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The Medicare Part D Prescription Drug Plan represents the most significant privatization 
of the delivery of a public insurance benefit in recent history, with dozens of private 
insurers offering a wide range of products with varying prices and product features; the 
typical elder had a choice of roughly 40 stand-alone drug plans.  In this paper we evaluate 
the choices of elders across this wide array of Part D options using a unique data set of 
prescription drug claims matched to information on the characteristics of choice sets.  We 
first document that the vast majority of elders are choosing plans that are not on the 
“efficient portfolio” of plan choice in the sense that an alternative plan offers better risk 
protection at a lower cost.  We then estimate several discrete choice models to document 
three dimensions along which elders are making choices which are inconsistent with 
optimization under full information: elders place much more weight on plan premiums 
than they do on expected out of pocket costs; they place almost no value on variance 
reducing aspects of plans; and they value plan financial characteristics beyond any 
impacts on their own financial expenses or risk.  These findings are robust to a variety of 
specifications and econometric approaches.  We develop an "adjusted" revealed 
preference approach that combines data from consumer choices with ex ante restrictions 
on preferences, and find that in a partial equilibrium setting, restricting the choice set to 
the three lowest average cost options would have likely raised welfare for elders under 
the program. 
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 The Medicare Modernization Act of 2003, better known as the legislation that 

added the Part D prescription drug benefit to the Medicare program, represents the single 

most significant expansion of public insurance programs in the U.S. in the past 40 years.  

The most novel, and controversial, feature of this legislation was the use of multiple 

private insurance providers to deliver this new public insurance product.  Unlike the 

traditional model of government mandated uniform insurance packages for all enrollees, 

under the Part D program dozens of private insurers were allowed to offer a wide range 

of products with varying prices and product features.  Perhaps most well-known was the 

extent to which plans covered the “donut hole”, a broad uncovered range of expenditures 

in the minimum mandated plan. 

 This unprecedented privatization of the delivery of a public insurance product 

raises a host of important policy questions.  Primary among these is the impacts of 

allowing choice across so many private insurance options.  The typical elder in our data 

(described below) faces a choice of over 40 stand-alone drugs plans, and our estimates 

suggest that the range of cost from the most to least expensive option facing an elder is 

comparable to the mean of those costs.  Choice is clearly meaningful in this context.  Yet, 

to date, we know almost nothing about how elders are making these crucial choices. 

 This paper investigates the choices of elders for the newly formed Part D program 

in 2006.  We analyze data that provides information on the Part D plans chosen and 

prescription drug utilization for a large sample of elders in the U.S.  These data were 

collected by Wolters Kluwer (WK), a “switch agent” that lies between pharmacies that 

fill prescriptions and the insurance companies and prescription benefit managers that pay 

for them.   WK collects information on almost one-third of all third party prescription 
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drug transactions, and we will use the universe of their data for those over age 65 during 

2005-2006 to examine choice of Part D plan.  We match to this data set a comprehensive 

set of information from the Centers for Medicare and Medicaid Services (CMS) on the 

Part D plans available to each person in our data set. 

 Specifically, for each elder whose claims appear in our sample, we model the 

financial implications of each of the plans in their choice set, based on both 2005 and 

2006 drug utilization and several different models of expectations. We begin by 

presenting the basic facts on choice, documenting that the vast majority of elders are 

choosing plans that are not on the “efficient portfolio” of plan choice for that elder.  We 

then turn to more rigorous multinomial models of individual choice to incorporate non-

financial characteristics, preference heterogeneity and unobserved plan characteristics 

into our analysis. 

 Our findings are striking: along three dimensions, elders are making choices 

which are inconsistent with optimization under full information.  First, elders place much 

more weight on plan premiums than they do on the expected out of pocket costs that they 

will incur under the plan.  Second, they substantially under-value variance reducing 

aspects of alternative plans.  Finally, consumers appear to value plan financial 

characteristics far beyond any impacts on their own financial expenses or risk.  These 

findings are robust to a variety of specifications and econometric approaches. 

 We attempt to interpret the magnitude of our results by analyzing the impact of 

restricting the option set offered to elders under Part D.   We develop an "adjusted" 

revealed preference approach that combines data from consumer choices with ex ante 

restrictions on preferences.  We find that in a partial equilibrium setting, restricting the 
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choice set to the three lowest average cost options would have likely raised welfare for 

elders under the program. 

 Our paper proceeds as follows.  Part I provides background on the Part D program 

and reviews the growing literature on its impacts.  Part II discusses our data sources, and 

Part III presents initial results on choice set variation and choice behavior.  Part IV 

describes our choice framework, and Part V presents results.  Part VI shows the welfare 

analysis based on these models, and Part VII concludes. 

 

Part I: Background  

The Medicare Part D Program 

 Medicare, which provides universal health insurance coverage to those over age 

65 and to those on the disability insurance program, was established in 1965. The original 

program covered most medical needs for the elderly and disabled, including hospital and 

doctor costs, but it excluded coverage for prescription drugs.  This omission was not 

perceived as a major one in the early years of the Medicare program, but in the 1990s the 

advancement of prescription drug treatments for common illnesses among the elderly 

drew attention to this gap in Medicare coverage. Medicare recipients, for example, spent 

an average of $2,500 each on prescription drugs in 2003, more than twice what the 

average American spent on all health care in 1965.1   

 In 2003, the Bush administration and Congress reached agreement on a far-

reaching prescription drug benefit package at a projected cost to the federal government 

of $40 billion per year for its first ten years.  The most noticeable innovation of the Part 

                                                 
1 Data for prescription drug spending comes from the Congressional Budget Office (2002). Data for 
average Americans’ health spending comes from the “National Health Expenditures” section of the Centers 
for Medicare and Medicaid Services’ National Health Accounts.  



 4 

D plan is that this new Medicare benefit is not delivered by the government, but rather by 

private insurers under contract with the government.  Beneficiaries can choose from three 

types of private insurance plans coverage of their drug expenditures.  The first is stand-

alone plans called Medicare Prescription Drug Plans (PDP) (a plan that just offers 

prescription drug benefits). In 2006, there were 1429 total PDPs offered throughout the 

nation, with most states offering about forty PDPs. The majority of PDPs are offered by a 

dozen national or near national companies.  

 The second alternative is Medicare Advantage (MA) plans, plans that provide all 

Medicare benefits, including prescription drugs, such as HMO, PPO, or Private FFS 

plans. There were 1314 total plans nationally in 2006.  Finally, beneficiaries could retain 

their current employer/union plan, as long as coverage is “creditable” or at least as 

generous (i.e. actuarially equivalent) as the standard Part D plan, for which they would 

receive a subsidy from the government 

 Under Part D, recipients are entitled to basic coverage of prescription drugs by a 

plan with a structure actuarially equivalent to the following: none of the first $250 in drug 

costs each year; 75% of costs for the next $2,250 of drug spending (up to $2,500 total); 

0% of costs for the next $3,600 of drug spending (up to $5,100 total, the “donut hole”); 

and 95% of costs above $5,100 of drug spending.  Over 90% of beneficiaries in 2006, 

however, are not enrolled in the standard benefit design, but rather are in plans with low 

or no deductibles, flat payments for covered drugs following a tiered system, or some 

form of coverage in the donut hole. The main requirement for plans is that they must 

have equal or greater actuarial value than the standard benefit.2  The government also 

                                                 
2 Cover Memo for Medicare Part D Benefit Parameters: Annual Adjustments for Standard Benefit in 2007 
(CMS)  



 5 

placed restrictions on the structure of the formularies that plans could use to determine 

which prescription medications they would ensure.  Overall, Part D sponsors have great 

flexibility in terms of plan design. 

 Enrollment in Part D plans was voluntary for Medicare eligible citizens, although 

Medicare recipients not signing up by May 15, 2006 were subject to a financial penalty if 

they eventually joined the program (to mitigate adverse selection in the choice of joining 

the program).  One group, however, was automatically enrolled: low income elders who 

had been receiving their prescription drug coverage through state Medicaid programs (the 

“dual eligibles”).  These dual eligibles were enrolled in Part D plans by default if they did 

not choose one on their own.  The Part D plans for dual eligibles could charge 

copayments of only $1 for generics/$3 for name brand drugs for those below the poverty 

line, and only $2 for generics/$5 for name brand drugs for those above the poverty line, 

with free coverage above the out of pocket threshold of $3600.3 

 Despite reluctance voiced before the legislation passed, there was enormous 

interest from insurers in participating in the Part D program.  By November 2006, 3,032 

plans were being offered to potential Part D enrollees.  Every county in the nation had at 

least 27 plans available; the typical county had 48 plans, while some counties featured 

more than 70 choices, primarily due to high number of MA plans.4  

                                                 
3 In addition, two other groups receive substantial subsidies – those found eligible for Low Income Subsidy 
(LIS) or for Partial Subsidy by the SSA. To qualify for LIS, beneficiaries must have income less than 135% 
of poverty and resources less than $7,500/individual or $12,000 couple.  This group received benefits 
comparable to the dual eligibles with incomes above 100% of poverty.  To qualify for Partial Subsidy, 
beneficiaries must have income at 135%-150% of poverty and resources less than $11,500/individual or 
$23,000/couple.  This group can enroll in plans with a $50 deductible, a 15% copayment up to the out of 
pocket threshold, and $2/$5 copayments above that point.   In addition, premiums are fully paid by the 
government up to 135% of poverty, and then partially subsidized up to 150% of poverty. 
 
4 Details on number of plans in a median county obtained from Prescription Drug Plan Formulary and 
Pharmacy Network Files for 2006, provided by CMS.  
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 Enrollment in the new Part D program was initially fraught with problems, but in 

the following months the federal government was able to iron out many of the problems 

that had arisen during the initial transition.  As of June 2006, there were 10.4 million 

people enrolled in stand alone PDP plans, 5.5 million people enrolled in MA plans and 

about 6 million dual eligibles.5  Yet 73% of people over 65 felt that the Medicare 

prescription drug benefit was too complicated, while 91% of pharmacists and 92% of 

doctors expressed this concern.  When asked if they agree with the statement “Medicare 

should select a handful of plans that meet certain standards so seniors have an easier time 

choosing,” 60% of seniors answered “Yes.”6 

 Despite these reservations, there were no signs of diminished plan choice in 

subsequent years.  The number of PDPs increased by about 30% in 2007, from 1,429 to 

1,875 and remained at this level in 2008.7   

Issues of Elder Choice in Part D 

 The use of this private delivery device, with such a multiplicity of choices, is a 

novel feature of the Part D legislation.  Standard economic theory would suggest that this 

is a beneficial plan feature: allowing individuals to choose across a wide variety of plans 

that meet their needs, rather than constraining them to a limited set of choices being made 

by the government, can only increase welfare in the standard model in a partial 

equilibrium setting. 

