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Abstract 
  
This paper uses a unique new dataset – ticket transaction data – to test between two broad 
classes of theories regarding airline pricing. The first group of theories, as advanced by 
Dana (1999b) and Gale and Holmes (1993), postulates that airlines practice scarcity 
based pricing and predict that variation in ticket prices is driven by differences between 
high demand and low demand states. Dana's theory predicts that airlines sell tickets with 
higher and more dispersed prices in unexpectedly high demand states; Gale and Holmes 
predict that more discounted "advance purchase" seats are sold in off-peak demand 
periods. Both of these groups of theories predict substantially higher shares of low price 
tickets in off-peak versus peak flights. The second group of theories, as advanced in the 
yield management literature, indicate that fare variation is driven by differences in ticket 
characteristics as associated with price discrimination.  We use a census of ticket 
transactions from one of the major computer reservation systems to study relationships 
between fares, ticket characteristics, and flight load factors.  The central advantage of our 
dataset is that it contains additional variables not previously available.  These variables 
measure both the ticket characteristics central to the price discrimination theory and 
information on load factor and peak/off-peak travel times needed to test the scarcity 
pricing theory. We find only modest support for the scarcity pricing theories – the 
fraction of discounted advance purchase seats is only slightly higher on off-peak flights 
and fare dispersion is nearly the same.  However, ticket characteristics that are associated 
with second-degree price discrimination drive much of the variation in ticket pricing. 
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1.  Introduction 
 

It is well-known that airline prices exhibit substantial price dispersion.  Borenstein 

and Rose (1994) use 1986 data to show that two randomly selected passengers on the 

same airline and route will pay an expected difference of 36% of the average ticket price.  

Fares also vary based upon a wide variety of ticket characteristics, such as refundability, 

advance purchase discounts, Saturday night stays, and various travel and stay restrictions.  

Sengupta and Wiggins (2006) establish that these characteristics account for roughly 80 

percent of the variation in fares.2 

There are two major groups of theories that are used to explain this price 

dispersion.  This paper use new, unique data to test between these theories.  The first 

group posits that airline prices are set to allocate capacity in the context of a market 

where demand is uncertain and capacity is costly and perishable; that is, a seat on an 

airline is costly to provide but loses its value if not filled at departure.  The leading 

models of this view are Dana (1999a, 1999b) and Gale and Holmes (1993).3  Under these 

models, airline seats are priced so that higher prices reflect a lower probability of sale 

(Dana), or advance purchase discounts are used to encourage travelers with low 

opportunity cost of time to fly in off-peak periods (Gale and Holmes).  Both theories 

predict higher price dispersion in high demand states because there will be a higher 

proportion of high fares observed for transacted tickets.  In Dana this comparative static 

is driven by airlines running out of low price seats in high demand states.  In Gale and 

Holmes, airlines offer more discounted fares on low demand flights, resulting in a greater 

proportion of high price fares on high demand flights.   

An alternative theory of airline pricing comes from the revenue management 

literature, which focuses primary attention on the use of ticket restrictions to engage in a 

form of second-degree price discrimination.  In this literature, ticket restrictions such as 

non-refundability or stay restrictions are used to create fencing devices between 

customers with different valuations.  In these theories, customers sort based on their 

willingness to accept restrictions, but restrictions are not intended to move certain 

customers to off-peak times as in Gale and Holmes. 
                                                 
2 For a detailed survey of the history of airline regulation and pricing, see Borenstein and Rose (2007). 
3 Dana’s model builds on the pioneering analyses of Prescott (1975) and Eden (1990). 
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These theories are not mutually exclusive.  Nevertheless, the revenue 

management literature focuses primary attention on variation in prices associated with 

different customer groups, and does not provide the sharp predictions regarding the 

allocation of capacity in high demand states found in either Dana or Gale and Holmes.  

This paper tests between these groups of theories. 

Testing between models of scarcity pricing and price discrimination has been 

hampered by a lack of detailed data on airline tickets.  In particular, previously available 

data on actual transactions do not include information on either the ticket characteristics 

or the flights’ load factors that is needed to test either set of theories.  The most 

commonly used data to study airline pricing is the Department of Transportation’s 

Passenger Origin and Destination Survey (Databank 1A/1B), which provides a 10% 

random sample of domestic U.S. tickets in a calendar quarter.   These data do not include 

either the time of purchase or travel, or load factor data, and also lack data on ticket 

characteristics.  As a result, individual tickets and fares cannot be linked to ticket 

restrictions or flight-level load factors, precluding the investigation of how prices vary in 

response to changes in predicted or actual load factor. 

Some investigators recently have begun to gather and analyze data regarding 

posted prices gathered from online travel websites such as Orbitz (for example, see 

McAfee and Velde, 2006).  In particular, Escobari and Gan (2007) gather and use data 

from posted minimum prices to test the Dana’s theories.4  Unfortunately, we are not 

aware of any studies that use actual data on ticket transactions, or that investigate how 

the allocation of ticket types and price dispersion vary between peak and off-peak times.   

In this paper, we use unique data on ticket transactions to test empirical 

implications of the leading theories of airline pricing.  We directly test the relationships 

between fares and load factor in order to investigate how the share of high and low price 

tickets is affected by changes in expected and realized demand, and to assess the 

associated variation in price dispersion. 
                                                 
4 Escobari and Gan collected the posted minimum prices found on Expedia.com® for 228 flights departing 
on June 22, 2006.  Their data are more limited than the data presented below in that they consist only of 
posted prices rather than transaction prices and do not include information regarding the full distribution of 
actual prices.  A central difference between their empirical results and those presented below is that they 
chronicle a sharp increase in minimum fares (see their Figure 1 and Figure 2) in the last two weeks prior to 
departure.  Our data, based on actual transactions, reveal that transactions continue to occur at very low 
fares as the departure date approaches.  We do not know the reasons for these differences. 
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To carry out these tests, we use a census of all transactions through one of the 

major computer reservations systems (CRSs).  Our data include measures of ticket 

restrictions, fares, and flight-level load factor at purchase and departure for each flight 

segment of a travel itinerary.  In addition, our data include the dates of purchase and 

travel. 

The airline pricing problem is quite important, in part because airlines are an 

important industry.  This problem is also important because airline prices are highly 

dispersed and seemingly complex.  In addition, a better understanding of airline pricing 

can perhaps lead to a better understanding of pricing in related industries, such as the 

hospitality industry, concerts and sporting events.  These industries share a common 

underlying technology where capacity is costly to provide, demand on a given day or for 

a given event is uncertain, and capacity loses its value if it is not used.  Many such 

industries, moreover, exhibit highly complex pricing structures that might be driven by 

either price discrimination or by scarcity pricing.  A better understanding of airline 

pricing can also lead to an improved general understanding of the sources and effects of 

price dispersion.   

The analysis below proceeds in several steps.  First, we investigate the hypothesis, 

common to all the models, that prices are set in advance and that fares associated with 

particular groups of ticket restrictions do not change as demand uncertainty is realized.  

Then we test the central hypotheses of Dana and Gale and Holmes.  In particular, we test 

whether there is a higher share of high price, unrestricted tickets on high demand flights, 

particularly in the last week prior to departure when the airline should have sold out of 

low priced tickets on peak flights.  We also investigate more generally whether there are 

substantial quantity restrictions on the sale of low priced tickets on high load factor 

flights.  In the Dana model such restrictions occur because the lowest priced tickets sell 

out, leaving only high priced tickets available on high demand flights.  In Gale and 

Holmes, this variation occurs because consumers who have a low cost to taking the non-

preferred flight will buy in advance, and those tickets are only available on the off-peak 

flight.  Hence, we test the central hypotheses regarding the relative sales of high and low 

priced tickets on peak and off-peak flights shared by both of these theoretical models.  

We find only modest support for these scarcity pricing theories – the fraction of 
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discounted advance purchase seats is only slightly higher on off-peak flights.  In addition, 

price dispersion is not substantially larger on high versus low demand flights, as is 

predicted by the scarcity pricing models.  Finally, we investigate whether fares are 

systematically higher on flights with higher load factors.  We find that tickets on flights 

that are unusually full do have higher fares, but the effect is relatively modest.   

In contrast to finding modest support for scarcity pricing, we find that ticket 

characteristics that are associated with second-degree price discrimination drive much of 

the variation in ticket pricing.  These results, taken together, suggest that scarcity pricing 

plays a smaller role in airline pricing than models in which ticket characteristics create 

fencing devices to facilitate price discrimination. 

The outline of the paper is as follows.  Section 2 reviews the theoretical and 

empirical literature on pricing and price dispersion in airlines.  Section 3 describes our 

transaction level data.   Section 4 discusses our tests of the two classes of pricing theories.  

Section 5 concludes. 

