I{t∈[0,Tf (ρ)]}µ
′
hte
−ρ(Tf−t) dt.

Because Tf (ρ) is bounded below by Ts, the second term goes to zero as ρ→∞. The integrand of the

third term is bounded and goes to zero for all t except perhaps at t = Tf (∞). Thus, but dominated

convergence, the third term goes to zero as ρ → ∞. We conclude that µhTf (∞) = s and hence that

Tf (∞) = Ts.
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Proof of the first–order expansion, in equation (A.8). Let

f(t, ρ) ≡ (1− µht) min
{

(1− µht)1/σQu(ρ), 1
}

+ µht − s. (VIII.10)

By its definition, Qu(ρ) solves:
∫ u

0 ρe
−ρ(u−t)f(t, ρ) dt = 0. Note that, for each ρ, f(t, ρ) is continuously

differentiable with respect to t except at t = ψu(ρ) such that (1− µhψ(ρ))
1/σQu(ρ) = 1. Thus, we can

integrate the above by part and obtain:

0 =

∫ u

0
ρe−ρ(u−t)f(t, ρ) dt = f(u, ρ)− e−ρuf(0, ρ)−

∫ u

0
e−ρ(u−t)ft(t, ρ) dt, (VIII.11)

where ft(t, ρ) denotes the partial derivative of f(t, ρ) with respect to t. Now consider a sequence

of ρ going to infinity and the associated sequence of Qu(ρ). Because Qu(ρ) is bounded above by

(1−µhu)−1/σ, this sequence has at least one accumulation point Qu(∞). Taking the limit in (VIII.11)

along a subsequence converging to this accumulation point, we obtain that Qu(∞) solves the equation

(1− µhu) min{(1− µhu)1/σQu(∞), 1}+ µhu − s = 0.

whose unique solution is Qu(∞) = (s− µhu)/(1− µhu)1+1/σ. Thus Qu(ρ) has a unique accumulation

point, and therefore converges towards it. To obtain the asymptotic expansion, we proceed with an

additional integration by part in equation (VIII.11):

0 =f(u, ρ)− f(0, ρ)e−ρu − 1

ρ
ft(u, ρ) +

1

ρ
ft(0, ρ)e−ρu +

1

ρ

∫ u

0
ftt(t, ρ)e−ρ(u−t) dt

+
1

ρ
e−ρ(u−ψu(ρ))

[
ft(ψu(ρ)+, ρ)− ft(ψu(ρ)−, ρ)

]
.

where the term on the second line arises because ft is discontinuous at ψu(ρ). Given that Qu(ρ)

converges and is therefore bounded, the third, fourth and fifth terms on the first line are o(1/ρ). For

the second line we note that, since Qu(ρ) converges to Qu(∞), ψu(ρ) converges to ψu(∞) such that

(1− µhψu(∞))
1/σQu(∞) = 1. In particular, one easily verifies that ψu(∞) < u. Therefore e−ρ(u−ψu(ρ))

goes to zero as ρ→∞, so the term on the second line is also o(1/ρ). Taken together, this gives:

0 = f(u, ρ)− 1

ρ
ft(u, ρ) + o

(
1

ρ

)
. (VIII.12)

Equation (A.8) obtains after substituting in the expressions for f(u, ρ) and ft(u, ρ), using that µ′ht =

γ(1− µht).

Proof of the convergence of the argmax, in equation (A.9). First one easily verify that Qu(∞)

is hump–shaped (strictly decreasing) if and only if Qu(ρ) is hump–shaped (strictly decreasing). So if

s(1 + 1/σ) ≤ 1, then both Qu(ρ) and Qu(∞) are strictly increasing, achieve their maximum at u = 0,

and the result follows. Otherwise, if s(1 + 1/σ) > 1, consider any sequence of ρ going to infinity and

the associated sequence of Tψ(ρ). Since Tψ(ρ) < Tf (ρ) < Tf (0), the sequence of Tψ(ρ) is bounded
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and, therefore, it has at least one accumulation point, Tψ(∞). At each point along the sequence, Tψ(ρ)

maximizes Qu(ρ). Using equation (A.3) to write the corresponding first–order condition, Q′Tψ(ρ) = 0,

we obtain after rearranging that

QTψ(ρ)(ρ) =
s− µhTψ(ρ)

1− µhTψ(ρ)
= QTψ(ρ)(∞) ≥ QT ∗ψ(ρ).

where T ∗ψ denotes the unique maximizer of Qu(∞). Letting ρ go to infinity on both sides of the

equation, we find

QTψ(∞)(∞) ≥ QT ∗ψ(∞).

But since T ∗ψ is the unique maximizer of Qu(∞), Tψ(∞) = T ∗ψ. Therefore, Tψ(ρ) has a unique accu-

mulation point, and converges towards it.

VIII.7 Proof of Lemma A.9

Proof of convergence for low valuation, u ≤ Ts, in equation (A.10). We first introduce the

following notation: for t < Tf and u ∈ [t, Tf ), q`,t,u(ρ) = min{(1−µht)1/σQu(ρ), 1} is the time–u asset

holding of a time–t low–valuation trader. Now pick uε < u such that, for all t ∈ [uε, u],

s− µhu
1− µhu

≤
(

1− µht
1− µhu

)1/σ s− µhu
1− µhu

< min

{
1,
s− µhu
1− µhu

+
ε

2

}
. (VIII.13)

Then, note that, for t ∈ [uε, u], by (A.8), as ρ→∞:

q`,t,u(ρ)→ min

{(
1− µht
1− µhu

)1/σ s− µhu
1− µhu

, 1

}
=

(
1− µht
1− µhu

)1/σ s− µhu
1− µhu

(VIII.14)

since, by (VIII.13), the left–hand side of the “min” is less than one. Moreover, since q`,t,u(ρ) is

decreasing in t, (VIII.14) implies that q`,t,u(ρ) ≤ q`,uε,u(ρ) < 1 for ρ large enough. Put differently,

for ρ large enough, q`,t,u(ρ) = (1 − µht)
1/σQu(ρ) for all t ∈ [uε, u]. Clearly, this implies that the

convergence of q`,t,u(ρ) is uniform in t ∈ [uε, u]. Together with (VIII.13), this implies that:

∣∣∣∣q`,t,u(ρ)− s− µhu
1− µhu

∣∣∣∣ ≤ ∣∣∣∣q`,t,u(ρ)−
(

1− µht
1− µhu

)1/σ s− µhu
1− µhu

∣∣∣∣+

∣∣∣∣ ( 1− µht
1− µhu

)1/σ s− µhu
1− µhu

− s− µhu
1− µhu

∣∣∣∣ ≤ ε,
for ρ large enough, for all t ∈ [uε, u]. Keeping in mind that all traders who have a low–valuation at

time u must have had a low–valuation at their last information event, and going back to equation

(A.10), this implies that, for ρ large enough:

Proba

(∣∣ qτu,u − s− µhu
1− µhu

∣∣ > ε

∣∣∣∣ θu = `

)
≤ Proba

(
τu < uε

∣∣∣∣ θu = `

)
= e−ρ(u−uε) → 0
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as ρ→∞.

Proof of convergence for high valuation, u ≤ Ts, in equation (A.11). With limited cognition,

if θu = h and θτu = h, then qτu,u = 1. Thus, a necessary condition for θu = h and |qτu,u − 1| > ε is

that θτu = `. This implies that:

Proba

(∣∣qτu,u − 1
∣∣ > ε

∣∣∣∣ θu = h

)
≤ Proba

(
θτu = `

∣∣∣∣ θu = h

)
= e−ρu +

∫ u

0
ρe−ρ(u−t)

(
1− µht

µhu

)
dt

=

∫ u

0

µ′ht
µhu

e−ρ(u−t) dt→ 0.

where, in the first equality, 1−µht/µhu is the probability of a low–valuation at time t conditional on a

low–valuation at time u, and where the second equality follows after integrating by parts. Convergence

of the integral to zero follows by dominated convergence, since the integrand is bounded and converges

to zero for all t < u.

Convergence of the distribution of asset holdings for u > Ts. With unlimited cognition,

all traders with a low–valuation at time u > Ts hold zero asset. With limited cognition, low–valuation

traders hold zero asset if τu ≥ Tf (ρ) and θτu = `. Moreover, for ρ large enough and η small enough,

Ts < Tf (ρ) < Ts + η < u. Thus:

Proba
(
qτu,u > ε

∣∣ θu = `
)
≤ Proba

(
τu < Tf (ρ)

∣∣ θu = `
)

= e−ρ(u−Tf (ρ)) ≤ e−ρ(u−Ts−η) → 0

as ρ→∞. Lastly, let us turn to traders with a high–valuation at time u > Ts. With unlimited cogni-

tion, the distribution of asset holdings is indeterminate with a mean of s/µhu. With limited cognition,

take ρ large enough so that Tf (ρ) < u. The distribution of asset holdings is also indeterminate with

mean ∫ u
0 ρe

−ρ(u−t)s dt∫ u
0 ρe

−ρ(u−t)µht dt
.

Integrating the numerator and denominator by part shows that, as ρ → ∞, this mean asset holding

converges to s/µht, its unlimited cognition counterpart.

VIII.8 Proofs Lemma A.10, A.11 and A.12

VIII.8.1 Proof of Lemma A.10

In the perfect cognition case:

I(s) =

∫ +∞

0
I{u<Ts}e

−ru (1− (1− s)eγu)σ du.

Since Ts = −γ log(1− s) goes to +∞ when s goes to 1, then the integrand of I(s) converges pointwise

towards e−ru. Moreover, the integrand is bounded by e−ru. Therefore, by an application of the
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Dominated Convergence Theorem, I(s) goes to
∫ +∞

0 e−ru du = 1/r when s→ 1.

In the market with limited cognition, for u > 0, we note that Qu(s) is an increasing function of

s and is bounded above by (1 − µhu)−1/σ. Letting s → 1 in the market clearing condition (17) then

shows that Qu → (1− µhu)−1/σ > 1. Using that Tf > Ts goes to +∞ when s→ 1, we obtain that the

integrand of J(s) goes to e−ru. Moreover, the integrand is bounded by e−ru. Therefore, by dominated

convergence, J(s) goes to 1/r.

VIII.8.2 Proof of Lemma A.11

In the market with perfect cognition, we can compute:

I ′(s) =

∫ Ts

0
e−ruσeγu (1− (1− s)eγu)σ−1 du+

∂Ts
∂s

(
1− (1− s)eγTs

)σ
. (VIII.15)

The second term is equal to 0 since eγTs = (1−µhTs)−1 = (1−s)−1. We then compute an approximation

of the first term when s goes to 1.

Consider first the case when r > γ. Equation (VIII.15) rewrites:

I ′(s) = σ

∫ +∞

0
I{u<Ts}e

−(r−γ)u (1− (1− s)eγu)σ−1 du.

Since Ts goes to infinity when s goes to 1, the integrand goes to, and is bounded by, e−(r−γ)u. Therefore,

by dominated convergence, I ′(s) goes to σ/(r − γ).

When r = γ, equation (VIII.15) becomes:

I ′(s) = σ

∫ Ts

0
(1− (1− s)eγu)σ−1 du = σ

∫ Ts

0

(
1− (1− s)eγ(Ts−z)

)σ−1
dz = σ

∫ Ts

0

(
1− e−γz

)σ−1
dz.

where we make the change of variable z ≡ Ts − u to obtain the second equality, and we use that

1 − s = e−γTs to obtain the third equality. The integrand goes to 1 when Ts goes to infinity. Thus,

the Cesàro mean I ′(s)/Ts converges to σ, i.e.:

I ′(s) ∼ σTs = −σγ log(1− s).

Consider now that r < γ. We make the change of variable z ≡ Ts − u in equation (VIII.15):

I ′(s) = σ

∫ Ts

0
e(γ−r)(Ts−z)

(
1− (1− s)eγ(Ts−z)

)σ−1
dz = σe(γ−r)Ts

∫ Ts

0
e−(γ−r)z (1− e−γz)σ−1

dz

= σe(γ−r)Ts
∫ +∞

0
I{z<Ts}e

−(γ−r)z (1− e−γz)σ−1
dz,

where we use that 1 − s = e−γTs to obtain the second equality in the first line. The integrand in

the second line goes to, and is bounded by, e−(γ−r)z(1− e−γz)σ−1, which in integrable. Therefore, by
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dominated convergence, the integral goes to
∫ +∞

0 e−(γ−r)z (1− e−γz)σ−1
dz when s goes to 1. Finally,

using that e−γTs = 1− s, we obtain:

I ′(s) ∼ σ
(

1

1− s

)1−r/γ ∫ +∞

0
e−(γ−r)z (1− e−γz)σ−1

dz.

VIII.8.3 Proof of Lemma A.12

Throughout all the proof and the intermediate results therein, we work under the maintained assump-

tion

γ + γ/σ − ρ > 0⇐⇒ γ + σ(γ − ρ) > 0, (VIII.16)

which is without loss of generality since we want to compare prices when σ is close to zero. We start

by differentiating J(s):

J ′(s) =
∂Tf
∂s

e−rTf e−γTfQσ
T−f

+

∫ Tf

0
e−rue−γu

∂Qσu
∂s

du >

∫ T2

T1

e−rue−γu
∂Qσu
∂s

du,

where the inequality follows from the following facts: the first term is zero since QT−f
= 0; the integrand

in the second term is positive since Qu is increasing in s by equation (17); and 0 < T1 < T2 < Tf are

defined as in the proof of Proposition 3, as follows. We consider that s is close to 1 so that Qu > 1 for

some u. Then, T1 < T2 are defined as the two solutions of QT1 = QT2 = 1. Note that T1 and T2 are

also the two solutions of QT1 = QT2 . Because both Qu and Qu are hump shaped, we know that Qu

and Qu are strictly greater than one for u ∈ (T1, T2), and less than one otherwise. For u ∈ (T1, T2),

we can define ψu > 0 as in Section IX.2.2: Qu = (1−µhψu)−1/σ. By construction, ψu ∈ (0, u), and, as

shown in Section VIII.8.4:

∂ψu
∂s

=
γ + σ(γ − ρ)

γρ

(1− e−ρu) eγu

e−(ρ−γ)(u−ψu) − e−(γ/σ)(u−ψu)
. (VIII.17)

Plugging Qσu = (1− µhψu) = eγψu in the expression of J ′(s), we obtain:

J ′(s) >
γ + σ(γ − ρ)

ρ

∫ T2

T1

e−ru
(1− e−ρu) eγψu

e−(ρ−γ)(u−ψu) − e−(γ/σ)(u−ψu)
du. (VIII.18)

When r > γ. For this case fix some u > 0 and pick s close enough to one so that that Qu > 1. Such

s exists since, as argued earlier in Section VIII.8.1, for all u > 0, Qu → (1− µhu)−1/σ as s→ 1. Since

the integrand in (VIII.18) is strictly positive, we have:

J ′(s) >
γ + σ(γ − ρ)

ρ

∫ u

0
I{u>T1}e

−ru (1− e−ρu) eγψu

e−(ρ−γ)(u−ψu) − e−(γ/σ)(u−ψu)
du

>
γ + σ(γ − ρ)

ρ

1

e|ρ−γ|(u−ψu) − e−(γ/σ)(u−ψu)

∫ u

0
I{u>T1}e

−ru (1− e−ρu) eγψu du.
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where the second line follows from the fact, proven is Section VIII.8.4, that u−ψu is strictly increasing

in u when ψu > 0. In Section VIII.8.4 we also prove that T1 → 0 and that, for all u > 0, ψu → u when

s goes to 1. Therefore, in the above equation, the integral remains bounded away from zero, and the

whole expression goes to infinity.

When r ≤ γ. In this case we make the change of variable z ≡ Ts − u in equation (VIII.18) and we

use that e−γTs = (1− s):

J ′(s) >
γ + σ(γ − ρ)

ρ

∫ Ts−T1

Ts−T2
(1− s)

r
γ erz

(
1− e−ρ(Ts−z)

)
eγψTs−z

e−(ρ−γ)(Ts−z−ψTs−z) − e−(γ/σ)(Ts−z−ψTs−z)
dz

>
γ + σ(γ − ρ)

ρ

∫ +∞

0
I{max{Ts−T2,0}<z<Ts−T1}(1− s)

r
γ erz

(
1− e−ρ(Ts−z)

)
eγψTs−z

e−(ρ−γ)(Ts−z−ψTs−z) − e−(γ/σ)(Ts−z−ψTs−z)
dz.

where the second line follows from the addition of the max operator in the indicator variable and the

fact that the integrand is strictly positive. We show in Section VIII.8.4 that, if ψTs−z > 0, then:

eγψTs−z >


(
γ+σ(γ−ρ)

ρ

) γ
ρ−γ

(1− s)−1e−γz if ρ 6= γ,

e−(1+σ)(1− s)−1e−γz if ρ = γ,
(VIII.19)

and: (
e−(ρ−γ)(Ts−z−ψTs−z) − e−(γ/σ)(Ts−z−ψTs−z)

)−1
>

γ

γ + σ(γ − ρ)

ρ

max{2ρ− γ, γ}
. (VIII.20)

When γ 6= ρ, we obtain:

J ′(s) >

(
γ + σ(γ − ρ)

ρ

) γ
ρ−γ γ

max{2ρ− γ, γ}
(1− s)−1+ r

γ

×
∫ +∞

0
I{max{Ts−T2,0}<z<Ts−T1}e

−(γ−r)z
(

1− e−ρ(Ts−z)
)
dz.

(VIII.21)

In Section VIII.8.4 we show that Ts − T2 < 0 when s is close to 1 and that T1 goes to 0 when s goes

to 1. Since Ts goes to infinity, these facts imply that the integrand goes to, and is bounded above by,

e−(γ−r)z when s→ 1. Therefore, by dominated convergence, the integral goes to 1/(γ − r). A similar

computation obtains when γ = ρ.

Consider now the case γ = r. When γ 6= ρ, equation (VIII.21) rewrites:

J ′(s) >

(
γ + σ(γ − ρ)

ρ

) γ
ρ−γ γ

max{2ρ− γ, γ}

∫ Ts−T1

max{Ts−T2,0}

(
1− e−ρ(Ts−z)

)
dz

=

(
γ + σ(γ − ρ)

ρ

) γ
ρ−γ γ

max{2ρ− γ, γ}

(
Ts − T1 −max{Ts − T2, 0} −

e−ρT1 − e−ρmin{T2,Ts}

ρ

)
.
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Since Ts − T2 < 0 and T1 → 0 when s goes to 1, the last term in large parenthesis is equivalent to

Ts = log((1− s)−1)/γ when s goes to 1. A similar computation obtains when γ = ρ.

VIII.8.4 Intermediate results for the proofs of Lemma A.10, A.11 and A.12

Derivative of the ψu function when ψu > 0. When ψu > 0, time–t low–valuation traders hold

qt,u = 1 if t < ψu, and qt,u = (1− µht)1/σ(1− µhψu)−1/σ if t > ψu. The market clearing condition (17)

rewrites:∫ ψu

0
eρt(1− µht) dt+

∫ u

ψu

eρt(1− µht)1+1/σ(1− µhψu)−1/σ dt =

∫ u

0
eρt(s− µht) dt. (VIII.22)

We differentiate this equation with respect to s:

∂ψu
∂s

γ

σ

∫ u

ψu

eρt(1− µht)1+1/σ(1− µhψu)−1/σ dt =

∫ u

0
eρt dt.

After computing the integrals and rearranging the terms we obtain equation (VIII.17).

Limits of T1 and T2 when s→ 1. For any u > 0, when s is close enough to 1 we have Qu > 1 and

thus T1 < u < T2. Therefore T1 → 0 and T2 → ∞, when s → 1. To obtain that T2 > Ts when s is

close to 1, it suffices to show that QTs > 1 for s close to 1. After computing the integrals in equation

(17) and using that e−γTs = 1− s, we obtain, when γ 6= ρ:

QTs =

(
1

γ − ρ
+
γ(1− s)1− ρ

γ

ρ(ρ− γ)
+

1− s
ρ

)
γ + γ/σ − ρ

1− (1− s)
γ+γ/σ−ρ

γ

.

When γ < ρ, QTs goes to infinity when s goes to 1. When γ > ρ, QTs goes to (γ+γ/σ−ρ)/(γ−ρ) > 1.

When γ = ρ, a similar computation shows that QTs ∼ (γ + γ/σ − ρ)Ts, which goes to infinity.

Proof that u − ψu is strictly increasing in u when ψu > 0. When ρ 6= γ, after computing the

integrals in (VIII.22) and rearranging, we obtain:(
1

ρ− γ
+

1

γ + γ/σ − ρ

)(
1− e−(ρ−γ)(u−ψu)

)
− 1

γ + γ/σ − ρ

(
1− e−(γ/σ)(u−ψu)

)
=(1− s)e

γu − e−(ρ−γ)u

ρ
. (VIII.23)

Taking the derivative of the left-hand side with respect to u− ψu we easily obtain that the left-hand

side of that equation is strictly increasing in u−ψu. Since the right-hand side is strictly increasing in

u, then u− ψu is a strictly increasing function of u.

When ρ = γ, the same computation leads to:∫ u−ψu

0

(
e−γ/σz − 1

)
dz +

∫ u

0
e−ρt(1− s) dt = 0
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which is strictly decreasing in u − ψu and strictly increasing in u, implying that u − ψu is a strictly

increasing function of u.

Proof that ψu → u when s→ 1. As noted earlier in Section VIII.8.1, for any u, Qu → (1−µhu)−1/σ

as s→ 1. Together with the defining equation of ψu, Qu = (1− µhψu)1/σ, this implies that ψu → u as

s→.

Proof of equation (VIII.19). When γ 6= ρ, we make the change of variable z ≡ Ts − u in the

market clearing condition (VIII.23):

(
1

ρ− γ
+

1

γ + γ/σ − ρ

)
e(ρ−γ)ψTs−z − (1− s)

γ+γ/σ−ρ
γ e(γ+γ/σ−ρ)z

γ + γ/σ − ρ
e(γ/σ)ψTs−z

= (1− s)−
ρ−γ
γ

(
e−(ρ−γ)z

ρ− γ
− e−ρz

ρ

)
+

1− s
ρ

, (VIII.24)

where we have used that e−γTs = (1− s). This implies that:

(
1

ρ− γ
+

1

γ + γ/σ − ρ

)
e(ρ−γ)ψTs−z > (1− s)−

ρ−γ
γ

(
e−(ρ−γ)z

ρ− γ
− e−ρz

ρ

)

=⇒ γ

(ρ− γ)[γ + σ(γ − ρ)]
e(ρ−γ)ψTs−z > (1− s)−

ρ−γ
γ
e−(ρ−γ)z

ρ− γ
γ

ρ
,

where, to move from the first to the second line, we have collected terms on the left–hand side and

used e−ρz < e−(ρ−γ)z on the right-hand side. Equation (VIII.19) then follows after applying to both

sides the increasing transformation:

x 7→
(

(ρ− γ)[γ + σ(γ − ρ)]

γ
x

) γ
ρ−γ

Finally, when γ = ρ, after computing the integrals in the market clearing condition (VIII.22), making

the change of variable z ≡ u− Ts, and using that e−γTs = (1− s), we obtain:

Ts − z − ψTs−z −
1− e−(γ/σ)(Ts−z−ψTs−z)

γ/σ
=
e−γz

γ
− 1− s

γ
.