                                                 
5 Enrollment data (rounded) taken from CMS, State Enrollment Data spreadsheet at 
http://www.cms.hhs.gov/PrescriptionDrugCovGenIn/02_EnrollmentData.asp#TopOfPage. Enrollment 
numbers also available at http://www.kff.org/medicare/upload/7453.pdf. 
6 Kaiser Family Foundation and Harvard School of Public Health (2006). 
7 Hoadly et al. (2006).  Data on 2008 plans taken from CMS 2008 PDP Landscape Source (v. 09.25.07) 
available at http://www.cms.hhs.gov/prescriptiondrugcovgenin/. 
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 But there are reasons to believe that the standard model is insufficient, 

particularly for a population of elders.  There is growing interest in behavioral economics 

in models where agents are better off with a more restricted choice set, as nicely reviewed 

in Iyengar and Kamenica (2006).  Recent theoretical work shows that the traditional 

“more is better” principle may be reversed in choice set contexts, for example when the 

presence or absence of options conveys information (Kamenica, 2006; Kuksov and 

Villas-Boas, 2005) or when agents have preferences with regret (Irons and Hepburn, 

2003; Sarver, 2005).  And a growing body of empirical work shows that individuals are 

less likely to participate in markets where they face more choice; decisions to purchase a 

good (Iyengar and Lepper, 2000; Boatwright and Nunes, 2001), take a loan (Bertrand et 

al., 2005) or enroll in a 401(k) plan (Iyengar, Huberman and Jiang, 2004) are found to 

decrease when participation requires choosing from a larger set of alternatives. 

 Iyengar and Kamenica (2006) find that not only the decision to participate in a 

market, but also the nature of choice itself, is affected by the size of the option set.  They 

investigate choice over asset allocation in both laboratory and real-world (pension plan 

choice) settings, and find that individuals opt for safer investments when faced with a 

larger range of risky choices.  In particular, they find that the presence of more 

investment options in a 401(k) plan leads to more frequent choice of money market or 

bond options rather than equity investment.  Iyengar and Lepper (2000) also find that 

satisfaction with choices made falls with the size of the choice set in several experimental 

settings. 

 These issues may be paramount within the context of the elderly, given that the 

potential for cognitive failures rises at older ages.  Salthouse (2004) shows clear evidence 
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that the performance on a series of memory and analytic tasks declines sharply after age 

60.  Part of the reason for this may be the rise in incidence of dementia with age; starting 

at age 60, dementia rates roughly double every five years (Fratiglioni et al., 1999).  A 

recent study by Agarwal et al. (2006) shows that in ten different contexts, ranging from 

credit card interest payments to mortgages to small business loans, the elderly pay higher 

fees and face higher interest rates than middle-aged consumers.  These types of findings 

raise particular concern about choice in the Part D context. 

Previous Studies of Part D Choice 

 We are aware of only three previous studies of these issues in the context of Part 

D.  The first is a set of studies by Dan McFadden and colleagues, as summarized in 

McFadden (2006).  These researchers surveyed a set of elders about their plans for 

enrolling in Part D programs, and evaluate whether enrollment intentions in the plan were 

“rational” given the penalties for delay.  They find that 71% of potential enrollees were 

making the appropriate decision (under various assumptions about discount rates, etc.), 

while 10% of enrollees did not intend to enroll when it would be in their interests to do 

so, and 19% intended enroll when it would be in their interest to delay.  Thus, for most 

potential enrollees, the decision over whether to enroll seems to be made rationally. 

 Their findings are less sanguine, however, for choice of Part D plan.  This survey 

offered individuals a choice of the standard plan described above versus alternatives that 

provide different levels of insurance coverage (e.g. catastrophic only, complete coverage, 

etc.), with corresponding actuarially fair premiums.  They find that only about 36% of 

enrollees choose the cost-minimizing plan, and they do not place much value on the 

insurance aspects of more comprehensive plans.  They conclude that “consumers are 
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likely to have difficulty choosing among plans to fine-tune their prescription drug 

coverage, and do not seem to be informed about or attuned to the insurance feature of 

Part D plans.”   

 While this is an interesting set of findings, it provides only a preliminary look at 

the crucial issue of plan choice.   These conclusions are based on data which do not 

contain precise detail about the prescription drugs used by individuals; assumptions about 

utilization are made using aggregate imputations from other sources.  Moreover, this is 

based on hypothetical choices across a set of non-existing plans; individuals may become 

educated about the program when they are actually faced with plan choices.  Thus, the 

failures of choice documented by McFadden (2006) may not hold when we use data on 

actual individual utilization and choices. 

 A recent paper by Lucarelli, Prince and Simon (2008) uses aggregate data on plan 

market shares to conduct a study of how plan features impact demand and to undertake a 

welfare analysis of choice restrictions.  They estimate sizeable welfare losses from 

limiting the option set facing seniors.  But they do so in a framework which assumes that 

seniors are choosing optimally so that by definition restricting the choice set can only be 

harmful.  Without individualized data on plan choices, they are unable to evaluate the 

underlying efficacy of plan choice. 

 Most closely related to our work is a recent field experiment by Kling et. al. 

(2008).  They examine how providing people with information about the relative costs of 

each of the available plans in 2007 computed using their 2006 claims impacts their 

choices.  They find that individuals who receive this intervention are more likely to 

switch plans, and more likely to end up with lower predicted and realized costs.  Using 
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our richer dataset on patient claims, we are able to model the individualized risk 

characteristics of plans in addition to looking just at average costs.  Our model is also 

more general in terms of sample and implications.  While they investigate the 

consequences of one particular intervention on a sample of patients at a single hospital, 

our model allows us to calculate the potential welfare gains from reforms which change 

the structure of the choice set, and to do so for a large fraction of Medicare Part D 

enrollees. 

 

Part II: Data 

 Our primary data source is a longitudinal sample of prescription drug records 

from the Wolters Kluwer (WK) Company.  They are the largest “switch” operator in the 

prescription drug market: they collect the electronic claims from pharmacies and pass 

them on to the Pharmacy Benefit Managers (PBMs) and insurance companies that will 

pay the claims.  After adjudicating the claim, it is passed back through the switch to the 

pharmacy. WK performs this function for a large sample of pharmacies throughout the 

U.S.  Once pharmacies are in their sample, there is a 93% chance that they remain 

enrolled, so this is effectively a longitudinal sample of pharmacies.  On average the 

claims captured by the WK system represent almost 31% of all 3rd party prescription 

claims filled in the U.S.8  The geographic distribution of these data is very closely 

representative of the geographic distribution of 3rd party claims as well; the correlation 

between the WK market share and the overall 3rd party market share across each of the 

states is 0.86. 

                                                 
8 Figure based on data provided by WK for Q3:2006. 
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 WK keeps a longitudinal file that tracks prescription drug use for more than 100 

million persons in the U.S.  They have made available to us for research purposes a 

longitudinal sample of prescription claims for any individuals age 65 and over in 2005.   

These data are crucial because they are the only available data (of which we are aware) 

that contain information both on specific drug utilization by elders and on plan choice.  

Information about specific drug utilization is key because plan costs vary tremendously 

based on drug utilization, as we discuss below.   

 We begin with a sample of 2.7 million elders who (a) have a Part D claim, (b) are 

not employer-insured, dual eligibles or eligible for low-income subsidies/partial 

subsidies, (c) have claims for only one region of the country, (d) have no claims with 

missing payment information, (e) are in the sample of consistently reporting pharmacies, 

and (f) have data for both 2005 and 2006.  This data file has a rich set of information 

about every drug claim for individuals in the longitudinal sample, including information 

on: month in which the prescription was filled; county of location of the pharmacy; a de-

personalized patient id which allows longitudinal patient linkages; patient age; NDC code 

for the drug; quantity measures (days supply, dosage, package size); patient and insurer 

payments; price of purchase; and insurer or PBM name. 

 WK has created a sample for us that links longitudinally all claims from elders 

that fill prescriptions at a pharmacy in their sample.  Thus, there are three types of 

attrition from the sample.  First, elders may die (in which case we still observe all of their 

claims).  Second, pharmacies may enter or leave the sample.  This can be addressed by 

using only pharmacies that are continuously in their sample.9   Finally, individuals may 

                                                 
9 A store is flagged as continuously enrolled provided that the store does not miss more than 11 days 
(including weekends and holidays) of reporting in a month.  
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switch pharmacies.  If the switch is to a pharmacy within the WK sample, then the 

company does a detailed statistical match to ensure that the patient is captured and 

matched to other prescriptions (based on the de-identified form of data fields such as first 

name, last name, date of birth, year of birth, gender, health insurance id and zip code).  If 

the switch is outside of the WK sample, then the individuals will be lost to this sample.  

 Unfortunately, there is no way to capture such transitions.  But we can assess their 

importance by taking advantage of the fact that Wolters Kluwer provided us with a 

coverage level variable which indicates the proportion of pharmacies in each county 

which are covered by Wolters Kluwer.  We have rerun our models on the 10% of 

counties where WK covers at least 40% of all third-party prescriptions, and our results 

are very similar to what we report below.  This suggests that attrition is not significantly 

biasing our results. 

The CMS Plans Database 

 We obtain information on availability of Part D plans and specific plan features 

directly from four files provided by CMS: the plan information file, the beneficiary cost 

file, the formulary file and the geographic locator file.   The plan information file lists 

plan names and identifiers, and regions/counties in which plans are offered.  The 

beneficiary cost file contains copays and coinsurance rates for different tiers of each plan.  

The formulary file contains a list of all the drugs that are included on the formulary for 

each plan.  The geographic locator file allows us to identify all the Social Security 

Administration (SSA) counties that correspond to different PDP and MA regions.  