 

2.  Theory on Pricing and Price Dispersion in Airlines 

 

Markets characterized by costly capacity, perishable goods, and uncertain demand 

often exhibit widely dispersed prices. Such variation in prices is found particularly in 

airlines, hotels, car rentals and other travel segments.  Persistent price dispersion in a 

perfectly competitive market for homogenous goods was first described by Prescott 

(1975) and more formally developed by Eden (1990).  Prescott (1975) developed a model 

to describe the inter- and intra-firm price dispersion that is commonly observed in the 

industries described above.  Prescott’s model posits a perishable good, such as a concert 

ticket or an airline seat, that entails costly capacity of λ per unit and perhaps a marginal 

cost, which we will ignore for now.  Following Dana’s presentation, it is easiest to think 

of two demand states, high and low, occurring with equal probability.  A certain portion 

of seats sell out in both states, and the competitive equilibrium price for these seats is 

p=λ.  Another set of seats sells only when demand is high, and the competitive 

equilibrium (zero profit) price for these seats is p=λ/(1-θ), where 1-θ is the probability of 

the high demand state in which those seats would sell.  The intuition is that the price must 
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adjust to cover the full cost of capacity, taking into account the likelihood that the seat 

does not sell.  A substantial literature has built upon this basic Prescott model. 

Dana (1999b) provides a more complete description of the model described above 

and extends the model to monopoly and oligopoly settings.  Dana’s model has a variety 

of important implications for pricing in industries with demand uncertain and costly 

capacity.  One of the most relevant implications for airline pricing is that there is a pure-

strategy equilibrium that generates intrafirm price dispersion without using restrictions or 

“fencing” devices such as advance purchase discounts or required Saturday night stays.  

Dana explains the intuition for the model with the example of selling tickets to an event 

at a stadium.  Suppose a perfectly competitive seller must precommit to a schedule of 

prices for tickets and cannot adjust prices if anything is learned about the state of 

demand, e.g. tickets must be printed in advance.  Demand is either “high” or “low” with 

equal probability.  Heterogenous consumers with unit demand arrive in random order at 

the stadium and purchase the lowest priced ticket that is available when they arrive.  

Dana shows that in equilibrium the firm will offer: (a) some “low” priced tickets that will 

sell under either state of demand, and (b) some “high” priced tickets that only sell when 

demand is high.  The competitive equilibrium is that the expected revenue from each 

ticket equals the marginal cost of capacity; thus, higher priced tickets have a lower 

probability of being sold.  Dana also presents monopoly and oligopoly versions of this 

model.  For example, the monopolist prices so that the expected revenue of an additional 

ticket equals the marginal cost of capacity plus the expected loss in revenue if the 

additional ticket displaces a higher priced transaction.  Under all forms of market 

structure, firms compete in price distributions and thus there is intrafirm price dispersion.   

 There are several testable implications of the Dana (1999b) model on transacted 

tickets.  The model predicts comparative static relationships between realized load factors 

and the mean and dispersion of fares.  To see this, suppose the analyst observes multiple 

realizations of flights with the same distribution of demand.  For a set of flights with the 

same (ex ante) distribution of demand, the set of offered fares is identical.  But the 

transacted fares will differ.  Assume, as in the Dana model, that consumers arrive and 

choose the lowest fare available when they arrive.  In a flight with a low realized load 

factor, only low fare tickets are purchased.  In medium load factor flights, the same low 
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fare tickets are purchased as well as medium fare tickets.  And in high load factor flights, 

the low and medium fare tickets are purchased as are high fare tickets.   

The Dana (1999b) model predicts four relationships between flights with different 

realized load factor but the same ex ante distribution of demand.  First, the mean fare of 

transacted tickets is higher on flights with higher realized load factors.  Second, there is 

more fare dispersion on flights with higher realized load factors.  Third, the share of high-

priced tickets will be larger in high demand states.  Fourth, flights that have an unusually 

high number of tickets sold as of a given number of days before departure, will sell more 

high-priced tickets in the final days before departure as compared to flights that are not 

unusually full.5 

The model developed by Gale and Holmes (1992, 1993) develops a similar result 

regarding the sales of high and low priced tickets in peak and off-peak times, but uses a 

different formal structure.  Gale and Holmes use a mechanism design approach to model 

the use of advance purchase discounts in a monopoly market to divert customers with a 

low cost of waiting to off-peak flights.  In the basic Gale and Holmes (1993) model, each 

consumer has a preference for either the “peak” or “offpeak” flight, but the consumer’s 

preferred flight is unknown until shortly before departure.  Customers vary in their 

opportunity cost of waiting.  Those customers with low waiting costs are willing to buy 

tickets off-peak and potentially bear the cost of flying at their less preferred time.  Firms 

and consumers can use advance purchase discounts to contract before the uncertainty 

regarding preferred flights is resolved.  Firms use advance purchase discounts to shift low 

cost-of-waiting customers to the off-peak flight.  Airlines achieve this result by offering 

(more) advanced purchase seats on the off-peak flight.  Advance purchase discounts 

increase output and surplus relative to the case of selling all tickets at the time of 

departure.  Gale and Holmes (1992) allow for uncertainty in the peak period, and find 

that at least some advanced purchase tickets are sold on the peak flight.  Dana (1998) 

                                                 
5 The model also predicts more dispersion in routes that have more competition, which is consistent with 
results from Borenstein and Rose (1994).  However, Borenstein and Rose provide a different model 
yielding dispersion -- a monopolistically competitive model with certain demand.  We do not test 
predictions regarding market structure because we seek to exploit the strength of our transaction data that 
include measures of flight-level load factor. 
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builds upon the advance purchase literature and shows that advance purchase discounts 

can arise in a perfectly competitive setting.6   

The main empirical implication of Gale and Holmes models that we test is that 

peak flights that are expected to be full will have fewer discount/advance-purchase seats 

sold in equilibrium.   

 McAfee and Velde (2004) draw upon the yield management literature and devise 

results for dynamic price discrimination and the efficient allocation of seats when airlines 

are faced with demand uncertainty.   They use data gathered from online websites to 

study the price paths for specific flights as departure nears.  They find only weak 

evidence of dynamic price discrimination.  Prices do not tend to fall as departure 

approaches despite the fact that the value of an unsold seat goes to zero at departure.  

Also, there is only weak evidence of the continuous adjustment of prices over time.  Our 

data reveal similar evidence on the evolution of fares as the time of ticket purchase 

approaches departure. 

 The empirical literature on price dispersion in airlines is well-developed.  Most 

existing studies have relied primarily on Databank 1B, and its predecessor DB1A, 

released by the Department of Transportation.  DB1B contains information regarding 

route, fare, carrier, booking cabin and itinerary for a 10 percent random sample of tickets 

sold each quarter.  As discussed above, DB1B is limited in that it does not contain 

information regarding the flight number, day of the week, date of purchase, load factor, 

or ticket characteristics such as refundability, advance purchase restrictions, and travel 

and stay restrictions.  Such information is essential for testing the theories put forth by 

Dana and by Gale and Holmes.   

Borenstein (1989) finds a positive relationship between a carrier’s share on a 

particular route and the fares it charges on that route.  He also finds that these higher fares 

do not generally spill over and raise the fares of other carriers on the route.   Another 

strand of the literature has analyzed the effect of market structure on price dispersion.  

Borenstein and Rose (1994) analyze the relationship between price dispersion and market 

structure.  They show an increase in dispersion as markets become more competitive.  

                                                 
6 Many other models argue price dispersion to be an outcome of randomization of prices by firms. Stahl 
(1989) and Rosenthal (1980) find decreased dispersion in more competitive markets, where the price 
dispersion in their markets are driven by differences in consumer search and asymmetric information. 
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Stavins (2002) uses a novel data set on posted prices and a subset of ticket characteristics, 

namely Saturday night stay-over and refundability, to find evidence consistent with both 

Saturday night stay and refundability being used as price discriminating instruments. 

Using these data, Stavins (2002) corroborates the finding of Borenstein (1989) that an 

increase in a carrier’s share is associated with higher prices, and the finding of Borenstein 

and Rose (1994) that increased competition on a route is associated with higher price 

dispersion.   

Related empirical work has studied other pricing and load factor phenomena.  

Sengupta and Wiggins (2006) study the effect of on-line sales on pricing.  Dana and 

Orlov (2008) investigate whether the increased use of internet booking leads airlines to 

increase capacity utilization.  Goolsbee and Syverson (forthcoming) investigate the effect 

of the threat of Southwest entry on incumbent carrier pricing.  Forbes (2008) estimates 

the effect of delays on fares.  Other research has studied the effect of airline bankruptcy 

or financial distress on pricing, including Borenstein and Rose (1995), Busse (2002), and 

Ciliberto and Schenone (2008).  Berry and Jia (2008) explore a variety of demand and 

supply side explanations for reduced airline profitability in the last decade despite 

increases in both load factor and passenger miles flown. 