This implies:

ψTs−z > Ts − z −
σ

γ
− e−γz

γ
> Ts − z −

σ + 1

γ
,

from which equation (VIII.19) follows by multiplying by γ, taking the exponent of the expression, and

using that e−γTs = (1− s).

Proof of equation (VIII.20). When γ 6= ρ, we make the change of variable z ≡ Ts − u in equation
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(VIII.23):(
1

ρ− γ
+

1

γ + γ/σ − ρ

)
e−(ρ−γ)(Ts−z−ψTs−z) − 1

γ + γ/σ − ρ
e−(γ/σ)(Ts−z−ψTs−z)

=
1

ρ− γ
− e−γz

ρ
+
e−γz−ρ(Ts−z)

ρ
. (VIII.25)

When ρ > γ, we add −1/(ρ − γ) × e−(γ/σ)(Ts−z−ψTs−z), which is negative, to the left–hand side of

(VIII.25) and obtain:

γ
e−(ρ−γ)(Ts−z−ψTs−z) − e−(γ/σ)(Ts−z−ψTs−z)

(ρ− γ)[γ + σ(γ − ρ)]
<

1

ρ− γ
− e−γz

ρ
+
e−γz−ρ(Ts−z)

ρ

=⇒
(
e−(ρ−γ)(Ts−z−ψTs−z) − e−(γ/σ)(Ts−z−ψTs−z)

)
>

(ρ− γ)[γ + σ(γ − ρ)]

γ

(
1

ρ− γ
+

1

ρ

)
=⇒

(
e−(ρ−γ)(Ts−z−ψTs−z) − e−(γ/σ)(Ts−z−ψTs−z)

)
>

(2ρ− γ)[γ + σ(γ − ρ)]

ργ
, (VIII.26)

where we move from the first to the second line by multiplying both sides by (ρ− γ)[γ + σ(γ − ρ)]/γ,

which is a positive number since ρ > γ. Equation (VIII.20) then follows.

When ρ < γ, we also add −1/(ρ− γ)× e−(γ/σ)(Ts−z−ψTs−z) to the left–hand side of (VIII.25). But,

since ρ < γ this term is negative so we obtain the opposite inequality. This inequality is reversed when

we multiply both sides of the equation by (ρ − γ)[γ + σ(γ − ρ)]/γ, which is a negative number since

ρ < γ. Thus, we end up with the same inequality, (VIII.26), and equation (VIII.20) follows.

Finally, when γ = ρ, equation (VIII.20) follows since 1− e−(γ/σ)(Ts−z−ψTs−z) < 1.

VIII.9 Proof of Lemma A.13

One sees easily that, since the left–hand side of (A.16) is strictly increasing and s > σ/(1+σ), equation

(A.16) has a unique solution. Moreover, since s < 1, the left–hand side of (A.16) is greater than the

right–hand side when evaluated at µhTs , implying that Tφ < Ts. Next, define

H(t, φ) ≡
∫ φ

t
eρug(µht, µhu) du,

where g(x, y) ≡ (1− y)1+1/σ(s− x)− (1− x)1+1/σ(s− y).

Let t < Tφ and x = µht. Since x = µht < µhTφ < µhTs = s, the function y 7→ g(x, y) is strictly convex.

Moreover, g(x, x) = 0, and

∂g

∂y
(x, x) = (1− x)1/σ

[
x

σ
−
(

1 +
1

σ

)
s+ 1

]
.

This partial derivative is strictly negative since x < µhTφ . Therefore g(x, y) is strictly negative for

y just above x. Since g(x, 1) = (1 − x)1+1/σ(1 − s) > 0, this implies that y 7→ g(x, y) has a root in
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(x, 1). Because of strict convexity it is the only root; we denote it by µht′ with t′ > t. It follows that

φ 7→ H(t, φ) is strictly decreasing over [t, t′] and strictly increasing over [t′,+∞). Now we note that

H(t, t) = 0. Moreover, H(t, φ) goes to +∞ when φ→ +∞: indeed, µhu converges to 1 when u→ +∞
and g(x, 1) > 0. Taken together, this means that φ 7→ H(t, φ) has a unique root φt > t′ > t.

We now establish that t 7→ φt is a strictly decreasing function. First we note that ∂H/∂φ(t, φt) =

eρφtg(µht, µhφt) > 0 since φt > t′. Then,

∂H

∂t
(t, φt) = −eρtg(µht, µht) + µ′ht

∫ φt

t
eρu

∂g

∂x
(µht, µhu) du.

The first term is equal to zero because g(x, x) = 0 for all x ∈ [0, 1]. To evaluate the sign of the second

term, we note that∫ φt

t
eρu

∂g

∂x
(µht, µhu) du =

∫ φt

t
eρu
[
−(1− µhu)1+1/σ +

(
1 +

1

σ

)
(1− µht)1/σ(s− µhu)

]
du.

But, since H(t, φt) = 0, we have∫ φt

t
eρu(1− µhu)1+1/σ du =

(1− µht)1+1/σ

s− µht

∫ φt

t
eρu(s− µhu) du.

Plugging this into the equation just before, we obtain that ∂H/∂t(t, φt) has the same sign as

−(1− µht) +

(
1 +

1

σ

)
(s− µht) = −µht

σ
+

(
1 +

1

σ

)
s− 1,

which is strictly positive since t < Tφ. An application of the Implicit Function Theorem shows, then,

that φt is strictly decreasing and continuously differentiable.

It remains to show that limt→Tφ φt = Tφ and that φ0 < Tf . First, note that since φt is strictly

decreasing for t ∈ [0, Tφ), it has a well defined limit as t → Tφ. Moreover, it must be that φt ≥ Tφ.

Indeed, if φt1 < Tφ for some t1, then for all t2 ∈ (φt1 , Tφ) we have φt2 > t2 > φt1 , which is impossible

since φt is strictly decreasing. In particular, we must have that limt→Tφ φt ≥ Tφ. Now, towards a

contradiction, assume that limt→Tφ φt > Tφ. Note that, given ∂g/∂y(µhTφ , µhu) > 0 for all u > Tφ and

g(µhTφ , µhTφ) = 0, we have g(µhTφ , µhu) > 0 for all u > Tφ. Therefore

0 <

∫ limt→Tφ φt

Tφ

eρug(µhTφ , µhu) du = H(Tφ, lim
t→Tφ

φt) = lim
t→Tφ

H(t, φt) = 0,

by continuity of H, which is a contradiction. Therefore, we conclude that limt→Tφ φt = Tφ.

In order to show that φ0 < Tf we only need to show that H(0, Tf ) > 0 because H(0, φ) ≤ 0 for all

φ ≤ φ0. But we have

H(0, Tf ) =

∫ Tf

0
eρu(1− µhu)1+1/σs du−

∫ Tf

0
eρu(s− µhu) du > 0
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since the first integral is strictly positive and the second integral is equal to zero by definition of Tf .

VIII.10 Proof of Lemma A.14

Direct calculations show that

d

dt

[
s− µht

(1− µht)1+1/σ

]
=

µ′ht
(1− µht)2+1/σ

[
s

(
1 +

1

σ

)
− 1− µht

σ

]
(VIII.27)

The first multiplicative term on the right–hand side is always strictly positive because µ′ht > 0. When

t = Tφ, the second multiplicative term is zero by definition of Tφ. When t < Tφ, it is strictly positive

given that µht is strictly increasing.

VIII.11 Proof of Lemma A.15

Let us now turn to the proof of Lemma A.15. For t < Tφ, rpt − ṗt is given by equation (A.18). Since

δ < 1, (s− µht)/(1− µht) < 1, and using Lemma A.14, we obtain that rpt − ṗt > 0. In order to show

that it is strictly below 1, we need some additional computations. First, note that equation (VIII.27)

implies that:

d

dt

[(
s− µht

(1− µht)1+1/σ

)σ]
= σ

(
s− µht

(1− µht)1+1/σ

)σ−1 µ′ht
(1− µht)2+1/σ

[
s

(
1 +

1

σ

)
− 1− µht

σ

]
.

Next, we plug µ′ht = γ(1 − µht) in the above, and then we plug the resulting expression in equation

(A.18). After some algebraic manipulations, we obtain:

rpt − ṗt

=1− δ
(
s− µht
1− µht

)σ {
1−

[
1 + σ − σ1− µht

s− µht

]
γ

1− µht

∫ φt

t
e−(r+ρ)(u−t)(1− µhu) du

}
. (VIII.28)

One easily check that the term in brackets, 1 + σ − σ(1 − µht)/(s − µht), is strictly smaller than 1

because s < 1, and greater than zero because t ≤ Tφ. On the other hand, after multiplying the integral

term by γ/(1− µht) = γeγt we find:

γ

r + ρ+ γ

(
1− e−(r+ρ+γ)(φt−t)

)
< 1. (VIII.29)

Taken together, these inequalities imply that rpt − ṗt ∈ (0, 1).

For t ∈ (Tφ, φ0), rpt − ṗt is given by equation (A.19). We have (1− µhφ−1
t

)/(1− µht) ∈ (0, 1) since

φ−1
t < Tφ < t, and (s− µhφ−1

t
)/(1− µhφ−1

t
) ∈ (0, 1) since φ−1

t < Tφ < Ts. Therefore rpt − ṗt ∈ (0, 1).

For t ∈ (φ0, Tφ), rpt − ṗt is the same in the ATE, thus it also lies in (0, 1).
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VIII.12 Proof of Lemma A.16

Plugging equation (VIII.28) into the definition of Qu, we obtain that, for u ∈ (0, Tφ),

Qu =
s− µhu

(1− µhu)1+1/σ

[
1− γ

r + ρ+ γ

(
1− e−(r+ρ+γ)(φu−u)

)(
1 + σ − σ1− µhu

s− µhu

)]1/σ

.

From Lemma A.14 we know that (s− µhu)/((1− µhu)1+1/σ is strictly increasing in u over (0, Tφ).

In the term in brackets, the first term in parentheses is strictly positive and strictly decreasing in u

since φu is strictly decreasing. The second term in parentheses is strictly positive because u < Tφ and

it is strictly decreasing in u since µhu < s < 1 when u < Tφ < Ts.

For t ∈ (Tφ, φ0),

Qu =
s− µhφ−1

u

(1− µhφ−1
u

)1+1/σ
.

This is a strictly decreasing function of u because u 7→ φ−1
u is strictly decreasing and belongs to (0, Tφ),

and x 7→ (s− x)/(1− x)1+1/σ is strictly increasing over (0, µhTφ) by Lemma A.14.

For t ∈ (φ0, Tf ), Qu = Qu. Since u 7→ Qu is hump-shaped by Lemma A.4 all we need to show is

Q
′
φ0 < 0. To that end, note first that H(0, φ0) = 0 writes as

∫ φ0

0
eρt(1− µht)1+1/σs dt =

∫ φ0

0
eρt(s− µht) dt.

From the proof of Lemma A.4, in Section VIII.3, equation (VIII.5) we know that Q
′
φ0 has the same

sign as∫ φ0

0
eρt
[
(1− µht)1+1/σ(s− µhφ0)− (1− µhφ0)1+1/σ(s− µht)

]
dt.

Replacing the first equation into the second, we find that Q
′
φ0 as the same sign as

s− µhφ0 − s(1− µhφ0)1+1/σ = −g(0, µhφ0),

where the function g is defined in the proof of Lemma A.13. But we already know from this proof

that g(0, µhφ0) > 0 has to hold for H(0, φ0) = 0, which from the above imply that Q
′
φ0 < 0.

It remains to show that u 7→ Qu is continuous at u = Tφ and u = φ0. Starting from equations

(A.18) and (A.19), continuity at u = Tφ follows from φ−1
Tφ

= Tφ and Lemma A.14. Turning to continuity

at u = φ0, (A.19) evaluated at t = φ0 yields Qφ−0
= s. On the other hand, plugging H(0, φ0) = 0 into

the definition (A.4) of Qu we obtain that Qφ+0
= Qφ0 = s.
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VIII.13 Proof of Lemma A.17

By construction the price is continuously differentiable in all the open intervals (0, Tφ), (Tφ, φ0),

(φ0, Tf ), and (Tf ,∞). Let us show that it is also continuously differentiable at the boundary points

of these intervals. First note that, by definition of Qt, in equation (A.22), it follows that

rpu = 1− δ(1− µhu)Qσu + ṗu. (VIII.30)

Since by Lemma A.16, Qu is continuous over (0, Tf ), and since the price is continuous by construction,

it follows that ṗu is continuous over (0, Tf ) as well. Turning to t = Tf , we have QTf = QTf = 0

by definition of Tf and of Qu in equation (A.4). Plugging QTf = 0 in (VIII.30), it follows that

rpTf = 1 + ṗT−f
. Since pTf = 1/r it follows that ṗT−f

= 0. Since pt is constant for t > Tf , this shows

that ṗt is continuous at Tf .

Next, we show that the price is strictly increasing over (0, Tf ). We start with the time interval

(Tφ, Tf ). Since by Lemma A.16, Qu is strictly decreasing over (Tφ, Tf ), it follows that ∆u = (1 −
µhu)1/σQu is strictly decreasing over (Tφ, Tf ). Using the same argument as in the proof Proposition 1

in Section A.3, it follows that the price is strictly increasing over (Tφ, Tf ).

The proof is more difficult for the initial time interval, [0, Tφ]. We start by defining, for t ∈ [0, Tφ]:

δt ≡ δ
(
s− µht
1− µht

)σ
.

Clearly, since µht is strictly increasing, we have δ′t < 0. Also, using µ′ht = γ(1 − µht) one easily sees

after some algebra that:

γδt + δ′t = γσδ
(s− µht)σ−1

(1− µht)σ

[
s

(
1 +

1

σ

)
− 1− µht

σ

]
≥ 0 (VIII.31)

for t ∈ [0, Tφ], by definition of Tφ. With the definition of δt, and keeping in mind that 1− µht = e−γt,

ODE (A.18) writes:

rpt − ṗt = 1− δt +
d

dt

[
δte

γt
]
e−γt

∫ φt

t
e−(r+ρ+γ)(u−t) du

= 1− δt +
δt + γδ′t
r + ρ+ γ

(
1− e−(r+ρ+γ)(φt−t)

)
(VIII.32)

And, ODE (A.19) writes:

rpt − ṗt = 1− e−γ(t−φ−1
t )δφ−1

t
. (VIII.33)
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Next, we differentiate equations (VIII.32) and (VIII.33) to find ODEs for dt ≡ ṗt:

t ∈ (0, Tφ) : rdt − ḋt = −δ′t +
[
γδt + δ′t

]
e−(r+ρ+γ)(φt−t) (φ′t − 1

)
+

γδ′t + δ′′t
r + ρ+ γ

(
1− e−(r+ρ+γ)(φt−t)

)
,

t ∈ (Tφ, φ0) : rdt − ḋt = −δ′
φ−1
t
e−γ(t−φ−1

t ) +
[
γδφ−1

t
+ δ′

φ−1
t

](
1− 1

φ′
φ−1
t

)
e−γ(t−φ−1

t ).

We already know that the price is continuously differentiable and hence that dt = ṗt is continuous

over [0, Tf ]. This allows to write:

dt =

∫ φt

t
e−r(u−t)

(
rdu − ḋu

)
du+ e−r(φt−t)dφt .

Since φt ≥ Tφ, we already know that dφt ≥ 0. So, in order to show that dt ≥ 0, it suffices to show that

the integral is positive. To that end, equipped with the above analytical expressions of rdt − ḋt, the

integral can be written as sum of five terms:

Term (I) :−
∫ Tφ

t
e−r(u−t)δ′u du

Term (II) :−
∫ φt

Tφ

e−r(u−t)δ′
φ−1
u
e−γ(u−φ−1

u ) du

Term (III) :

∫ Tφ

t
e−r(u−t)

γδ′u + δ′′u
r + ρ+ γ

(
1− e−(r+ρ+γ)(φu−u)

)
du

Term (IV) :

∫ Tφ

t
e−r(u−t)

[
γδu + δ′u

] (
φ′u − 1

)
e−(r+ρ+γ)(φu−u) du

Term (V) :

∫ φt

Tφ

e−r(u−t)
[
γδφ−1

u
+ δ′

φ−1
u

](
1− 1

φ′
φ−1
u

)
e−γ(u−φ−1

u ) du.

We make the change of variable u = φz in Term (V) and obtain that

Term (V) =

∫ Tφ

t
e−r(z−t)

[
γδz + δ′z

] (
1− φ′z

)
e−(r+γ)(φz−z) dz.

Since, by equation (VIII.31), γδz + δ′z ≥ 0 for z ≤ Tφ, and since by Lemma A.13, φ′z ≤ 0, this implies

that the sum of terms (IV) and (V) is positive.

Next, since

1− e−(r+ρ+γ)(φu−u)

r + ρ+ γ
=

∫ φu

u
e−(r+ρ+γ)(z−u) dz

we can rewrite Term (III) as∫ Tφ

t
[γδ′u + δ′′u]e(ρ+γ)u

∫ φu

u
e−(ρ+γ)z−r(z−t) dz du.
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0 u

z

t

t

Tφ

Tφ

φt

φTφ = Tφ

Figure 7: The green vertical line is the segment u = t, from u = 0 to u = φt. The blue upward
slopping line is the segment z = u, from u = t to u = Tφ. The red downward slopping curve is
the function z = φu, from u = t to u = Tφ. Thus, the domain of integration is the area enclosed
in the “triangle-shaped” area between the green line, the blue line, and the red curve.

Using the graphical representation of the domain of integration shown in Figure 7, we switch round

the two integrals and obtain

Term (III) =

∫ Tφ

t

[∫ z

t
[γδ′u + δ′′u]e(ρ+γ)u du

]
e−(ρ+γ)z−r(z−t) dz

+

∫ φt

Tφ

[∫ φ−1
z

t
[γδ′u + δ′′u]e(ρ+γ)u du

]
e−(ρ+γ)z−r(z−t) dz.

Since δ′t < 0, it follows that

[γδ′u + δ′′u]e(ρ+γ)u > [(ρ+ γ)δ′u + δ′′u]e(ρ+γ)u =
d

du

[
δ′ue

(ρ+γ)u
]
.

Plugging this inequality into the last expression we found for Term (III) and explicitly integrating

with respect to u, we find

Term (III) >

∫ Tφ

t

[
δ′ze

(ρ+γ)z − δ′te(ρ+γ)t
]
e−(ρ+γ)z−r(z−t) dz

+

∫ φt

Tφ

[
δ′
φ−1
z
e(ρ+γ)φ−1

z − δ′te(ρ+γ)t
]
e−(ρ+γ)z−r(z−t) dz

>

∫ Tφ

t
δ′ze
−r(z−t) dz +

∫ φt

Tφ

δ′
φ−1
z
e−(ρ+γ)(z−φ−1

z )−r(z−t) dz −
∫ φt

t
δ′te
−(r+ρ+γ)(z−t) dz.

The last term is positive since δ′t < 0. The first term cancels out with Term (I). Adding up the second
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term in the above equation with Term (II), we obtain∫ φt

Tφ

e−r(z−t)δ′
φ−1
z

[
e−(ρ+γ)(z−φ−1

z ) − e−γ(z−φ−1
z )
]
dz,

which is positive given that δ′u < 0. Taken together, this all show that the sum of Terms (I) through

(V) is positive, and hence that dt = ṗt > 0 for all t ∈ [0, Tφ].

VIII.14 Proof that condition (i) and (ii) hold

From the definition of M(u, q) in equation (A.27), and keeping in mind that ξu = 1 − δ(1 − µhu)Qσu

by definition of Qu, we have

∂M

∂q
(u, q) = 1− ξu − δ

1− µhu
1− µht

qσ = δ
1− µhu
1− µht

[(1− µht)Qσu − qσ] . (VIII.34)

By the definition of qt,u in equation (A.22) and (A.24) this implies that

∂M

∂q
(u, qt,u) = 0 for all t ∈ (0, Tφ], u ∈ [φt, Tf ); and for all t ∈ [Tφ, Tf ), u ∈ [t, Tf ]. (VIII.35)

This clearly implies that condition (i) holds for t ≥ Tφ. For t ∈ (0, Tφ], we define

Nt =

∫ φt

t
e−(r+ρ)(u−t)∂M

∂q
(u, qt,u) du.

First, we note that φTφ = Tφ implies NTφ = 0. Then, we differentiate Nt with respect to t

N ′t = (r + ρ)Nt −
∂M

∂q
(t, qt,t) +

∫ φt

t
e−(r+ρ)(u−t) ∂

∂t

[
∂M

∂q
(u, qt,t)

]
du

= (r + ρ)Nt −
(
1− ξt − δqσt,t

)
− δ

∫ φt

t
e−(r+ρ)(u−t)(1− µhu)

∂

∂t

[
qσt,t

1− µht

]
du

= (r + ρ)Nt,

where: for the first equality we used that ∂M/∂q(u, qt,φt) = 0, and in the integral we have substituted

qt,u = qt,t since u ∈ [t, φt]; we obtain the second equality by evaluating ∂M/∂q(u, q), in equation

(VIII.34), at (t, qt,t); we obtain the third equality from equation (A.18) and qt,t = (s− µht)/(1− µht).
Therefore we have a differential equation for Nt. Given the boundary condition NTφ = 0, we have

Nt = 0 for all t ∈ [0, Tφ]. (VIII.36)
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With this in mind, we turn to condition (i) for t ∈ [0, Tφ] and note that:∫ Tf

t
e−(r+ρ)(u−t)∂M

∂q
(u, qt,u)qt,u du =qt,t

∫ φt

t
e−(r+ρ)(u−t)∂M

∂q
(u, qt,u) du+

∫ Tf

φt

∂M

∂q
(u, qt,u)qt,u du

=qt,tNt +

∫ Tf

φt

∂M

∂q
(u, qt,u)qt,u du = 0,

where: we obtain the first equality by breaking the interval of integration into [t, φt] and [φt, Tf ], and

noting that qt,u = qt,t over [t, φt]; we obtain the second equality by recognizing that the first integral

is equal to Nt; the last equality follows from (VIII.35) and (VIII.36). This establishes condition (i)

holds.