 The major strength of the CMS data is that it allows us to fully parameterize any 

elder’s plan choice set based on their location.  We have used these data to build a “cost 
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calculator” that mimics the calculator provided on Medicare’s web site.  This calculator 

uses a given set of prescriptions for a given elder to compute their projected out of pocket 

spending in each plan available in their county. 

Matching patients to their Part D Plan 

 One challenging aspect of the WK data is that we know each patient’s county and 

the name of the company that provides the Part D plan that is covering each prescription, 

but not specifically which Part D plan offered by that company is covering the 

prescription.  For example, we know that an elder is covered by a Humana product, but 

not whether it is Humana Complete, Humana Enhanced, etc. 

 Fortunately, we can resolve this matching problem in most cases by using a 

combination of county code, company name, and copayment structure.  For each claim 

and each of the plans within the same company offered in a particular county, we check if 

the copay that the patient paid for this claim matches any of the prescribed copays of the 

plan. We assign a person to a plan if most of their claims match to the same unique Part 

D plan.  We carry out this exercise for each month.  To confirm that a person has been 

matched to a correct Part D plan, we look at all the months together and insist that a 

person be consistently matched to the same plan in each month from June 2006 on, since 

enrollment into Part D plans was open until May 15th 2006. 

 Of the approximately 2.7 million individuals in our sample, 776,118 were 

matched to Part D plans.  The remainder were excluded either because they had a large 

number of non-Part D claims (implying that they have some other form of coverage), 

because they had too few claims to reliably match, or because their copays were 

inconsistent with the copays listed for Part D plans in their region.   
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 Of the matched individuals, 57.1% were uniquely matched to a Part D plan, 

42.9% were multiply matched (meaning that more than one Part D plan was consistent 

with their copays).  While the unique matches are clear, excluding multiple matches leads 

us to misstate the proportion of enrollment in some plans.  This problem is especially 

severe among Humana plans because Humana offers several plans which differ only in 

the deductible and donut hole coverage and thus cannot generally be distinguished on the 

basis of copays.  While comprising 20% of all matches, Humana plans are only 10% of 

unique matches.  To deal with this problem, we include both unique and multiple 

matches, with multiple matches randomly assigned to one of the plans to which they are 

matched with probability equal to the proportion of total national enrollment in that plan 

in 2006.10   In fact, if we restrict only to unique matches, our results are considerably 

stronger (e.g. the anomalies we document below are heightened as are the utility gains 

from restricting the choice set).11 

Construction of Out of Pocket Cost Variables 

 The total enrollee costs of Part D can be decomposed into premiums, which are 

known for certain at the time of plan choice, and the distribution of out of pocket costs 

given the information available at the time when plans are chosen. Our focus is on 

estimating the distribution of costs given all of the information potentially available to 

individuals at the time when they make their choice.  There are three reasons that 

estimating this distribution is challenging: first, we only observe realized out of pocket 
                                                 
10 Regional enrollment figures are not available at the plan level in 2006 for most plans.   
11 One might still worry that if we include all matches our results are driven by misassignment of multiple 
matches, while if we include just unique matches our results are driven by selecting for plans which are 
easier to match (although it seems unlikely that both issues would coincidentally lead to the same 
estimates).  To deal with this objection, we estimated an earlier version of our models using the full sample 
of unique and multiple matches and the correct likelihood function given the random assignment of 
multiple matches (following Hausman et. al. 1997).  This correction appears to make little difference, in 
part due to the fact that most multiple matches could be assigned with a high level of confidence. 
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costs for the plan in which an individual is enrolled; second, we observe only a single 

realization of out of pocket costs for each individual (making it impossible to compute a 

variance measure); and third, we do not observe all of the information available to 

individuals at the time when they make their choice. 

 To handle the first difficulty, we assume that the set of 2006 claims is fixed and 

would remain constant had the individual in question chosen a different plan; that is, we 

assume no moral hazard.  This assumption allows us to use the calculator to determine 

what each individual’s realized costs would be for each plan in their choice set.  Given 

typical estimates of the elasticity of prescription drug utilization in the range of 0.2 to 0.5, 

and considering that this would only impact our results to the extent that individuals have 

sufficient foresight to take into account future utilization effects in their plan choices, this 

is a fairly innocuous assumption.  A formal model and empirical results are provided to 

justify this claim in Appendix A. 

 To handle the second difficulty, we sample realized costs from 200 individuals 

who are “identical” to the individual in question at the time when the plan choice is 

made.  In practice, we define “identical” as individuals with the same decile of 2005 drug 

expenditures, 2005 days supply of branded drugs and 2005 days supply of generic drugs; 

after extensive searching, we found that this combination provided the best prediction of 

2006 prescription drug spending based on 2005 characteristics.  We therefore assign each 

individual to one of 1000 cells demarcated by the interacted deciles of these measures. 

We restrict our sample to individuals for whom there are at least 200 other individuals in 

their cell, and we use these 200 individuals in each cell to compute both our rational 

expectations measure of utilization in 2006 (described below) and our variance measure. 
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 The third difficulty is that individuals may actually know more than can be 

predicted given 2005 costs at the time when they make their plan choices.   Intuitively, 

we can attempt to determine whether individuals know more than can be predicted given 

2005 costs by analyzing whether their choices are sensitive to the component of the 

variation in realized costs across plans which cannot be predicted given 2005 

characteristics.  We develop a formal model of this approach in Part V. 

 

Final Sample Creation 

Under Part D individuals could enroll not only in a stand alone PDP plan, but also 

in a more comprehensive MA plan; we distinguish between individuals matched to MA 

and those matched to PDP plans based on copay and exclude the former.  We focus just 

on PDP plans (and therefore, just on individuals who chose PDP plans) because MA 

plans involve broader health care decisions which are beyond the scope of our data (e.g. 

regarding HMOs and fee-for-service plans).  This exclusion is justified by the 

“independence of irrelevant alternatives” assumption that underlies our logit modeling, as 

discussed (and tested) further below.  We also exclude individuals who have fewer than 

500 observations in their state or fewer than 100 observations in their brand/state cell to 

increase the speed of estimation of the model by reducing the required number of 

brand/state fixed effects; this restriction has no effect on our final results.   

 Our final sample consists of 477,393 individuals.  The typical patient in this 

sample is almost 75 years old, three-fifths are female, and they have an average of 34 

claims per year.  Their total prescription drug spending averages $1711 per year.  While 

some individuals were enrolled in Part D for the full year, others enrolled as late as May.  
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The average total premiums paid after enrollment was $287 and the average OOP costs 

paid out over the same period was $666.  This is the sample used in the efficient frontier 

analysis below.  In our conditional logit models, we randomly subsample 20% of these 

individuals for computational reasons.  We estimate the more computationally 

demanding random coefficients models on a randomly chosen subsample of 15,000 

patients. 

The distribution of enrollees across Part D plans is highly correlated in this final 

sample with the national facts on PDP enrollment provided by CMS.  The correlation 

between the share by brand in our sample and the CMS sample is 0.98, and the 

correlation between the share of our sample in the top 10 plans is correlated with the 

CMS reported share in those plans at 0.89 (the correlation for the top 100 plans is 0.91). 

 

Part III: Facts on Plan Choice 

 To motivate our regression framework, Figure 1 shows the basic facts on the 

relationship of plan choice to total plan costs.  For each individual in the data, we 

estimate the total cost of enrolling in each PDP plan in their county, adding both 

premiums and expected out of pocket costs.  We then estimate the difference in total 

costs between the plan chosen by that individual and the lowest cost plan in their county.  

For this exercise, we use a perfect foresight model of expectations, using actual 2006 

expenditures to estimate the costs that individuals face in each plan.   

 As Figure 1 shows, only 12.2% of individuals choose the lowest cost plan in their 

state.  Indeed, on average, individuals could save 30.9% of their total Part D spending by 

choosing the lowest cost plan rather than the plan they chose.  If we redo these 
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calculations using actual 2005 expenditures, or predicted 2006 expenditures based on 

2005 expenditures rather than actual 2006 expenditures, we find even stronger deviations 

from the lowest cost plan.12   

 Of course, individuals are not simply choosing a fixed payment stream when 

choosing a Part D plan; individuals who are highly risk averse may explicitly be choosing 

plans with higher mean expenditure to protect themselves against variance in 

expenditure.  Yet this does not seem to be the case.  Even if we only include plan choices 

where the variance is non-increasing, over 70% of enrollees could have chosen a lower 

cost plan, and the typical enrollee could have saved 23.3% of their Part D expenditures 

without raising their variance.13 

 The explanation for these facts is shown in Figure 2, which shows the choice set 

for individuals in California.  The X axis in this graph is the mean of total costs for each 

plan, and the Y axis is the average standard deviation in costs (where the standard 

deviation is computed using the 1000 cell method, and the average is taken across 

individuals).  In this graph, there is a clear “efficient frontier” of plans which dominate 

others in terms of both cost and variance.  This graph masks considerable heterogeneity 

across individuals: different plans lie on the efficient frontier for different individuals, so 

the fact that a plan lies off the efficient frontier in this graph does not imply that it is 

suboptimal for each individual.  Nonetheless, most of the plans are well off the efficient 

                                                 
12 It appears that some plans may have offered low premiums in 2006 in order to entice consumers to 
choose their plan in the first year of the Part D program before raising their premiums in subsequent years.  
This behavior should not impact our analysis except insofar as there are large switching costs because 
consumers have the option to switch plans after each year, but one might still wonder to what extent the 
above results are driven by such plans.  To assess this issue, we repeated the above analysis using the 2007 
premiums for all plans and found that the average potential cost savings fell slightly from 30.9% to 25%. 
13 The fact that this number is smaller than the 30.9% number is because we are searching for cost savings 
over a small set of plans, not because individuals are especially sensitive to risk, a point we document 
further below. 
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frontier, meaning individuals could have either lowered their mean costs or their variance 

by picking a different plan. 