 Our contribution to this empirical literature is to test comparative static 

implications of the Dana and the Gale and Holmes models.  We test whether the share of 

high-priced tickets is larger in high demand states, particularly in the period just prior to 

departure.  More generally, we test the hypothesis that more higher-priced, unrestricted 

tickets will be sold during peak as compared to off-peak flights.  We nest this central 

hypothesis in an empirical model where the baseline is the price dispersion that occurs in 

off-peak flights—the baseline consists of flights that have a low expected ex ante demand 

and a low realized ex post demand.  We then examine the economic and statistical 

significance of whether there is an increase in the percentage of high price, unrestricted 

tickets on flights that have a high expected and high realized demand.  Hence the model 

tests whether scarcity pricing of the type considered by Dana and by Gale and Holmes 

plays a substantial role in explaining observed levels of price dispersion as compared to a 

model where airlines use fencing devices as postulated in the yield management 

literature. 
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3.  Data 
 
 
3.A. Tickets in Our Sample 
 

We use a census of all transactions provided by one of the major computer 

reservations systems (CRSs) for the fourth quarter of 2004.  This CRS handles 

transactions for all major channels of ticket purchases: tickets purchased through travel 

agents, several major online travel sites, and directly from airlines, including their web-

based sales.  In all, these data comprise roughly one-third of all domestic U.S. ticket 

transactions.  For each ticket sold through this CRS, the data provide information on the 

fare, the origin and destination, airline, flight number for each leg of the itinerary, dates 

of purchase, departure and return, the booking class, and whether the ticket was 

purchased online or offline.7  

Following Borenstein (1989) and Borenstein and Rose (1994), we analyze the 

pricing of coach class itineraries with at most one stop-over in either direction.  We 

exclude itineraries with open-jaws and circular trip tickets, and only include itineraries 

with four coupons or less.  We analyze the prices of roundtrip itineraries; we double the 

fares for one-way tickets to obtain comparability.  (We will control for whether tickets 

are one-way or roundtrip).  We exclude itineraries involving travel in the first class cabin.  

This study includes tickets for travel on American, Delta, United, Northwest, Continental 

and USAir.  These constituted the entire set of airlines that carry at least 5% each of U.S. 

domestic customers with the exception of Southwest for whom we have only limited 

data.8  We analyze tickets for travel in the fourth quarter of 2004 excluding travel on 

Thanksgiving weekend, Christmas, and New Years.9   

We restrict our analysis to 90 large routes.  To choose these routes, for each of the 

six carriers, we stratified the sample to include routes for each carrier with varied market 

structures.10  The routes are listed in Table 1.  We include tickets by any of the six 

                                                 
7 For an analysis of online versus offline prices, see Sengupta and Wiggins (2006). 
8 Much of Southwest’s sales occur through the airline’s website. 
9 We exclude travel occurring from the Wednesday prior to Thanksgiving until the following Monday.  
Also, we exclude all travel beginning after December 22. 
10 Routes are airport pairs.  A route is a monopoly if a single carrier operates more than 90 percent of the 
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carriers listed above that serve any of the routes listed.  One consequence of choosing 

large routes is that the sample consists largely of routes from airlines’ hubs—though this 

should not pose a problem for testing the general theories of airline pricing under 

investigation. 

 

3.B. Ticket Characteristics 

 

Because we also wish to observe ticket characteristics that impact a traveler’s 

utility (e.g. refundability, advance purchase restrictions, valid travel days or stay 

restrictions), we merge our transaction data to information on ticket-level restrictions.11 

Travel agents’ computer systems can access historical data on posted prices for up to a 

year.  We collected additional data on restrictions from a local travel agent’s CRS.  The 

historical archive contains a list of fares/restrictions where transactions occurred for 

travel on a specified carrier-city-pair-departure date.  For each archived fare, we collected 

information on carrier, origin and destination, departure date from origin, fare, booking 

class (e.g. first class or coach), advance purchase requirement, refundability, travel 

restrictions (e.g. travel can only occur on Tuesday through Thursday), and minimum and 

maximum stay restrictions.  We merged these data to the transaction data by carrier, fare, 

booking class and a variety of ticket characteristics. 

The matching procedure is described in detail in the data appendix.  Briefly, we 

match our transacted itineraries to the archive of fares/restrictions based upon carrier, 

departure date, fare, consistency between purchase date and a possible advance purchase 

restriction, and tickets where travel dates were consistent with the posited travel and stay 

restrictions.  We kept matches if the tickets met these criteria and the fares were within 

two percent of each other.  If a transaction ticket matches multiple posted fares, we took 

the closest match based on fare.  Details are included in the appendix.  

Unfortunately, some transactions did not match the data on posted prices from the 

travel agent’s CRS.12  Of the routes that we analyze, we were able to match 36 percent of 

                                                                                                                                                 
weekly direct flights.  A route is a duopoly if it is not a monopoly route but two carriers jointly operate 
more than 90 percent of the flights.  A route is competitive if it is neither monopoly nor duopoly. 
11 For confidentiality reasons, the original CRS did not provide us with the full fare basis code. 
12 The travel agent told us that the historical archive maintained by her CRS would sometimes delete some 
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the observed transactions.    We can assess if there are systematic differences between the 

matched and unmatched transactions.  Table 2 compares means of all transactions to 

those that we could successfully match to fare characteristics, and indicates only modest 

differences between the matched and unmatched transactions.  The unmatched 

transactions tend to be slightly lower priced tickets – across all the carrier-routes, the 

matched tickets average $424 while all tickets average $415.  The means of ticket 

characteristics are very similar between matched and all transactions.  Matched tickets 

are slightly more likely to be purchased just before departure and to depart on Monday or 

Tuesday. 

We analyze whether these unmatched tickets tend to come from a certain part of 

the price distribution.  In Figure 1, we plot kernel density estimates of prices.  Although 

we tend to match fares that on average are slightly higher, we are able to match fares 

from various parts of the fare distribution. 

 

3.C. Measuring Realized and Expected Load Factors 

 

 The theory discussed above makes predictions that depend upon two measures of 

load factor:  the realized and expected load factors.  A central feature of our data is that 

we are able to estimate the load factor at various times prior to and including departure 

for a given airline, city-pair, and departure time (i.e. a flight).  We also can estimate 

whether the realized demand is particularly high or low for a given flight-departure date 

within our sample. 

To measure load factors, note that we observe all tickets sold through varied 

outlets by one of the major CRSs accounting for roughly one-third of all ticket 

transactions.  This permits us to estimate total sales at the flight/day level.  This estimate 

can then be combined with data from the Official Airline Guide, which provides the 

number of seats at the flight/day level, to provide an estimate of load factors.   

                                                                                                                                                 
of the posted fares, but she did not believe the deletion was systematic.  We also noted that fare-ticket 
combinations for more recent travel, as compared to the date we accessed the data, were more complete.  
Except as noted below, we were unable to find a systematic pattern when comparing the more recent travel 
dates with the older dates where the records were less complete. 
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Further, while we do not know the number of tickets sold through other CRSs, we 

can use the available data to construct an unbiased estimate of these unobserved tickets at 

the airline-citypair level.  In particular, the Bureau of Transportation Statistics reports 

monthly data on the total number of tickets sold for each city-pair by airline.  Using these 

data we can calculate the exact share of total tickets that we observe in our CRS data for a 

given airline and city-pair.  We then scale up the observed coupons on a particular flight 

by the inverse of that observed share to obtain an unbiased estimate of realized load 

factor for a given flight, at a given point in time.   

For example, for American Flight 301 from New York La Guardia (LGA) to 

Chicago-O’Hare (ORD) on October 11, 2004, we measure the number of seats (129) and 

the number of tickets sold through the CRS that include this flight on its itinerary (26).  

Because American sells 36% of its tickets for direct service between LGA and ORD 

through our CRS, we calculate the realized load factor to be 55% (=(26/0.36)/129). 

Of course, this load factor is measured with error, but the methodology implies 

that the measurement error will have zero mean at the city-pair, airline level.  This 

procedure should also provide an unbiased estimate of the load factor at the flight level, 

since the CRS share is unlikely to vary systematically for particular flights or days of the 

week within a city-pair.13   Finally, note that because we observe the sequence of 

transactions, we also can measure the realized load factor at different dates prior to 

departure (e.g. the flight is half full as of 7 days before departure and two-thirds full as of 

2 days before departure).  

 Also, we construct a measure of load factor that is systematic (or predictable) by 

the airline, and call it expected load factor.  To do so, we calculate the average load factor 

across our sample for a particular carrier’s flight for a specified day-of-the-week of travel 

(e.g. American flight 301 from La Guardia to O’Hare on Mondays).  We have data for 

tickets sold for departures in a 12 week window.  We calculate the average load factor for 

12 departures of a given flight number-day-of-the-week, and use it to estimate the 

average load factor on that airline-flight-day-of-the-week.   

The theories of scarcity pricing have several comparative static predictions about 

the characteristics of tickets sold on flights that are unusually full on peak flights and 

                                                 
13 We discuss possible attenuation bias below. 
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unusually empty on off-peak flights.  In some of the analysis below, we separate all 

flights into groups based upon the expected and realized load factor.  Figure 2 illustrates.  

The columns of the matrix divide flights based upon our measure of expected load factor 

into groups of expected to be “Full”, “Medium-Full”, “Medium-Empty” and “Empty”.14   

For example, all of American’s flights from La Guardia to O’Hare are grouped into 4 

categories of expected load factor based upon the average load factor for each FltNo-day 

of week.  American’s flight 301 on Mondays has a relatively low average load factor 

(compared to other American FltNo-day of week from LGA to ORD), so all 12 of those 

flights in our sample are classified as expected to be “Medium-Empty”. 

Next, we categorize each flight (i.e. FltNo-Departure Date) in each category of 

expected load factor by the realized load factor.  Continuing the example above, for all 

American flights La Guardia to O’Hare that are expected to be “Medium-Empty”, we 

group each flight into 4 categories based upon realized load factor.15  American’s flight 

301 on October 11 with a realized load factor of 55% is among the lowest load factor 

flights of those in the “Medium-Empty” expected load factor; therefore tickets on this 

flight are categorized as “Expected to be Medium-Empty and Realized to be Empty”. 