Let us now turn to condition (ii). Note first that this condition holds for t ∈ [Tφ, Tf ] since in that

case ∂M/∂q(u, qt,u) = 0. To show that it also holds for t ∈ (0, Tφ), we show:

RVIII.8. There exists u1 ∈ (t, φt) such that u 7→ ∂M/∂q(u, qt,u) < 0 for u ∈ (t, u1) and ∂M/∂q(u, qt,u) >

0 for u ∈ (u1, φt).

Indeed, by equation (VIII.34):

sign

[
∂M

∂q
(u, qt,u)

]
= sign [Fu] where Fu ≡ (1− µht)Qσu − qσt,u.

By Lemma A.16 we know that Qu is strictly increasing before Tφ and strictly decreasing after Tφ.

Also, by construction of the candidate LOE, qt,u is constant over [t, φt]. Thus Fu is strictly increasing

over [t, Tφ), and strictly decreasing over (Tφ, φt]. Second, when u = t, we have:

Ft = (1− µht)Qσt − qσt,t =
1− ξt
δ
− qσt,t =

1

δ

[
1− δ

(
s− µht
1− µht

)σ
− ξt

]
,

where the first equality follows by definition of Qu, in equation (A.22), and the second equality follows

by definition of qt,t for t ∈ (0, Tφ), in equation (A.21). Now, by equation (A.18) and Lemma A.14, this

last expression is strictly negative for t < Tφ, i.e., Ft < 0. Third, the asset holding plan is continuous

at u = φt so Fφt = (1− µht)Qσφt − q
σ
t,t = (1− µht)Qσφt − q

σ
t,φt

. But this last expression is equal to zero

by equation (A.22). Taken together, the above shows that Fu is increasing over [t, Tφ], decreasing over

[Tφ, φt], negative at u = t, and zero at u = φt. This shows that there exists u1 ∈ (t, φt) such that

Fu < 0 for u ∈ (t, u1) and Fu > 0 for u ∈ (u1, φt). Because u 7→ ∂M/∂q(u, qt,u) has the same sign as

Fu, result RVIII.8 follows.

Next, for any decreasing function q̃t,u, we have∫ Tf

t
e−(r+ρ)(u−t)∂M

∂q
(u, qt,u)q̃t,u du

≤
∫ u1

t
e−(r+ρ)(u−t)∂M

∂q
(u, qt,u)q̃t,u1 du+

∫ φt

u1

e−(r+ρ)(u−t)∂M

∂q
(u, qt,u)q̃t,u1 du = Ntq̃t,u1 ,
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but Nt = 0 because of (VIII.36), and therefore condition (ii) holds.

VIII.15 Proof of Lemma A.19

For t ∈ (0, φ−1
u ). In the ATE, time–t low–valuation traders hold:

qATEt,u = min{(1− µht)1/σQATEu , 1}. (VIII.37)

In the LOE, on the other hand:

qLOEt,u =
s− µht
1− µht

,

which is strictly less than 1. Thus, if qATEt,u = 1, we have that qLOEt,u < qATEt,u . Now, if qATEt,u < 1, we

write

qLOEt,u = (1− µht)1/σ s− µht
(1− µht)1+1/σ

< (1− µht)1/σ
s− µhφ−1

u

(1− µhφ−1
u

)1+1/σ

= (1− µht)1/σQLOEu

where the first line follows by multiplying and dividing by (1− µht)1/σ, the second line from Lemma

A.14, and the third line by combining equations (A.19) and (A.22). Therefore, if QATEu ≥ QLOEu

implies that qLOEt,u < (1 − µht)1/σQATEu = qATEt,u given equation (VIII.37) and our assumption that

qATEt,u < 1.

For t ∈ (φ−1
u , u). In the ATE, time–t low–valuation traders holdings are still determined by

equation (VIII.37). In the LOE, their holdings are given by

qLOEt,u = (1− µht)1/σQLOEu .

Since QATEu ≥ QLOEu and qLOEt,u ≤ 1, it follows that qATEt,u ≥ qLOEt,u .

VIII.16 Proof of Lemma A.20

For ρ > 0, Tf is defined as the unique u > 0 such that:

K(u, ρ) ≡
∫ u

0
eρt(s− µht) dt = 0.

This equation has a unique strictly positive solution when ρ ≥ 0. When ρ > 0 it is equal to Tf .

When ρ = 0 we denote it by T̂f . Moreover, K( · , · ) is continuously differentiable in u and ρ with
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∂K/∂u(T̂f , 0) 6= 0. Thus, by the Implicit Function Theorem, the unique strictly positive solution of

K(u, ρ) = 0 is a continuous function of ρ in a neighborhood of ρ = 0. In particular, Tf → T̂f as ρ→ 0.

We now prove an analogous result for QATEu . The only subtlety is that the support of QATEu , which

is (0, Tf ), implicitly depends on ρ. We first note that, since ∂K/∂u(Tf , ρ) < 0 and ∂K/∂ρ(Tf , ρ) < 0,

then Tf is decreasing in ρ, i.e., Tf increases to T̂f when ρ decreases to 0. Therefore, for all u < T̂f , QATEu

is well defined for ρ close enough to zero. Using the same argument as for Tf , in this neighborhood of

ρ = 0, QATEu goes to a well-defined limit Q̂ATEu satisfying:

∫ u

0
(1− µht) min{(1− µht)1/σQ̂ATEu , 1} dt =

∫ u

0
(s− µht) dt.

The price pATEu is obtained by integrating the ODE (18) over t ∈ [u, Tf ]:

pATEu = e−r(Tf−u) 1

r
+

∫ Tf

u
e−r(t−u)

[
1− δ(1− µht)(QATEt )σ

]
dt.

By continuity, pATEu goes to:

p̂ATEu = e−r(T̂f−u) 1

r
+

∫ T̂f

u
e−r(t−u)

[
1− δ(1− µht)(Q̂ATEt )σ

]
dt.

Using similar arguments, we obtain analogous results in the LOE. Time Tφ does not depend on ρ,

thus T̂φ = Tφ. For all t ∈ [0, Tφ), φt goes to the unique φ̂t ∈ (Tφ, T̂f ) such that:

∫ φ̂t

t

[
(1− µhu)1+1/σ (s− µht)− (1− µht)1+1/σ (s− µhu)

]
du = 0.

The price path also goes to a well-defined limit p̂LOEu satisfying the same ODE as when ρ > 0 after

letting ρ = 0.

VIII.17 Proof of Lemma A.21

In the ATE, after integrating the ODE for the price over u ∈ [0, φ0] and taking the limit ρ → 0, we

obtain:

p̂ATE0 = e−rφ̂0 p̂ATE
φ̂0

+

∫ φ̂0

0
e−ru

[
1− δ(1− µhu)(Q̂ATEu )σ

]
du.
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Inspecting the proof of Proposition 3, one notes that it does not use the fact that ρ > 0. Therefore it

still holds when ρ = 0 and u 7→ Q̂ATEu is hump-shaped. We also have Q̂ATE0 = s, and:

Q̂ATE
φ̂0

≥
∫ φ̂0

0 (s− µht) dt∫ φ̂0
0 (1− µht)1+1/σ dt

= s,

where the inequality follows from the market clearing condition (17) and the last equality comes from

the definition of φ̂0, equation (A.17). Taken together, these facts imply that:

p̂ATE0 < e−rφ̂0 p̂ATE
φ̂0

+

∫ φ̂0

0
e−ru [1− δ(1− µhu)sσ] du.

For the LOE, we integrate the ODEs (A.18) and (A.19) over u ∈ [0, φ0] and we take the limit as

ρ→ 0. It follows that:

p̂LOE0 =e−rφ̂0 p̂LOE
φ̂0

+

∫ T̂φ

0
e−ru

[
1− δu +

∂

∂u

[
δu

1− µhu

] ∫ φ̂u

u
e−r(z−u)(1− µhz) dz

]
du

+

∫ φ̂0

T̂φ

e−ru

[
1− δφ̂−1

u

1− µhu
1− µhφ̂−1

u

]
du,

where δu ≡ δ((s−µhu)/(1−µhu))σ. In the first line, we can compute the double integral by switching

the order of integration as in the proof of Lemma A.17 (see Figure 7, page 65 in this supplementary

appendix):

∫ T̂φ

0

∫ φ̂u

u
e−ru

∂

∂u

[
δu

1− µhu

]
e−r(z−u)(1− µhz) dz du

=

∫ T̂φ

0

∫ z

0
e−rz

∂

∂u

[
δu

1− µhu

]
(1− µhz) du dz +

∫ φ̂0

T̂φ

∫ φ̂−1
z

0
e−rz

∂

∂u

[
δu

1− µhu

]
(1− µhz) du dz

=

∫ T̂φ

0
e−rz(1− µhz)

[
δz

1− µhz
− δ0

]
dz +

∫ φ̂0

T̂φ

e−rz(1− µhz)

[
δφ̂−1

z

1− µhφ̂−1
z

− δ0

]
dz.

Plugging this back into the expression of p̂LOE0 and substituting δ0 = δsσ, we obtain:

p̂LOE0 = e−rφ̂0 p̂LOE
φ̂0

+

∫ φ̂0

0
e−ru (1− δ(1− µhu)sσ) du.

Since p̂ATE
φ̂0

= p̂φ̂0 , we obtain that p̂ATE0 < p̂LOE0 .

VIII.18 Constructing the limit order book

Consider, at some time u and for some ask price a ∈ (pTψ , pTf ), the volume of limit sell orders with

ask price in [a, a + da]. These order have been submitted by traders who had an information events
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before u, in order to reduce their holding during the interval [z, z+dz], where pz = a and, by the chain

rule, ṗz dz = da. Namely, a trader who had her last information event at t ∈ (0, u] plans to execute∣∣∣∣ ∂∂z min{(1− µht)1/σQz, 1}
∣∣∣∣ dz

during [z, z + dz]. Note that the partial derivative is well-defined except possibly for one value t such

that (1 − µht)1/σQz = 1. Integrating over all times t ∈ (0, u], and using that dz = da/ṗz, we obtain

that the volume of sell orders with ask in [a, a+ da] is:

Su,a da =

∫ u

0
ρe−ρ(u−t)(1− µht)

∣∣∣∣ ∂∂z min{(1− µht)1/σQz, 1}
∣∣∣∣ daṗz dt,

The volume of limit sell orders outstanding in the book as of time u < Tf is:

Su =

∫ pTf

max{pu,pTψ}
Su,a da. (VIII.38)

Su is represented in Figure 6 (lower panel) as well as in Figure 8 (lower panel).
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IX Proofs omitted in the supplementary appendix

IX.1 Proof for Section I

IX.1.1 Proof of Lemma I.1

We define the expected discounted utility as in LR

v(θ, q) ≡ (r + κ)

∫ +∞

0
e−(r+κ)sE[v(θt+s, q) | θt = θ] ds,

for θ ∈ {h, `} and q ≥ 0. Using that

Prob[θt+z = h | θt = h] = e−(γh+γ`)z+
γh

γh + γ`

(
1− e−(γh+γ`)z

)
(IX.1)

Prob[θt+z = ` | θt = h] =
γ`

γh + γ`

(
1− e−(γh+γ`)z

)
(IX.2)

we can compute the integral in v(h, q) to obtain

v(h, q) =
r + κ

r + κ+ γh + γ`
v(h, q) +

1

r + κ+ γh + γ`

(
γhv(h, q) + γ`v(`, q)

)
. (IX.3)

And symmetrically:

v(`, q) =
r + κ

r + κ+ γh + γ`
v(`, q) +

1

r + κ+ γh + γ`

(
γhv(h, q) + γ`v(`, q)

)
. (IX.4)

Plugging in the analytical expression for the utility flows, we find that v(h, q) and v(`, q) are strictly

concave over q ∈ [0, 1], with derivatives

vq(h, q) = 1− γ`
r + κ+ γh + γ`

qσ

vq(`, q) = 1− r + κ+ γ`
r + κ+ γh + γ`

qσ,

and constant over q ∈ [1,+∞).

Similarly to Lagos and Rocheteau (2009), given some price p > 0,12 traders’ optimal asset holdings

are given by the first–order condition

qθ =


0 if vq(θ, 0) ≤ rp(
vq
)−1

(θ, rp) if vq(θ, 1) < rp < vq, (θ, 0)

1 if vq(θ, 1) ≥ rp,

12One easily rules out p = 0: in that case all traders would want to hold more than one unit, which would
violate market clearing given that the aggregate supply is strictly less than 1.
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for θ ∈ {h, `}. They also satisfy the market clearing condition

γh
γh + γ`

qh +
γ`

γh + γ`
q` = s.

First, both qh > 0 and q` > 0. Otherwise, if either q` = 0 or qh = 0, the fact that vq(h, 0) = vq(`, 0)

would imply that q` = qh = 0. Otherwise, the first–order conditions would imply that qh = 0 and

q` = 0, which would contradict market clearing. Second, we have that q` < 1. Otherwise, if q` = 1,

then the fact that vq(h, 1) > vq(`, 1) would imply that qh = 1 as well, which also contradicts market

clearing. Taken together, these two remarks imply equilibrium allocations come in only two flavors: we

can have an “interior” equilibrium allocation with qh ∈ (0, 1) and q` ∈ (0, 1); or a “corner” equilibrium

allocation where qh = 1 and q` ∈ (0, 1).

If the equilibrium allocation is interior, then the high– and low–valuation marginal utilities are

equalized, implying that q` = εqh, where

ε ≡
(

γ`
r + κ+ γ`

)1/σ

∈ (0, 1).

Substituting into the market clearing condition leads to equation (I.1). Using the formula for qh, one

finds that qh < 1, if and only if

s <
γh + εγ`
γh + γ`

. (IX.5)

If the equilibrium allocation is at a corner, then qh = 1 and the market clearing condition then

implies the left part of equation (I.2) for the expression of q`. For this allocation to be the basis of an

equilibrium, we must have vq(h, 1) ≥ vq(`, 1), which after some simple algebra is easily shown to be

equivalent to

s ≥ γh + εγ`
γh + γ`

, (IX.6)

which is the opposite of (IX.5), implying equilibrium uniqueness.

IX.1.2 Proof of Proposition I.1

For Point (i), note that ε → 1 when r + κ → 0. But when ε is close enough to 1, condition (IX.5)

implies that the equilibrium is interior since s < 1, therefore q` and qh are given by equations (I.1).

In turns ε→ 1 then implies q` → s and qh → s.

For point (ii) note first that ε decreases with r + κ and that the equilibrium is interior if r + κ is

small enough. Therefore there exists c (possibly +∞) such that the equilibrium is interior if r+κ < c

and corner if κ ≥ c. When κ < c, q` < s is strictly decreasing in r + κ, while qh > s and is strictly

increasing in r + κ. Therefore the dispersion of asset holdings qh − q` increases strictly with r + κ.

When r + κ ≥ c, qh and q` do not depend on r + κ. Overall, this shows that the dispersion of asset
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holdings is weakly increasing in r + κ.

IX.1.3 Proof of Proposition I.2

Trade volume is equal to the measure of high-valuation investors meeting a dealer, times the probability

that a high–valuation investor was in the low state the last time he met a dealer, times the trade size

qh − q`. The flow of high–valuation investors meeting a dealer, and who had a low–valuation at their

last contact is:

ρ

∫ +∞

0
ρe−ρt

γ`
γh + γ`

γh
γh + γ`

(
1− e−(γh+γ`)t

)
dt;

where: ρ is the flow of investors currently meeting dealers; e−ρt dt is the probability density that an

investor had her last contact time t periods ago; γ`/(γh+γ`) is that the investor’s type was low t periods

ago; and γh/(γh + γ`)(1− e−(γh+γ`)t) is the probability of being in the high type now, conditional on

being in the low–type t periods ago. Computing the integral we obtain that trade volume is equal to

V = ρ
γh

γh + γ`

γ`
ρ+ γh + γ`

(qh − q`).

Now, to prove point (i), let r+ κ→ 0. As shown in Proposition I.1, both q` → s and qh → s, and

so qh − q` → 0. Since either η or ρ is fixed for the proposition, ρ must remain bounded as r + κ→ 0.

Taken together these remark imply that V vanished to 0.

For point (ii), note that since ρ(γhγ`)/[(γh + γ`)(ρ+ γh + γ`)] is strictly increasing in κ for a given

η, and constant for given ρ, and since qh − q` is (weakly) increasing in r + κ according to Proposition

I.1, it follows that trade volume increases strictly with κ.

Lastly, for point (iii), with two types the distribution of trade sizes is degenerate: all trades have

the same size, qh − q`, which increases with κ.

IX.1.4 Proof of Proposition I.3

Proof of point (i). Note that, as in LR the fees are equal to:

φ(θ, q) =
η

r + κ
[v(θ, qθ)− v(θ, q)− rp(qθ − q)] , (IX.7)

a fraction η of the trading surplus, for θ ∈ {h, `} and q ≥ 0. Therefore

∂

∂q
[φ(θ, q)] =

η

r + κ
[−vq(θ, q) + rp] . (IX.8)

Consider first the case θ = `. Since q` ∈ (0, 1), it satisfies the investors’ first–order condition vq(θ, q`) =

rp. Given that q 7→ v′`(q) is strictly positive and strictly decreasing over q ∈ [0, 1) and vq(`, q) = 0 for

q > 1, ∂/∂q[φ(`, q)] has the same sign as q − q`.
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Consider now the case θ = h. The argument is the same as for θ = ` if the equilibrium allocation

is interior. If the equilibrium allocation is at a corner, qh = 1 and rp ∈ (0, vq(h, 1)]. But q 7→ vq(h, q)

is strictly positive, strictly decreasing over q ∈ [0, 1), and such that vq(h, q) = 0 for q > 1. Direct

verification shows, then, that ∂/∂q[φ(h, q)] has the same sign as q − 1.

Second, the derivative of fees per unit of asset trade with respect to the trade size is equal to

∂

∂q

[
φ(θ, q)

|qθ − q|

]
= sign[q − qθ]

{
∂/∂q[φ(θ, q)]

q − qθ
− φ(θ, q)

(q − qθ)2

}
=

sign[q − qθ]
(q − qθ)2

η

r + κ
{−vq(θ, q)(q − qθ)− v(θ, qθ) + v(θ, q)} ,

where we have used equations (IX.7) and (IX.8) to move from the first line to the second line. To

conclude, we note that, on the second line, the term is curly brackets is always positive since q 7→ v(θ, q)

is concave.

Proof of point (ii). We proceed as in LR to show that φ(θ, qθ′), θ 6= θ′ in {h, `}, is non monotonic

in κ for r small enough. Specifically, we denote by φθ′,θ(κ, r) the equilibrium fee φ(θ, qθ′) as a function

of the parameters κ and r, and we show that for any κ > 0 there exists r such that for all r < r and

all θ 6= θ′ in {h, `}:

(a) φθ′,θ(κ, r) > φθ′,θ(κ) for some strictly positive function φ(κ) > 0;

(b) φθ′,θ(κ
′, r)→ 0 as κ′ → +∞;

(c) φθ′,θ(0, r)→ 0 as r → 0.

Clearly (a)-(b)-(c) imply point (ii): by (a) and (b) we have that φ(κ, r) > limκ→∞ φθ′,θ(κ, r) = 0;

and by (a) and (c), we have that for r small enough, φθ′,θ(0, r) < φ(κ) < φ(κ, r).

To prove these three points we introduce the notations ε(κ, r), qθ(κ, r), p(κ, r), and v(θ, q;κ, r),

to stress that all these functions depend on κ and r. Note that these functions are all well defined,

continuous when r = 0 or κ = 0.

Proof of point (ii)–(a). Consider κ > 0 and some arbitrary r̄. Substituting the first–order

condition rp(κ, r) = vq(`, q`(κ, r);κ, r), when θ = `, and rp(κ, r) ≤ vq(h, qh(κ, r);κ, r), when θ = h,

into equation (IX.7) we can write

φθ′,θ(κ, r) ≥
η

r + κ

∫ qθ(κ,r)

qθ′ (κ,r)
[vq(θ, q;κ, r)− vq(θ, qθ(κ, r);κ, r)]

≥ η

r + κ
inf{|vqq(θ, q;κ, r)| : q ∈ [q`(κ, r); qh(κ, r)]}(qh(κ, r)− q`(κ, r))2

2

≥ η

r + κ
inf{|vqq(θ, q;κ, r)| : q ∈ [q`(κ, r); qh(κ, r)]}(qh(κ, 0)− q`(κ, 0))2

2

≥ η

r + κ
inf{|vqq(h, q;κ, r)| : q ∈ [q`(κ, 0); qh(κ, 0)]}(qh(κ, 0)− q`(κ, 0))2

2
≡ φ(κ),
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where vqq(θ, q) denote the second derivative of v(θ, q) with respect to q. The third line obtains because,

as shown in point (ii) of Proposition I.1, qh(κ, r)− q`(κ, r) increases with r+ κ. The last line obtains

because direct calculations show that |vqq(θ;κ, r)| ≥ |vqq(h;κ, r)|, and because we showed in the Proof

of Proposition I.1 that qh(κ, r) (q`(κ, r)) is increasing (decreasing) in r + κ.

Note that ε(κ, 0) > 0 and therefore q`(κ, 0) > 0, implying that

inf{|vqq(h, q;κ, r)| : q ∈ [q`(κ, 0); qh(κ, 0)]} > 0.

Besides, inspection of the formulas given in Lemma I.1 show that qh(κ, 0) − q`(κ, 0) > 0. Therefore

φ(κ) > 0.

Proof of point (ii)–(b). Let κ → ∞. By inspection of equations (I.1)-(I.2), qh(κ, r), q`(κ, r)

and p(κ, r) all have finite limits and q 7→ v(θ, q;κ, r) converges uniformly towards a bounded function.

Therefore the term in brackets in equation (IX.7) goes to a finite limit and φθ′,θ(κ, r) goes to 0.

Proof of point (ii)–(c). Consider κ > 0. When r goes to 0, ε(0, r) goes to 1, the equilibrium

indexed by (0, r) is interior by condition (IX.5), q`(0, r) and qh(0, r) are given by equation (I.1) and

they both converge towards s. Furthermore, taking derivatives with respect to r at r = 0 we obtain

∂ε

∂r
(0, 0) = − 1

σγ`
,

∂q`
∂r

(0, 0) = − s
σ

1

γh + γ`

γh
γ`
,

∂qh
∂r

(0, 0) =
s

σ

1

γh + γ`
.

