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Weather and Death in India: Mechanisms and Implications for Climate Change 
 

ABSTRACT 
 
This paper estimates the impact of inter-annual variation in weather on mortality and well being in India 
with data from 1957-2000.  The main results indicate a highly nonlinear relationship between daily 
temperatures and annual mortality rates.  For example, 1 additional day with a mean temperature above 
32° C, relative to a day with a mean temperature in the 22° - 24° C range, increases the annual mortality 
rate by roughly 0.8%.  This effect is almost entirely concentrated in the rural regions of India where even 
now more than two thirds of the population lives.  We then set out to understand the mechanisms behind 
this result.  We analyze the impact of temperature shocks on agricultural outcomes and find evidence that 
supports the finding of excess rural mortality: Exposure to extreme temperatures causes stark declines in 
the agricultural wage rate and has no effect on labor supply, causing large declines in rural workers real 
income.  In addition, we analyze the response of the formal banking sector to the temperature shocks.  We 
estimate models that relate credit disbursements per capita to our measure of exposure to extreme 
temperatures.  We find that credit disbursements are negatively impacted in rural areas in periods of 
unexpected exposure to high temperatures.  Based on this evidence it appears that the availability of 
smoothing mechanisms in response to temperature shocks in the formal sector varies across rural and 
urban areas and this may explain part of the differential mortality response.  Finally, the paper takes the 
estimated response functions between temperatures, precipitations, and mortality to provide some 
predictions on the impacts of climate change on mortality in India.  It is important to bear in mind that 
this paper relies on inter-annual variation in temperature and thus will produce an overestimate of the 
costs of climate change, because individuals can engage in a limited set of adaptation in response to inter-
annual variation.  With this caveat in mind, our predictions based on ‘business as usual’ scenarios suggest 
an increase in the overall Indian annual mortality rate of approximately 8% - 56% by the end of the 
century.  The estimated increase in rural areas ranges between 16% and 71%.  As a reference point, a 
similar exercise suggests that climate change will lead to a roughly 2% increase in the US by the end of 
the century (Deschenes and Greenstone 2008).  These mortality impacts are large.  This is true regardless 
of whether one views them as the current impact of weather shocks on mortality in India or as informative 
about the costs of climate change.   
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Introduction 

The climate is a key ingredient in the earth’s complex system that sustains human life and wellbeing.  

This is especially so in poor countries located in hot regions of the Earth.  In these places, human 

wellbeing rests on a thin reed because most economic activity is agricultural and so weather shocks have 

a direct impact on output.  Additionally, extreme temperatures place great stress on the body and can have 

a direct impact on human health (see e.g., Basu and Samet 2002 for a review).  Further, the low levels of 

income can limit opportunities for adaptation in response to weather shocks.  The urgency of the 

challenges posed by climate in these countries is further underscored by the growing consensus that 

emissions of greenhouse gases due to human activity are altering the earth’s climate, most notably by 

causing temperatures, precipitation levels, and weather variability to increase (IPCC 2007).    

This paper estimates the impact of inter-annual variation in weather on well being in India with 

data from 1957-2000.  It is the first such large-scale study for a developing country that we are aware of.  

Our primary outcome variable is the mortality rate as this is the ultimate measure of individuals’ abilities 

to smooth consumption and more generally withstand income shocks.  This is a break from much of the 

previous literature in development economics that measures smoothing with expenditures or savings data 

(see e.g., Morduch 1995 for a survey).     