As shown in figure 2, the top left corner consists of flights that are unusually full 

among the flights that are expected to be full; the bottom right corner consist of flights 

that are unusually empty among those that are expected to be empty.   

 

3.D. Summary Statistics 

 

 Summary statistics of the transaction data that we include in our sample are 

shown in the first column of Table 2.  Fares average $415 for roundtrip travel.  A stay 

over a Saturday night is involved in 20% of itineraries.  Most tickets are purchased in the 

days shortly before departure; the fraction of tickets purchased within 3, 6 and 13 days 

before departure are 28%, 42% and 62%, respectively.  The day of the week with the 

most initial departures is Monday and the day with the fewest departures is Saturday.   
                                                 
14 We create the categories “Full”, “Medium-Full”, “Medium-Empty” and “Empty” so that approximately 
the same number of coupons are in each category.   As a result, there are more flights in the “Empty” than 
the “Full” category, but approximately the same number of passengers in each category. 
15 We create the categories so there are approximately the same number of coupons sold for a given row of 
each column. 
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 The data we analyze include 620,307 itineraries across the six carriers on these 90 

routes.  We measure ticket characteristics for 224,108 (or 36%) of these itineraries. 

 

 

4.  Testing Implications of Pricing Theories 

 

4.1.  Motivating Analysis 

 

Prices can vary substantially as a function of days to departure.  As an illustration, 

Figure 3 plots the prices for all round-trip tickets in our sample from Dallas-Fort Worth 

(DFW) to Los Angeles International Airport (LAX) on American.  This figure includes 

both fares we could and could not match to data on ticket characteristics.  Several 

patterns are clear.   

First, for any given day in advance, there is variation in the transaction prices.  

However, prices on average are rising as purchase nears departure.  On this route, fares 

do not discretely rise at 3, 7, or 14 days before departure.  (On some other routes, 

however, we do observe such an increase). 

Second, tickets appear to be sold at a discrete set of prices and these prices show up 

as bands of prices in the figure.  These price bands can be seen in the second panel of 

Figure 3 which plots only fares less than $1000.  This phenomenon is consistent with 

work by airline pricing practitioners who write in the operations research literature – 

those researchers claim that airlines have fixed buckets of prices, and that yield 

management personnel alter the number of tickets available in each bucket. 

An important phenomenon that we seek to study is the dispersion around the average 

prices.  Although average fares rise as the purchase date approaches the departure date, 

we nevertheless observe some low fare tickets sold just before departure.  On American’s 

DFW-LAX route, some of the lowest fare, highly restricted coach tickets are sold up to 

the day of departure.  Clearly, this dispersion could be caused by a variety of factors 

including different prices across the three months of our sample, different ticket 

restrictions, and different load factors on the various flights.  This paper explores the 
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determinants of both the levels and variation in fares and how transacted fares change 

both as departure nears and load factors vary. 

 

Motivating Regressions 

 To motivate the tests of scarcity pricing, we first analyze the association between 

an itinerary’s fare and the ticket’s restrictions and flight segment load factors.  We 

regress the itinerary’s log fare on the timing of purchase, the ticket’s characteristics and 

restrictions, and various metrics of the load factor of the flight segments.  We want to be 

cautious in interpreting this model as a pricing equation; there are possible explanations 

about the timing of purchase by different types of customers that could introduce 

selection concerns.  Nevertheless, these regressions illustrate results consistent with our 

more formal tests of pricing models later in the paper. 

 We include several measures of ticket characteristics.  Refundable and Roundtrip 

are indicators that the itinerary is refundable and for roundtrip travel, respectively.  

TravelRestriction is an indicator that the itinerary included a travel restriction (e.g. that 

all travel had to occur on Tuesday-Thursday, or that the ticket was not available on 

Friday or Sunday).  This variable may pick up fences that separate high and low value 

customers.  StayRestriction is an indicator that the ticket includes restrictions on the 

timing of departure and return travel (e.g. that the passenger must stay a minimum of 1 

day and/or a maximum of 30 days).  These restrictions are primarily minimum stay 

restrictions that could be used to separate customers who wish to travel and return on the 

same day.  SatNightStay is an indicator for an itinerary with a stay over Saturday night; 

however, we do not have information on whether such a stay was required at purchase.  

Advance_0_3, Advance_4_6, Advance_7_13, and Advance_14_21 are indicators of 

whether purchase occurred 0-3, 4-6, 7-13, and 14-21 days before the date of departure.16   

Table 3 reports regression results of the association between fares, ticket 

characteristics and load factors.  Each model includes fixed effects for carrier-route, the 

day of the week of the initial departure, and time effects (week of year).  The first column 
                                                 
16 Purchase 21+ days in advance will serve as the excluded category.  Note that our measures of advance 
purchase are the actual purchase dates rather than advance purchase restrictions placed on the ticket.  We 
also have estimated the model with the advance purchase restrictions.  In those regressions, the magnitudes 
of the coefficients of all other ticket characteristics and load factor are similar.  Interestingly, prices are not 
always lower on tickets with more restrictive advance purchase restrictions.    



 

 17

includes only ticket characteristics as predictors of fares.  Relative to travelers who 

purchase over 21 days in advance, passengers who purchase 14-21 days in advance pay 

6% more, those who purchase 7-13 days in advance pay 18% more, those who purchase 

4-6 days in advance pay 26% more, and those purchasing less than 4 days in advance pay 

29% more.  Passengers who purchase refundable tickets pay a 50% premium.  Tickets 

with restrictions on the days of travel or the length of stay are sold at prices 30% and 8% 

lower, respectively.  Passengers who stay over a Saturday night pay 13% less.  It is 

noteworthy (and perhaps surprising) that these characteristics along with the fixed effects 

explain nearly 70% of the variation in fares.17   

 The remaining columns of Table 3 include various metrics of the actual and 

expected load factor of the flight segments of each itinerary.  In column (2), we include 

the actual load factor at departure averaged over the itinerary’s flight segments.  Recall 

that this is likely to be measured with mean zero error because we “scale up” the 

observed tickets sold through our CRS by the CRS’ share on the carrier-route; we address 

potential attenuation bias below.  “LF_Actual – Averaged Across Flight Segments” is the 

average of each flight segments’ realized load factor.  We find that an increase in the 

actual load factor of an itinerary’s flights is associated with a very modest increase in 

fares. A one standard deviation increase in the actual load factor averaged across flight 

segments (0.34) is associated with a 1.5% increase in fares (0.34*0.045).   

 These results suggest that load factor influences fares in a manner that is 

relatively small compared to ticket restrictions, and in a manner that is relatively 

independent of restrictions.  When actual load factor is added to the model, the 

coefficients of ticket characteristics are very similar.  Also, we find that the addition of 

the load factor measure does not substantially increase the fit of the model; the R2 rises 

from 0.695 to 0.696.18     

 In column (3), we use a measure of the itinerary flight segments’ expected load 

factors.  As discussed above, we measure expected load factor as the average load factor 

for a particular carrier-flight-day of week (e.g. average load factor on American flight 

301 on all Mondays in our sample).  “LF_Expected-Averaged across flight segments” is 

                                                 
17 The R2 of a regression with only the fixed effects is 0.356. 
18 In unreported regressions, we include measures of load factor and fixed effects but not load factor.  
Adding load factor raises the R2 from 0.356 to 0.359. 
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the average of each flight segment’s expected load factor across all segments on an 

itinerary.  We interpret this variable as a proxy for the component of load factor that is 

predictable by the airline, and could be used to set different (ex ante) price distributions 

on flights in response to differences in the expected distribution of demand.  We find that 

an itinerary with flight segments that are expected to have higher load factors has slightly 

higher fares.  A one standard deviation increase in this measure of expected load factor is 

associated with a 2.3% increase in fares.  As with the case above using actual load factor, 

the association between fares and load factor is relatively small.19   

 The measures of actual and expected load factors are strongly positively 

correlated, so regressions including only one metric is likely to capture both effects.  

Column (4) includes measures of both actual and expected load factor.  LF_Expected is 

still statistically significant – a one standard deviation increase in expected load factor is 

associated with a 2.1% increase in fares.  However, the association between actual load 

factor and fares is no longer significant. 

 In the remaining columns, we allow for load factor to be associated with fares in a 

non-linear manner, and obtain similar results.  It is possible that fares are high only for 

itineraries that involve a particularly full flight segment.  In column (5), our measure of 

load factor is the actual load factor for the fullest flight segment (the maximum of actual 

load factor across all flight segments).  The relationship between actual load factors and 

fares is very similar to the results in column (2).  We include the expected load factor of 

the fullest flight in the model reported in column (6), and obtain results similar to those 

when we include the expected load factors averaged over flight segments.   