And therefore,

qh(0, r)− q`(0, r) =
1

σγ`
r + o(r). (IX.9)

Note also that, after plugging v(θ, q)−v(θ, q′) = vq(θ, q)(q−q′)+o(q−q′) into the formulas for v(θ, q),

it appears that

v(θ, q; 0, r)− v(θ, q′; 0, r) = vq(θ, q; 0, r)(q − q′) +K(r)o(q − q′). (IX.10)

where K(r) is a bounded function. Now evaluating the fee when κ = 0, we obtain:

φθ′,θ(r, 0) =
η

r

{
v(θ, qθ(0, r); 0, r)− v(θ′, qθ′(0, r); 0, r)− rp(0, r) [qθ(0, r)− qθ′(0, r)]

}
=
η

r

{[
vq(θ, qθ(0, r); 0, r)− rp(0, r)

][
qθ(0, r)− qθ′(0, r)

]
+K(r)o

(
qθ(0, r)− qθ′(0, r)

)}
=
η

r
K(r)o

(
r
)

= o(1),

which goes to zero as r → 0. In the above, we move from the first to the second line by plugging the

Taylor approximation (IX.10). We move from the second to the third line by plugging in the Taylor

approximation (IX.9) into the second “little-o” term, and by noting that the first term is equal to

zero since the equilibrium is interior for r close to zero and therefore vq(θ, qθ(0, r); 0, r) = rp(0, r).
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Therefore, the fee φθ′,θ(0, r) converges to zero as r goes to zero.

Proof of point (iii). The expected fee earned by a dealer conditional on meeting an investor is

equal to the probability that the investor has a high type and had a low type the last time he met a

dealer (we computed that probability in the proof of Proposition I.2) times the fee φh(q`), plus the

same thing inverting ‘high’ and ‘low’

Φ =
γh

γh + γ`

γ`
ρ+ γh + γ`

φh(q`) +
γ`

γh + γ`

γh
ρ+ γh + γ`

φ`(qh).

The proof then follows the same steps as the proof of point (ii).

IX.2 Proof for Section III

IX.2.1 Proof of Proposition III.1

We verify optimality, market clearing, and then prove some elementary properties of equilibrium

objects.

High–valuation optimality. First, we have that rp∗u − ṗ∗u ∈ (0, 1) for all u ∈ (0, Tf ), so the

optimality of high–valuation traders holding plan follows from the same proof as in Section A.8.3 in

BHW.

Low–valuation optimality. As in BHW, consider a low–valuation trader who experiences an

information event at time t. The trader’s holding plan is optimal if it maximizes:

E [v(θu, qt,u) | θt = `]− ξ∗uqt,u = qt,u − δ
1− µhu
1− µht

qt,u −
(

1− δ 1− µhu
1− µhψ∗u

)
qt,u

= δ(1− µhu)qt,u

(
1

1− µhψ∗u
− 1

1− µht

)
= δ(1− µhu)qt,u

µhψ∗u − µht
(1− µhu)(1− µhψ∗u)

.

Clearly, this expression is maximized by q∗t,u = 0 if t > ψ∗u, and by q∗t,u = 1 if t ≤ ψ∗u.

Market clearing. Consider some time u ∈ (0, Tf ]. Then all high–valuation traders who had an

information event at t ≤ u hold one unit, while all low–valuation traders who had an information event

at some time t ≤ ψ∗u hold one unit. Plugging these asset holdings into the market–clearing condition

(8) of BHW, we obtain:∫ ψ∗u

0
ρe−ρ(u−t)(1− µht) dt+

∫ u

0
ρe−ρ(u−t) [µht − s] dt = 0,

which clearly holds by definition of ψ∗u.
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The function ψ∗u is hump-shaped. After canceling out ρe−ρu from both sides of the equation

defining ψ∗u, we find that ψ∗u solves:∫ ψ

0
eρt (1− µht) dt =

∫ u

0
eρt (s− µht) dt.

Note that because u ≤ Tf , the right–hand side is strictly positive. Moreover, the left–hand side is

strictly increasing, zero at ψ = 0, and clearly greater than the right–hand side at ψ = u. There-

fore, the above equation has a unique solution, ψ = ψ∗u, and this solution is strictly less than

u. Since the equation is continuously differentiable with a non-zero derivative at ψ = ψ∗u, we

can apply the Implicit Function Theorem and obtain that ψ∗u is continuously differentiable, with:

ψ∗u
′eρψ

∗
u
(
1− µhψ∗u

)
= eρu (s− µhu). In particular, ψ∗u

′ > 0 if u ∈ [0, Ts) and ψ∗u
′ < 0 if u ∈ (Ts, Tf ]:

i.e., ψ∗u is hump–shaped with a maximum at u = Ts. Moreover, by definition of Tf , we have ψ∗Tf = 0.

Next, plugging the functional form µht = 1 − e−γt into the equation defining ψ∗u, we obtain that

ψ∗u solves:

1

ρ− γ

[
1− e(ρ−γ)(ψ−u)

]
= (1− s)eγu 1− e−ρu

ρ
.

The left-hand size is a strictly decreasing function of ψ − u, but the right-hand side is a strictly

increasing function of u. It follows, then, that d/du [ψ∗u − u] = ψ̇∗u − 1 < 0.

The price is strictly increasing. The ODE for the price is:

rp∗u = 1− δ 1− µhu
1− µhψ∗u

+ ṗ∗u.

Note that, at u = Tf , rp∗u = 1 and ψ∗Tf = 0, so ṗ∗
T−f

= δ(1− µhu)/(1− µhψ∗u) > 0. For u < Tf , we let

d∗u ≡ ṗ∗u. Differentiating the ODE for p∗u, and plugging the functional form µhu = 1− e−γu, we obtain:

rd∗u = δγ
(

1− ψ̇∗u
)
e−γ(u−ψ∗u) + ḋ∗u.

And so:

d∗t = δγ

∫ Tf

t

(
1− ψ̇∗u

)
e−γ(u−ψ∗u)e−r(u−t) du+ e−r(Tf−t)d∗

T−f
.

But we showed in the previous paragraph that that ψ̇∗u < 1, and just established that ṗ∗
T−f

= d∗
T−f

> 0.

Thus, it follows that d∗t > 0 for all t ∈ [0, Tf ).

IX.2.2 Proof of Proposition III.2

First we have the following preliminary result:

RIX.1. For all u > 0,
∫ u

0 e
ρt(1− µht)1+1/σ dt→ 0 as σ → 0.
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Indeed, the function eρt(1− µht)1+/σ is bounded above by eρt, and it converges pointwise to zero

for t > 0. The result then follows by an application of the dominated convergence Theorem. From the

above result, it follows immediately that:

RIX.2. For all u ∈ (0, Tf ), Qu →∞, as σ → 0, where the function Qu is defined in equation (A.4),

page 36 in BHW.

Next let us recall two useful notations of Section , page 79 in BHW: Ψ(Q) ≡ inf{ψ ≥ 0 : (1 −
µhψ)1/σQ ≤ 1} and ψu ≡ Ψ(Qu). Note that ψu < u because otherwise (1 − µhu)1/σQu ≥ 1 and the

market clearing condition (17), page 18 in BHW, would be violated. We now show that:

RIX.3. For all u ∈ (0, Tf ), ψu > 0 as long as σ is close enough to zero.

Indeed, for σ close enough to zero, we have that Qu > 1, which by Lemma A.3, page 36 in BHW,

implies that Qu > 1. By definition of Ψ(Q), this implies that Ψ(Qu) = ψu > 0. Note that when

ψu > 0, then by definition of Ψ(Q) we have that (1−µhψu)1/σQu = 1⇔ Qu = (1−µhψu)−1/σ and, by

equation (16), page 18 in BHW:

qt,u = min

{(
1− µht

1− µhψu

)1/σ

, 1

}
, (IX.11)

for a low–valuation trader who experienced an information event at time t. Next we show that:

RIX.4. For all u ∈ (0, Tf ), ψu → ψ∗u as σ → 0, where ψ∗u is the function defined in Proposition III.1.

To see this, take σ small enough so that ψu > 0. Then, note that by definition of ψu the market–

clearing condition (17), page 18 in BHW, can be rewritten:

∫ u

ψu

ρe−ρ(u−t)
(

1− µht
1− µhψu

)1/σ

dt+

∫ ψu

0
ρe−ρ(u−t)(1− µht) dt =

∫ u

0
ρe−ρ(u−t)(s− µht) dt.

(IX.12)

Now for any sequence of σ converging to zero, the associated sequence of ψu belongs to the compact

[0, u] so it has at least one converging subsequence. Denote this subsequence by ψnu , its limit by ψ∞u ,

and the associated subsequence of σ by σn. Looking at the first–integral on the left–hand side of

(IX.12), one sees that the function:

I{t∈[ψnu ,t]}e
−ρ(u−t)

(
1− µht

1− µhψnu

)1/σn

(1− µht)

is bounded above by e−ρ(u−t) and converges to zero everywhere except perhaps at t = ψ∞u . Thus an

application of the dominated convergence Theorem implies that the first term on the left–hand side

of (IX.12) goes to zero as n→∞. Going to the limit n→∞ in the other terms of (IX.12), one finds
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that ψ∞ solves:∫ ψ∞u

0
ρe−ρ(u−t)(1− µht) dt =

∫ u

0
ρe−ρ(u−t)(s− µht) dt

and is thus equal to ψ∗u. Thus, all convergent subsequences of ψu the same limit, ψ∗u, as σ → 0. This

implies that ψu → ψ∗u. The next convergence result concerns asset holding plans:

RIX.5. For all u ∈ (0, Tf ) and for all t ∈ (0, u), the holding of a time–t low–valuation trader converges

to qt,u = I{t≤ψ∗u} as σ → 0.

This result follows directly from equation (IX.11) given that ψu → ψ∗u. Note that the rest of the

holding plans are identical in BW and BHW: the asset holding plan of low–valuation traders at u ≥ Tf ,

the asset holding plan of high–valuation u ≤ Tf , and the average asset holding plan of high–valuation

traders at u > Tf . Turning the price path in BHW, we have, when σ is small enough and u ≤ Tf :

rpu − ṗu = 1− δ(1− µhu)Qσu = 1− δ 1− µhu
1− µhψu

which, since ψu converges to ψ∗u, clearly converges to rp∗u − ṗ∗u as σ → 0. For u > Tf , we have that

rpu = rp∗u = 1. Integrating up and applying the dominated convergence Theorem leads to:

RIX.6. For all u, pu → p∗u as σ → 0.

IX.2.3 Proof of Proposition III.4

From equation (A.16) page 41 in BHW it follows that:

RIX.7. As σ → 0, Tφ → Ts.

Let us turn, then to the defining equation of φt, (A.17) page 41 in BHW. Dividing through by

(1− µht)1+1/σ and applying the same reasoning as in the proof of R.IX.4, we obtain that:

RIX.8. For all t ∈ [0, Ts), φt → φ∗t as σ → 0, where φ∗t is the function defined in Proposition III.3.

Similarly, for all u ∈ (Ts, Tf ], φ−1
u → φ∗−1

u as σ → 0.

Consider, then, the limiting holding plan of a low–valuation trader. For t ∈ (0, Ts) and u < φ∗t :

by R.IX.8 , we have that u < φt for σ small enough, and hence that qt,u = (s − µht)/(1 − µht). For

t ∈ (0, Ts) and u > φ∗t : by R.IX.8 we have that u > φt > Tφ for σ small enough. Hence, ξu is given by

equation (A.19) page 42 in BHW, and

qt,u = (1− µht)1/σQu = (1− µht)1/σ

(
1− ξu

δ(1− µhu)

)1/σ

=

(
1− µht

1− µhφ−1
u

)1/σ
s− µhφ−1

u

1− µhφ−1
u

.

But, since u > φ∗t and since φ∗t is strictly decreasing, we have that φ∗−1
u < t. Hence, as σ → 0, the

ratio (1−µht)/(1−µhφ−1
u

) converges to a limit that is strictly less than 1, implying that qt,u converges
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to zero. Lastly, consider some t ∈ (Ts, Tf ) and u ∈ (t, Tf ). Then for σ small enough, we have that

t ∈ (Tφ, φ0) and so qt,u is given by the same equation as above, and we also obtain that qt,u converges

to zero. Lastly, we note that the rest of the holding plans are identical in BW and BHW: the asset

holding plan of low–valuation traders at u ≥ Tf , the asset holding plan of high–valuation u ≤ Tf , and

the average asset holding plan of high–valuation traders at u > Tf .

The last thing to verify is that the price path converges. For t > Tf , we have that rpt = rp∗t = 1.

For t ∈ (Ts, Tf ), we can go to the limit in equation (A.19), page 42 in BHW, and we find that

rpt − ṗt → rp∗t − ṗ∗t . For t ∈ (0, Ts), note that:

d

dt

[(
s− µht

(1− µht)1+1/σ

)σ]
= µ′ht

[
−σ (s− µht)σ−1

(1− µht)1+σ
+ (1 + σ)

(s− µht)σ

(1− µht)2+σ

]
→

µ′ht
(1− µht)2

=
d

dt

[
1

1− µht

]
as σ → 0. Going to the limit in equation (A.18), page 42 in BHW, we find that rpt − ṗt → rp∗t − ṗ∗t .
Integrating up and applying the dominated convergence Theorem, we find that pt → p∗t for all t.

IX.3 Proofs and Calculations for Section IV

IX.3.1 Calculations of equation (IV.2) and Proof of Lemma IV.1

Proof of Lemma IV.1. The function W (q) is the continuation value of a trader who holds q

units of the asset from the beginning of a liquidity shock until her next information event. Let τκ

denote the random time of the next liquidity shock, and τρ the random time of the next information

event. By our maintained distributional assumption, τκ and τρ are independent random exponential

times with respective intensities κ and ρ. As BHW, we calculate values net of the cost of buying and

selling the asset. With this accounting convention in mind, we write:

W (q) = −p0q + E
[ ∫ τρ∧τκ

0
e−ruv(θu, q) du+ I{τρ<τκ}e

−rτρpτρq

+ I{τκ<τρ}e
−rτκ

{
p0q +W (q)

} ∣∣∣∣ θ0 = `

]
. (IX.13)

The first term, −p0q, is the cost purchasing the asset at u = 0.13 The second term is the present value

of utility flows until either the next information event, τρ, or the next liquidity shock, τκ, which ever

comes first. The third term is the re-selling value of the asset at the next information event, at price

pτρ , if the information event occurs before the next liquidity shock. The fourth terms is the re-selling

value of the asset and the continuation value at the next liquidity shock, if the next liquidity shock

13This term appears because of our accounting convention of calculating values net of holding cost.
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occurs before the next information event.14 Next, we observe that:

pτρ∧τκe
−rτρ∧τκ = I{τρ<τκ}e

−rτρpτρ + I{τκ<τρ}e
−rτκpτκ . (IX.14)

Substituting the resulting expression for I{τρ<τκ}e−rτκpτκ into (IX.13), we find:

W (q) = E
[ ∫ τρ∧τκ

0
e−ruv(θu, q) du− p0q + e−rτρ∧τκpτρ∧τκq + I{τκ<τρ}e

−rτκ
{

(p0 − pτκ)q +W (q)

} ∣∣∣∣ θ0 = `

]
= E

[ ∫ τρ∧τκ

0
e−ru

{
v(θu, q)− (rpu − ṗu)q

}
du+ I{τκ<τρ}e

−rτκ
{

(p0 − pτκ)q +W (q)

} ∣∣∣∣ θ0 = `

]
=

∫ ∞
0

e−(r+ρ+κ)u

{
E [v(θu, q) | θ0 = `]− ξuq + κW (q)

}
du

where the second line follows from noting that −p0 + e−rtpt =
∫ t

0 e
−ru (ṗu − rpu) du, and the third

line follows after integrating against the exponential probability densities of the independent arrival

times τρ and τκ, and using the definition of ξu. Note that the last term can be integrated directly:∫∞
0 e−(r+ρ+κ)uκW (q) du = κ/(r+ρ+κ)W (q). Moving this term to the left–hand side and rearranging,

we find, after differentiating with respect to q:

Wq(q) =
r + ρ+ κ

r + ρ

∫ ∞
0

e−(r+ρ+κ)u

{
E
[
vq(θu, qu) | θ0 = `

]
− ξu

}
du.

To obtain the formula of the lemma, note that the first term can be integrated explicitly given that

E
[
v(θu, qu) | θ0 = `

]
= q − δe−γuqσ if q ≤ 1 and zero otherwise.

Calculation of equation (IV.2). The calculations are similar to the one for W (q). First the

inter-information-event utility writes, net of cost:

E
[ ∫ τκ∧τρ

t
e−r(u−t)v(θu, qt,u)− ptqt,t −

∫ τκ∧τρ

t
pudqt,u + I{τρ<τκ}e

−r(τρ−t)pτρqt,τρ

+ I{τκ<τρ}e
−r(τκ−t)

{
p0qt,τκ +W (qt,τκ)

} ∣∣∣∣ θt],
After substituting in equation (IX.14), the above can be re-written:

E
[ ∫ τκ∧τρ

t
e−r(u−t)v(θu, qt,u) du− pt,tqt,t −

∫ τκ∧τρ

t
pudqt,ue

−r(u−t) + e−r(τκ∧τρ−t)pτκ∧τρ

+e−r(τκ−t)I{τκ<τρ}
{
W (qt,τκ) + p0qt,τκ − pτκqt,τκ

} ∣∣∣∣ θt].
14One may wonder why we account for the re-selling-value of the asset at time τκ, p0q, even though no asset

is physically sold when the liquidity shock hits. The reason is that we need to cancel out the −p0q term which
is, by our accounting convention, included in the continuation value W (q).
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after integrating by part the second integral on the first line, we obtain:

E
[ ∫ τκ∧τρ

t
e−r(u−t)

{
v(θu, qt,u)− (rpu − ṗu)qt,u

}
du+ e−r(τκ−t)I{τκ<τρ}

{
W (qt,τκ) + p0qt,τκ − pτκqt,τκ

} ∣∣∣∣ θt].
Formula (IV.2) follows after integrating against the exponential densities of the independent random

times τρ and τκ.

IX.3.2 Calculation of Qh,u

Solving for Qh,u. First we note that, if Qh,u > α−1
u,u, then both Qh,u ≥ 1 and αt,uQh,u ≥ 1, and

so equation (IV.6) cannot hold. Therefore, Qh,u ∈ [0, α−1
u,u]. But, over this interval, the left–hand side

of (IV.6) is strictly increasing, negative for Qu = 0, and strictly positive for Qu = α−1
u,u. We conclude

that equation (IV.6) has a unique solution. Keeping in mind that from Lemma IV.2, equilibrium asset

holdings lie in [0, 1], we we can solve for Qh,u in three steps.

Step 1: suppose qh,u < 1. Then, since αt,u < 1, q`,t,u < 1 as well. Hence, the market–clearing

condition (IV.6) implies:

Qh,u =

∫ u
0 ρe

−ρ(u−t)s dt∫ u
0 ρe

−ρ(u−t)
{
µht + (1− µht)αt,u

}
dt
. (IX.15)

Conversely, if the above Qh,u is less than 1, we have found the equilibrium Qh,u. Otherwise, we move

to the next step.

Step 2: suppose qhu = 1 and q`,0,u < 1. Then, given that αt,u ≤ α0,u, we have q`,t,u < 1 for all

t. Hence, the market–clearing condition (IV.6) implies:

Qh,u =

∫ u
0 ρe

−ρ(u−t)(s− µht) dt∫ u
0 ρe

−ρ(u−t)(1− µht)αt,u dt
.

Conversely, if the above Qh,u is less than 1, we have found the equilibrium Qh,u. Otherwise, we move

to the last step.

Step 3. Having excluded the configuration of Step 1 and Step 2, we know that, in equilibrium,

qh,u = 1 and q`,0,u = 1 . Note that q`,u,u < 1 otherwise the market would not clear. Thus, there is

some ψu < u such that q`,t,u = 1 for all t > ψu and q`,t,u = 1 for all t ≤ ψu. For t = ψu, αψu,uQh,u = 1.

The market–clearing condition delivers Qh,u and ψu:

Qh,u = α−1
ψu,u

=

∫ u
0 ρe

−ρ(u−t)(s− µht) dt−
∫ ψu

0 ρe−ρ(u−t)(1− µht) dt∫ u
ψu
ρe−ρ(u−t)(1− µht)αt,u dt

.

83



IX.3.3 Proof of Lemma IV.4

We start by calculating C. We multiply both sides of equation (IV.7) by e−(r+ρ+κ)u and integrate

from 0 to ∞. Using the definition of the constant C, in Lemma IV.1, this leads to:

r + ρ

r + ρ+ κ
C =

1

r + ρ
− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)

∫ ∞
0

e−(r+ρ+κ)uQσh,u du−
κ

r + ρ+ κ
C

Solving for C leads to:

C =
1

r + ρ
− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)

∫ ∞
0

e−(r+ρ+κ)uQσh,u du.

Plugging this back into equation (IV.7), we obtain:

ξu = 1− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)

[
Qσh,u −

∫ ∞
0

κe−(r+ρ+κ)zQσh,z dz

]
.

Now integrating the ODE (r + κ)pu = ξu + κp0 + ṗu, we obtain:

p0 =

∫ ∞
0

e−(r+κ)uξu du+
κ

r + κ
p0

⇔ rp0 =

∫ ∞
0

e−(r+κ)u(r + κ)ξu du

⇔ rp0 = 1− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)

∫ ∞
0

[
(r + κ)e−(r+κ)u − κe−(r+ρ+κ)u

]
Qσh,u du

where, in the first equality, limu→+∞ e
−(r+κ)upu = 0 follows from the no–bubble assumption, and the

last equality follows from plugging in the above expression for ξu. The Lemma follows after plugging

both the expression for ξu and p0 into (IV.7).

IX.3.4 Approximation of Qh,u for large u

In this section we compute a first-order approximation for u > Tmax. Using equation (IX.15), is

straightforward to verify that Qh,u < 1 for u > Tf . We then consider Tmax > Tf so that Qh,u is given

by equation (IX.15) and for now consider ρ > γ. The denominator of (IX.15) is, using the formula

(IV.5) for αt,u:

∫ u

0
ρe−ρ(u−t)

[
µht + (1− µht)

(
1 +

r + ρ+ γ

κ

1− µhu
1− µht

)−1/σ
]
dt

=

∫ u

0
ρe−ρt

[
1− e−γ(u−t) + e−γ(u−t)

(
1 +

r + ρ+ γ

κ
e−γt

)−1/σ
]
dt

=1− e−ρu − e−γu
∫ u

0
ρe−ρteγt

[
1−

(
1 +

r + ρ+ γ

κ
e−γt

)−1/σ
]
dt = 1− ke−γu + o(e−γu)
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where the first equality comes from the change of variable t → u − t. When u goes to infinity the

integral in the third line is convergent since the term in brackets is equivalent to (r+ ρ+ γ)/(σκ)e−γt

when t → +∞. The last equality follows after letting k be the limit of the integral when u goes to

infinity, and noting that, since ρ > γ, e−ρu = o(e−γu) Next, we note that is s(1− e−ρu) = s+ o(e−γu).