The main results are striking and indicate a highly nonlinear relationship between daily 

temperatures and annual mortality rates.  For example, 1 additional day with a mean temperature above 

32° C, relative to a day with a mean temperature in the 22° - 24° C range, increases the annual mortality 

rate by roughly 0.8%.  This effect is almost entirely concentrated in the rural regions of India where even 

now more than two thirds of the population lives; 1 additional day with a mean temperature above 32° C, 

relative to a day with a mean temperature in the 22° - 24° C range, increases the annual mortality rate by 

roughly 1% in rural areas.  It is evident that individuals in rural areas are unable to fully smooth 

consumption across periods or don’t have access to technologies to protect them against high 

temperatures. 
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We then set out to understand the source of this result.  The analysis indicates that an extra day 

with a mean temperature exceeding 32°C, again relative to a day with a mean temperature in the 22° - 24° 

C range, leads to a roughly 0.5% decline in the annual wage rate of agricultural workers.   Further, we fail 

to find any evidence that workers adjusted their labor supply either to seek out new types of work or in a 

dynamic labor supply context.  The result is that their annual incomes appear to have declined 

substantially.  This decline is due to a marked reduction in agricultural production associated with these 

same hot days; put another way, the hot days cause a substantial decline in the marginal product of labor.   

In addition, we also analyze the response of the formal banking sector to the temperature shocks.  

We estimate models that relate deposits per capita and credit disbursements per capita to our measure of 

exposure to daily temperature fluctuations.  The analysis reveals a strikingly different response of the 

formal banking sector across rural and urban areas.  In rural areas, a day with a mean temperature 

exceeding 32° C, relative to a day with a mean temperature in the 22° - 24° C range, leads to a roughly 

0.5% decline in credit disbursements per capita.  In urban areas the corresponding figure is a 0.2% 

increase in credit disbursements per capita.  Thus it appears the availability of smoothing mechanisms in 

response to temperature shocks in the formal sector varies across rural and urban areas may explain part 

of the differential mortality response. 

Finally, the paper takes the estimated response functions between temperatures, precipitations, 

and mortality to provide some predictions on the impacts of climate change on mortality in India.  It is 

important to bear in mind that this paper relies on inter-annual variation in temperature.  This will produce 

an overestimate of the costs of climate change, because individuals can engage in a limited set of 

adaptation in response to inter-annual variation.   

With this caveat in mind, we combine the estimated impacts of temperature on mortality with 

predicted changes in climate from ‘business as usual’ scenarios to develop estimates of the mortality 

impacts of climate change in India.  The preferred mortality estimates suggest an increase in the overall 

Indian annual mortality rate of approximately 8% - 56% by the end of the century.  The estimated 

increase in rural areas ranges between 16% and 71%.  As a reference point, a similar exercise suggests 

that climate change will lead to a roughly 2% increase in the US by the end of the century (Deschenes and 
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Greenstone 2008).   

These mortality impacts are large.  This is true regardless of whether one views them as the 

current impact of weather shocks on mortality in India or as informative about the costs of climate 

change.   

The analysis is conducted with a new data file that we put together for this paper.  It includes the 

most detailed and comprehensive data available on weather, mortality, agricultural workers’ wages and 

labor supply, crop output and prices, and climate change predictions.  These data are available for a panel 

of more than 600 Indian geographic units from 1957-2000.     

Finally, the paper’s statistical model has several appealing features.  First, the estimation of 

annual mortality equations, rather than daily ones, mitigates concerns about failing to capture the full 

mortality impacts of temperature shocks due to harvesting or delayed impacts.  Second, the rich data 

allow us to include separate fixed effects for each geographic unit (i.e., district by rural-urban) so the 

resulting estimates are adjusted for any differences in unobserved health across locations due to sorting.  

Third, we model daily temperature semi-parametrically by using fifteen separate variables, so we do not 

rely on functional form assumptions to infer the impacts of the hottest and coldest days.  Fourth, we 

estimate separate mortality models for infants and those older than 1 year of age, which allows for 

heterogeneity in the impacts of temperature. 
 