 Finally, we address whether the small association between fares and load factor is 

driven by mis-measurement of load factor.  As discussed above, our load factor is 

measured with error because we only observe about one-third of all transactions.  We 

‘scale up’ our observed number of tickets by the inverse of our CRS’ market share for the 

carrier-route.  This ‘scaled up’ load factor is measured with error because individual 

flights will randomly have more/less than the average share of the CRS.  This could lead 

to attenuation bias of our load factor coefficient towards zero.  Under certain 

                                                 
19 In unreported regressions, we estimate the model using only load factor (i.e. without ticket 
characteristics).  The coefficient estimate is 0.034 using LF_Actual ; it is 0.124 using LF_Expected. 
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assumptions, we can correct for the biased induced by the measurement error.  If the 

measurement error is additive, mean zero, and independent of the true load factor, we can 

consistently estimate the coefficient vector using: $ ( )β ε= ′ − ′−X X N X yΩ 1 , where Ωε is 

the variance matrix of the measurement error.  We simulate the variance of the 

measurement error for different true load factors, and compute the OLS estimate of the 

load factor coefficient under those assumed values of Ωε .  Results are reported in Table 

4.  The first row shows the results from column (2) of the previous table – a coefficient of  

LF_Actual of 0.0447.  Under various assumed variances of the measurement error, the 

coefficient rises by a very small amount to 0.0450 to 0.0451.  This suggests that 

measurement error is not the cause of our finding that there is a small association 

between fares and actual load factor. 

These motivating regressions suggest that a ticket with the same characteristics 

but involving flights that are expected to have or actually have higher load factors, will be 

purchased at only a slightly higher price.  

 

4.2.  Testing for Price Rigidities 

 

A key feature in Dana, Gale & Holmes, and the yield management literature is 

that prices are rigid.  Airlines commit to a price schedule before demand is realized.  

Using a pre-determined set of prices, airlines then choose the number of seats to allocate 

at those prices.   

In this section, we test a key assumption of these models – that prices are rigid – 

and find strong evidence in support of the price rigidities assumption.  In order to 

motivate our estimation, consider the simple “stadium seating” model of Dana.  The 

seller competes in price distributions and offers two types of seats – low-priced and high-

priced seats.  Consumers purchase the lowest priced seats that are available when they 

arrive.  In the low demand state, only low priced tickets will be sold.  In the high demand 

state, all tickets (low and high price) will be sold.  The seller in Dana’s model will adjust 

fares downward in response to higher expected demand because seats are more likely to 

sell, reducing expected costs per passenger flown.  However, the seller does not adjust 

the number of low and high priced seats for different realized demand states.  This model 
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also predicts a stock-out of low fare tickets in high demand states, but the fares 

themselves are set in advance and do not vary with the state of demand. 

All three of these theories, Dana, Gale and Holmes, and the yield management 

literature, in fact provide the same sharp underpinning for the empirical specification.  

That is, all three theories postulate that fares are set according to ticket characteristics and 

restrictions and do not vary across realized demand states.  Gale and Holmes postulate a 

predetermined price schedule with more advance purchase tickets being offered on off-

peak flights.  The yield management literature also postulates a predetermined fare 

schedule where fares are set well in advance in a “pricing department” with the yield 

management department then allocating quantities to the various bins associated with 

these predetermined prices. 

These models all indicate that a simple regression of fares on ticket characteristics 

will explain the large majority of the observed variation in prices.  More specifically, 

suppose the analyst has data on each ticket sold and its associated characteristics.  If the 

analyst regresses all transacted fares on dummy variables representing various ticket 

characteristics, the coefficients on the dummy variables representing the ticket 

restrictions will provide an hedonic measure of the “price” of different restrictions and in 

principle the R2 will be 1.0 because ticket characteristics will perfectly explain variation 

in prices.  Moreover, if one adds to this regression the fraction of the stadium that is full 

(“load factor”), the coefficient of load factor will be zero because fares are predetermined 

by characteristics.  The reason is that prices are rigid in this model.  The seller does not 

alter prices, but instead in the high demand state, there are more high priced tickets sold – 

both in absolute number and as a percentage of total sales. 

 We implement an analog to this empirical specification to test for price rigidities 

in airline pricing. We measure the “type” of ticket based upon ticket characteristics.  As 

we show below, we believe that we accurately classify the “type” of ticket because the R2 

of estimating such a model for each route is centered around 0.84. Analogous to the 

thought experiment described above, when we add load factor as a dependent variable, 

the coefficient is not economically large, which is consistent with price rigidities. 

 To implement this test, we regress log fare on dummy variables for “types” of 

tickets.  The yield management literature suggests that an airline’s planning department 
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creates the fare structure using a set of fare “buckets”.  We do not know definitions of 

such buckets.  However, we can create combinations of characteristics and restrictions, 

which we will refer to as “bins”.  We use observed ticket characteristics to create a set of 

72 bins.  A bin is every possible combination of (a) refundability or not, (b) existence of a 

travel and/or stay restriction or not, (c) a Saturday night stay or not, and (d) nine 

categories of advance purchase restrictions:  none, 1 day, 3 day, 5 day, 7 day, 10 day, 14 

day, 21 day, and 30 day.  Each of these types of tickets proxies a bucket to which a given 

number of tickets is assigned by an airline’s yield management department.   

 This structure of bins is consistent with all three theories described above.  In the 

Dana model firms then stock out of low priced fares, driving customers who want to fly 

at a given time into higher-priced, less restricted tickets.  In Gale and Holmes, airlines 

allocate fewer tickets to low price bins when there is an expected peak time of travel.  In 

the yield management literature, bin prices are set in advance and tickets are then sold 

exhibiting the various combinations of restrictions and fares. 

The empirical evidence supports this basic pricing structure.  In particular, for 

each route we estimate log fares on dummy variables for bins.  We allow each carrier to 

have a different fare structure for its bins by fully interacting the bin dummy variables 

with dummy variables for each carrier.20   

 We assess the price rigidity assumption using the measures of R2 for each route.  

Figure 4 plots the distribution of R2.  For many routes, our bin structure explains a 

substantial amount of fare variation; the median R2 is 0.84.   

Now we have defined ticket “types” and found those ticket types to explain a 

large fraction of the total variation in fares.  We are ready to test for price rigidities.  We 

re-estimate the same regressions above except that we add a measure of actual load factor 

of the itinerary’s flight segments.  Figure 5 plots the distribution of the coefficients of 

load factor.  The median load factor coefficient across all routes is 0.028, and for some of 

the city-pairs the coefficient is statistically positive.  However, the magnitude is 

economically small, just as in the motivating regressions above.   

                                                 
20 We also include a dummy variable for whether the itinerary is roundtrip, which is a ticket characteristic 
that we do not include in the bin structure. 
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Although these results are consistent with airlines increasing the fares of existing 

fare “types”, the effect appears to be relatively small.  Price rigidity appears to be a 

reasonable assumption.  Thus, the data are relatively consistent with the assumption of 

airlines setting rigid prices and not adjusting prices to load factors – prices can be largely 

explained with groups of characteristics and prices do not increase in demand. 

 

 

4.3 Testing Dana’s Predictions Regarding Price Dispersion 

 

 Next we turn to testing Dana (1999b)’s prediction regarding which flights have 

more fare dispersion.  Flights with the same expected distribution of demand have the 

same offered fares, but the flights with higher realized load factor have more dispersion 

in transacted fares.  Intuitively, passengers buy from the lowest priced fare bucket open 

when they purchase; so if there are more realized purchases, then more higher priced 

buckets observe purchases, and transacted fares are more dispersed. 

 We compare the average Gini coefficient for flights with the same expected 

demand distribution but different realized demand.  We proxy for the expected 

distribution of demand using the expected load factor quartiles calculated above and 

described in Figure 2.  All flights for a carrier-citypair are divided into quartiles of 

expected load factor based upon their average load factors for the twelve weeks for which 

we have data.  We then divide these quartiles based on demand realizations for particular 

flights.  Dana’s model has sharp predictions regarding the distribution of fares within this 

latter grouping.  More specifically, for a given grouping of expected load factor (e.g. 

“Full”), Dana’s model predicts there will be less fare dispersion on flights with “Empty” 

realized load factors than those with “Full” realized load factors.  In Figure 2, the Gini 

coefficient should rise as one moves up each column. 

 One empirical complication is that fares are measured for an entire itinerary that 

typically involves two flights that may have different expected and realized load factor 

quartiles.  We classify an itinerary based upon the flight characteristics of the first 

coupon.  If there is no correlation between the flight characteristics of the first and second 

coupon (i.e. outgoing and returning flight), this will attenuate differences in Gini 
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coefficients, but one still should observe higher Gini coefficients for itineraries involving 

flights realized to be full. 

 In order to measure dispersion, we calculate the Gini coefficient for each route-

carrier in each category of expected-realized load factor (i.e. each cell of Figure 2), and 

calculate the average Gini for each cell.  Because this analysis does not use data on ticket 

characteristics, we can use all observed transactions through our CRS.  

 Results are shown in the top panel of Table 5.  The average within carrier-route 

Gini coefficient is approximately 0.28.  However, there is very little variation in this 

metric of dispersion by either expected or realized load factor.  The category with the 

highest dispersion has an average Gini coefficient of 0.284 while the cateogory with the 

lowest dispersion has an average Gini of 0.271.21  

 This pattern of dispersion is not consistent with Dana (1999b).  For flights with 

the same expected load factor, dispersion is decreasing when the realized load factor is 

larger.  However, this decrease in dispersion is economically small with the largest 

change for flights that are expected to be full – the dispersion decreases from 0.284 for 

flights realized to be empty to 0.275 for flights realized to be full. 