 As we will document below, one reason for the large amount of choice off the 

efficient frontier is that individuals consider plan characteristics in making their choices – 

but not how those plan characteristics matter for themselves.  This is perhaps best 

illustrated by a simple examination of the decision to choose a plan with donut hole 

coverage.  Figure 3 shows the probability of choosing donut hole coverage, and the 

financial implications of doing so, sorted by 2006 spending percentiles; the results are 

once again similar for other measures such as 2005 actual spending or 2006 predicted 

spending.  The bottom line shows the percent of the population at each percentile 

choosing donut hole coverage; the top line shows the average savings for individuals in 

that quantile from switching from the lowest cost plan in their region which offers donut 

hole coverage to the lowest cost plan that does not.     

 The plans which offer donut hole coverage actually have slightly inferior 

coinsurances relative to the lowest cost non-donut hole plans in the initial coverage range, 

and so the cost of donut hole coverage is rising with expenditures until the point when 

individuals become likely to enter the donut hole. 

 The results here are striking: the percentage choosing donut hole coverage is 

virtually flat throughout the spending distribution at around 10%.  Even if individuals are 

willing to pay extra in mean costs for the protection provided by donut hole coverage, it 

is hard to rationalize the fact that the same proportion of individuals in the 10th and 85th 

percentile of the spending distribution choose donut hole coverage. 
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Part IV: Base Model of Part D Plan Choice 

 In this section, we extend the efficient frontier analysis presented above by 

considering several discrete choice models.  These models serve three general purposes 

in our setting.  First, they allow us to control for additional plan characteristics such as 

plan quality.  Second, they allow us to understand more precisely how preferences 

combine with choice set characteristics so we can forecast how individuals might choose 

in counterfactual choice environments.  Third, they allow us to quantify the welfare 

consequences of choices. 

 We begin by specifying a CARA utility model with a normally distributed cost 

distribution: 

  where  (1)  

In this case, indirect utility is given by: 

 
 

(2)  

 where  is a constant.  A first-

order Taylor expansion about the point  yields: 

 
 

(3)  

Dropping constant terms (since these are irrelevant in the logit model), we obtain: 

 
 

(4)  

We can write total costs as  and since  is known for any given plan,  

 and .  Adding an error 

term, we can rewrite equation (4) as: 
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(5)  

This maps into a conditional logit model of plan choice where the utility of 

individual i from choosing plan j is given by:  

  (6)  

with  and .  In this equation  

  represents any financial plan characteristics which impact choice,  represents 

plan quality ratings and other non-financial aspects of plans (which vary only across 

brands), and  are i.i.d. type I extreme value random variables.  

 In this expression,  allows us to map the ratio of the coefficients on the 

variance of costs and the coefficient on the mean of costs into the coefficient of absolute 

risk aversion.  This assumes that wealth is constant across all states of the world: the only 

risk facing individuals is uncertainty about the distribution of out of pocket costs.  The 

same expression would hold if we added idiosyncratic risk that was uncorrelated with 

prescription drug expenditures, but it is not implausible that there would be correlated 

risks: in states of the world where prescription drug expenditures are higher, other 

medical expenditures are higher as well.  Such correlated risks would tend to bias 

upwards our already low estimates of risk aversion.   

 We include in our model several financial plan characteristics beyond premiums, 

out of pocket costs, and the variance of out pocket costs.  These are: the deductible of the 

plan; a dummy for whether the plan covers all donut hole expenditures; a dummy for 

whether the plan covers generic expenditures in the donut hole only; and a cost-sharing 

index.  The cost sharing index is calculated for each plan as the average percentage of 
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expenditures covered by the plan between the deductible and the donut hole.  This 

variable differs from expected out of pocket costs in that it has the same value for 

everyone in the sample for each plan, and because it is not directly impacted by whether 

plans have deductibles or donut hole coverage.  We also include two measures of plan 

quality: the share of the top 100 drugs used by elders that is included in the plan’s 

formulary and a quality index.  The quality index is computed by CMS on a 1-5 scale by 

aggregating consumer ratings at the brand level collected along 17 dimensions which are 

categorized as “Customer Service,” “Drug Pricing Information” (availability / rate of 

price changes), and “Using Your Plan to Get Your Prescription Filled”. 

 Identification is a natural concern in this context.  All of the plan characteristics 

included in our model may be endogenous due to unobserved demand factors, and they 

may be biased by correlation with unobserved plan characteristics.  To address this 

concern, we observe and include in our model all of the publicly available information 

that might be used by individuals to make their choices.  We also consider models where 

we control for a full set of brand dummies, as well as a full set of interactions of state 

dummies with brand dummies.  When we include brand dummies, the coefficient on the 

quality index (which is measured at the brand level) is no longer separately identified 

although it can be recovered by a GLS regression of these dummies on the quality 

variable.  When brand-state dummies are included, coefficients on plan characteristics 

such as the premium, deductible and donut hole coverage are identified by the variation 

across plans offered by the same brands in a given state.14 

                                                 
14 For instance, in many states Humana offers a Standard plan with lower premiums but limited coverage, 
an Enhanced plan with higher premiums but no deductible, and a Complete Plan which offers superior cost 
sharing and full donut hole coverage at much higher premiums.  
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 Even with these fixed effects, it is possible that premiums are endogenous 

because they are set based on brand-state specific assessments of demand conditions.  If 

premiums are higher in regions where insurers anticipate more demand for their 

particular plan (relative to other plans offered by the same insurer), our estimate of the 

coefficient on premiums will be biased towards zero since individuals will appear to be 

less averse to higher premiums.  To the extent that these factors make high premiums 

appear less undesirable than they actually are, our conclusion that premiums are 

overweighted relative to out of pocket costs would be strengthened, as would our 

estimates of the welfare loss due to consumer mistakes.15 

Restrictions on Preferences 

 The model laid out above suggests three natural restrictions on preferences which 

extend the efficient frontier concept to the discrete choice setting.   

Restriction 1:  

 This restriction states that the coefficient on premiums should equal the 

coefficient on expected out of pocket costs.  Controlling for the risk characteristics of 

plans, individuals should be willing to pay exactly one dollar in additional premiums for 

coverage which reduces expected out of pocket costs by one dollar.  If this restriction 

fails to hold, individuals are not choosing on the efficient frontier: they could switch to 

alternative plans with comparable risk characteristics but lower total costs. 

Restriction 2:  

                                                 
15 We did attempt estimating the models reported below using two instruments using the control function 
approach: these were the average premium for a given plan in all states where the plan is offered (designed 
to avert local demand shocks) and a “marginal cost” instrument constructed using the average covered 
expenditures for individuals enrolled in the plan.  In both cases, the magnitude of the coefficient on 
premiums increased in the IV models.  We are not confident that the exclusion restriction is satisfied for 
either of these instruments, so we continue to estimate the model without an instrument below.  
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 This restriction states that financial plan characteristics other than premiums, 

expected out of pocket costs and the variance of out of pocket costs do not impact 

choices.  Individuals should not care about deductibles, donut hole coverage or copays 

per se; they should only care about these factors to the extent that they impact the 

distribution of out of pocket costs.  Once we control for this distribution, these factors 

should be redundant. 

Restriction 3:  

 This restriction states that individuals should be risk averse. 

 While these restrictions follow naturally from utility maximization with full 

information and standard preferences, the model from which they are derived makes 

several important functional form assumptions: we assume that the distribution of out of 

pocket costs can be summarized by its mean and variance, that indirect utility is a linear 

function of this mean and variance, and that the errors are i.i.d. type I extreme value.  In 

Appendix B, we show that the restrictions assumed in the previous section still hold even 

when these functional forms assumptions are weakened.16  Of course, it is always 

possible to write down preferences that would violate the above restrictions, but these 

restrictions are generally compatible with commonly used expected utility functions 

given the observed cost distributions.  

Choice Model Results 

Table 1 reports the results from several conditional logit models.  Model (1) 

includes only the premium, realized out of pocket costs and the variance of out of pocket 

                                                 
16 In particular, we simulate choices using the actual distribution of costs and several commonly used utility 
functions (CRRA, CARA) with varying levels of risk aversion.  In some cases, the restrictions do not hold 
exactly, but the violations are much smaller in magnitude than we observe when we estimate the model 
using actual choices. 
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costs.  As noted in the discussion of the cost variables, expected out of pocket costs – 

meaning the individual’s expectation of out of pocket costs at the time of plan choice – is 

not directly observed, so we use realized costs as a proxy for expected out of pocket 

costs.  This proxy has noise (where “noise” includes the component of realized costs 

unknown to the individual at the time when the choice is made) and so its coefficient is 

biased downwards.  We address this problem at length in the next section and show that it 

does not much impact our conclusions.  

The cost variables – premiums and out of pocket costs – are measured in hundreds 

of dollars.  Model (1) therefore shows that a $100 increase in premiums leads to a 32% 

reduction in the probability that a given plan is chosen, implying an average elasticity of -

-0.75.17  There are two ways to interpret the remaining coefficients.  First, we can divide 

by the premium coefficient in order to compute the willingness to pay in dollars for a one 

unit increase in the characteristic.  Second, the coefficient itself can be interpreted as the 

percentage increase in the probability that a plan is chosen from a one unit increase in the 

characteristic provided that probability is small (as it is for most plans). 

Two points about the model (1) results are noteworthy.  First, the coefficient on 

out of pocket costs is only about ½ as large as the coefficient on premiums, violating 

Restriction 1.  Second, the coefficient on the variance term is negative and significant, 

but extremely small, implying risk aversion substantially less than we obtained in the 

simulations with CRRA = 1.   

                                                 
17 The implied elasticity varies across plans based on premium level and market share.  The “32%” number 
given in the text is derived from the equation .  Thus, for  which holds for a 

large number of plans, we can interpret  as the percentage change in  associated with a one unit change 
in . 
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Model (2) adds additional covariates to control for deductibles, donut hole 

coverage, average cost sharing, formulary coverage and plan quality.  Many of these 

covariates enter the model with significant coefficients.  When we add plan 

characteristics, the coefficient on premiums increases suggesting that it was initially 

biased downward due to omitted variable bias.  The coefficient on the variance term 

drops even further once we add a control for the # of the most popular 100 drugs which 

are included in the plan’s formulary.  This suggests that while individuals prefer plans 

which cover more drugs, they do not have sufficient foresight to choose plans which 

cover drugs which they (or at least people in their cell) might need in the future but are 

not already taking.   

Models (3) and (4) add brand dummies and brand-state dummies respectively.  