 

I. Conceptual Framework 

 

The cornerstone of any model of intertemporal consumption choice is the Euler equation of intertemporal 

optimization that governs consumption decisions: 

(1) . ( ) ( ) ( )[ ]1111 ++++= tcttrtEtct λλ

 

Here λt(ct) is the marginal utility of consumption, rt+1 is the real interest rate between periods t and t+1, 

and ct and ct+1 are consumption in periods t and t+1, respectively.  The insight is that up to a discount 

factor, individuals value money at the margin equally in all periods.  Indeed in the case where the 

discount factor equals the interest rate and the marginal utility function is linear in consumption, then 
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current consumption is equal to expected consumption in all periods.  These assumptions may be 

unreasonable in practice, especially in poor countries, however the important insight is that individuals 

prefer smooth consumptions paths, rather than large fluctuations in consumption from year to year. 

The critical assumption that leads to this result is that there is unrestricted borrowing across 

periods.  The availability of unlimited credit means that individuals can move consumption from periods 

where income is high to periods where it is low.  There is a substantial empirical literature that assesses 

the impact of household-specific shocks on household income (see Morduch 1995 for a review).  This 

literature has found that even in places where formal credit markets are not plentiful, households can 

smooth away many income shocks through sharing resources with other households, often those of family 

members (Paxson 1992). 

In many respects, this paper is a departure from the consumption smoothing literature because we 

focus on mortality as a measure of smoothing, rather than consumption.  Mortality is certainly a blunt 

measure of smoothing, indeed it may be the bluntest since λt(ct) is likely equal to infinity when death is on 

the line.  Nevertheless, evidence that temperature-induced income shocks increase mortality rates is 

consistent with a failure to smooth consumption. 

It is important to underscore that the temperature-mortality relationship could be due to different 

channels and not simply provide a test of consumption smoothing.  For example, high temperatures place 

a stress on the body that can lead to mortality (Klinenberg 2002; Huynen et al. 2001; Rooney et al. 1998).   

Additionally, it may simply be that the rural parts of India where the excess mortality is concentrated lack 

the infrastructure necessary for individuals to protect themselves from high temperatures, no matter their 

income level.  For example, the absence of reliable electricity service may make the use of electric fans or 

the production of ice nearly impossible.  Finally, the individuals in these areas may be so poor that even 

with moving consumption across periods they cannot afford life preserving technologies. 

 

III. Data Sources and Summary Statistics 

 

To implement the analysis, we collected the most detailed and comprehensive district-level data available 

from India on population, births, mortality, wages, agricultural productivity and infrastructures.  The latter 

variables are intend to capture the mechanisms through which extreme temperatures may affect mortality, 

as well as measures of variables that may help to reduce the impact of climate change on human health.  

We combine these data with high-frequency daily data on historical weather and predicted future 

climates.  This section briefly describes these data and reports summary statistics.  More details on the 

data sources are provided in the Data Appendix. 
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A. Data Sources 

Mortality and Population Data.  The annual mortality and population data are taken from the 

Vital Statistics of India (VSI) for 1957-2001 which were digitized for this project.  These data represent 

the universe of reported births and deaths in each year.  The raw data in VSI are collected via the civil 

registration system in India and registration was compulsory throughout our sample period, but it is well 

know that these data suffer from under-reporting.1  The units of observation are districts, with separate 

tallies for urban and rural areas.2  From these we construct ‘adult’ mortality rates per 1000 population, 

where adult pertain to population aged 1 or above.  We can also derive infant mortality rates per 1000 

births, defined as the number of registered deaths before the age of 1 normalized by the number of births 

in the year.  While registration of births and deaths was compulsory throughout our sample period, 

numerous commentators have argued that some areas of the country suffer from significant under-

reporting.  As a result, since 1965, a parallel registration system, known as the Sample Registration 

System, has sought to obtain more accurate vital statistics through the use of randomized sample surveys.  

We are currently collecting these data and will incorporate them in the analysis as they become available.  

More details are presented in the data appendix. 

In addition to under-reporting, vital statistics are also missing for certain districts in certain years.  