Taken together, these two approximations allow us to write:

Qh,u = s
(
1 + ke−γu

)
+ o(e−γu).

We then make the approximations:

Qh,u ≈ s+ e−γ(u−Tmax)(Qh,Tmax − s)

Qσh,u ≈ sσ + e−γ(u−Tmax)σsσ−1(Qh,Tmax − s)

for u > Tmax. Therefore we can approximate the integral in the ODE by∫ Tmax

0

(
e−(r+κ)z − e−(r+ρ+κ)z

)
Qσh,z dz

+sσ

(
e−(r+κ)Tmax

r + κ
− e−(r+ρ+κ)Tmax

r + ρ+ κ

)
+ σsσ−1(Qh,Tmax − s)

(
e−(r+κ)Tmax

r + κ+ γ
− e−(r+ρ+κ)Tmax

r + ρ+ κ+ γ

)
.

It remains to compute pTmax . We rewrite the ODE as

(r + κ)pu − ṗu = constant− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)
Qσh,u,

where the constant can be computed using the approximation of the integral shown above. Then,

after integrating and plugging in the approximation for Qσh,u, we obtain:

pTmax =

∫ +∞

Tmax

e−(r+κ)(u−Tmax)

(
constant− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)
Qσh,u

)
du

≈ constant

r + κ
− δκ(r + ρ+ κ)

(r + ρ)(r + ρ+ κ+ γ)

(
sσ

r + κ
+
σsσ−1(Qh,Tmax − s)

r + κ+ γ

)
.
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IX.4 Proof for Section VI

In all what follows 0 = τ0 < τ1 < τ2 < . . . denotes the sequence of information events.

IX.4.1 Proof of Lemma VI.2

We proceed in three steps. We start with a preliminary calculation, then we show the two points of

the lemma in turn.

A preliminary calculation. We start with a preliminary result:

R IX.9. Consider a change of the asset holding plan from q to q̂ such that, for all ω ∈ Ω and all

information event times τn: qτn,z − q̂τn,z ≥ 0, qτn,z − q̂τn,z = 0 for z /∈ [t, u], and qτn,z − q̂τn,z is

increasing in z ∈ [t, u]. Suppose that, the change in holding plan involves a limit order to buy the

quantity qτn,u − q̂τn,u ≥ 0 with limit price pu+ + η. Then, the change in holding plan induces a change

in expected utility E [∆V ] ≥ E [X], where

X =
∞∑
n=1

I{τn<u}(qτn,u − q̂τn,u)K, (IX.16)

where K is the constant of equation (VI.2), page 31.

To prove this result we first note that, for any realization of ω ∈ Ω, the change of asset holding

plan first induces a change in the investor’s utility flow for assets

∞∑
n=1

∫ τn+1

τn

e−rz
[
v
(
q̂τn,z

)
− v
(
qτn,z

)]
dz ≤ 0,

where we omit the dependence of v( · ) on θ to simplify notations. The gains come up because the

investor sells high during (t, u] and buys low at u+. We add together the trading gains from every

time interval [τn, τn+1], with our usual accounting convention that the trader buys her initial holding

at time τn, and re-sell her final holding at time τn+1. We use the integration by part argument of

Section A.1, page 35 in BHW, accounting for the fact that both ∆τn,z and pz have a discontinuity at

time u. We find that the trading gains can be written:

∞∑
n=1

[ ∫ τn+1

τn

e−rz (rpz − ṗz) (qτn,z − q̂τn,z) dz

+I{τn≤u}I{τn+1>u}e
−ru (qτn,u − q̂τn,u) (pu − pu+ − η)

]
. (IX.17)

The first term is our usual expression for inter-temporal holding costs. The second term, on the

other hand, accounts for the fact that the last purchase of qτn,u − q̂τn,u does not occur at price pu, as
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implicit assumed in the first integral, but at price pu+ + η. Note that many terms are equal to zero as

qτn,z = q̂τn,z whenever z /∈ [t, u]. The details are in Section IX.4.2, page 91.

Taken together, we find that the change in utility can be written:

∆V =
∞∑
n=0

[∫ τn+1

τn

e−rz
[
v(q̂τn,z)− v(qτn,z) + (qτn,z − q̂τn,z)(rpz − ṗz)

]
dz

+ I{τn≤u}I{τn+1>u}e
−ru(qτn,u − q̂τn,u) (pu − pu+ − η)

]
.

By our maintained assumption, qτn,z− q̂τn,z ≥ 0. Moreover, by Lemma VI.1, we have that rpz− ṗz ≥ 0.

Lastly, marginal utility is bounded above by one. This allows us to bound ∆V below by:

∆V ≥
∞∑
n=0

[
−
∫ τn+1

τn

e−rz (qτn,z − q̂τn,z) dz

+ I{τn≤u}I{τn+1>u}e
−ru(qτn,u − q̂τn,u) (pu − pu+ − η)

]
.

Now, if z ≥ u, then qτn,z − q̂τn,z = 0, while if z < u, qτn,z − q̂τn,z is increasing and is thus less than

qτn,u − q̂τn,u. Therefore:

∆V ≥
∞∑
n=0

I{τn≤u}(qτn,u − q̂τn,u)

[
−
∫ u

τn∨t
e−rzI{τn+1≥z} dz + I{τn+1>u}e

−ru (pu − pu+ − η)

]
.

Next apply the law of iterated expecations: for each term n in the above expression, take expectations

conditional on Fτn , and then unconditional expectations. This implies that E [∆V ] ≥ E [Y ], where

Y =
∑∞

n=1 Yn, and Yn is the expectation of term n conditional on Fτn . Note that qτn and q̂τn are

both Fτn measurable and that, conditional on Fτn , τn+1 − τn is an exponential random variable with

parameter ρ, so E
[
I{τn+1≥z}

]
= e−ρ(z−τn) for z ≥ τn. We thus obtain:

Y =
∞∑
n=1

I{τn<u}(qτn,u − q̂τn,u)eρτn
[
−
∫ u

τn∨t
e−(r+ρ)z dz + e−(r+ρ)u (pu − pu+ − η)

]

≥
∞∑
n=1

I{τn<u}(qτn,u − q̂τn,u)

[
−
∫ u

t
e−(r+ρ)z dz + e−(r+ρ)u (pu − pu+ − η)

]
≡ X

where the last inequality follows from integrating over the larger interval [t, u], using equation (VI.2),

and noting that eρτn ≥ 1

Proof of point 1 in Lemma VI.2. There are three cases to consider.

When the price is strictly decreasing over [t, u]. Consider, for k ≥ 1:

Ck =

{
ω ∈ Ω : τk ∈ [t, u] and qτk,u > 0

}
(IX.18)
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the set of events such that the information process jumps for the k-th time during [t, u] and the investor

holds a strictly positive amount of asset at time u. Consider the following deviation: whenever there

is an information event at some τn ∈ [t, u], sell all your holdings, keep all the limit orders executed

after time u, and submit a limit order to buy back whatever you were planning to hold after u. By

construction, this deviation keeps asset holdings the same for all z /∈ [t, u]. Moreover, because the

price is strictly decreasing, the only limit orders that can be executed over [t, u] are limit buy orders,

implying that for all τn ∈ [t, u], qτn,z − q̂τn,z = qτn,z has to be increasing in z ∈ [τn, u]. Therefore,

Result RIX.9 applies and the expected change in utility is greater than E [X], for X of (IX.16). By

construction, we have X ≥ 0 so E [X] ≥ 0. Now if the original asset holding plan is optimal, then

0 ≥ E [∆V ] ≥ E [X]. Thus E [X] = 0. Consequently, since X ≥ 0, X = 0 almost surely. But, by

definition of Ck, X > 0 for all ω ∈ Ck: it thus follows that P (Ck) = 0. To conclude, note that if

τu ≥ t, then there is some n ≥ 1 such that τn ∈ [t, u]. Therefore, the event C = {τu ≥ t and qτu,u > 0}
is included in the union of the sets Ck, and P (C) = 0 as well.

When the price is strictly increasing over [t, u]. Consider the same set Cn as in (IX.18) and the

following deviation: whenever there is an information event at some τn ∈ [t, u], submit a limit order

to sell all your holdings with a limit price just below pu, and simultaneously a limit order to buy these

holdings back at price pu+ + η. For all τn ∈ [t, u], qτn,z − q̂τn,z equal to zero until u and positive at u,

therefore Result RIX.9 applies, and the result follows from the same argument as before.

When the price is flat over [t, u]. We have several case to consider.

1. Suppose the information process jumps for k-th time during [t, u], and that qτk,u > 0, i.e., under

the original holding plan asset holdings are strictly positive at time u. Suppose also that when

the information process jump there is a positive measure of limit sell orders in the book at price

pu. Formally, consider the set of events, for k ≥ 1:

CAk =

{
ω ∈ Ω : τk ∈ [t, u], and qτk,u > 0, and at τk ∃ limit sell order at pu

}
,

Because of volume maximization, all limit buy orders at pu are executed immediately. So the

investor’s original asset holding plan qτk,z does not involve any asset purchase during (τk, u], i.e.,

qτk,z is decreasing during [τk, u]. Consider, then, the following deviation:

(a) If a limit order to sell at price pu is executed at some ZA ≤ u. Then, by time priority,

all limit sell orders at price pu submitted under the original holding plan must have been

executed by time ZA. Recall that the original holding plan does not involve any purchase

during (τk, u]. So, qτk,z is decreasing for z ∈ [τk, ZA], and constant for z ∈ (ZA, u]. Consider

then, the following deviation: keep all orders and submit an additional limit order to sell

all holdings at time ZA, and a limit order to buy back qτk,u at time u. If the information

process jumps again before ZA, cancel this order, and by doing so revert to qτk+1,z. If the

information process jumps again after ZA, then buy back the assets sold at time ZA, and
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submit the same orders as under the original plan to revert to the original holding plan

qτk+1,z. Taken together, this ensures that qτn,z − q̂τn,z is positive and increasing for n = k

and zero for n 6= k. Therefore Result RIX.9 applies.

(b) If a limit order to sell at price pu is executed after u, then keep all orders but immediately

sell qτk,u, and place a limit order to buy qτk,u back at time u. If the information process

jumps again before u, buy qτk,u back and cancel the limit buy order, and by doing so revert

to qτk+1,z. This deviation leads to qτn,z − q̂τn,z which is constant and strictly positive for

n = k, and zero for n 6= k. Again, Result RIX.9 applies.

In both cases, Result IX.9 implies that X ≥ 0 and X > 0 for all ω ∈ CAk. The same reasoning

as before then implies that P (CAk) = 0 for all k.

2. Suppose the information process jumps for k-th time during [t, u], that qτk,u > 0, and that at

time τk there is a positive measure of limit buy orders in the book at price pu. Formally, consider

the set of events, for k ≥ 1:

CBk =

{
ω ∈ Ω : τk ∈ [t, u], and qτk,u > 0, and at τk ∃ limit buy order at pu

}
Because of volume maximization, all limit sell orders at pu are executed immediately. So the

investor’s original asset holding plan qτk,z does not involve any asset sale during (τk, u], i.e., qτk,z

is increasing. Consider, then, the following deviation: sell everything immediately and cancel all

limit buy orders that would have been executed during [t, u]. At the same time, submit a limit

buy order to buy everything back at time u. Continue to hold zero as long as the information

process jumps at times when there are limit buy orders outstanding in the book. The first time

the information process jumps and there are not limit buy orders left in the book, then all the

limit buy orders the investor may have had under the original plan are executed. This allows

to revert to the original plan. Note that, as long as the information process jumps at times

τn ∈ [τk, u] such that there are limit buy orders in the book, then the original plan only has

limit buy order, and qτn,z − q̂τn,z = qτn,z is positive and increasing for z ∈ [τn, u], and zero for

z > u. After the first information event τn ∈ [τk, u] such that there are no limit buy orders left

in the book, then qτn,z − q̂τn,z = 0. In all cases, Result RIX.9 applies and the same reasoning as

before implies that P (CBk) = 0.

3. Suppose the information process jumps for k-th time, that qτk,u > 0, and that at time τk there

are no limit order outstanding at pu. Formally, consider the set of events, for k ≥ 1:

C0k =

{
ω ∈ Ω : τk ∈ [t, u], and qτk,u > 0, and at τk @ limit order at pu

}
,

Note that, in this case, all limit orders submitted at time τk are executed immediately, and

so the original plan qτk,z is constant. Consider, then, the following deviation: sell everything
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immediately at τk and revert to the original plan if the information process jumps again before

time u. Reverting to the original plan is feasible because, under both the deviation and the

original plan, the investor has no limit order outstanding to buy or sell at any time in (τk, u].

Note that the deviation leads to qτn,z− q̂τn,z = qτn,z, which is constant and positive for n = k and

zero for n 6= k. Result RIX.9 applies and the same argument as before implies that P (C0k) = 0.

This implies point 1. of Lemma VI.2 because, clearly, any ω such that τu ≥ t and qτu,u > 0 belongs

to either CAk, CBk, or C0k for some k.

Proof of Point 2 of Lemma VI.2. We first show:

RIX.10. All the limit orders submitted during (0, t) to be executed during [t, u] are of the same kind,

i.e., either all are limit buy orders, or all are limit sell orders.

The result is obvious if the price is strictly decreasing or increasing during [t, u], as only one kind

of order can be executed during [t, u]. Now if the price is flat during [t, u], suppose there are two times

z ≤ z′ < t such that, at time z investors submit a limit order to buy at price pu, executed during

[t, u] and at time z′ they submit a limit order to sell at price pu, executed during [t, u]. Since there

cannot be orders of two kinds in the book at the same price, at time z′ all limit buy orders at price

pu must have been executed. But this contradicts the fact that a limit buy order submitted at time z

is executed during [t, u].

In light of the Result just above, there are only two cases to consider:

If, during (0, t), investors submit limit sell orders to be executed during [t, u]. Then the result follows

immediately because the asset holdings of investors whose information process last jumped during

[0, t) must decrease during [t, u].

If, during (0, t), investors submit limit buy orders to be executed during [t, u]. Then the asset holdings

of investors whose information process last jumped during (0, t) must increase during [t, u]. Consider

then, the set, for k ≥ 1:

Ck =

{
ω ∈ Ω : τk ∈ (0, t) and qτk,u > qτk,t

}
,

and the following deviation. Whenever, under the original plan, you submit a limit order to buy

executed at some time z ∈ [t, u), submit instead a limit order to buy the same quantity at price

pu+ +η, which is executed at time u+. Note that this is feasible, since pu+ < pu. Whenever, under the

original holding plan, you cancel a limit order to buy executed at time z ∈ [t, u) then, in the deviation,

you cancel the same quantity of the corresponding order executed at time u. This deviation leads to

qτn,z − q̂τn,z = qτn,z − qτn,t, which is positive and increasing because, as noted at the beginning, qτn,z

is increasing during [t, u]. So Result RIX.9 applies, and the usual argument implies that P (Ck) = 0.

But the event C =
{
ω ∈ Ω : τu ∈ (0, t] and qτu,u > qτu,t

}
belongs to the union of the Ck’s, implying

that P (C) = 0 as well.
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IX.4.2 Calculations of trading gains

We use our usual accounting convention: we assume that a trader purchases her initial asset holding

qτn,τn at time τn, and sells her final asset holding qτn,τn+1 at time τn+1. Also, we let qτn,z = 0 for

z < τn: as will become clear shortly, this simplifies a bit the calculations, as the initial purchase of

qτn,τn is accounted for by the initial jump from qτn,τ−n = 0 to qτn,τn .

To calculate the trading gains, all we need to do is subtract the intertemporal payments associated

with q̂τn,z from the intertemporal payment associated with qτn,z. Clearly this is equivalent to calcu-

lating the payments associated with the “net” holding ∆τn,z ≡ qτn,z − q̂τn,z. We have, then, several

cases to consider.

If τn > u, or if τn+1 < t. Then the gains are zero, which is consistent with equation (IX.17) given

that, in these cases, ∆τn,z = 0 over [τn, τn+1].

If τn ≤ u and τn+1 > u. Then the gains can be written:∫
[τn∨t,u)

e−rzpzd∆τn,z dz + e−rupu
(
∆τn,u −∆τn,u−

)
− (pu+ + η) ∆τn,u.

The first integral account for the trading gains over the interval [τn ∧ t, u). The second term account

for the trading gains at time u. The last term accounts for the last purchase at time u+, with a limit

order to buy at price pu+ + η. Note that we do not need to account for the re-sale of ∆τn,τn+1 at

time τn+1, because when τn+1 > u we have ∆τn,τn+1 = 0. Next, using the integration by part formula

for Lebesgue-Stieltjes integral (see, for instance, Theorem 6.2.2 in Carter and Van Brunt, 2000) and

keeping in mind that pz is continuous over [t∨τn, u) and that pu = pu− , the above expressions simplifies

to: ∫ u

τn∨t
e−rz (rpz − ṗz) ∆τn,z dz + (pu − pu+ − η) ∆τn,u

=

∫ τn+1

τn

e−rz (rpz − ṗz) ∆τn,z dz + (pu − pu+ − η) ∆τn,u,

where the equality follows because ∆τn,z = 0 for z /∈ [t, u]. This is also consistent with (IX.17) given

that τn ≤ u and τn+1 > u.

If τn+1 = u. Then, the trading gains are:∫
[τn∨t,u)

e−rzpzd∆τn,z dz + e−rupu
(
∆τn,u −∆τn,u−

)
− pu∆τn,u.

where the last term arises because of our accounting convention that assets are sold at time τn+1 = u.

Proceeding as before we also arrive to equation (IX.17).

91



If τn ≤ u and τn+1 < u. Then, the trading gains are given by:∫
[τn∨t,τn+1]

e−rzpzd∆τn,z dz − pτn+1∆τn,τn+1 ,

and the same calculations lead to (IX.17).
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IX.5 Proof for Section VII

IX.5.1 Proof of Lemma VII.1

If there is some time t in a spot such that ṗt < 0 and 1 − rpt + ṗt < 0. Then, by our maintained

assumptions on the price path there is some interval [u1, u3] around t such that these inequalities hold

for all z in the interval. Now pick some u2 ∈ (u1, u3). We show:

RIX.11. For almost all ω ∈ Ω:

1. If τu2 ∈ [u1, u2], then qτu2 ,u2 = 0.

2. If τu2 ∈ (0, u1), then qτu2 ,u2 = qτu2 ,u1 = qτu1 ,u1.

The first point means that, if a trader has an information event after u1, then he holds zero at u2.

Otherwise, by the second point, the trader has the same holding at u1 and u2. Taken together, these

two properties contradict market clearing at time u2.

A preliminary calculation before proving Result IX.11. Consider a deviation q̂ such that,

for all ω and all information times τn, q̂τn,z = qτn,z for all z /∈ [u1, u3), and q̂τn,z is constant and less

than qτn,z for z in [u1, u3). The realized utility of the deviation is:

∆V =
∞∑
n=1

∫ τn+1

τn

e−rz [v(q̂τn,z)− v(qτn,z)− (rpz − ṗz) (q̂τn,z − qτn,z)] dz

≥
∞∑
n=1

∫ τn+1

τn

e−rz [−1 + rpz − ṗz] [qτn,z − q̂τn,z] dz

≥
∞∑
n=1

I{τn≤u2}I{τn+1≥u3}

∫ u3

u2

e−rz [−1 + rpz − ṗz] [qτn,z − q̂τn,z] dz

≥
∞∑
n=1

I{τn≤u2}I{τn+1≥u3}

∫ u3

u2

e−rz [−1 + rpz − ṗz] dz ×
[
qτn,u2 − q̂τn,(u1∨τn)

]
(IX.19)

where, as usual, we omit the dependence of v( · ) on θ to simplify notations. The second line follows

because of our maintained assumption that qτn,z ≥ q̂τn,z and by noting that marginal utility is bounded

above by 1. The third line follows by noting that the integrand in the second line is positive since

qτn,z − q̂τn,z ≥ 0 for z ∈ [u1, u3), and equal to zero for all z /∈ [u1, u3). Therefore, we obtain a

lower bound after multiplying term n by I{τn≤u2}I{τn+1≥u3}, and integrating over the smaller interval

[u2, u3] ⊆ [τn, τn+1]. The fourth line follows by noting that, since the price is decreasing over [u1, u3),

only limit buy orders can be executed: qτn,z is increasing and so for z ∈ [u2, u3] it is greater than qτn,u2 .

On the other hand, q̂τn,z is constant for z ∈ [u1, u3) by construction. Now apply the law of iterated

expectations: take first expectations of each term on the right–hand side of (IX.19) conditional on

Fτn , and then take unconditional expectations. We find that E [∆V ] ≥ E [X], where X =
∑∞

n=1Xn

and Xn is the expectation of term n in (IX.19) conditional on Fτn . To calculate X, note that, because
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the information process has independent increments and is independent from the type process, the

indicator function I{τn+1≥u3} = I{τn+1−τn≥u3−τn} is independent from Fτn . Also, by definition of a

holding plan, both qτn,u2 and q̂τn,(u1∨τn) are measurable with respect to Fτn . Therefore:

X =
∞∑
n=1

I{τn≤u2}e
−ρ(u3−τn)

∫ u3

u2

e−rz [−1 + rpz − ṗz] dz ×
[
qτn,u2 − q̂τn,(u1∨τn)

]
Proof of point 1 of Result IX.11. Consider, then, the set, for k ≥ 1:

Ck =

{
ω ∈ Ω : τk ∈ [u1, u2] and qτk,u2 > 0

}
and the following deviation. Whenever the information process jumps at τn ∈ [u1, u3), hold zero

asset until u3, and revert the your original plan at time u3. This can be achieved by placing a limit

order to buy qτn,u3 at time u3, and keeping all the limit orders to be executed after u3 the same. By

construction, the deviation coincides with the original holding plan for z /∈ [u1, u3), and is equal to

zero for z ∈ [u1, u3). Thus the preliminary calculation applies. Note also that, in the random variable

X of the preliminary calculation, if τn < u1, then q̂τn,u2 = qτn,u2 and term n is zero. On the other

hand, if τn ∈ [u1, u2], then q̂τn,u2 = 0 and term n is positive . Therefore,

X =
∞∑
n=1

I{τn∈[u1,u2]} × e−ρ(u3−τn)

∫ u3

u2

e−rz [−1 + rpz − ṗz] dz × qτn,u2 .