 The bottom panel of Table 5 shows results when we restrict the sample to the 

tickets with matching information on ticket characteristics.  For this subsample, we 

observe slightly less dispersion with an average within carrier-route Gini coefficient of 

0.23.22    Nevertheless, we also find that dispersion does not substantially rise when 

realized load factor is higher, controlling for expected load factor.  The average Gini 

coefficient is very slightly higher on flights realized Full versus Empty (e.g. from 0.243 

to 0.245 on flights expected Full), however the effect is not monotonic in the realized 

load factor. 

 

 

                                                 
21 These Gini coefficients measure different dispersion from that of Borenstein and Rose (1994) who report 
an average Gini within carrier-route of 0.181 in the second quarter of 1986.  Dispersion has increased since 
1986 – Borenstein and Rose (2007) show that the coefficient of variation rose from below 0.4 in 1986 to 
between 0.5 and 0.6 in 2004.  Borenstein and Rose use a larger sample of routes that we do; our average 
coefficient variation within carrier-route for 2004Q4 is 0.61.  
22 This finding is somewhat expected given Figure 1 showing that we were unable to match some of the 
particularly low fare tickets. 
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4.4  Testing Predictions of Dana and Gale & Holmes Models Regarding Ticket 

Allocations in Peak Demand 

 

We now test another key prediction posited by both Gale and Holmes and by 

Dana.  We test Gale and Holmes’ prediction that low price, advance purchase tickets will 

account for a larger share of tickets on off-peak flights, and correspondingly that full-

fare, refundable, high price tickets will account for a larger share of tickets on peak 

flights.  These alternative hypothesis are contrasted with the null hypothesis that tickets 

are simply allocated to different bins in a similar fashion on full and empty flights.  

 We classify tickets as “discount” by dividing itineraries into 3 groups based upon 

ticket characteristics.  Group 1 includes refundable tickets (recall that we have already 

excluded first-class tickets).   Group 2 includes non-refundable tickets that do not include 

any travel or stay restrictions.  Group 3 includes non-refundable tickets involving travel 

and/or stay restrictions.   The fraction of tickets in Groups 1-3 are 26%, 32%, and 42%, 

respectively.  These groupings are associated with large differences in average fares, and 

by themselves account for a large share of the differences in observed fares.  For Group 1 

tickets the average fare is $631, for Group 2 it is $440, and for Group 3 it is $281.23    

Hence these groupings are associated with high, medium and low fares. 

 In order to test these implications, we must define flights in our data that are (ex 

ante) high demand.  To do so, for each airline on a given route, we find the average load 

factors for each flight number–day of week.  (E.g. For American’s LAX-IAD route, we 

calculate the average actual load factor on AA flight 76 for all 12 Mondays in our 

sample).  Then we group each of these average load factors (at the flight-number-day of 

week level) into 3 tertiles – Low, Medium, and High expected load factor.24  (So, for 

example, every AA76 on Monday is called a High Expected Load Factor flight).  Next, 

we include in our analysis only flights that are expected to be High (Low) load factor, 

and actually are High (Low) load factor.  This sample selection is intended to remove 

flights subject to unusual shocks.  Finally, we count each coupon sold on these flights by 

                                                 
23 A regression of fares on these groupings yields an R2 of approximately 0.65. 
24 Note that we are planning to reestimate these empirical results using the quartiles in Figure 2, but we 
have not yet implemented this procedure. 



 

 25

Group and Days in Advance.25  These allocations are calculated at the airline level to 

account for any differences across airlines.  These tabulations are shown in Tables 6a-6b. 

Dana’s stadium model implies that low price tickets will account for a larger 

share of tickets sold in low demand states.  Low price tickets in airlines correspond to 

Group 3 tickets that have more restrictions.  Table 6 indicates that any such differences 

are economically insignificant.  While all six carriers do indeed sell more Group 3 tickets 

in Low versus High demand states, the differences are quite small.  The percentage 

differences between low and high demand states range from 2-5 percentage points.  The 

differences in sales of Group 3 tickets are: United (67% vs. 65%),  American (53% vs. 

50%), USAir (27% vs. 23%), Delta (55% vs. 49%), Northwest (72% vs. 66%), and 

Continental (53% vs. 46%).  Thus, there is a baseline level of allocation of high and low 

price seats that is driven by non-scarcity factors, and there are only modest deviations 

from this baseline associated with scarcity. 

 Finally, we test an implication of Gale and Holmes that on-peak flights will have 

fewer discount/advance-purchase seats sold in equilibrium.  We compare the fraction of 

Group 3 tickets sold greater than 21 and greater than 14 days in advance.  For purchases 

21+ days in advance, the fractions of low price/Group 3 tickets on low and high load 

factor flights are American:  18% vs. 16%, Delta: 20% vs. 17%, Continental: 24% vs. 

22%, United 22% vs. 18%, USAir: 11% vs. 11%, and Northwest: 28% vs. 23%.  This is 

weak evidence in support of the Gale and Holmes prediction.  If we consider all Group 3 

tickets sold 14 or more days in advance, the implications are very similar.  The fraction of 

coupons in low and high load factor flights are American: 27% vs. 27%, Delta: 32% vs. 

29%, Continental: 35% vs. 31%, United: 36% vs. 32%, USAir: 17% vs. 16%, and 

Northwest: 44% vs. 40%.  In fact, even if we consider all tickets purchased 14 or more 

days in advance, the fraction sold in low load factor flights are only slightly higher.   

 These ticket breakdowns suggest very weak evidence in support of models 

regarding the allocation of scarce capacity in the face of demand uncertainty.  In 

particular, airlines have many flights that are both expected to be “empty” and are 

                                                 
25 We include coupons for both “local” and “connecting” passengers.  For the connecting passengers, we 
have only classified itineraries into groups for passengers traveling on the 342 largest routes, so connecting 
passengers with origin and destination cities from small routes are not included. 
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realized to be “empty”.  Nevertheless, the airlines do not sell a larger fraction of lower 

fare tickets on these flights. 

 

 

4.5  Testing for Evidence of Scarcity Pricing Using Fares on Unusually Full Flights 

 

Dana’s model has predictions regarding the mean of transacted fares as a flight fills 

up approaching the departure date.  To motivate this test, recall Dana’s stadium pricing 

example.  Consider two events with the same prior distribution of demand uncertainty, so 

the stadium has printed the same distribution of tickets.  Suppose that consumers arrive at 

different periods of time before the event to purchase a ticket.  The stadium has printed a 

specific number of tickets of each price, and consumers buy the cheapest ticket available 

when they arrive at the ticket window.  Consider the tickets purchased one hour before 

the event begins (call this period “T-1”).  If an unusually large number of consumers have 

arrived and purchased greater than an hour before the event (T-2, T-3, …), then the 

tickets purchased during interval T-1 will be sold at a higher price than if a “normal” 

number of people had arrived prior to T-1.  This theory results in the prediction that when 

a flight is closer to capacity at a given point in time prior to departure, then its fares will 

be higher than fares on flights that are less full. 

To test this hypothesis, we calculate at the carrier-route level, the average load factor 

as of a specific number of days prior to departure.  Then we calculate for each ticket the 

deviation in load factor for this mean, conditional on the days in advance that the ticket 

was purchased.  We then transform these deviations into percentages of the conditional 

mean load factor.  We calculate the analogous measure of the itinerary’s fare relative to 

the mean, also conditional on the number of days in advance that the ticket was 

purchased.  For tickets with multiple legs, we use the first leg, noting as above that the 

effects should still impact fares so long as the return is randomly distributed.  This allows 

us to ask a question such as:  for a ticket bought 7 days before departure, if the plane is 

10% fuller than normal (for a plane 7 days before departure), what percent more 

expensive is the fare? 
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Figure 6 plots the kernel regression of the relationship between the percent deviation 

in fares and the percent deviation in load factor for each carrier.  We restrict the analysis 

to tickets sold in the 7 days before departure.  We find that tickets on flights that are 

unusually full do have higher fares, but the effect is relatively modest.  The slope of the 

relationship is steeper for American than the other carriers.  The relationship for 

American corresponds to roughly a 1.7% increase in fares for a 10% higher load factor at 

time of purchase (and roughly a 0.8% increase for the other carriers).26  In unreported 

analysis, we restrict the tickets to those sold within 3 days of departure, and the results 

are qualitatively similar.  These results suggest that the levels of fares are only modestly 

higher when load factors are higher.   

 

5.  Conclusions 

 

 This paper tests several of the leading models of pricing in the airline industry.  

First, our data on ticket prices and characteristics allow us to provide support for the 

assumption of price rigidities, where the “bins” of fares are well approximated with ticket 

characteristics.  Empirical validation of this assumption is important because it is 

common to both sets of theories of airline pricing. 

 Second, we test basic implications of several of the leading models of scarcity-

based pricing.  Our results provide only modest evidence that pricing in the airline 

industry is driven by these models.  Fares on flights with higher expected and realized 

demand are only slightly higher than flights with low demand, after controlling for ticket 

characteristics.  In addition, fare dispersion is not significantly higher on flights with 

higher realized demand.   And we find only weak support for the prediction from Dana 

and Gale and Holmes models that there will be quantity restrictions on the sale of low-

priced and advance purchase tickets on high demand flights.   