That is especially true in lower population states.  In other to reduce the missing data problem, our main 

estimation sample is based on vital statistics data from 15 of the largest states: Andhra Pradesh, Bihar, 

Gujarat, Himachal Pradesh, Jammu and Kashmir, Kerala, Madhya Pradesh, Madras, Maharashtra, 

Mysore, Orissa, Punjab, Rajasthan, Uttar Pradesh, and West Bengal.  These states account for about 85% 

of India’s population and the results in the paper are mostly unaffected by the inclusion or exclusion of 

the states with the higher rate of missing data. 

 

Agricultural Sector Data.  The data on agricultural outputs, price, and labor market outcomes 

come from the ‘India Agriculture and Climate Data Set’, which was prepared by the World Bank.3  The 

file contains detailed district-level data from the Indian Ministry of Agriculture and other official sources 

for 271 districts over the period 1956-1987. The major agricultural states are included in the database, 

with the exceptions of Kerala and Assam.  We are currently working on expending some of these series to 

2000.  

                                                           
1 According to the National Commission on Population of India, only 55% of the births and 46% of the deaths are 
being registered. 
2 The rural/urban assignment is based on the following criteria: “(a) all places with a Municipality, Corporation or 
Cantonment or Notified Town Area; and (b) all other places which satisfied the following criteria: (i) a minimum 
population of 5,000, (ii) at least 75% of the male working population was non-agricultural, and (iii) a density of 
population of at least 400 per sq. Km. (i.e. 1000 per sq. Mile).” 
3 Lead authors are Apurva Sanghi, K.S. Kavi Kumar, and James W. McKinsey, Jr. 
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Weather Data.  A key finding from Deschenes and Greenstone (2008) is that a careful analysis of 

the relationship between mortality and weather requires daily weather data.  This is because the 

relationship between mortality and temperature is highly nonlinear and the nonlinearities would be missed 

with annual or even monthly temperature averages.  Although India has a system of weather stations with 

daily readings dating back to the 19th century, the geographic coverage is poor (interestingly there are 

more stations prior to 1970).  Further, there are many missing values so the application of a selection rule 

that requires observations from 365 days out of the year would yield a database with very few 

observations.   

As a solution, we follow Guiteras (2008) and use data from a gridded daily dataset that use non-

public data and sophisticated climate models to construct daily temperature and precipitation records for 

1° (latitude) × 1° (longitude) grid points (excluding ocean sites). This data set, called NCC (NCEP/NCAR 

Corrected by CRU), is produced by the Climactic Research Unit, the National Center for Environmental 

Prediction / National Center for Atmospheric Research and the Laboratoire de Météorologie Dynamique, 

CNRS. These data provide a complete record for daily average temperatures and total precipitation for the 

period 1950-2000. To capture the distribution of daily temperature variation within a year, we assign 

each gridpoint’s daily mean temperature realization to one of fifteen temperature categories.  These 

categories are defined to include daily mean temperature less than 10° C (50° F), greater than 36° C 

(96.8° F), and the thirteen 2° C wide bins in between.  The 365 daily weather realizations within a year 

are distributed over these fifteen bins.  This binning of the data preserves the daily variation in 

temperatures, which is an improvement over the previous research on the mortality impacts of climate 

change that obscures much of the variation in temperature.    

We model the impact of precipitations by using monthly averages.  This provides enough 

flexibility to capture the differential effects of precipitation during the monsoon season and other periods 

of the year.  Given the nature of the precipitation distribution in India, where 60% of the yearly 

precipitation falls between June and September, more flexible models are too demanding on the data.   