One sees that X is positive and strictly positive for ω ∈ Ck. But if the original plan is optimal we must

have that 0 ≥ E [∆V ] ≥ E [X]. Thus E [X] = 0. Consequently, since X ≥ 0, X = 0 almost surely. But

X > 0 for ω ∈ Ck. It thus follows that P (Ck) = 0. Now C =
{
ω ∈ Ω : τu2 ∈ [u1, u2] and qτu2 ,u2 > 0

}
belongs to the union of the Ck’s, and so P (C) = 0 as well.

Proof of point 2 of Result IX.11. Consider then, the set, for k ≥ 1:

Ck =

{
ω ∈ Ω : τk ∈ (0, u1) ∧ qτk,u2 > qτk,u1

}
and the following deviation, q̂:

• Whenever under the original plan, q, you submit a limit order to buy at price pz, to be executed

at some time z ∈ [u1, u3), replace it by a limit buy order with limit price pu3 , executed at time

u3. This is feasible because the price is strictly decreasing at u3, and is strictly below the price

at any z ∈ [u1, u3). Therefore, if it possible to submit a limit order to buy at pz, to be executed

at z ∈ [u1, u3), then by the price priority rule a limit order to buy at price pu3 is to be executed

at time u3.

• Whenever under the original plan, q, you cancel some previously submitted limit order to buy at
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price pz, executed at z ∈ [u1, u3) then, under the deviation, cancel the corresponding quantity

of limit buy orders at price pu3 . To see why this is feasible, note the following. If under the

original plan, q, you can cancel an outstanding order to buy at price pz executed at time z, then

by the time priority rule it must be the case that, under the deviation, q̂, the corresponding

“replacement” order at price pu3 , executed at time u3, is still outstanding. So you can cancel it

as well.

By construction, q̂τn,z coincides with qτn,z for z /∈ [u1, u3). For z ∈ [u1, u3), q̂τn,z remains constant,

equal to qτn,u1 if τn ≤ u1, and to qτn,τn otherwise. Therefore, the preliminary calculation applies.

Multiplying each term in X by I{τn<u1}, which is less than one, we find that:

X =
∞∑
n=1

I{τn<u1}e
−ρ(u3−τn)

∫ u3

u2

e−rz [−1 + rpz − ṗz] dz × [qτn,u2 − q̂τn,u1 ]

Clearly this lower bound of X is positive and strictly positive for ω ∈ Ck, and the usual argument

implies that P (Ck) = 0 Next, note that C =
{
ω ∈ Ω : τu ∈ (0, u1) and qτu2 ,u2 > qτu2 ,u1

}
belongs to

the unions of the Ck’s, and therefore P (C) = 0.

IX.5.2 Proof of Lemma VII.2

Before proving Lemma VII.2 we need to establish two preliminary results.

A first preliminary result. The first preliminary result is:

R IX.12. Assume that pz > 1/r for all z ≥ t > 0, and that there is a flat spot (u1, u3) with u1 ≥ t.

Then, for all u2 ∈ (u1, u3), if τu2 ∈ (0, u1) then qτu2 ,u2 = qτu2 ,u3.

This shows that the investor wants to keep his holding constant over (u1, u3). The intuition is

clear: it is always better to sell just before u1 because the asset is “over-priced” relative to its utility

flow, and there is no capital gain to make during the flat spot.

To prove Result IX.12 we exhibit a profitable deviation when τu2 < 1 and qτu2 ,u2 6= qτu2 ,u3 .

Utility of a deviation. Consider a change in asset holding from qτn,z to q̂τn,z such that:

qτn,z ≥ q̂τn,z, qτn,z = q̂τn,z for all z /∈ [u1, u3], and qτn,z − q̂τn,z is decreasing in z ∈ [u1, u3]. Keeping in

mind that pz = pu1 for z ∈ [u1, u3], the realized change in utility is greater than:

∞∑
n=1

∫ τn+1

τn

e−rz (qτn,z − q̂τn,z) (−1 + rpz − ṗz) dz

= (rpu1 − 1)
∞∑
n=1

I{τn≤u3}
∫ u3

u1∨τn
e−rzI{τn+1≥z} (qτn,z − q̂τn,z) dz.
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Under our assumption that qτn,z − q̂τn,z ≥ 0 and is decreasing in z, this is greater than:

(rpu1 − 1)
∞∑
n=1

I{τn<u1}(qτn,u2 − q̂τn,u2)

∫ u2

u1

I{τn+1≥z}e
−rz dz.

Taking expectations conditional on Fτn in each term we find that the net utility of the deviation

is greater than E [X], where:

X =

∞∑
n=1

I{τn<u1}(qτn,u2 − q̂τn,u2)eρτn
∫ u2

u1

e−(r+ρ)z dz

The deviation. Note first that since u1 is the start of a flat spot and pu1 > 1/r, then the price

is strictly increasing just before u1. Therefore, if τn < u1, then the asset holding plan qτn,z cannot

contain limit buy orders executed during [u1, u3], and is thus decreasing. Consider, then, for n ≥ 1:

Ck =

{
ω ∈ Ω : τk ∈ (0, u1) and qτk,u2 > qτk,u3

}
,

and the following deviation.

• Whenever you have an information event τn ∈ (0, u1) and submit a limit sell order executed

during [u1, u3], cancel that limit sell order and replace it by a limit sell order for the same quantity

executed just before u1. Subsequently, if under the original plan you cancel a limit sell order

executed during [u1, u3] then, under the deviation, cancel the same quantity of corresponding

limit sell orders executed at time u1. By construction q̂τn,z = qτn,u3 for τn ∈ (0, u1) and

z ∈ [u1, u3]. Moreover, since prior to u1 it is only possible to submit limit sell orders executed

during [u1, u3], then it must be that, for τn < u1, qτn,z is decreasing in z ∈ [u1, u3], and therefore

qτn,z − q̂τn,z = qτn,z − qτn,u3 must be decreasing as well.

• Whenever you have an information event at some time τn ∈ [u1, u3] when limit sell orders are

executed, then under the original plan the asset holding must be decreasing over [τn, u3]. In

that you keep all your limit orders executed after u3 the same and chooses q̂τn,z = qτn,u3 for

z ∈ [τn, u3]. As before, qτn,z − q̂τn,z = qτn,z − qτn,u3 is decreasing.

• Lastly, the first time you an information during [u1, u3] and limit buy orders at price pu1 are

executed, then under both the original plan and under the deviation, all the previously submitted

limit sell orders at price pu1 must have been executed. You can then revert to the original plan.

Clearly, in that case, qτn,z − q̂τn,z = 0 and is thus decreasing.

Note that by construction, asset holdings before and after u3 are the same in the deviation as in the

original plan. This deviation allows to apply the preliminary calculation. Note that X ≥ 0 and X > 0

for all ω ∈ Ck. The usual argument then implies that P (Ck) = 0. Then let C =
{
ω ∈ Ω : τu2 ∈
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(0, u1) and qτu2 ,u2 > qτu2 ,u3
}

, and note that C belongs to the union of the Ck’s, and thus P (C) = 0

as well.

A second preliminary result. To state the second preliminary result, we define, for any t ≤ u:

f(t, u) ≡
∫ u

t
e−(r+ρ)z (1− rpz + ṗz) dz

=

∫ u

t
e−(r+ρ)z (1− (r + ρ)pz + ṗz) dz + ρ

∫ u

t
e−(r+ρ)zpz dz

=

(
1

r + ρ
− pt

)
e−(r+ρ)t −

(
1

r + ρ
− pu

)
e−(r+ρ)u + ρ

∫ u

t
e−(r+ρ)zpz dz.

Clearly, the function f(t, u) is continuous and, as u→∞, it converges to

f(t,∞) =

(
1

r + ρ
− pt

)
e−(r+ρ)t + ρ

∫ ∞
t

e−(r+ρ)zpz dz. (IX.20)

RIX.13. Assume that pt → p∞ > 1/r. Then, for all T ≥ 0, there exists t > T such that f(t, u) < 0

for all u > t.

Consider that pt → p∞ > 1/r. We first note that f(t,∞) < 0 as long as t is large enough. This

follows because, as t→∞,

f(t,∞)e(r+ρ)t →
(

1

r + ρ
− p∞

)
+

ρ

r + ρ
p∞ =

1− rp∞
r + ρ

< 0,

since p∞ > 1/r.

Now, by the above remark, for any T ≥ 0, we can pick some t > T such that f(t,∞) < 0. If

f(t, u) < 0 for all u > t, we are done. Otherwise, let t′ be the last time greater than t such that

f(t, t′) ≥ 0. By continuity f(t, t′) = 0 and f(t, u) < 0 for all u > t′. Then, by equation (IX.20),

f(t′, u) = f(t, u)− f(t, t′) = f(t, u) < 0

for all u > t′, and we are done.

Concluding the proof of Lemma VII.2. Suppose that the price eventually becomes greater

than 1/r.

There are two cases to consider. The first case is when the price is constant and greater than 1/r

at all times. Then, clearly, no investor want to hold the asset at any time, and the result follows. In

the other case, if the price is not constant at all time, then there there must be an increasing spot

where pz > 1/r.15 Then, by Corollary VII.1, ṗz ≥ 0 for all z following this increasing spot. and thus

15Indeed, either p0 > 1/r and the result follows, or p0 ≤ 1/r and then the price has to increase above 1/r.
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pz → p∞ > 1/r. This allows to apply Result RIX.13: we can find some time t after the increasing

spot such that pt > 1/r, f(t,∞) < 0 and f(t, u) < 0 for all u > t. If the time t delivered by Result

RIX.13 lies in the interior of some flat spot replace it by the lower bound of the flat spot. Clearly,

since 1− rpz < 0 over the flat spot, the lower bound of the flat spot also also satisfies f(t, u) < 0 for

all u > t. Note that, by construction, the price is strictly increasing in a left neighborhood of t.

Let T < t be the lower bound of the increasing spot to the left of t. By construction, to the left

of T , the price is either flat or strictly decreasing. To the right of T , the price is strictly increasing,

and increasing forever after. This implies that no limit buy order submitted before T can be executed

after T . Therefore, for all τn < T , qτn,z has to be decreasing in z ≥ T .

Now consider information events occurring at τn ∈ [T, t]. Because the price is strictly increasing

just before t and increasing after, it follows that the asset holding plan qτn,z can only contain limit

sell orders for z ≥ t, and is thus decreasing in z. Moreover, by Result RIX.12, the holding plan qτn,z

remains constant during all flat spots after t: this implies in particular that all the limit sell orders

contained in qτn,z are executed during increasing spots. Now we claim that, almost surely, qτn,z = 0

for all z ≥ t. Indeed, consider:

Cn =

{
ω ∈ Ω : τn ∈ [T, t] and qτn,z > 0 for some z ≥ t

}
,

and the following deviation. If the n-th information event occurs during [T, t], place a limit sell order

to sell all the assets just before t, and revert to the original plan at the next information event – such

a one-stage deviation is feasible because, by Corollary VII.1, all limit sell orders after t are executed

during increasing spots. As usual, we apply the law of iterated expectations and calculate the expected

net utility of the deviation by first conditioning with respect to Fτn . We find that the expected net

utility of the deviation is greater than E [X], where:

X =− I{τn∈[T,t]}e
ρτn

[ ∫ ∞
t

e−(r+ρ)u(1− rpu + ṗu)qτn,u du

]
=− I{τn∈[T,t]}e

ρτn

[ ∫ ∞
t

∂f

∂u
(t, u)qτn,u du

]
=− I{τn∈[T,t]}e

ρτn

[ ∫ ∞
t

f(t, u) dqτn,u + f(t,∞)qτn,∞

]
,

where the last line follows by integration by part after noting that f(t, t) = 0.16

Now, X is always positive given that f(t, u) < 0, f(t,∞) < 0 and qτn,u is decreasing. It is strictly

positive for ω ∈ C. Indeed, there is two cases to consider. Either qτn,∞ > 0 and the result follows.

Or qτn,∞ = 0 and the result follows because f(t, u) is negative everywhere and, for all ω ∈ Cn, qτn,u

must be strictly decreasing somewhere in [t,∞). But the expected utility of the deviation has to be

negative, implying that E [X] = 0 and thus that X = 0 almost everywhere. Thus, P (Cn) = 0, which

16Note also that the last integral is well defined: indeed, f(t, u) is bounded, and because qτn,u is bounded and
decreasing over [t,∞), u 7→ −qτn,u is a finite measure over [t,∞).
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establishes the claim.

The above shows that traders whose last information event occurred during (0, T ) hold less asset at

time t than at time T , while traders whose last information event occurred during [T, t] hold nothing

at time t. Our usual argument then implies that the market cannot clear at time t.

IX.5.3 Proof of Corollary VII.3

There are two cases to consider, depending on whether, at τu2 , the investor can submit limit buy or

limit sell orders executed during [τu2 , u2)

Suppose first that the price is strictly decreasing over [u1, u3], or that it is flat. Suppose that

τk ∈ [u1, u2) and that, at time τk, there are limit buy orders at price pu2 in the book. In that case, at

time τk, the trader can only submit limit buy orders executed during (τk, u2]. Formally, we consider

the set of events, for k ≥ 1:

CBk =

{
ω ∈ Ω : τk ∈ [u1, u2) and θτk = h and qτk,u2 < 1

and, at time τk, you can only submit limit buy orders executed during (τk, u2]

}
and the deviation consisting in buying one unit of asset at τk and holding it forever, i.e. q̂τk,z = 1 for

all z ≥ τk. Note that, since the investor can only submit buy orders at τk, his asset holding must be

weakly increasing during (τk, u2], so qτk,z ≤ qτk,u2 < 1 for z ∈ [τk, u2). The net utility of the deviation

writes:

∆V = I{τk∈[u1,u2)}

∞∑
n=k

∫ τn+1

τn

e−rz
[(

1−min{qτn,z, 1}
)(

1− rpz + ṗz
)

+
(
qτk,z −min{qτk,z, 1}

)(
rpz − ṗz

)]
dz

≥ I{τk∈[u1,u2)}I{τk+1>u2}

∫ u2

τk

e−rz
(
1−min{qτk,u2 , 1}

)(
1− rpz + ṗz

)
dz

where the inequality holds because all integrands in the initial expression for ∆V are positive: so

we obtain a lower bound by ignoring terms n 6= k, and then multiplying by the indicator function

I{τk+1>u2}. Taking expectations conditional on Fτk , we find that E [∆V ] ≥ E [X], where

X = I{τk∈[u1,u2)}e
−ρ(u2−τk)

∫ u2

τk

e−rz
(
1−min{qτk,u2 , 1}

)(
1− rpz + ṗz

)
dz.

Clearly, X ≥ 0 and X > 0 for ω ∈ CBk, implying as usual that P (CBk) = 0.

Now consider the second case: the price is strictly increasing over [u1, u3], or it is flat and the

information process jumps for the k-th time at time τk ∈ [u1, u2) when there are limit sell orders at

price pu2 . In that case, at time τk, the investor can only submit limit sell orders executed during
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(τk, u2]. Consider then, for k ≥ 1:

CAk =

{
ω ∈ Ω : τk ∈ [u1, u2) and θτk = h and qτk,u2 < 1

and, at time τk, you can only submit limit sell orders executed during (τk, u2]

}
and the deviation consisting in buying one unit of asset at τk and holding it forever, i.e. q̂τk,z = 1 for

all z ≥ τk. Note that, since the investors can only submit sell orders at τk, his asset holding must be

weakly decreasing during [u2, u3], so qτk,z ≤ qτk,u2 < 1 for z ∈ [u2, u3]. As in the first case, the utility

of the deviation is:

∆V = I{τk∈[u1,u2)}

∞∑
n=k

∫ τn+1

τn

e−rz
[(

1−min{qτn,z, 1}
)(

1− rpz + ṗz
)

+
(
qτk,z −min{qτk,z, 1}

)(
rpz − ṗz

)]
dz

≥ I{τk∈[u1,u2)}I{τk+1>u3}

∫ u3

u2

e−rz
(
1−min{qτk,u2 , 1}

)(
1− rpz + ṗz

)
dz.

Taking expectations conditional on Fτk we obtain that E [∆V ] ≥ E [X], where

X = I{τk∈[u1,u2)}e
−ρ(u3−τk)

∫ u3

u2

e−rz
(
1−min{qτk,u2 , 1}

)(
1− rpz + ṗz

)
dz.

As usual X is positive and strictly positive for ω ∈ CAk, implying that P (CAk) = 0.

Lastly, in the case the order book is empty at time τk, we consider:

C0k =

{
ω ∈ Ω : τk ∈ [u1, u2) and θτk = h and qτk,u2 < 1

and, at time τk, you cannot submit limit orders executed during (τk, u2]

}
and we can apply either one of the argument above to argue that P (C0k) = 0.

To conclude, we note that C =
{
ω ∈ Ω : τu2 ∈ [u1, u2) and θτu2 = h and qτu2 ,u2 < 1

}
is

included in the union of the CBk, CAk, and C0k, and therefore that P (C) = 0.

IX.5.4 Proof of Lemma VII.3

To complete the proof in case 1, it remains to show two points: (i) high-valuation investors who have

an information event during [u1, u2] hold more than one unit at u3; (ii) market clearing at time u3 is

not satisfied.

To complete the proof in case 2, it remains to show Lemma VII.4.
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Proof of point (i). As usual, we consider:

Ck =

{
ω ∈ Ω : τk ∈ [u1, u2], and θτk = h, and qτk,u3 < 1

}
,

and the deviation consisting in submitting a limit buy order just before time u2 in order to hold one

unit forever from then on. The utility of the deviation is:

∆V = I{τk∈[u1,u2)}

∞∑
n=k

∫ τn+1∨u2

τn∨u2
e−rz

[(
1−min{qτn,z, 1}

)(
1− rpz + ṗz

)
+
(
qτk,z −min{qτk,z, 1}

)(
rpz − ṗz

)]
dz

≥ I{τk∈[u1,u2)}I{τk+1≥u4}

∫ τk+1

u2

e−rz
(
1−min{qτk,z, 1}

)(
1− rpz + ṗz

)
dz,

where the inequality is obtained as before, after noting that all the intregrands in ∆V are positive, and

so we obtain a lower bound by ignoring terms and multiplying everything by the indicator function

I{τk+1>u4}.

Now if the price is strictly increasing over [u2, u4], we continue the lower-bound calculation as

follows:

∆V ≥ I{τk∈[u1,u2)}I{τk+1≥u4}

∫ u4

u3

e−rz
(
1−min{qτk,u3 , 1}

)(
1− rpz + ṗz

)
dz,

where the inequality follows by integrating over the smaller interval [u3, u4] and by noting that since

the price is strictly increasing over [u3, u4], z 7→ qτk,z is decreasing over [u3, u4]. We then follow the

usual reasoning: we take expectations conditional on Fτk and obtain that E [∆V ] ≥ E [X] where:

X = I{τk∈[u1,u2)}e
−ρ(u4−τk)

∫ u4

u3

e−rz
(
1−min{qτk,u3 , 1}

)(
1− rpz + ṗz

)
dz,

which is positive and strictly positive for ω ∈ Ck. As usual, this implies that P (Ck) = 0, and that

P (C) = 0 where C =
{
ω ∈ Ω : τu3 ∈ [u1, u2], and θτu3 = h, and qτu3 ,u3 < 1

}
.

Lastly, suppose that the price is flat over [u2, u3]. Keeping in mind that the price is strictly

decreasing over [u1, u2], we note that any limit order to sell at the flat-spot price, pu2 , submitted at

τk ∈ [u1, u2] is executed before u2. Therefore, qτu2 ,z is increasing over [u2, u3]. This allows to write:

∆V ≥ I{τk∈[u1,u2)}I{τk+1≥u4}

∫ u3

u2

e−rz
(
1−min{qτk,u3 , 1}

)(
1− rpz + ṗz

)
dz.

and the same reasoning as above leads to P (Ck) = 0 and P (C) = 0, where C =
{
ω ∈ Ω : τu3 ∈

[u1, u2], and θτu3 = h, and qτu3 ,u3 < 1
}
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Proof of point (ii). The market clearing condition at time u3 is:

0 =

∫ u3

0
E0 [qz,u3 − s] e−ρ(u3−z) dz

=

∫ u1

0
E0 [qz,u3 − s] e−ρ(u3−z) dz +

∫ u3

u1

E0 [qz,u3 − s] e−ρ(u3−z) dz

≥
∫ u1

0
E0 [qz,u1 − s] e−ρ(u3−z) dz︸ ︷︷ ︸

=0

+

∫ u3

u1

E0 [qz,u3 − s] e−ρ(u3−z) dz

≥
∫ u3

u1

(µhz − s) e−ρ(u3−z) dz > 0,

which is a contradiction. In the above manipulations, we used three facts. First, qz,u3 ≥ qz,u1 for all

z ≤ 1; second, the market clears at time u1; and third, qz,u3 ≥ 1 for all z ∈ [u1, u3] such that θz = 1.

Proof of Lemma VII.4. Suppose the price is continuously differentiable in a neighborhood of

t > Ts, with ṗt < 0 and 1 − rpt + ṗt 6= 0. Because 1 − rpt + ṗt ≥ 0 by Corollary VII.2, it must be

that 1− rpt + ṗt > 0. Moreover, because the price is continuously differentiable in a neighborhood of

t, and since t > Ts, these strict inequalites hold in an interval [u1, u3] around t, with u1 > Ts. Now,

by Corollary VII.3, for all u2 ∈ (u1, u3), all high-valuation traders whose information process jumps

during [u1, u2) almost surely hold more than one unit at time u2. Then, the market clearing condition

at time u2 writes as:

0 =

∫ u2

0
E0 [qz,u2 − s] e−ρ(u2−z) dz

=

∫ u1

0
E0 [qz,u2 − s] e−ρ(u2−z) dz +

∫ u2

u1

E0 [qz,u2 − s] e−ρ(u−z) dz

≥ e−ρ(u2−u1)

∫ t

0
E0 [qz,t − s] e−ρ(u1−z) dz︸ ︷︷ ︸

=0

+

∫ u2

u1

[µhz − s] e−ρ(u2−z) dz︸ ︷︷ ︸
>0

> 0,

which is a contradiction. When moving from the second to the third line, we used three facts. First,

since the price is strictly decreasing over [u1, u2], asset holding plan are strictly increasing during this

interval, and hence qz,u2 ≥ qz,u1 for all z ≤ u1. Second, the market clears at time u1, implying that

the first term on the right-hand side of the third line is zero. And third, qz,u2 ≥ 0 and, from Corollary

VII.3, qz,u2 ≥ 1 if θz = h.