Taken together, there is some empirical support for scarcity-based pricing, but it 

appears to be relatively modest.  We find much stronger evidence that certain sets of 

ticket characteristics drive much of the variation in ticket pricing and these ticket 

                                                 
26 The slope is calculated using the range of Load Factor % Deviation from -0.5 to 0.5, where many 
itineraries are concentrated. 
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characteristics affect fares in a manner largely independent of load factor.  While such 

evidence does not rule out theories of the Dana and Gale and Holmes variety, it does 

suggest that theories in which ticket characteristics segment customers and facilitate price 

discrimination may play a large role in airline pricing.   

Our findings provide the foundation for further empirical investigation on the 

nature of airline pricing.  Future research could explore how ticket characteristics are 

used to segment customers.  Our finding that ticket characteristics are strongly associated 

with fares is consistent with a variety of models of second-degree price discrimination, 

including work in the yield management literature and Dana’s (1998) analysis of 

advance-purchase discounts.  Such models have varying implications about the choice of 

capacity and the efficient use of that capacity.  The role of ticketing restrictions can be 

explored in future work using our information on ticket characteristics. 
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Data Appendix 

 

Transactions Data 

  

 We study itineraries for travel in 2004Q4 that were purchased between June and 

December 2004 through the Computer Reservation System (CRS) that provided us with 

the data.  Although we do not have data on transactions occurring prior to June (which 

means we miss transactions occurring 4 months before our first day of October 1, 2004), 

we do not expect this to substantively affect our results.   

We exclude itineraries involving any international travel, more than four coupons, 

open jaws and circular trips, or more than one carrier.  Also, we exclude itineraries with a 

zero fare. 

We calculate a measure of flight level load factor using the tickets we observe and 

the CRS’s share of tickets sold on a city-pair.  This is described in more detail in the main 

text.  The CRS share is calculated by finding the fraction of total coupons for non-stop 

travel between two cities (the “T-100 Domestic Segment” data from the Bureau of 

Transportation Statistics) that we observe in our transaction data.  We compute these 

“CRS shares” at the route-carrier level. 

 

Procedure to Merge Transaction Data to Posted Fare Data 

 

We used the following procedure to match transactions from the CRS providing 

us with transaction data to posted fares from the CRS that provided archived fares. 

In the first step, we matched a ticket from the transaction data to a posted fare 

using carrier, date of departure (but not return), booking class, and price.27  In this first 

step, we included any fares matching within 10%. 

After this first step, the resulting dataset included multiple matching posted fares 

for some individual transactions.  This primarily included multiple matching fares with 

different combinations of advance purchase requirements and travel restrictions.  Because 

                                                 
27 In this first matching step, we only require fares to match within 10%.  In a later step, we require fares to 
match much closer.  In addition, we matched a transaction’s date of departure to a 7-day window of days of 
departure in the posted fare data, and later use the match in which the dates of departure are closest. 
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our transaction data include no additional information to facilitate matching, we were 

required to make additional assumptions.  In the second step of the matching procedure, 

we eliminate multiple matches on advance purchase.  We assume that the ticket was 

purchased with the most restrictive advance purchase requirement for which it 

qualified.28   

For any transactions that still matched multiple posted fares, we adopted a third 

matching step.  Prices were required to match within a 2 percent range.29  Any remaining 

multiple matches were then screened to meet travel restrictions that involve travel on 

specified days of the week.  For example, some posted fares required travel on a Tuesday, 

Wednesday or Thursday.  Using the ticket’s date of departure, we eliminated any 

multiple matches that did not satisfy the posted travel restriction.  For any additional 

transactions with multiple matches, we assumed that any ticket meeting a travel 

restriction had that travel restriction.  For example, a ticket matching fares with and 

without a travel restriction was assumed to have that travel restriction. 

The final step includes the verification of minimum and maximum stay 

restrictions.  For the minimum and maximum stay restrictions collected from the travel 

agent, some restrictions were explicitly given (namely 1 day, 2 days etc.).  However, 

other posted fares were indicated to include a travel restriction but the restriction was not 

specifically named on the travel agent’s CRS screen that we accessed.  For the matches 

where the minimum and maximum days of stay restriction were given, we verified that 

the actual transactions met the specific requirements.  In case of multiple matches (which 

comprise less than 1%), if two tickets had the same characteristics but one required a 1 

day minimum stay while the other did not, and the transaction involved a 2 day stay, we 

match the posted fare with a 1 day minimum stay. 

                                                 
28 For example, suppose a ticket was purchased 16 days before departure.  If the first step matched both a 
14 day and a 7 day advance purchase requirement, we match the transaction with the posted fare that 
required a 14 day advance purchase. 
29 We should note that the local travel agent used a different CRS than our transaction data.  Since July 
2004, CRSs were not required to post identical fares. 



The analysis includes all carriers flying on any of these routes, where the routes are large routes for the six carriers below.

American
LAS-DFW LAX-JFK PHX-DFW DFW-DEN ORD-STL
LAX-DFW ORD-LGA LAX-ORD ORD-DFW DFW-MCO
SJU-MIA STL-DFW DFW-SNA LGA-MIA MIA-JFK

Delta
DFW-ATL LAS-ATL ATL-MIA ATL-PHL EWR-ATL
MCO-ATL LGA-ATL TPA-ATL ATL-FLL BOS-ATL
LAX-ATL CVG-ATL CVG-LGA FLL-BDL LAX-TPA

United
LAX-DEN LAS-ORD IAD-ORD LAS-DEN SEA-ORD
LAX-ORD DEN-ORD ORD-SFO SFO-LAX ORD-LGA
SFO-SAN IAD-SFO OAK-DEN ONT-DEN PDX-SFO

Continental
LAX-EWR DEN-IAH ORD-IAH ATL-EWR IAH-DFW
EWR-MCO FLL-EWR LAS-EWR BOS-EWR SFO-EWR
IAH-LAX EWR-IAH MSY-IAH IAH-LAS IAH-MCO

Northwest
MSP-PHX MSP-LAS DEN-MSP DTW-LAS PHX-DTW
LGA-DTW MCO-DTW LAX-DTW MSP-MCO MKE-MSP
DTW-MSP LAX-MSP SEA-MSP MSP-SFO BOS-DTW

USAir
PHL-MCO FLL-PHL BOS-DCA BOS-LGA ORD-PHL
PHL-BOS LGA-DCA PHL-TPA LAS-PHL RDU-PHL
MCO-CLT CLT-PHL LGA-CLT CLT-BOS PIT-PHL

Notes:  These routes are large representative routes for each of the six carriers.  Airport codes: ATL=Atlanta, BDL=Hartford, BOS=Boston, CLT=Charlotte, CVG=Cincinnati, 
DCA=Washington-Reagan, DEN=Denver, DFW=Dallas-FtWorth, DTW=Detroit, EWR=Newark, FLL=Fort Lauderdale, IAD=Washington-Dulles, IAH=Houston, JFK=NY-JFK, 
LAS=Las Vegas, LAX=Los Angeles Intl, LGA=NY-La Guardia, MCO=Orlando, MIA=Miami, MKE=Milwaukee, MSP=Minneapolis-St Paul, MSY=New Orleans, OAK=Oakland, 
ONT=Ontario, ORD=Chicago-O'Hare, PDX=Portland, PHL=Philadelphia, PHX=Phoenix, PIT=Pittsburgh, RDU=Raleigh-Durham, SAN=San Diego, SEA=Seattle, SFO=San Francisco, 
SJU=San Juan, SNA=Orange County, STL=St. Louis, TPA=Tampa.

Table 1:  Routes Included in Analysis



Variable All Transactions Matched Transactions

Fare (for roundtrip) 414.61$                         423.64$                         
Refundable -- 0.26
Some Travel Restriction (e.g. DOW) -- 0.38
Minimum Stay Restriction -- 0.20
Maximum Stay Restriction -- 0.15
Stayed over Saturday Night 0.20 0.19
Purchased 0-3 Days in Advance 0.28 0.31
Purchased 4-6 Days in Advance 0.14 0.14
Purchased 7-13 Days in Advance 0.20 0.20
Purchased 14-21 Days in Advance 0.14 0.14
Purchased > 21 Days in Advance 0.24 0.21
Roundtrip Itinerary 0.66 0.65
Load Factor averaged across itin legs 0.91 0.90
American 0.30 0.28
Delta 0.16 0.15
United 0.14 0.15
Continental 0.16 0.18
Northwest 0.07 0.08
USAir 0.17 0.15
Monday Departure 0.19 0.20
Tuesday Departure 0.16 0.18
Wednesday Departure 0.16 0.17
Thursday Departure 0.15 0.16
Friday Departure 0.16 0.13
Saturday Departure 0.07 0.06
Sunday Departure 0.11 0.11

N 620,307                         224,108                         

Table 2:  Sample Means

Note: Summary statistics for itineraries to travel in 2004Q4 on American, Delta, United, Northwest, Continental 
and USAir on the routes in our sample. The first column includes all transactions through the CRS that gave us 
transaction data (excluding first class tickets and itineraries involving more than four coupons, as discussed in 
the Data section).  The second column includes only transactions we were able to match with ticket 
characteristics from the other CRS's archive.