The coefficient on premiums actually shrinks once we include brand-dummies, but the 

effects of the premium remain large; a $100 increase in annual premiums leads to a 50% 

reduction in the probability that a plan is chosen, corresponding to an average elasticity 

of -1.17.  The coefficient on out of pocket costs has similar magnitude across all of the 

models, which reflects the fact that it is identified based on individual variation.  In 

columns (3) and (4) the coefficient on the premium is more than five times as large as the 

coefficient on out of pocket costs. 

 The coefficients on plan characteristics are also very large in all specifications.  

Controlling for the out of pocket cost consequences, model (4) – which has the smallest 

plan characteristics - suggests that individuals are willing to pay over $300 for full donut 

hole coverage, $50 for generic donut hole coverage, about $80 to go from a deductible of 

250 to a deductible of 0, about $80 to go from the plan with the least cost sharing (25%) 
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to the plan with the most cost sharing (65%), and $12 for each of the top 100 drugs which 

appear on the formulary.  These numbers are not enormous, but they are an order of 

magnitude larger than the results in the simulations, and have non-trivial consequences 

for the welfare evaluation of plan choice as we investigate in the welfare analysis section. 

 Thus, this formal modeling of choice reveals a violation of all three of the 

preference restrictions we laid out above.  The coefficient on premium is an order of 

magnitude larger than the coefficient on out of pocket expenditures; generalized plan 

characteristics enter the model highly significantly, even conditional on individual out of 

pocket risk; and individuals are not willing to pay more for plans with lower variance in 

expected spending. 

 

Part V: Modeling the Information Set of Consumers 

 In the previous section, we presented results from a conditional logit model of 

plan choice and identified three apparent irregularities in choices.  Our interpretation is 

that these results reflect consumer errors – plan characteristics are more salient than are 

their implications for the distribution of out of pocket costs, and individuals are unable to 

compute the individualized risk characteristics of the alternative plans.  In this section we 

consider an alternative explanation: we have misspecified out of pocket costs because we 

have failed to appropriately model the information available to individuals at the time 

when they make their plan choice. 

Thus far we have measured out of pocket costs using the realized cost measure 

constructed from 2006 claims.  An alternative measure that we consider in this section we 

label our “rational expectations” measure. Recall that to create our variance measure we 
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classified all individuals into 1000 cells defined by deciles of 2005 total spending, 

generic prescriptions and branded prescriptions, and ran the 2006 claims of 200 persons 

in each cell through the cost calculator for that plan.  This procedure generates a 

distribution of costs for each patient and plan.  Our rational expectations measure is 

defined as the mean of this distribution.  Under the strong assumptions discussed above 

(CARA utility and a normal distribution of costs), the mean and the variance would 

completely summarize the impact of the cost distribution on utility.  Our simulations in 

Appendix B show that they summarize this distribution well anyway even if these 

assumptions are relaxed. 

It is useful to compare this rational expectations measure to the perfect 

foresight/realized costs measure we have been using.  The latter measure is “too broad” 

in the sense that it includes information not available to individuals at the time when they 

choose (provided that is, that they do not know exactly what their drug needs and drug 

prices will be for the coming year).  The former measure is “too narrow” in the sense that 

individuals may have private information at the time they choose beyond what can be 

inferred from their 2005 costs.  If a patient learns they have cancer just prior to choosing 

their 2006 plan, they would correctly forecast that their drug needs would likely exceed 

the average of those with similar 2005 spending. 

We address these concerns by developing a model with which we can identify the 

information available to consumers at the time when they choose.  The intuition behind 

this model is that we can determine if individuals know more than we can predict given 

just their 2005 spending by evaluating whether their plan choices are responsive to the 

component of 2006 spending which is not known in 2005. 
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Suppose that utility is given by: 

  (7)  

where   represents expected costs, defined as the individual’s expectations of out of 

pocket costs at the time when they make their choice (for ease of exposition, we 

momentarily ignore the premium and variance terms).   is not observed.  However, we 

do observe realized costs, which can be written as the sum of expected costs and a noise 

term, defined as the component of realized costs unknown to the individual at the time of 

plan choice: 

  (8)  

where  denote the realized costs of individual i upon enrolling in plan j,   denotes 

expected costs, and  denotes noise.  We can further decompose expected costs into the 

component of expected costs predictable from 2005 data, , and the component which 

is private information, .  This yields: 

  (9)  

We assume that   and  are independent of .18   This assumption implies that 

individuals are aware at the time when they make their choices of the component of costs 

that can be predicted based on their previous year’s consumption.  This “rational 

expectations” assumption is substantive, but conforms with the baseline rational choice 

model that is implicitly tested by our analysis.  We discuss this issue further below. 

 If this were a linear model, the assumption of independence would be sufficient to 

identify .  This assumption implies that we have a classical measurement error 

                                                 
18 Combined with the additive structure assumed above, the assumption of independence also rules out the 
case in which the degree of uncertainty about costs varies with the level of expected costs.  We relax this 
strong assumption below by assuming only that  and  are conditionally independent given the 
measured variance of costs. 
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problem:  is a noisy measure of .  As usual, this problem can be solved with 

instrumental variables and in this case,  is a valid instrument – it is correlated with  

and uncorrelated with , so instrumenting for  with  would consistently estimate 

.  Because the model is non-linear, we need to be more explicit about the form of the 

measurement error to obtain consistent estimation.  First, we rewrite equation (7) 

substituting in equation (8): 

  (10) 

We assume further that  and .  Combined with equation (9), 

the normal updating formula implies: 

 

 
(11) 

We do not observe  or .  However, provided we assume that 

 where  are the variables which define each cell 

– that is, we assume that there is no heterogeneity in the variance of costs within cells – 

we do observe .  This is the variance we construct from the 1000 cell 

exercise.  This still leaves us with a separate parameter to identify for each (i,j) pair.  We 

additionally assume that a constant fraction  of the variance of costs within cells is 

due to private information .  That is, we assume that  and 

.  As written, this is a random coefficients model with one additional 

parameter beyond the ’s - , the degree of private information. 

 How is   identified?  Equation (11) suggests a simple intuition.  We can 

think of the model as one with a fixed coefficient  on  and a random coefficient 
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with mean  on .  Thus, the degree of 

private information is identified by the degree to which the coefficient on  falls 

short of the coefficient on .  If individuals have no information beyond what can be 

predicted from 2005 costs, we will observe  , and equation (10) will simplify 

to: 

  (12)  

If on the other hand individuals have perfect information about 2006 costs, we will 

observe , and equation (10) will simplify to: 

  (13)  

In the interim case, individual’s choose based on a linear combination of  and , and 

the random coefficient on  captures the fact that different individuals with the 

same  and  can have varying amounts of private information. 

This model also has implications for the variance term and the measurement of 

risk aversion.   The measured variance from the 1000 cell exercise  overstates the true 

variance in costs because some of this variation represents variation in realized costs 

which is unpredictable based on 2005 costs but is known to the individual at the time 

when they choose.  Thus, the correct variance to use in the model is , the 

variance of the noise term.  To the extent that individuals are responsive to the variance 

term, omitting this correction will tend to bias our estimates of risk aversion downward 

by a factor of .19 

                                                 
19 Note that this model does not directly allow for private information about the variance of costs; in some 
cases, individuals may learn that they are at risk of developing a certain condition which would require 
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Reintroducing the variance and the premium term, we obtain: 

  (14) 

where the distribution of  is given by equation (11). 

 Table 2 reports the results from estimating equation (14).  For computational 

reasons, we estimate this model on a much smaller sample by randomly selecting 15,000 

patients from our earlier sample.  Column (1) reports our earlier results, column (2) 

reports the earlier specification on the new sample, and column (3) the results from 

equation (14) which allows for private information.    The model is estimated using the 

Laplace approximation developed in Hausman-Harding (2007) with bootstrapped 

standard errors, including controls for the various plan characteristics.  This model is 

identical to the model in equation (6), adding the normally distributed noise term (which 

is a function of ) and the variance adjustment. 

 The results in Table 2 suggest that there is substantial private information: 

individual choices take into account about 60% of the variation in out of pocket costs 

which cannot be predicted given their cell.  The results also imply that our earlier finding 

that the coefficient on realized costs is smaller than the coefficient on premiums is robust 

to any measurement error generated from the fact that individuals do not know realized 

costs at the time when they choose.20  Moreover, financial plan characteristics such as the 

                                                                                                                                                 
treatment with prescription drugs.  This knowledge would increase their expected out of pocket costs in the 
coming year and would also increase the variance in their forecast.  The model above does not allow for 
this type of information; while the model allows individuals in the same cell to have different values of 
expected costs based on their realization of private information, we continue to assume that all individuals 
in the same cell in the 1000-cell model face the same variance.  To the extent that this assumption is false, 
our model could be viewed as substituting the predicted variance given the variables used to construct the 
1000-cell model for the actual variance.   
20 In other words, in a linear context, instrumenting realized costs for 2006 by predicted costs based on 
2005 characteristics does not much change the coefficient on out of pocket costs, indicating little bias from 
measurement error in our out of pocket cost coefficient.   
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donut hole and deductible continue to enter highly significantly in this model.  Therefore, 

two of the major choice inconsistencies persist even when we model private information. 

 Interpreting the risk-related results in Table 2 requires examining in more detail 

our assumptions about what individuals know at the time when they choose.  If we take 

the model in this section literally, we would conclude that individuals know much of 

what their costs will be to each plan in their choice set in the coming year so there is little 

insurance motive.  Under this interpretation, the variance in out of pocket costs is small 

for all plans because there is little uncertainty.  This means that any measured response to 

the variance term would imply high levels of risk aversion, and that the standard errors in 

our estimates of risk aversion are much larger than we concluded in the model ignoring 

private information.  The risk index in these models (obtained by dividing the variance 

coefficient by the premium coefficient and multiplying by 200) is comparable to what we 

obtained in our Appendix B simulations for CRRA = 3 with wealth = 17000. 