IX.5.5 Proof of Lemma VII.5

Consider some time u2 ∈ (Ts, Tf ) and let [u1, u3] be the maximal spot [Ts,∞) where u2 belongs.

Suppose u2 is not a boundary point of the spot, i.e., u2 ∈ (u1, u3).

Keep in mind that, by Lemma VII.3, ṗt ≥ 0 during [u1, u3] and, by Lemma VII.2 and by definition

of Tf , pt < 1/r during [u1, u3]. Therefore 1−rpt+ṗt > 0 and Corollary VII.3 applies: all high-valuation
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traders with an information event during [u1, u2] hold more than one unit at time u2.

If u1 = Ts, we are done with the lemma. If u1 < Ts, consider traders with an information event

during (Ts, u1). We start by noting that these traders’ asset holding are decreasing over [u1, u3]: this is

obvious if [u1, u3] is an increasing spot. If [u1, u3] is a flat spot, then there is an increasing spot to the

left of u1. Together with the fact that ṗt ≥ 0, this implies that pt < pu1 for all t ∈ (Ts, u1). Therefore,

any limit order to buy at price pu1 submitted at τk ∈ (Ts, u1) is executed immediately, implying in

turns that, for any τk ∈ (Ts, u1), qτk,z is decreasing over [u1, u3]. Now, as usual, consider:

Ck =

{
ω ∈ Ω : τk ∈ (Ts, u1) and θτk = h and qτk,u2 < 1},

and consider the deviation consisting in buying one unit at any τn ∈ (Ts, u1) and holding it forever

after. Then, proceeding as in the proof of Corollary VII.3, the expected net utility of the deviation

satisfies E [∆V ] ≥ E [X], where

X = I{τk∈(Ts,u1)}e
−ρ(u3−τk)

∫ u3

u2

e−rz
(
1−min{qτk,u2 , 1}

)(
1− rpz + ṗz

)
dz.

Clearly, X ≥ 0 and X > 0 for ω ∈ Ck. Our usual argument then implies that P (Ck) = 0 and

P (C) = 0, where C =
{
ω ∈ Ω : τu2 ∈ (Ts, u1) and θτu2 = h and qτu2 ,u2 < 1

}
.

IX.5.6 Proof of Lemma VII.6

Assume that Tf =∞ and pick some t > Ts. Lemma VII.5 shows that, at almost all times u ∈ (t,∞),

for all z ∈ (t, u), high–valuation trader who experience an information event at time z hold more

than one unit at time u, implying that E [qz,u | θz = h] ≥ 1. Plugging this into the market clearing

condition, we obtain:

0 =

∫ u

0
ρe−ρ(u−z)

{
(1− µhz)E0 [qz,u | θz = `] + µhzE0 [qz,u | θz = h]− s

}
dz

≥ −s
∫ t

0
ρe−ρ(u−z) dz +

∫ u

t
ρe−ρ(u−z) (µhz − s) dz

≥ −se−ρu
(
eρt − 1

)
+ (µht − s) s

(
1− e−ρ(u−t)

)
.

But the right-hand side converges to µht−s > 0 as u→∞ which is a contradiction of market clearing.

IX.5.7 Proof of Lemma VII.7

Towards a contradiction assume that rpt− ṗt < 1− δ. Because the price is continuously differentiable

in a neighborhood of t there is some neighborhood [u1, u3] around t such that rpz − ṗz < 1 − δ and

ṗz > 0 for all z ∈ [u1, u3]. We show that:

RIX.14. Consider some time u2 ∈ (u1, u3). Then, for almost all ω ∈ Ω:
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1. If τu2 ∈ [u1, u2], then qτu2 ,u2 ≥ 1.

2. If τu2 ∈ (0, u1), then qτu2 ,u2 ≥ qτu1 ,u1.

Clearly, this result contradicts market clearing at time u2.

Proof of point 1 in Result IX.14. Consider:

Ck ≡
{
ω ∈ Ω : τk ∈ [u1, u2] and qτk,u2 < 1

}
and the following deviation. Whenever your information process jumps during [u1, u2] you choose to

hold less than one unit of asset, choose instead to hold one unit until time u3, and reverts to your

original holding plan afterwards. That is, if τn ∈ [u1, u2) and qτn,τn < 1, switch to q̂τn,z = 1 for all

z ∈ [τn, u3), and place an order to sell 1 − qτn,u3 at time u3. If the information process jumps again

after u2, just revert to the previous holding. This is feasible given that the price is strictly increasing

over [u1, u3]: you can always re-submits the orders that were supposed to be executed during [u2, u3].

If τn ∈ [u1, u2], your new holding plan is equal to qτn,z + max{1 − qτn,z, 0} for z ∈ [τn, u3), and

otherwise the holding plan is the same as before. Keeping in mind that the marginal utility of holding

q < 1 asset is bounded below by 1− δ, we find that the net utility of this deviation is greater than

∆V ≥
∞∑
n=1

I{τn∈[u1,u2]}

∫ u3

τn

e−rzI{τn+1≥z} (1− δ − rpz + ṗz) max{1− qτn,z, 0} dz

≥
∞∑
n=1

I{τn∈[u1,u2]}

∫ u3

u2

I{z≤τn+1}e
−rz (1− δ − rpz + ṗz) max{1− qτn,u2 , 0} dz,

where the second line follows because asset holding are decreasing over [u1, u3]. After taking expecta-

tions conditional on Fτn , one finds that E [∆V ] ≥ E [X], where

X =

∞∑
n=1

I{τn∈[u1,u2]}

∫ u3

u2

e−rz−ρ(z−τn) (1− δ − rpz + ṗz) max{1− qτn,u2 , 0} dz.

Given the maintained assumption that rpt − ṗt < 1 − δ, the right-hand side is always positive, and

strictly positive for all ω ∈ Ck. As usual this implies that P (Ck) = 0 and P (C) = 0, where C ≡
{
ω ∈

Ω : τu2 ∈ [u1, u2] and qτu,u2 < 1
}

.

Proof of point 2 in Result IX.14. Consider:

Ck =

{
ω ∈ Ω : τk ∈ (0, u1) and qτk,u2 < qτk,u1

}
and the following deviation. Whenever you have an information event at time τn ∈ (0, u1), and a

plan such that qτn,u2 < qτn,u1 , cancel all limit sell orders executed during [u1, u3), and replace them
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by limit sell orders executed at time u3. At your first information event in [u1, u3), if any, revert to

your original holding plan. This is feasible because the price is strictly decreasing, implying that you

can always re-submits the limit sell orders that were supposed to be executed during [u1, u3). This

deviation results in the holding plan q̂τn,z = qτn,u1 for z ∈ [u1, u3), if τn ∈ (0, u1) and qτn,u2 < qτn,u1 .

Otherwise, q̂τn,z = qτn,z. Thus, the utility of the deviation is bounded below by:

∆V ≥
∞∑
n=1

I{τn∈(0,u1) and qτn,u2<qτn,u1}

∫ u3

u1

e−rzI{τn+1≥z} (1− δ − rpz + ṗz) (qτn,u1 − qτn,z) dz

≥
∞∑
n=1

I{τn∈(0,u1) and qτn,u2<qτn,u1}

∫ u3

u2

e−rzI{τn+1≥z} (1− δ − rpz + ṗz) dz × (qτn,u1 − qτn,u2)

where the second line follows because the price is strictly increasing and thus asset holdings must be

decreasing over [u1, u3]. The same reasoning as before implies that P (Ck) = 0.

IX.5.8 Proof of Lemma VII.8 and Lemma VII.9

Preliminary results Suppose that the price is continuously differentiable and strictly decreasing

in some left neighborhood of some u1, then is flat until some u2 ≥ u1, and then is continuously

differentiable and strictly increasing in some right neighborhood of u2. Let

q∗u ≡
[

1− rpu + ṗu
δ(1− µhu)

]1/σ

(IX.21)

q∗t,u ≡ min

{
(1− µht)1/σq∗u, 1

}
. (IX.22)

If pu has a kink at u1 and u2, let q∗u ≡ 1/2
(
q∗u+ + q∗u−

)
. We then show that:

RIX.15 (Ideal Holding). Consider some t ≤ u such that ṗu exists. Then q∗t,u maximizes

Et [v(θu, q) | θt = `]− (rpu − ṗ)q. (IX.23)

Indeed, this objective is concave and equal to:

if q ≤ 1 : q − δ1− µhu
1− µht

q1+σ

1 + σ
−
(
rpu − ṗu

)
q (IX.24)

if q > 1 : 1− δ1− µhu
1− µht

1

1 + σ
−
(
rpu − ṗu

)
q. (IX.25)

and the result follows by taking first-order conditions.

RIX.16. There is u′1 < u1 and u′2 > u2 such that

• q∗u < q∗u1 for all u ∈ [u′1, u1);

• q∗u > q∗u1 for all u ∈ (u1, u
′
2];
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• pu′1 = pu′2.

Let us start with u′1 in the first bullet point. There are two cases to consider. First, if the price

has a kink at u1, then the result is obvious because q∗u jumps up at u1 and is continuous in a left-

neighborhood of u1. If the price is differentiable at u1, then since u1 is a local minimum we have

ṗu1 = 0. Thus, for u in a left neighborhood of u1, we have:

1− rpu + ṗu < 1− rpu1 + 0 = 1− rpu1 + ṗu1 ,

and, at the same time 1− µhu > 1− µhu1 . Taken together, these two inequalities imply the result.

Now turn to u′2. If the price has a kink at u1, then the result is obvious because ṗu jumps up at

u1 and 1/(1− µhu) is strictly increasing. If the price has a flat spot, u1 < u2, then the result follows

because, for u ∈ (u1, u2),

1− rpu + ṗu
1− µhu

=
1− rpu1
1− µhu

is strictly increasing, so q∗
u−2

> q∗u1 . Then, continuing after u2, q∗u either jumps up at u2, or is continuous.

In either case, one can find a right neighborhood of u2 where q∗u > q∗u1 . Lastly, if the price has no flat

spot and no kink at u1, then, for u in a right neighborhood of u1, because ṗu ≥ 0:

1− rpu + ṗu
1− µhu

≥ 1− rpu
1− µhu

.

with an equality for u = u1. After taking derivative of the right-hand side at u = u1, using ṗu1 = 0

and µ̇hu1 > 0, one finds that the right-hand side is strictly increasing at u = u1, and the result follows.

Since pt is strictly increasing in [u′1, u1) and (u2, u
′
2] we can without loss of generality pick u′1 and

u′2 such that pu′1 = pu′2 .

Holdings before u1. We start by establishing an upper bound on low-valuation investor holdings

at u1:

RIX.17 (A bound on low-valuation holdings at u1). Suppose τu1 ∈ [u′1, u1), θτu1 = `. Then, for all

u ∈ [u′1, u1), qτu1 ,u ≤ q
∗
τu1 ,u1

, almost surely.

To see this, fix some ε > 0 and consider the event such that the property of the Result is violated

for u ∈ [u′1, u1 − ε):

Cε,k =

{
ω ∈ Ω : τk ∈ [u′1, u1), and θτk = `, and ∃u ∈ [u′1, u1 − ε) s.t. qτk,u > q∗τk,u1

}
,

and the following deviation. Whenever the information process jumps at some time τn ∈ [u′1, u1 − ε)
when the investor has a low valuation, we let φn be the earliest time in [τn, u1 − ε) such that qτn,u ≥
q∗τn,u1 , with φn = u1 − ε if no such time exists. Then, stop buying for all u ∈ [φn, u1 − ε), hold the
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quantity q∗τn,u1 , and revert to your original holding plan at u1 − ε: this is achieved by canceling part

of the limit buy orders that you had planed to execute at φn, canceling all the limit buy orders that

would have been executed during (φn, u1 − ε), and placing a limit order to buy so as to hold quantity

qτn,u1−ε at time u1 − ε. Note that this is feasible because any limit buy order you cancel during the

decreasing spot [u′1, u1) can be re-submitted at the next information event time.

The change in utility is:

∆V =
∞∑
n=1

I{τn∈[u′1,u1−ε) and θτn=`}

×
∫ u1−ε

φn

e−rzI{τn+1≥z}

[
v(θz, q

∗
τn,u1)− v(θz, qτn,z)− (rpz − ṗz)

(
q∗τn,u1 − qτn,z

)]
dz.

Taking the expectation of term n conditional on Fτn , we find that E0 [∆V ] ≥ E0 [X], where

X =
∞∑
n=1

I{τn∈[u′1,u1−ε) and θτn=`}

×
∫ u1−ε

φn

e−rze−ρ(z−τn)

[
Eτn

[
v(θz, q

∗
τn,u1)

]
− Eτn [v(θz, qτn,z)]− (rpz − ṗz)

(
q∗τn,u1 − qτn,z

)]
dz.

Now by Result IX.16 q∗τn,z < q∗τn,u1 , by construction q∗τn,u1 ≤ qτn,z and because asset holding plan

are increasing qτn,z ≤ qτn,u1 . Taken these inequalities together gives:

q∗τn,z < q∗τn,u1 ≤ qτn,z ≤ qτn,u1 . (IX.26)

Now keep in mind that, given θn = `, Eτn [v(θz, q)] = E [v(θz, q) | θτn = `], the function (IX.23) we

studied earlier. Because this function is concave and, by Result IX.15, maximized at q∗τn,u1 , it follows

that the integrand in each terms of X is positive. Clearly, X is strictly positive for all ω ∈ Cε since,

in that case q∗τn,u1 < qτn,z for z ∈ (φn, u1 − ε). As usual, this implies that P (Cε,k) = 0 and P (Cε) = 0,

where Cε =
{
ω ∈ Ω : τu1 ∈ [u′1, u1), and θτu1 = `, and ∃u ∈ [u′1, u1 − ε) s.t. qτu1 ,u > q∗τu1 ,u1

}
. The

final result then follows by letting ε go to zero.

Holding after u1. Next, we show:

R IX.18 (Holdings of low-valuation after u1 with no flat spot). Consider the case without flat spot,

i.e., u1 = u2. Suppose τu1 ∈ [u′1, u1), θτu1 = `, and q∗τu1 ,u1
< 1. Then qτu1 ,u1 > q∗τu1 ,u1

almost surely.

Consider the event such that the property of the Result is violated for u ∈ [u1, u
′
2):

Ck =

{
ω ∈ Ω : τk ∈ [u′1, u1), and θτk = `, and q∗τk,u1 < 1, and qτk,u1 ≤ q

∗
τk,u1

}
,

and the following deviation. Whenever the investor has an information event at some τn ∈ [u′1, u1)

with a low valuation, if qτn,u1 ≤ q∗τn,u1 , then he increases his asset holding by some small yn during
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[u1, u
′
2). The deviation is implemented by submitting a limit buy order at price just above pu1 for

yn > 0 unit of the asset and a limit order to sell back these yn unit of the asset at time u′2. The first

part of the deviation is feasible since the price is strictly decreasing over [τn, u1]; the second part of the

deviation is also feasible since u′2 is the first time after τn such that the price crosses pu′2 from below.

If the information process jumps again before u′2, then the investor reverts to the original holding plan

by canceling the limit order to buy yn executed at time u1 (if the information event is before u1), or

selling yn (if the information event is after u1), and canceling the limit buy order executed at u′2. The

change in utility is:

∆V =
∞∑
n=1

I{τn∈[u′1,u1] and θτn=` and qτn,u1≤q∗τn,u1}

×
∫ u′2

u1

e−rzI{τn+1≥z}

{
v(θz, qτn,z + yn)− v(θz, qτn,z)− (rpz − ṗz)y

}
dz.

Taking expectation of term n in the sum conditional on τn we obtain that E0 [∆V ] = E0 [X], where

X =

∞∑
n=1

I{τn∈[u′1,u1]∧θτn=`∧qτn,u1≤q∗τn,u1}

×
∫ u′2

u1

e−rze−ρ(z−τn)

{
Eτn [v(θz, qτn,z + yn)− v(θz, qτn,z)]− (rpz − ṗz)yn

}
dz,

where used the independence of the information event time τn+1 and the preference type θz processes.

Using that for z ∈ [u1, u
′
2), qτn,z ≤ qτn,u1 ≤ q∗τn,u1 < 1 and that v(q) is concave for q < 1, we obtain

that for yn small enough each integral is greater than

yn ×
∫ u′2

u1

e−rze−ρ(z−τn)

{
Eτn

[
vq(θz, q

∗
τn,u1 + yn)

]
− (rpz − ṗz)

}
dz.

When yn goes to zero, each integral converges to:∫ u′2

u1

e−(r+ρ)z

[
Eτn

[
vq(θz, q

∗
τn,u1)

]
− (rpz − ṗz)

]
dz.

When the indicator function of term n in X is not zero, we have q∗τn,u1 < 1 and, by Result IX.16, q∗τn,z >

q∗τn,u1 . Because (IX.23) is concave and uniquely maximized at q∗τn,z, and because it has a continuous and

strictly decreasing derivative for q < 1, it follows that, for z ∈ (u1, u
′
2), Eτn

[
vq(θz, q

∗
τn,u1)

]
−(rpz−ṗz) >

0. Thus, when the indicator function of term n in X is not zero, then at time τn it is possible to pick

yn small enough so that term n is strictly positive. It then follows that X is positive, and strictly

positive for ω ∈ C, implying in turns that P (C) = 0.

R IX.19 (Holdings of low-valuation after u1 with flat spot). Consider the case with flat spot, i.e.,

u1 < u2, and assume that investors find it optimal to follow Markovian holding plans. Then the result

of Result IX.18 continues to hold.
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The proof is almost identical to that of Result IX.18, except that the deviation is slightly different.

Suppose the investor has an information event at some τn ∈ [u′1, u1) with a low valuation, and plans

to hold qτn,u1 ≤ q∗τn,u1 < 1. There are cases to consider.

The first case is when the original holding plan does not have any limit buy order executed during

the flat spot, (u1, u2]. Then, as before, the investor increases the asset holding by some small yn during

[u1, u
′
2) by submitting a limit buy order at price just above pu1 for yn > 0 unit of the asset and a limit

order to sell back these y unit of the asset at time u′2. If the information process jumps again before

u′2 then the investor reverts to the original holding plan.

The second case is when the original holding plan has some limit buy order executed during the

flat spot. Let φn ∈ (u1, u2] be earliest execution time of the collection of limit buy orders executed

during (u1, u2). Then the investor increases the asset holding by some small yn during [u1, φn) by

submitting a limit buy order at price just above pu1 for yn > 0 unit of the asset and reducing the size

of the limit order to buy at time φn by the same amount. If there is an information event before u′2

then the investor reverts to the original holding plan. A potential difficulty in doing so is that, in this

deviation, the investor cancels some limit orders that were supposed to be executed at time φn, and

it may not be possible to re-submit these orders because of the time priority rule. This is where we

use the assumption that the holding plan is Markovian: when the investor has an information event,

the original continuation holding plan only depends on the type at the information event, so it is the

same as if the investor had an information event for the first time. Thus it is always possible to revert

to the original holding plan: it suffices to cancel all previously submitted limit order and behave “as

if” it was the first jump of the information process. The rest of the proof is identical after replacing

u′2 by φn.

RIX.20 (High-valuation holdings after u1). Suppose τu1 ≥ u′1, θτu1 = h. Then, for all u ∈ (u1, u2),

qτu1 ,u ≥ 1, almost surely.

To see this, consider, for any u ∈ (u1, u
′
2),

Ck =

{
ω ∈ Ω : τk ∈ [u′1, u1), and θτk = h, and qτk,u < 1

}
.

Note that since holdings are increasing over [u1, u
′
2), we also have that qτk,u1 < 1. Now make the

following deviation. Whenever the investor has an information event at time τn ∈ [u′1, u1) and plans

on qτn,u1 < 1, he switches to a holding plan that holds one units forever after time u1. This is made

feasible by submitting a limit order to buy (1 − qτn,u1) units at time u1, and keep that unit position

forever after. After switching to this new plan, the change in utility flow at time z > u1 can be written:

max{1− qτz ,z, 0} (1− rpz + ṗz) + max{qτz − 1, 0} (rpz − ṗz) ,

which is always positive given that ṗz ≥ 0 and pz < 1/r during (u1, u
′
2). Clearly, this utility flow is

always positive, and it is strictly positive if ω ∈ Ck and if there are no information event during [u1, u].
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Thus,

∆V ≥ I{ω∈Ck and τk+1>u} (1− qτk,u)

∫ u

u1

(1− rpz + ṗz) e
−rz dz.

Taking expectations conditional on Fτk , we obtain that the expected change in utility is greater than

E [X], where

X = e−ρ(u−τk)I{ω∈Ck}
(
1− qτu1 ,u

) ∫ u

u1

(1− rpz + ṗz) e
−rz dz,

Clearly this is positive and strictly positive whenever ω ∈ Ck, which as usual implies that P (Ck) = 0

and P (C) = 0, where C =
{
ω ∈ Ω : τu1 ∈ [u′1, u1), and θτu1 = h, and qτu1 ,u < 1

}
.

Concluding the proof when q∗u1,u1 < 1. If q∗u1,u1 < 1, then we can choose u′1 close enough to

u1 so that q∗u′1,u1
< 1. Therefore for all τu1 ≥ u′1 we have q∗τu1 ,u1

< 1 and Results IX.17, IX.18 and

IX.19 apply: if τu1 ≥ u′1 and θτu1 = `, then qτu1 ,u ≤ q∗τu1 ,u1
for u < u1 and qτu1 ,u1 > q∗τu1 ,u1

almost

surely. Otherwise, qτu1 ,u1 ≥ qτu1,u . Now consider the market clearing condition (8), page 15 in BHW,

at u1 (re-scaled by eρu1/ρ), and subtract the corresponding market clearing condition at u ∈ [u′1, u1]

(re-scaled by eρu/ρ). One obtains:

0 =

∫ u′1

0
eρtE [qt,u1 − qt,u] dt+

∫ u

u′1

eρtE [qt,u1 − qt,u] dt+

∫ u1

u
eρtE [qt,u1 − s] dt

0 ≥
∫ u

u′1

eρtE
[
(qt,u1 − qt,u) I{θt=`}

]
dt+

∫ u1

u
eρtE [qt,u1 − s] dt

0 ≥
∫ u

u′1

eρtE
[(
qt,u1 − q∗t,u1

)
I{θt=`}

]
dt−

∫ u1

u
eρts dt,

where, in the second line, we used the fact that asset holding have to be increasing over [u′1, u1], and so

qt,u1 ≥ qt,u for all t ≤ u. In the third line, we used Result IX.17. Now the right-hand side of the third

line is made up of two terms. Because, by Results IX.18 and IX.19, qt,u1 − q∗t,u1 > 0, the first term

is strictly positive and increasing. The second term, on the other hand, goes to zero as u goes to u1.