Dependent Variable: Log(Fare)
(1) (2) (3) (4) (5) (6)

Characteristics 
Only Actual LF Expected LF

Actual & 
Expected LF

Max Actual 
LF across 
segments

Max Expected 
LF across 
segments

Advance_0_3 0.292 0.295 0.294 0.294 0.295 0.293
(0.011)** (0.011)** (0.011)** (0.011)** (0.011)** (0.011)**

Advance _4_6 0.262 0.265 0.264 0.264 0.265 0.264
(0.011)** (0.011)** (0.011)** (0.011)** (0.011)** (0.011)**

Advance_7_13 0.180 0.182 0.181 0.181 0.182 0.180
(0.008)** (0.008)** (0.008)** (0.008)** (0.008)** (0.008)**

Advance_14_21 0.056 0.058 0.057 0.057 0.058 0.057
(0.008)** (0.008)** (0.008)** (0.008)** (0.008)** (0.008)**

Refundable 0.497 0.497 0.497 0.497 0.497 0.498
(0.009)** (0.009)** (0.009)** (0.009)** (0.009)** (0.009)**

Roundtrip Itinerary -0.116 -0.117 -0.119 -0.119 -0.124 -0.131
(0.004)** (0.004)** (0.004)** (0.004)** (0.004)** (0.005)**

Travel Restriction -0.304 -0.302 -0.301 -0.301 -0.302 -0.302
(0.004)** (0.004)** (0.004)** (0.004)** (0.004)** (0.004)**

Stay Restriction -0.080 -0.081 -0.081 -0.081 -0.081 -0.081
(0.005)** (0.005)** (0.005)** (0.005)** (0.005)** (0.005)**

Stayed Over Saturday Night -0.131 -0.126 -0.123 -0.123 -0.126 -0.121
(0.006)** (0.006)** (0.007)** (0.007)** (0.006)** (0.006)**

LF_Actual - Averaged across flight segments 0.045 0.004
(0.005)** (0.007)

LF_Expected - Averaged across flight segments 0.091 0.086
(0.008)** (0.011)**

LF_Actual - Maximum across flight segments 0.039
(0.004)**

LF_Expected - Maximum across flight segments 0.081
(0.007)**

Observations 224,108         224,108         224,108         224,108         224,108         224,108         
R-squared 0.695 0.696 0.696 0.696 0.696 0.696

 ** significant at 1%

Note:  All models include fixed effects for route-carrier, day of the week of initial departure, and week of year.  The R2 of a model with only the fixed effects is 0.356.  
Model estimated via least squares with robust standard errors (clustered on the calendar date of the initial departure).

Table 3:  Motivating Regressions



Model
Assumed Std Dev of 
Measurement Error Coeff of LF_Actual

Original Model 0.00 0.0447
True LF = 0.55 10.76 0.0450
True LF = 0.75 12.43 0.0450
True LF = 0.95 14.00 0.0451

Table 4: Robustness of Actual Load Factor Coefficient to Measurement 
Error



Using All Transactions

Realized Load Factor Full Medium-Full Medium-Empty Empty

Full 0.275 0.274 0.271 0.275
Medium-Full 0.279 0.271 0.273 0.282
Medium-Empty 0.283 0.280 0.276 0.280
Empty 0.284 0.277 0.274 0.283

Using Only Transactions Matched to Ticket Characteristics

Realized Load Factor Full Medium-Full Medium-Empty Empty

Full 0.245 0.238 0.231 0.227
Medium-Full 0.243 0.233 0.222 0.234
Medium-Empty 0.248 0.244 0.228 0.232
Empty 0.243 0.236 0.230 0.239

Notes: Cell values are the simple average Gini coefficient for each carrier-route-load factor category.  We only 
include a carrier-route-load factor category in the calculation if at least 100 itineraries were observed.

Expected Load Factor

Table 5
Gini Coefficients by Expected and Realized Load Factors

Expected Load Factor



Groups 0 to 6 7 to 13 14 to 21 21+ Groups 0 to 6 7 to 13 14 to 21 21+

Group 1 13% 1% 0% 0% 15% Group 1 10% 1% 0% 0% 12%
Group 2 14% 8% 4% 6% 32% Group 2 13% 10% 5% 9% 38%
Group 3 14% 12% 9% 18% 53% Group 3 11% 12% 11% 16% 50%

40% 22% 13% 25% 34% 24% 17% 25%

Groups 0 to 6 7 to 13 14 to 21 21+ Groups 0 to 6 7 to 13 14 to 21 21+

Group 1 3% 1% 1% 1% 6% Group 1 5% 1% 0% 0% 7%
Group 2 18% 8% 6% 7% 39% Group 2 19% 10% 7% 9% 45%
Group 3 11% 12% 12% 20% 55% Group 3 8% 12% 12% 17% 49%

32% 21% 19% 28% 32% 22% 20% 26%

Groups 0 to 6 7 to 13 14 to 21 21+ Groups 0 to 6 7 to 13 14 to 21 21+

Group 1 14% 3% 1% 1% 19% Group 1 21% 5% 2% 1% 28%
Group 2 10% 7% 3% 7% 27% Group 2 8% 6% 3% 9% 26%
Group 3 7% 11% 11% 24% 53% Group 3 6% 8% 9% 22% 46%

31% 21% 16% 32% 35% 19% 14% 32%

Table 6a: Tests of Comparative Statics of Dana and Gale & Holmes

Note: Each panel contains percentages of the total coupons on flights.  There are two panels for each airline.  The left panel contains flights (flight number - date of departure) that 
are forecasted to be low load factor and are realized to be low load factor.  The right panel contains flights that are forecasted to be high load factor and are realized to be high load 
factor. A flight is forecasted to be high/low load factor if that flight has an average load factor in the top/bottom tertile of all flights-day of week for that carrier-route.                  
Group 1 = Refundable tickets, Group 2 = Nonrefundable without travel or stay restrictions, 3 = Nonrefundable with travel and/or stay restrictions.

Flights - Expected to be Low Load Factor           
& Are Low Load Factor

American - All Routes

Delta - All Routes

Continental - All Routes

Flights - Expected to be High Load Factor        
& Are High Load Factor



Groups 0 to 6 7 to 13 14 to 21 21+ Groups 0 to 6 7 to 13 14 to 21 21+

Group 1 7% 1% 1% 1% 10% Group 1 10% 1% 0% 0% 12%
Group 2 11% 7% 2% 2% 23% Group 2 10% 8% 2% 3% 23%
Group 3 18% 14% 14% 22% 67% Group 3 16% 17% 14% 18% 65%

36% 22% 17% 25% 36% 26% 17% 21%

Groups 0 to 6 7 to 13 14 to 21 21+ Groups 0 to 6 7 to 13 14 to 21 21+

Group 1 44% 8% 2% 1% 55% Group 1 44% 10% 3% 2% 58%
Group 2 7% 6% 2% 3% 18% Group 2 6% 5% 2% 5% 19%
Group 3 5% 5% 6% 11% 27% Group 3 3% 5% 4% 11% 23%

56% 20% 10% 15% 52% 20% 9% 18%

Groups 0 to 6 7 to 13 14 to 21 21+ Groups 0 to 6 7 to 13 14 to 21 21+

Group 1 8% 2% 1% 1% 11% Group 1 11% 2% 0% 0% 14%
Group 2 6% 3% 2% 6% 17% Group 2 9% 4% 2% 5% 20%
Group 3 14% 14% 16% 28% 72% Group 3 13% 13% 17% 23% 66%

29% 18% 19% 34% 33% 19% 19% 28%

Table 6b: Tests of Comparative Statics of Dana and Gale & Holmes

Note: Each panel contains percentages of the total coupons on flights.  There are two panels for each airline.  The left panel contains flights (flight number - date of departure) that 
are forecasted to be low load factor and are realized to be low load factor.  The right panel contains flights that are forecasted to be high load factor and are realized to be high load 
factor.  A flight is forecasted to be high/low load factor if that flight has an average load factor in the top/bottom tertile of all flights-day of week for that carrier-route.              
Group 1 = Refundable tickets, Group 2 = Nonrefundable without travel or stay restrictions, 3 = Nonrefundable with travel and/or stay restrictions.

United - All Routes

US Airways - All Routes

Northwest - All Routes

Flights - Expected to be Low Load Factor           
& Are Low Load Factor

Flights - Expected to be High Load Factor        
& Are High Load Factor
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Figure 1 

 
Comparing the Kernel Densities of Matched and Unmatched Transactions 

All Carriers and All Routes 
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 Figure 2 

Dividing Sample by Expected and Realized Load Factors 
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This table illustrates how flights are divided to test comparative static predictions about 
the characteristics of tickets sold on flights that are unusually full on peak flights and 
unusually empty on off-peak flights.  We divide flights (flight-departure date) into 
quartiles based upon actual load factor and expected load factor.  The expected load factor 
is estimated as the load factor for the flight number–day of week averaged over the 12 
weeks in our sample.  We create the categories so there are approximately the same 
number of tickets in each cell.  A complete description of the methodology is included in 
the text. 
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Figure 3:  Transactions in 21 Days Before Departure  
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Figure 4 

Histogram of R2 for Each Route’s Bins Regression 
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Figure 5 

Histogram of Coefficient of Actual Load Factor for Each Route’s Bins Regression 
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Figure 6 

 
Percent Deviation in Fare as a Function of  

Percent Deviation in Load Factor  
at Date of Purchase 
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Note:  Using tickets sold in 7 days before departure.  All routes are included. 

 

 