 The results reported in Table 2 are actually consistent with two models of choice 

with private information, however, each of which has very different consequences for our 

measurement of risk aversion.  The first model – assumed in the preceding analysis - is 

that individuals are using all available information to make forward-looking choices of 

plans for 2006, but are simply mis-weighting premiums and out of pocket costs in 

making those choices.  The alternative is that individuals are not using all available 

information, but rather are paying attention only to a part of their prescription drug 

expenditures.  For that portion to which they are attentive, individuals are rationally 

weighting premiums and out of pocket costs in the same way in making their decision.  

Yet individuals do not respond to variation in out of pocket costs beyond that portion.  
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For example, it may be that individuals sometimes check whether plans cover one 

particular drug they will need in the coming year out of several that they actually take.  

For this one drug, they have foresight – even if they do not currently take the drug, they 

know they will need it in the coming year and choose on that basis.  Nonetheless, they are 

insensitive to variation across plans in the costs of covering the remainder of their drugs.  

In Appendix C, we supplement the model developed in the previous section by 

integrating the fact that the coefficient on premiums exceeds the coefficient on out of 

pocket costs into our measurement of private information in order to capture the 

possibility that individuals might be insensitive to a component of out of pocket costs.  

Doing so, our estimate of the degree of private information now shrinks to 20% since we 

are interpreting the gap between premiums and out of pocket costs as evidence that some 

costs are unforeseen.  This gap – the “Fraction Observed” – implies that consumers are 

inattentive to almost 80% of the variation in out of pocket costs when they make their 

choices.  Because of this, there is now substantial variation in the risk facing individuals 

across plans which reduces the standard deviation in our measurement of the variance 

term.   As in the base model, we measure the variance coefficient is close to zero since 

the choices we observe are interpreted as a small response to substantial uncertainty 

rather than extreme sensitivity to a small amount of uncertainty.   

The bottom line from our models of private information is that our conclusions 

about the gap between the premium and out of pocket expenditure coefficients, and the 

powerful role for general plan financial characteristics in driving choice, are robust to a 

wide variety of specifications of out of pocket spending risk.  Our conclusion about the 
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low degree of estimated risk aversion, however, is more sensitive to the precise 

specification of the model. 

 

Part VI: Heterogeneity 

 The independence of irrelevant alternatives assumption that underlies the 

conditional logit model places strong restrictions on how elasticities vary across plans 

and will lead to inconsistent estimates if preferences are heterogeneous across the 

population.   To address this concern, we assess the robustness of our model to 

heterogeneity driven by both observed and unobserved factors.  We first note that our 

model already allows for a substantial amount of individual variation: we estimated the 

coefficients on individualized out of pocket cost parameters.  Nonetheless, it may still be 

the case that preferences vary in ways not included in our model.  In terms of observed 

heterogeneity, we have reestimated our model for a number of separate samples: by 

gender; by age; and by tercile of the 2005 prescription drug expenditure distribution.  In 

every case, we find that our results are very similar across all samples.  In particular, each 

of these samples illustrates the three choice inconsistencies documented thus far: the 

premium coefficient is many multiples of the out of pocket cost coefficient; financial plan 

characteristics enter significantly; and the estimated degree of risk aversion is very low. 

 We therefore turn to considering unobserved heterogeneity.  We use the Laplace 

approximation developed by Hausman-Harding (2007) to estimate a model with normally 

distributed random coefficients on all included characteristics.  Our goal here is primarily 

a robustness check: does accounting for heterogeneity change any of our qualitative 

conclusions?  
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 Table 3 shows the results of this analysis.  As before, column 1 is the original 

model on a small sample.  Column 2 adds random coefficients on premium, perfect 

foresight OOP, variance and quality, while column 3 adds random coefficients on all 

variables.  Again, we see that the choice inconsistencies are present even after accounting 

for unobserved heterogeneity.  Further, the magnitude of the coefficients estimated in the 

model without heterogeneity (which correspond to the mean of the random coefficients in 

this model) is not much affected.  We do estimate significant heterogeneity in the 

coefficients on premium, quality, the deductible and the generic donut hole term; 

allowing for this heterogeneity turns out not to have a significant impact on the welfare 

results we report below. 

 We can also interpret the results in Table 3 as a test of the IIA assumption.  To the 

extent that any of the coefficients are significant, this suggests that the IIA assumption 

does not hold exactly.  Nonetheless, the fact that the magnitude of the coefficients does 

not change substantially once we allow for random coefficients suggests that this 

assumption is not altering our conclusions.  

 

Part VII: Implications 

 Thus far, we have provided evidence of choice irregularities and shown that these 

irregularities are robust to the consideration of private information and preference 

heterogeneity.  In this section, we attempt to determine the implications of these 

irregularities.  We do so in a strictly partial equilibrium framework, ignoring supply side 

considerations, computation costs and many other factors; these are discussed at the end 

of this section. 
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 We proceed by defining a normative utility function that differs from the positive 

function we estimated above in that it satisfies the proposed restrictions on rationality.  

That is, if individuals were fully informed, their choices would be given by the model 

estimated above but satisfying three additional restrictions: the coefficient on premiums 

is equal to that on expected out of pocket costs; financial plan characteristics other than 

premiums are excluded from the utility function once we control for the individual’s 

expected out of pocket costs; and individuals exhibit risk aversion in their plan choice.  

We assume that the coefficient on premiums represents the marginal utility of a dollar if 

individuals were fully informed (this in turn determines the dollar value of quality 

variables and risk characteristics). 

We begin by extending the results reported in the previous sections to take into 

account risk and quality characteristics of plans.  We define the normative utility function 

to include premiums and out of pocket costs (equally weighted), variance and quality and 

value the latter characteristics in terms of dollars of premiums.  We then ask: if 

individuals had chosen the plan which maximizes this normative utility function rather 

than the plan which they did in fact choose, by how much would utility be improved?  

The answer in this model is about 27% of total costs – this is comparable to the 30.9% we 

found when we looked only at cost savings.  The small difference is due to the fact that 

the lowest cost plans also have slightly lower quality ratings on average.21 

We can interpret the 27% number as telling us the scope of the potential partial 

equilibrium utility gains.  If there were some intervention that would make individuals 

                                                 
21 The 27% number uses the measured coefficient on the variance of costs which is close to zero.  We can 
alternatively impose a coefficient which corresponds to a coefficient of absolute risk aversion of .0003 
(roughly CARA = 3 with wealth of 17,000).  In that case, the number rises to 27.6%.  The difference is 
small because the lowest cost plans offer comparable risk protection to the plans which are actually chosen. 
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fully informed and fully rational, this is the amount by which their utility could be 

improved.  An alternative question is what reforms we could use to attempt to realize 

some of these gains.  Some possibilities include directly providing individualized 

information about costs (as in Kling 2008) or appointing surrogates such as doctors or 

pharmacists to play some role in plan choice.  We pursue a different alternative here: can 

we improve welfare by removing some options from the choice set to reduce the scope 

for mistakes, or will individual heterogeneity mean that removing options inevitably 

reduces welfare? 

 To pursue this exercise, we need to forecast choices in a modified choice 

environment.  We assume that the positive utility function we estimate on the full choice 

set also guides behavior when choosing from the smaller choice set.  We then evaluate 

the utility difference between the larger and smaller choice sets using a normative utility 

function which satisfies the restrictions discussed in the previous section.  When positive 

and normative utility functions coincide, this is guaranteed to (weakly) reduce utility.  

When positive choice behavior diverges from optimizing normative utility functions 

because individuals are confused or not fully informed, there may be gains from moving 

to a smaller choice set.   

 Appendix D develops the formal tools we use in this section to perform utility 

comparisons in a setting where positive and normative utility functions differ.  We show 

that the expected consumer surplus (CS) from a given choice set is given by: 

 

 
(15) 
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where  denotes the coefficients in the positive model and  denotes the coefficients in 

the normative model.  This equation has a natural interpretation.  The second-term is the 

familiar log-sum term from logit consumer surplus evaluated on the positive utility 

function: this is what CS would be if the positive utility function were also the normative 

utility function.  The first term corrects the CS calculation for the fact that the log-sum 

term misevaluates the observed component of CS.  For each plan, this correction is equal 

to the difference in utility between the normative and positive utility functions times the 

probability that the plan is chosen. Throughout this section, the positive model we use is 

the one given in column (4) of Table 1, which includes all plan characteristics and brand-

state fixed effects. 

 A major problem with carrying out this exercise is the role of omitted 

characteristics in the logit model.  It has been observed repeatedly in the discrete choice 

literature that assumption of independently distributed errors leads to implausible 

predictions of the welfare impact of additional choices (Berry and Pakes, 1999; 

Ackerberg and Rysman, 2002; Petrin, 2002).  For example, Ackerberg and Rysman 

(2002) point out that even in random coefficients models that relax the IIA assumption,  

the fact that errors are independent conditional on the value of the random coefficients 

implies implausible welfare gains from additional products because there is no 

“congestion”; each additional product is assumed to add an additional desirable 

characteristic.   

 There are a number of ways of approaching this problem.  One route suggested by 

the analysis of Berry and Pakes (1999) is to consider a random coefficients model with 

either no error term or with a one dimensional omitted characteristic.  While we continue 
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to use a positive model with the logit error terms included (in part because we think it 

plausible that there are more than one omitted characteristics which have some impact on 

choice), we begin by considering a normative model in this spirit which excludes the i.i.d. 

error terms.  In this model, only observed characteristics (including brand-state dummies) 

enter the normative utility function.22 

A middle ground alternative is suggested by Ackerberg and Rysman (2002).  In 

their approach, an additional parameter is estimated to directly determine the impact of 

choice set size on utility.  We adopt a version of their approach here in which we use the 

variation in the number of PDP plans across states to determine whether PDP plans 

become more desirable as a whole relative to MA plans in states where there are a greater 

number of PDP plans.  In particular, we estimate a nested logit model where PDP plans 

are one nest and MA plans another, and include as “top level” regressors the number of 

PDP plans, the number of MA plans, and an MA plan dummy.  Because our information 

on the characteristics of MA plans is incomplete, we aggregate all MA plans into a single 

“outside option” whose premium is given by the average of the three most popular MA 

plans in each state, and we normalize all other characteristics to zero and include 

interactions of the out of pocket cost variables with a dummy for the MA plan (to prevent 

the specification of the outside option from spuriously contributing to the identification of 

these coefficients).  We randomly select for inclusion in the sample enough individuals 

who chose MA plans so that the proportion matches the proportion in the CMS data in 

2006.  The results of this approach are given in Table 4. 

                                                 
22 The results we report here are for the model without random coefficients, although including them does 
not impact our results.  It would be necessary to include these in a positive model which excludes the error 
term so that all choices have a non-zero probability of being chosen. 
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The log-sum coefficient lies between 0 and 1 indicating that the model is 

consistent with utility maximization.  The model implies that the logit errors overstate the 

utility gains from additional plans by a substantial margin.  If we normalize the estimated 

coefficient by the coefficient on premiums, the model implies that the logit errors 

overstate the utility losses of moving from a choice set with 47 PDP plans (the number in 

CA) to one with 3 plans by almost $300.  This value is difficult to assess in the abstract: 

the utility gains implied by the logit error terms from moving to 3 to 47 plans are highly 

dependent on which three plans we choose.  We can however compare this value to the 

utility gain implied by the logit errors in the context of a specific restriction, which we 

now do. 