To create daily district-level weather records from the grid points, we take weighted averages of 

the binned daily mean temperature variables and binned annual precipitation variables for all grid points 

within 100 KM of each district’s geographic center.  The weights are the inverse of the squared distance 

from the district center.  On average, there are 1.9 grid points within the 100 KM radii circles.  The 

subsequent results are insensitive to taking weighted averages across grid points across distances longer 

than 100 KM and using alternative weights (e.g., the distance, rather than the squared distance).  This 

method preserves a great deal of the variation and allows us to semi-parametrically model daily 

temperature and precipitation in the subsequent analysis.  After the inverse distance weighting procedure, 
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339 out of a possible 342 districts have a complete weather data record.4   

 

B. Summary Statistics 

  

Vital Statistics Data.  Table 1 summarizes the available vital statistics data from the 1957-2000 period.  

The data are reported separately by state, and throughout this paper we focus on the 1961 geographical 

classification, and have adjusted the district-level data for post-1961 splits. The first column reports the 

total number of districts, the second reports the number of districts for which we have non-missing vital 

statistics data for at least one year, and the third column details the fraction of district by year 

observations with non-missing data over the entire sample.   

 In our main sample, the mean annual population is about 547 million, with 408 million living in 

rural areas.  The five states with populations exceeding 50 million are Andhra Pradesh, Bihar, Madhya 

Pradesh, Maharashtra, and West Bengal.   

 The table reveals that measured mortality rates are high throughout this period.  For example, the 

infant mortality rate is 40.5 per 1,000.  Geographically, infant mortality rate ranges from 17.7 per 1,000 in 

Kerala to 71.3 per 1,000 in Orissa, revealing the substantial heterogeneity.  As a basis of comparison, the 

mean US infant mortality rate over these years was roughly 12 per 1,000.  The Indian overall mortality 

rate was 6.6 per 1,000.  It is important to recall that these mortality rates are likely to be understated and 

we explore that below. 

 Figure 1 provides an opportunity to understand the time variation in the age 1+ mortality rate 

(Panel A) and the infant mortality rate (Panel B).  These time series are plotted separately for rural and 

urban areas.  There is a remarkable decline in both mortality rates in rural and urban regions.  For 

example, the overall mortality rate declines from roughly 12 in 1957 to about 4 in rural areas and 6 in 

urban areas by 2000.  The decline in the infant mortality rate is also impressive, going from about 100 per 

1,000 in 1957 to roughly 13.5 per 1,000 in 2000.  In the econometrics section, we describe our strategy to 

avoid confounding these trends in mortality rates with any time trends in temperatures. 

 

Weather Statistics.  Table 2 reports on national and state-level measures of observed temperatures and 

precipitation from 1957-2000.  This is calculated across all district by year observations with non-missing 

vital statistics data, where the weight is the total district population in the year.   

Column (1) in Table 2 reports that for India as a whole, the average daily mean temperature is 

25.7° C.  This reflects the variation across all years and district, as well as the within-year variation.  The 

                                                           
4 These districts are Alleppey (Kerala), Laccadive, Minicoy, and Amindivi Islands, and the Nicobar and Andaman 
Islands. 
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entries for the 15 states reveal the substantial geographical variation in this average, which ranges from 

11.9°C (Jammu and Kashmir) to 27.5°C (Andhra Pradesh).  Column (2) reports the average number of 

days per year exceeding 32° C (89.6° F).  Across India, the average exposure is 33.1 days per year or 

roughly 1 month.  There is substantial variation across states, to a major larger extent than the variation in 

average daily temperatures.  Residents of Rajasthan are exposed to 61 days above 32C per year while 

residents of Kerala are exposed to none on average.  These statistics are relevant, because the subsequent 

analysis reveals that the largest mortality impacts occur on days when the temperature exceeds 32° C.  In 

fact, some of our analysis will be based on models where the number of days in excess of 32° C of 

average daily temperature is used as a “single-index” measure risk factor due to exposure to extreme 

temperature. 