Therefore, for u close enough to u1, the right-hand side is strictly positive, which is a contradiction.

Concluding the proof when q∗u1,u1 = 1 Now suppose that q∗u1,u1 = 1. Because q∗t,u1 is bounded

above by 1 and weakly decreasing in t, it follows that q∗τu1 ,u1
= 1 for all τu1 ≥ u′1. It is then

straightforward to adapt the proof of Results IX.18 and IX.19 to show that, if τu1 ≥ u′1, then qτu1 ,u1 = 1

almost surely. Otherwise increasing the asset holding by a small amount between u1 and u′2 (or φn)

is a strictly profitable deviation.

Together with Result IX.20 this implies that the asset demand originating from investors whose

information process jumps during [u′1, u1] is greater than 1 times the measure of investors whose

information process jumps during that time period:
∫ u1
u′1
ρe−ρ(u1−z) dz. But the supply of asset is s
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times this measure of investor and s < 1, and no limit sell orders can be executed during (u′1, u1)

since the price is strictly decreasing. Clearly, this means that demand exceed supply, and contradicts

market clearing.

IX.5.9 Proof of Lemma VII.11

Consider first the set:

Ck =

{
(u, ω) ∈ [0, Tf )× Ω : τk ∈ (0, u] and θτk = h and qτk,u 6= 1

}
and the deviation consisting in holding one unit whenever the investor has an information event before

Tf with a high valuation. The change in flow utility at time u is:

(1− rpu + ṗu) max{1− qτk,u, 0}+ (rpu − ṗu) max{qτk,u − 1, 0}.

Note that, because the price is weakly increasing and strictly less than 1/r for u ∈ [0, Tf ), it follows

that 1−rpu+ṗu > 0. Also, by Lemma VII.7, rpu−ṗu > 0. Taken together, these imply that the change

in utility flow is positive, and strictly positive for all (u, ω) ∈ Ck. As usual, this implies that the set Ck

is of measure zero, as well as the set C =
{

(u, ω) ∈ [0, Tf )×Ω : τu ∈ (0, u] and θτu = h and qτu,u 6= 1

}
Next consider the set:

Ck =

{
(u, ω) ∈ [Tf ,∞)× Ω : τk ∈ (0, u] and θτk = h and qτk,u > 1

}
and proceeding exactly as before shows that this set is of measure zero.

IX.5.10 Proof of Lemma VII.12

Consider the set

Ck =

{
(u, ω) ∈ [Tf ,∞)× Ω : τk ∈ (0, u], and θτk = `, and qτk,u > 0

}
and the deviation consisting in holding zero from t ∨ Tf , and continuing to hold zero as long as the

investor keep having jumps of his information process with a low-valuation. If he has an information

event with a high valuation, he switches to the optimal strategy of buying one unit if the information

event time is less than Tf . This deviation is feasible. Suppose indeed that the information event time

is before Tf . Then since Tf is by construction the first time that the price reaches 1/r, the price must

be strictly increasing in a left-neighborhood of Tf , implying that the low-valuation investor can always

submit a limit order executed just before Tf . If, on the other hand, the information event time is after
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Tf the deviation is implemented by selling all the holding. The net utility of the deviation is:

∆V =
∞∑
n=1

I{θτn=`}

∫ τn+1

τn

I{z≥Tf}e
−rz (−vq(θz, qτn,z) + 1) qτn,z dz.

For each term in the sum, we take expectations conditional on Fτn and obtain that E0 [∆V ] = E [X]

where

X =
∞∑
n=1

I{θτn=`}

∫ ∞
τn

I{z≥Tf}e
−rze−ρ(z−τn) (−Eτn [vq(θz, qτn,z)] + 1) qτn,z dz.

The integrand is positive, and strictly positive for all (ω, u) ∈ C, implying that Ck is of measure zero,

as is the set C =
{

(u, ω) ∈ [Tf ,∞)× Ω : τu ∈ (0, u], and θτu = `, and qτu,u > 0
}

.

IX.5.11 Proof of Lemma VII.13

First note that any flat spot before Tf has to be followed by an increasing spot since the price has to

increase up to 1/r by time Tf . Consider, then, a flat spot [T1, T2), and let S ⊆ [T1, T2) denote the set

of times where the holding plan of low–valuation trader solves the maximization problem of Lemma

VII.10. We know from the lemma that this set of time has full measure. We first show:

RIX.21. Suppose that for some t ∈ S, a limit buy order at price pt is executed at some u ∈ (t, T2).

Then, in a Markov equilibrium, for a low-valuation trader the information event at time t, qt,t < 1

implies that qt,u > qt,t > 0. Moreover, qt,t satisfies:∫ u

t
e−(r+ρ)z

[
1− 1− µhz

1− µht
δqσt,t − (rpz − ṗz)

]
dz = 0 (IX.27)

Note first that, by definition of a Markov equilibrium, a trader who has an information event at

time t with θt = ` behaves as if she has an information event for the first time, i.e. as if he had no limit

order outstanding in the book. Since a limit sell order at price pt is executed immediately at time t,

the only way she can change her asset holding during [t, T2) is by submitting a limit buy order at price

pt, which ends up executed at time u. In other words, the trader’s holding plan is either constant

over [t, T2), or constant over [t, u) and [u, t2), with qt,t < qt,u. Next, note that since vq(0) = 1 > rpz,

the trader finds it optimal to hold qt,t > 0. Second, the trader finds it optimal to submit a limit buy

order executed at time u, i.e. qt,u > qt,t. Otherwise, suppose holdings were constant in [t, T2), and

consider the deviation consisting in reducing holding by a marginal unit at t and submitting a limit

buy order for that marginal unit unit at u. The utility of the deviation must be negative, which by

Lemma VII.10 leads to:

F (u) ≥ 0, where F (v) ≡
∫ v

t
e−(r+ρ)z

[
1− 1− µhz

1− µht
δqσt,t − (rpz − ṗz)

]
dz.
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Note that, because ṗz = 0 in [t, u], e(r+ρ)vF ′(v) is a strictly increasing function of v. Moreover,

F (t) = 0. So if e(r+ρ)tF ′(t) ≥ 0, we have that e(r+ρ)vF ′(v) > 0 and thus F ′(v) > 0 for all v > t. Or

e(r+ρ)tF ′(t) < 0 and F (u) ≥ 0 requires that F ′(u) > 0 – otherwise e(r+ρ)vF ′(v) ≤ 0 and thus F ′(v) ≤ 0

for all v ∈ [t, u] with a strict inequality close to v = t, which would imply that F (u) < 0. In both

cases F ′(v) > 0 for all v ∈ [u, T2], which implies that

F (T2)− F (u) =

∫ T2

u
e−(r+ρ)z

[
1− 1− µhz

1− µht
δqσt,t − (rpz − ṗz)

]
dz > 0.

meaning that the trader can improve her utility by submitting a limit buy order for a marginal unit

executed at u and a limit order to sell this marginal unit at time T2.

The equality (IX.27) follows from considering two deviations: i) reducing holdings by a marginal

unit at t, and submitting a limit buy order for that marginal unit at u, and ii) increasing holdings by

a marginal unit at t, and reducing the limit buy order qt,u − qt,t > 0 by a marginal unit executed at

time u.

Next, we show that:

RIX.22. Suppose that, at some time t1 ∈ [T1, T2) a limit order to buy at the flat-spot price is executed

at time u1 > t1. Then, there is a positive measure set of times T ⊆ (t, u) such that, for a low–valuation

trader with information event during T , qt,t < 1.

Otherwise, since the equilibrium is Markov, low-valuation traders with an information event at

almost all ∈ (t1, u1) choose qt,t ≥ 1. Besides, at all times t ∈ (t1, u1) there is a limit buy order

outstanding in the book – otherwise, by time priority, a limit order submitted at time t1 would be

executed strictly before u1. Thus no limit sell order are executed because otherwise this would violate

volume maximization, and asset holdings cannot be decreasing. Therefore, for all t1 < t ≤ u < u1

and all low–valuation tradersm qt,u = 1, and for all t ≤ t1 < u < u1, qt,u ≥ qt1,u. Moreover, for all

high–valuation traders we know from Lemma VII.11 that qt,u = 1. Taken together, this contradicts

market clearing.

R IX.23. Suppose that at some time t1 ∈ S, a low-valuation trader submits a limit order to buy

executed at time u1 > t1. Then, for all times t2 ∈ (t1, u1), limit orders at price pt2 are executed at

times u2 > u1.

First, by time priority, given that pt2 = pt1 , we must have that the execution time u2 is greater

than u1 and is increasing the submission time t2. To show that the inequality is strict, suppose that,

for some t2 ∈ (t1, u1), the execution time of a limit buy order at price pt2 = pt1 is u2 = u1. Then by

time priority this is also the case of all t′2 ∈ (t1, t2). Now consider the positive set of times T ⊆ (t1, t2),

given by Result IX.22, such that, for a low–valuation trader, qt,t < 1. It then follows from Result IX.21

that all low-valuation traders with an information event at time t ∈ T ∩ S find it optimal to increase

their holdings by a strictly positive amount at the common execution time u1 of their limit-buy orders,

i.e., there is an atom of limit buy orders executed at time u1. For other traders, asset holding plan
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have to be increasing since there is a limit buy order in the book and, therefore, limit sell orders

are executed immediately. Using the same argument as in Section IX.5.8 leads to a contradiction of

market clearing. Namely, if we consider the market clearing condition at time u1 (rescaled by eρu1/ρ),

and subtract the market clearing condition at time u ∈ (t2, u1) (rescaled by eρu/ρ), we obtain:

0 =

∫ u

0
eρtE [qt,u1 − qt,u] dt+

∫ u1

u
eρtE [qt,u1 − s] dt

0 ≥
∫ u

0
eρtE

[
qt,u1 − qt,u−1

]
dt−

∫ u1

u
eρts dt,

since asset holdings are increasing over (t, u1) and, as a result, qt,u ≤ qt,u−1
. The first integral on the

right–hand side is a strictly positive function since the integrand is positive, and strictly positive for all

the low–valuation traders in T ∩ S who submit a limit buy order executed at u1. Since the integrand

is positive, it is also weakly increasing. Letting u → u1 leads to the conclusion that the right-hand

side is strictly positive, a contradiction.

Finally, the next Result implies that limit buy orders are not consistent with Markovian holding

plan:

RIX.24. Suppose that, in a Markov equilibrium at some time t1 ∈ S, a low-valuation trader (“trader

A”) submits a limit buy order at price pt1 executed at time u1 ∈ (t1, T2). Then, there is a positive

measure set of T ∈ (t1, u1) such that, if trader A has another information event at time t2 ∈ T with

a low-valuation, her optimal holding plan differs from the holding plan of a low-valuation trader with

an information event at time t2 for the first time (“trader B”).

Let T be the intersection of S with the positive measure subset of (t1, u1), given by Result IX.22.

Consider some t2 ∈ T . By construction, for a low-valuation trader, qt2,t2 < 1. By result IX.23, a limit

order to buy at price pt2 submitted at time t2 is executed at time u2 > u1.

Suppose first that u2 < T2. We argue that trader A can improve on B’s holding plan by using

the limit order he submitted earlier at time t1, to be executed at time u1. Suppose indeed that traders

A and B have the same optimal holding plan, qt2,u, and consider the following deviation for trader A:

decrease the asset holding qt2,t2 by a marginal unit and submit a limit order to buy this marginal unit

at time u1. The marginal value of this deviation is equal to F (u1, where

F (u) ≡ −
∫ u

t1

e−(r+ρ)z

[
1− 1− µhz

1− µht2
δqσt2,t2 − (rpz − ṗz)

]
dz > 0.

Obviously, F (t1) = 0. Moreover, by (IX.27), F (u2) = 0 as well. Next, observe that e(r+ρ)uF ′(u) is

as strictly decreasing function of u, and F (t1) = F (u2) = 0. Therefore, in the interval [t1, u2], the

function F ′(u) must be first strictly positive and then strictly negative, and the function F (u) has to

be strictly positive over (t1, u2). Hence, F (u1) > 0, meaning that trader A has a profitable deviation.

Consider next that a limit buy order submitted at time t2 at price pt2 = pt1 is not

executed before, T2, the end of the flat spot. For trader B, the value of increasing asset
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holdings by a marginal unit at t2 and re-selling with a limit sell order at T2 is negative:∫ T2

t2

e−(r+ρ)z

[
1− 1− µhz

1− µht2
δqσt2,t2 − (rpz − ṗz)

]
dz ≤ 0.

But then again, the function multiplying the discount factor is a strictly increasing function of z. It

has to be strictly negative at z = t2 or else the above integral would be strictly positive. So, over

[t2, T2], it is either always strictly negative or strictly negative and then strictly positive. Either way,

this implies that for u1 < T2:

−
∫ u1

t2

e−(r+ρ)z

[
1− 1− µhz

1− µht2
δqσt2,t2 − (rpz − ṗz)

]
dz > 0,

meaning that trader A can improve on the candidate equilibrium holding plan by reducing his holding

by a marginal unit at time t2 and submitting a limit order to buy this marginal unit at time u1, with

the help of her previously submitted limit buy order.

IX.5.12 Proof of Lemma VII.15

We prove each point in turn:

Proof of qt,u ≤ 1. First suppose qt,u > 1 for some u. Then, define T1 = inf{u ≥ t : qt,u ≤ 1} and

consider the deviation q̂t,u = 1 for u ≤ T1 and q̂t,u = qt,u for u > T1. By construction, q̂t,u is decreasing

and satisfies q̂t,u < qt,u for u < T1. The net change in utility flow is zero for u > T1 and, for u < T1:

(rpu − ṗu) (qt,u − 1) > 0,

because rpu − ṗu ≥ 1− δ > 0, and thus the deviation is profitable.

Proof of qt,u = 1 if θt = h and u < Tf . Suppose that qt,u < 1 for some u ∈ [t, Tf ). Then

T1 = inf{u ≥ t : qt,u < 1} < Tf . Consider then the deviation q̂t,u = 1 for all u. The change in utility

flow is zero for u < T1 and, for u > Tf . For u ∈ (T1, Tf ):

(1− rpu + ṗu) (1− qt,u) > 0,

because ṗu ≥ 0 and pu < 1/r. The deviation is thus profitable. Together with the fact that pu = 1/r

for u ≥ Tf , this clearly implies that any asset holding plan such that qt,u = 1 for u < Tf is optimal.

Proof of qt,u = 0 if θt = ` and u > Tf . Suppose that qt,u > 0 for some u > Tf . Then

T0 = inf{u ≥ t : qt,u = 0} > Tf . Consider then the deviation q̂t,u = qt,u for u ≤ Tf and q̂t,u = 0 for

u > Tf . The expected utility flow of the deviation is zero for u < Tf and u > T0. For u ∈ (Tf ∨ t, T0),

because of strict concavity at q = 0, it is strictly greater greater than (vq(0)− rpz) qt,u = 0, since

vq(0) = 1 and rpz = 1.

Proof that qt,u maximizes the relaxed objective (VII.3). Suppose it did not. Then, for
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u ∈ [t, Tf ), we can replace qt,u by a plan that achieves a higher value in the objective, and for u ≥ Tf
keep qt,u = 0. Clearly, the resulting holding plan is decreasing and achieves a higher value.s

IX.5.13 Proof of Lemma VII.16

The objective is concave because the integrand is concave. It is also continuous because the integrand

has uniformly bounded derivatives. The constraint set is evidently convex. To show that it is closed,

consider some convergence sequence q
(n)
t,u → q

(∞)
t,u of elements of the constraint set. The limit, q

(∞)
t,u ,

belongs to L2([t, Tf ]), and thus to L1([t, Tf ]). Therefore, by Theorem 7.11 in Rudin (1974),
∫ u
t q

(∞)
t,z dz

is differentiable for all u in a set S of full measure. Now for any u < u′ in S and any small enough ε,

we have:

1

ε

∫ u+ε

u
q

(n)
t,z dz ≥

1

ε

∫ u′+ε

u′
q

(n)
t,z dz,

since each element of the sequence is decreasing almost everywhere. Taking the limit as n goes to

infinity, we obtain that:

1

ε

∫ u+ε

u
q

(∞)
t,z dz ≥ 1

ε

∫ u′+ε

u′
q

(∞)
t,z dz.

Now since u and u′ are in S, the function
∫ v
t q

(∞)
t,z dz is differentiable at v = u and v = u′. This allows

us to take the limit as ε goes to zero. And we find q
(∞)
t,u ≥ q

(∞)
t,u′ . A similar reasoning yields that

q
(∞)
t,u ∈ [0, 1] for all u ∈ S.

Given the properties established above we can apply Proposition 1.2, page 35, Chapter II of

Eckland and Téman (1987) and assert that a solution exists. Let us denote this solution by q∗t,u. Note

that q∗t,u is, by construction, decreasing almost everywhere instead of everywhere. Consider, however,

u ∈ S : q̂∗t,u = q∗t,u

u /∈ S : q̂∗t,u = sup{q∗t,u : z ∈ S and z ≥ u}.

One easily verify that q̂∗t,u is decreasing everywhere and belong to [0, 1].

IX.5.14 Proof of Lemma VII.17

Consider a flat spot [t1, t2) and an investor who has an information event at time t < t2 with a low

valuation. We denote u0 = max{t, t1} and we want to show that, in the relaxed problem, qt,u is

constant over [u0, t2).

By contradiction assume that there exists some u ∈ [u0, t2) such that qt,u < qt,u0 . Consider the

“ideal” asset holding q∗t,u defined in equation (IX.22). One sees easily that q∗t,u solves the problem of
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maximizing:

Et [v(θz, q)]− (rpz − ṗz) q. (IX.28)

subject to q ∈ [0, 1], . This ideal holding is q∗t,u is weakly increasing during the flat spot, because

ṗz = 0. Define the first time in [u0, t2) such that the asset holding goes below the ideal asset holding:

u1 = inf{u ∈ [u0, t2) : qt,u ≤ q∗t,u}, with the convention that u1 = t2 if the set is empty. Since qt,u is

weakly decreasing and q∗t,u is weakly increasing during the flat spot, we have that

u ∈ [u0, u1) : qt,u ≥ qt,u1 ≥ q∗t,u1 ≥ q
∗
t,u (IX.29)

u ∈ (u1, u2) : qt,u ≤ qt,u+1 ≤ q
∗
t,u1 ≤ q

∗
t,u. (IX.30)

Consider now the following deviation: q̂t,u = q∗t,u1 if u ∈ [u0, t2) and q̂t,u = qt,u otherwise. From

equation (IX.29) and (IX.30), the deviation is weakly closer to the ideal asset holding than in the

original plan. Moreover, since we have assumed that qt,u0 > qt,u, for some u ∈ [u0, t2), it is strictly

closer to the ideal asset holding on for a strictly positive measure set of times. Because the objective

(IX.28) is hump-shaped with a unique maximum at q∗t,u, the expected utility of the deviation is strictly

higher that of the original plan.

IX.5.15 Proof of Lemma VII.21

First note that, following the same steps as for Lemma 1, page 14 in BHW, one finds that the planner’s

objective can be written:

W (q) = E
[∫ ∞

0
e−rt

∫ ∞
t

e−(r+ρ)(u−t)
{
I{θt=`}Et

[
v(θu, qt,u)

]
+ I{θt=h}Et

[
v(θu, qt,u)

]}
dt du

]
Consider, then, two solutions of the planning problem, qt,u and q′t,u and let:

C =

{
(t, u, ω) ∈ R2

+ × Ω : t ≤ u and θt = ` and qt,u 6= q′t,u

}
.

Then if one consider a convex combination q̂t,u = λqt,u + (1 − λ)q′t,u. This new allocation is clearly

feasible. Moreover, by concavity of the flow utility:

Et [v(θu, q̂t,u)] ≥ λEt [v(θu, qt,u)] + (1− λ)Et
[
v(θu, q

′
t,u)
]

with a strict inequality for (t, u, ω) ∈ C since when θt = `, the expected utility Et [v(θu, q)] is a strictly

concave function of q ∈ [0, 1]. Thus, the set C has to be of measure zero, or else q̂t,u would achieve a

higher value in the planner’s objective.

But we know from Proposition 2, page 19 in BHW, that the BHW-LOE asset holding plan solves

the planning problem. Together with the above, this means that in all planning solutions, the asset
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holdings of low valuation investors are (for almost all (t, u, ω)) the same as in the LOE of BHW.

Now turn to the holdings of high-valuation investors. Integrating the market–clearing condition,

E [qτu,u − s] = 0, over u ∈ [0, Tf ], we find

E
[∫ Tf

0
e−ru

∫ u

0
ρe−ρ(u−t)

{
qt,uI{θt=h} + qBHW–LOE

t,u I{θt=`} − s
}
dt

]
= 0.

But the same equation holds in the BHW–LOE with qt,uI{θt=h} being replaced by I{θt=h}. Thus

E
[∫ Tf

0
e−ru

∫ u

0
ρe−ρ(u−t)I{θt=h}

{
1− qt,u

}
dt du

]
= 0

Now in the planning problem we restricted ourselves to qt,u ∈ [0, 1], meaning that the integrand has

to be positive. Then, for the above equality holds it must be the case that for almost all (t, u, ω) such

that 0 < t ≤ u ≤ Tf , and θt = h, qt,u = 1.

118



References

Tom M. Apostol. Mathematical Analysis. Addison-Wesley, 1974.

Bruno Biais and Pierre-Olivier Weill. Liquidity shocks and order book dynamics. Working

paper, TSE and UCLA, 2009.

Bruno Biais, Johan Hombert, and Pierre-Olivier Weill. Trading and liquidity with imperfect

cognition. Working paper, TSE, HEC, UCLA, 2010.
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Darrell Duffie, Nicolae Gârleanu, and Lasse H. Pedersen. Valuation in over-the-counter markets.

Review of Financial Studies, 20:1865–1900, 2007.

Ivan Eckland and Roger Téman. Convex Analysis and Variational Problems. Society for In-

dustrial Mathematics, 1987.

Sanford J. Grossman and Merton H. Miller. Liquidity and market structure. Journal of Finance,

43:617–637, 1988.

Ricardo Lagos and Guillaume Rocheteau. Liquidity in asset markets with search frictions.

Econometrica, 77:403–426, 2009.

Walter Rudin. Real and Complex Analysis. McGraw-Hill, New York, 1974.

Securities and Exchanges Commission. Findings regarding the market events of May 6, 2010.

Technical report, 2010.

Pierre-Olivier Weill. Leaning against the wind. Review of Economic Studies, 74:1329–1354,

2007.

119