In particular, we select the three plans which are predicted using the previous 

year’s data to have the lowest average cost in each state for inclusion in the small choice 

set.  Note that this does not imply that these plans are lowest cost for each individual in 

the state, let alone the optimal plans when other factors (such as quality and risk) are 

taken into account.   

Figure 4 shows the “utility landscape” that results from restricting to the three 

lowest cost plans in each state if we omit both brand-state dummies and omitted 

characteristics from the normative model.23 The utility landscape shows the distribution 

                                                 
23 We still find welfare gains from the small choice set if we include brand-state fixed effects in the 
normative model, although they are reduced on average to 13.8%.  We feel they should be omitted from the 
model for three reasons.  Firstly, they generate implausible variation in the value of identical plans across 
states – the value of the Humana fixed effect has a range of almost $900 across states.  Secondly, they 
generate implausibly large variation across plans.  The range of brand-state fixed effects implies that 
individuals would be willing to pay $1700 (about 170% of total costs) to go from the least desirable to the 
most desirable plan controlling for all financial characteristics.  The interquartile range is well over $600 
(by way of comparison, the coefficient on the quality variable implies less than a $200 difference between 
the 25th and 75th percentile plans).  Thirdly, there are no obvious characteristics of plans beyond financial 
characteristics and quality which we think would impact individuals if they were perfectly rational and 
fully informed.  That is, while individuals may (even rationally) decide to choose the AARP plan because 
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that results if we randomly select a state in proportion to its population and determine the 

average percentage change in utility in that state from moving from the full choice set to 

the smaller choice set.24  We see from the figure that restricting to the three lowest 

average cost plans yields increases in utility ranging from 0% to 30% in most states.  The 

variation across states stems from the fact that the lowest cost plans are relatively more 

inexpensive in some states than others and vary in their relative quality ratings.  The 

average percentage utility gain is 16.7%.  If we instead include omitted characteristics in 

the normative model, but adjust utility based on the estimated “number of plans” term, 

we find an average utility gain of 14.1%.  That is, whether we exclude omitted 

characteristics or include them and use a revealed preference approach to estimate the 

degree of “congestion”, we find comparable gains. 

 Figure 5 examines how the utility increases are distributed across the population.  

We see from these figures that the potential gains from moving to a small choice set are 

not evenly distributed across people: welfare increases for about 50% of the population, 

decreases for about 32% and remains constant for about 18%.   

A priori, one might expect that any reduction in utility from this policy would 

arise due to individuals purchasing an insufficient amount of insurance.  In fact, however, 

we find that the plans chosen in the small choice set offer slightly better risk protection 

on average than the plans which are chosen in the full choice set.  Because of this, we 

find that the average welfare gains are actually larger if we impose more substantial risk 

                                                                                                                                                 
they believe AARP will treat them well and because they are unable to fully evaluate the implications of 
plan characteristics for their financial well-being, in light of the fact that we can make this evaluation, we 
should no longer count the AARP fixed effect as part of welfare if it was only a heuristic for factors that we 
do observe.  
24 We report the results in this form to highlight the fact that we are choosing a different three plans in each 
state. 
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aversion than we estimated in our model.  The fact that we exclude the lone plan which 

offers full coverage in the donut hole does adversely impact some of the highest cost 

individuals.  But the fact that all individuals are insured against catastrophic expenditures 

with only a modest co-insurance rate (once the donut hole ends) mitigates any utility 

losses from this exclusion.   

As noted at the start of this section, these results are subject to a number of 

caveats.  Most importantly, we ignore general equilibrium considerations.  We do so 

because of uncertainty about how to specify the institutional structure following a reform 

which reduced the size of the choice set.  Of course, there are possible reforms which 

would preserve the competitive nature of the bidding process while reducing the number 

of plans ultimately offered to consumers, such as first stage bidding across plans to offer 

one of a limited set of plan structures.  Our results are also driven in part by the fact that 

the three lowest cost plans in each choice set are also among the best plans in terms of 

average utility all things considered.  If we select three random plans in each choice set, 

we find welfare losses from restricting choice.   

On the demand side, our analysis assumes that the estimated choice process is 

fixed.  We assume that individuals choose according to the same positive utility function 

regardless of the size of the choice set – any utility increases from smaller choice sets 

arise because there is less scope for error.  If individuals are in fact better able to evaluate 

alternatives in a smaller choice set, then our analysis would understate the potential gains.   

Moreover, surveys indicate that elders spend an average of 3 hours selecting their Part D 

plan (Kling et. al. 2008), so the dollar value of the hours saved by dramatically 

simplifying the choice process may be non-trivial as well.  Our models do not distinguish 
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between the case of boundedly rational consumers choosing plans they trust as a heuristic 

given the time-costs of fully evaluating choices, and the case where consumers simply err 

in underweighting out of pocket costs due to a lack of cognitive ability.  While this 

distinction is important for evaluating the potential efficacy of providing consumers with 

additional information, it is less relevant to considering the welfare impact of altering the 

choice set: in either case, our estimates imply that consumers would be better off if there 

were less scope for choosing the wrong plan. 

 

Part VIII: Conclusion 

The new delivery mechanism for a public insurance benefit introduced by the 

Medicare Part D program is a radical departure from the traditional public insurance 

model – and an exciting opportunity to understand the role of choice in the delivery of 

public insurance.  Using a unique data set we have provided the first evidence on the 

efficacy of the choices made by individuals under Part D.  While individual choices are 

consistent with maximizing behavior such as preferring plans with lower premiums, 

lower out of pocket exposure and higher quality, they are inconsistent with the standard 

model in three important respects: individuals underweight out of pocket spending 

relative to premiums; they overweight plan characteristics beyond their own 

circumstances; and they do not fully appreciate the risk-reducing aspects of plans for 

themselves. 

Our analysis in the last section suggests that given the normative assumptions we 

have outlined and given the positive model we estimated in the previous sections, there is 

substantial scope for increases in utility if consumers made better choices, and some of 
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these gains could be realized by restricting to the three lowest cost plans.  This analysis is 

subject to a number of caveats, and should only be the first step in a richer modeling of 

the implications of choice in Part D plans; in particular, this approach should be 

contrasted with the impacts of more benign approaches such as improving the 

information set available to seniors and their success in accessing that information set.  

One interesting question raised by our analysis is why private firms have not emerged 

which provide such information.  The analysis used here could form the basis of a general 

equilibrium model which takes into account the fact that consumer inattention to 

individualized characteristics may lessen the threat of adverse selection, but pose new 

problems as firms choose product characteristics in part to exploit consumer error.  Our 

analysis underscores the importance of such richer modeling before the public sector 

follows this model further, either within Part D or in other public insurance programs. 
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Figure 3: 

Percent Choosing Donut Hole Coverage and Added Cost by Expenditure Quantile 
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Table 1: Conditional Logit Results 
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Table 2: Results with Private Information 
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Table 3: Random Coefficients Results 
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Table 4: Nested Logit Estimates of the Coefficient on Number of Plans 
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Appendix A: Utilization Effects 

 To evaluate the impact of utilization effects, let us consider a simple model in 

which total drug spending  is a linear function of the coinsurance rate:  

and out of pocket costs are a linear function of total spending: OOP = . 

Let  denote the coinsurance rate of the plan in which the individual was 

actually enrolled and  denote the coinsurance rate of an alternative plan.  Thus far, we 

have been operating under the assumption that  and .  

Since in fact , we have .  

Normalizing the marginal utility of a dollar of out of pocket costs equal to 1, we have: 

 

 

Our current model omits the  term.  This equation suggests that our 

current model understates the value of plans with high coinsurances because it omits the 

fact that out of pocket costs would be smaller in these plans because consumers would 

consume fewer drugs.  Of course, so far, this analysis ignores half the picture: the value 

of the foregone drugs.  This value is given by the area under the demand curve: 

.  Subtracting this term from the previous equation, 

we obtain: 
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If coinsurances differ from the plan that consumers’ actually chose, consumers would 

always be better off than we predicted assuming no utilization effects because they are 

choosing their utilization optimally.   

 What is the magnitude of this coefficient?  The elasticity of spending with respect 

to the coinsurance rate is given by: , so .  For b 

approximately -0.2 and S approximately 1400 (the mean found in our data over the Part D 

enrollment period), this gives  if individuals fully internalize the impact of 

utilization effects on their plan choices.   The magnitude of the omitted term is extremely 

small: even if an individual is considering switching from a plan with 30% coinsurances 

to one with 75% coinsurances (moving from the 1st to the 99th percentile of what is 

observed in the data), the welfare difference due to utilization effects would be only $21 

.  By contrast, the coefficient on cost sharing we estimate in the data 

implies that, controlling for the individual financial implications of plan choice, 

individuals would be willing to pay between $50 and $200 for an equivalent increase in 

coinsurances (dividing the estimated coefficient on cost sharing in our models by the 

coefficient on premiums and multiplying by 100 gives the dollar value of increasing cost 

sharing from 0% to 100%). 

While it is difficult to analytically sign any bias from omitting the utilization 

effect term, we can directly include this term to determine whether it has any impact on 

our estimates.  This exercise shows the impact it would have on our estimates if we 

assumed that individuals did fully incorporate utilization effects, in contrast to our current 

analysis where we assume that they lack sufficient foresight to take them into account.  
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Note that we cannot directly estimate the coefficient on this term because the value of the 

term itself depends on which outcome was chosen.  Instead, we include the term 

 constraining the coefficient to be 140 times the coefficient on a dollar of 

premiums (our estimate of  above) and evaluate whether this impacts the other 

coefficients in our model.25  Doing so, we find almost no impact on our results.  The only 

noticeable change is an increase by 25% in the coefficient on cost-sharing, implying that 

individuals overvalue cost sharing slightly more than we had estimated in the absence of 

utilization effects. 

                                                 
25 Note that even if the functional form assumptions made in this section are inexact, we could interpret this 
term as an attempt to capture parametrically the fact that with utilization effects, plans with different 
coinsurances become relatively more desirable than we give them credit for being because individuals can 
reoptimize. 
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Appendix B: A Simulation Exercise 

 In this section we demonstrate that the choice restrictions we test in our 

conditional logit model would be satisfied by a broad range of generalized utility 

functions.  We start by considering CARA and CRRA utility functions with a range of 

values for risk aversion.  We then take the cost distributions generated from the Part D 

data for each plan and simulate individuals’ choices using the assumed utility function.  

Finally, we estimate the conditional logit model using these simulated choices and check 

whether the restrictions considered above hold.  We add a small amount of noise to each 

observation so that the coefficients are identified at small levels of risk aversion.26  The 

results of this exercise are reported in Appendix Table 1. 

The CRRA utility function is evaluated at wealth $17,000, the median financial 

wealth of those age 65-74 in 2004 (EBRI, 2005).  This is a conservative assumption 

which will tend to increase the curvature – and thus the degree of misspecification (it is 

especially conservative given that our analysis excludes individuals eligible for low-

income subsidies).  The absolute magnitude of the coefficients is determined by the 

amount of added noise (since this is the only omitted factor).  A more informative 

measure is the size of each coefficient relative to the coefficient on premiums: this 

measure gives the dollar value of a one unit change in the included variable. 

Regarding the first restriction, we see that, provided risk aversion is not too large 

(CRRA < 3, CARA < .0001), the coefficient on premiums equals the coefficient on OOP 

costs, and the two are very comparable in magnitude even at more extreme levels of risk 

aversion.  The second restriction appears to hold roughly over the same range: the plan 

characteristics are insignificant controlling for the mean and variance of out of pocket 
                                                 
26 The standard deviation of the noise to 1/20th of the interquartile range of utility. 
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costs provided CRRA < 3 and CARA < .003.  Even in the cases when they are 

significant, they are small in magnitude relative to premiums.  Dividing the coefficient on 

each variable by the coefficient on premiums gives the dollar value of a 1 unit increase in 

the variable.  In the CRRA = 10 case, the results would imply that individuals are willing 

to pay $9 for (full) donut hole coverage, would have to be paid $22 to go from a 0 

deductible to a $250 deductible, and would have to be paid $8 to accept generic donut 

hole coverage (since these values are driven entirely by misspecification there is no 

reason the signs should be sensible).  The third restriction is satisfied in the sense that we 

estimate risk aversion in all cases when the coefficient of risk aversion is greater than 0.  

The “risk index” is obtained by dividing two times the coefficient on the variance term by 

the coefficient on premiums.  We showed above that with CARA utility and normal 

noise, this index should approximate to (106 times) the coefficient of absolute risk 

aversion.  We see in Appendix Table 1 that this approximation seems to get things 

roughly correct in our sample (despite the fact that costs are non-normal), although it 

begins to break down when risk aversion is grows very large.  
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Appendix Table 1: Simulation Results 
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Appendix C: Modeling Unknown Component of Spending 

 As discussed in the text, the results of our private information model are 

consistent with two very different normative models of choice with private information.  

The first is that individuals are using all available information to make forward-looking 

choices of plans for 2006, but are simply mis-weighting premiums and out of pocket 

costs in making those choices.  The alternative is that individuals are not using all 

available information, but rather are paying attention only to a part of their prescription 

drug expenditures.  For that portion to which they are attentive, individuals are rationally 

weighting premiums and out of pocket costs in the same way in making their decision.  

Yet individuals do not respond to variation in out of pocket costs beyond that portion.   

 To address this point, we make two changes to the model.  First, we allow for a 

component of predicted costs which – while it can be predicted given 2005 characteristics 

– is still unknown to individuals at the time when they make their choice.  Since 

previously we allowed the coefficient on predicted costs to fall short of the coefficient on 

premiums, this modification just allows for heterogeneity across individuals in the 

portion of the variance in predicted out of pocket costs which is observed.  Second, we 

estimate the degree of private information by assuming that if OOP costs were fully 

observable, it would be weighted identically with  in patients’ utility functions.  

Conceptually, the estimates in the previous section apply to the case where the small 

coefficient on OOP costs reflects misweighting even though out of pocket costs are 

known (so there is no uncertainty), whereas the estimates in this section apply to the case 

where a component of out of pocket costs remains unknown.  We must distinguish these 
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two cases to determine the appropriate variance in out of pocket costs for each 

alternative. 

 We begin by decomposing realized costs into predicted costs and the component 

which cannot be predicted given 2005 characteristics: 

  (16) 

Formerly, we assumed  and attempted to determine the magnitude of the 

component of  that was observable relative to  which we assume was fully 

observable.  In this model, we make an analogous decomposition, but we write 

 to distinguish , which is the degree of private information assuming 

individuals are aware of predicted out of pocket costs from , which is identified 

assuming individuals are fully aware only of premiums.  We also decompose predicted 

costs so that  where  and , where 

 is the component of predicted costs known to the individual at the time of choice, and 

 is the residual component.  The variance of  captures the degree of heterogeneity 

in the amount of information possessed by individuals.  If this variance is large, then the 

same observed predicted costs might correspond to very different observed predicted 

costs across individuals and plans.  We assume that this variance is proportional to 

.  This allows for the fact that information about drugs has a multiplicative flavor: 

the information that a plan covers certain drugs has a larger impact on your choices if you 

consume more of those drugs or if those drugs are more costly.27  The constant  which 

                                                 
27 The multiplicative model is also easier to estimate because it generates a random coefficients model 
where the random coefficient has fixed mean and variance across plans for a given individual.  
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determines the degree of heterogeneity in information about predicted costs across 

individuals and plans is estimated. 

 Define (positive) utility as: 

  (17) 

where  is the component of out of pocket costs known to the individual at 

the time of choice.  Substituting in for , we obtain: 

  (18) 

As before, we apply the normal updating formula and obtain: 

 

 
(19) 

And: 

 
 (20) 

As before, we assume that  and .  As noted, we have 

now assumed that the coefficient on the observed portion of OOP costs is , the same as 

the coefficient on premiums.  The fact that the observed coefficient on realized costs is 

less than  in the original conditional logit model is rationalized by two factors: first, 

part of predicted costs is unobserved (the  term) and second, part of the difference 

between realized and predicted costs is unobserved (the  term).  Note that we can 

interpret the  term as a random coefficient on  with mean  and 

variance .   
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In both cases, we determine the portion of the variance explained by the 

unobserved factor by determining magnitude of the coefficient relative to the magnitude 

of the coefficient on premiums.   is now defined so that the coefficient on 

 is .  Likewise,  is identified by the fact that the coefficient on  

is .  

Appendix Table 2 reports the results from estimation of this model.  A few points 

are notable.  First, our estimate of the degree of private information now shrinks to 20% 

since we are interpreting the gap between premiums and out of pocket costs as evidence 

that some costs are unforeseen.  This gap – the “Fraction Observed” – implies that almost 

consumers are inattentive to almost 80% of the variation in out of pocket costs when they 

make their choices.  Because of this, there is now substantial variation in the risk facing 

individuals across plans which reduces the standard deviation in our measure of the 

variance term, which we now measure to be close to zero (the point estimate is very small 

but would actually indicate risk-loving behavior).   This model controls more flexibly 

than previous models for the full impact of out of pocket costs on choice (taking into 

account both heterogeneity in the degree of private information and in the fraction of 

predicted out of pocket costs which is observed).  The fact that the magnitude of the 

premium coefficient increases by about .2 suggests that this coefficient was previously 

biased downwards by the failure to adequately account for this heterogeneity. 
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Appendix Table 2: Results w/ private information and unobserved component of costs 
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Appendix D: Mathematical Details of Utility Analysis with Mistakes 

 In this section, we derive the formulae used to compute utility when positive and 

normative utility functions differ.  We assume that choices are given by the positive 

utility function: 

  (21) 

Whereas they are evaluated using the normative utility function: 

 

  (22) 

We assume in all of our models that the marginal utility of income is constant and given 

by the estimated coefficient on premiums ( .  In the case where omitted characteristics 

are excluded from the normative utility function ( , the analysis is straightforward.  

Utility depends only on the characteristics of the plan which is chosen, and since we 

assume a constant marginal utility of income, this is given by .  To evaluate the 

utility gains from moving to a small choice set, we compare the plan chosen from the full 

choice set with choices simulated using equation (21) in the small choice set. 

 The case where omitted characteristics do continue to enter normative utility is 

more involved.  In this case, .  For simplicity, we normalize .  As is 

standard in discrete choice models, we compute the expected value of consumer surplus: 

 

 

The second term in the summation is the ordinary logit probability computed from the 

positive utility.  To simplify the first term, we use the fact that if  are 

independent type I extreme value random variables with scale parameter 1 and location 
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parameters  respectively, then the conditional distribution of  given that  is 

the maximum of  is also type I extreme value with location parameter 

.  We can rearrange the first term so that: 

 

�

�

 

(24) 

Substituting in using the above result, we obtain:  

 

� (25) 
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�

�

�

 

Substituting this back into the expression for expected consumer surplus, we obtain: 

 

 
(26) 

This equation has a natural interpretation.  The second-term is the familiar log-sum term 

from logit welfare evaluated on the positive utility function: this is what welfare would be 

if the positive utility function were also the normative utility function.  The first term is 

the “mistake term”.  This term corrects the utility calculation for the fact that the log-sum 

term misevaluates the observed component of utility.  For each plan, this correction is 
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equal to the difference in utility between the normative and positive utility functions 

times the probability that the plan is chosen.  

 

 