 Columns (3)-(5) report statistics on precipitations.  Column (3) shows the average total annual 

precipitation (in centimeters).  The national average is roughly 1 meter, and it ranges from 60.1 

centimeters per year on average in Rajasthan to 171.5 centimeters in West Bengal.  A well-known feature 

on the precipitation distribution in India is that most days are without any significant rainfall.  This is 

shown in column (4) which reports the number of days per year with less than 0.2 cm of rainfall.  The 

national average is 257 such days per year, and every of the fifteen states in Table 2 faces at least 195 

days per year with practically no precipitation.  The last column considers the other extreme, that is, days 

with 3 cm or more in precipitation.  Across states, the average is about 3 such days per year, with a 

geographical range of 2-6 days.   

Figure 2 depicts the average variation in the measures of temperature across the fifteen 

temperature categories or bins, again during the 1957-2000 period.  The height of each bar corresponds to 

the mean number of days that the average person in the vital statistics data experiences in each bin; this is 

calculated as the weighted average across district-by-year realizations, where the district-by-year’s total 

population is the weight.  The average number of days in the modal bin of 26° - 28° C is 72.9.  The mean 

number of days at the endpoints is 3.7 for the less than 10° C bin and 3.4 for the greater than 36° C bin. 

Figure 3 shows the average monthly precipitation, over the period 1957-2000.  This is calculated 

as the weighted average across district-by-year realizations, where the district-by-year’s total population 

is the weight.  It is well known that precipitations are not uniformly distributed over the course of the year 

in India, and the figure shows that.  July is the wettest month, with an average of 25.5 cm of rain per 

district, while January is the driest, with just about 1 cm of average precipitation. 

  

Agricultural Data.  Table 3 reports on a series of agricultural variables constructed for this analysis over 

the 1957-87 period.  These variables are all recorded at the district level and pertain to rural India.  Over 

the course of the sample, average daily wage is 6.88 Rs. (1980 Rs).  This mean wage is calculated as a 
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weighted means across districts where the weights are the district’s rural population in the most recent 

Census.  Wages are the highest in Punjab (12.67) and the lowest in Madhya Pradesh (5.34).  We also 

report averages of our labor supply measures, which are reported in million man-days.  Column 2 reveals 

that in an average year, Indians work 20.8 billion man-days per year in the agricultural sector.  There is 

substantial across variation in man-days, reflecting population differences, and differences in agricultural 

sector intensity.  The last two columns break down the total agricultural labor supply into agricultural 

laborers (landless, work for wage) and cultivators (cultivate land that they either own or sharecrop).  The 

majority of the agricultural labor supply (in man-days) comes from cultivators.5

 

Rural Public Goods and District-Level Banking Data.  Our analysis will also investigate a large host of 

potential mechanisms and mitigating factors.  A first mechanism considered is the availability (or lack 

thereof) of formal sector consumption smoothing mechanisms.  To this end, we will utilize data from the 

banking sector for 1972-2000.6  The data set contains the number of functioning bank branches, number 

of accounts amount of deposits and credit disbursements (in lakhs), among all types of banks (public or 

private), in rural and urban areas.  The deposits and credits totals are collected for one or more months 

over the course of the year.  After 1990, the deposit/credit totals are collected in March.  In prior years the 

data is available for more months, which we averaged to get March equivalent totals.7

We will also investigate the role of local public health infrastructures as potential mitigators of 

temperature shocks and study the extent of differential mitigation across rural and urban areas.  In 

particular, we will estimate models with interactions between the temperature effects with measures of 

per capita availability of local hospitals and dispensaries.  These data were we obtained from the 1991 

Census of India and contain information on the stock of public goods available in each town and village 

of each district.8     

 

IV. Econometric Strategy 

This section describes the econometric models used to predict the impact of climate change on mortality 
                                                           
5 The Census defines an agricultural laborer as a person who worked in another person’s land for wages in cash, 
kind or share. Such a person had no risk in cultivation and had no right of lease or contract on the land on which he 
worked.  A cultivator is defined as one engaged either as employer, single worker or family worker in cultivation of 
land owned or held from government, private institutions or persons for payment in money, kind or share of crop. 
Cultivation included supervision or direction of cultivation, and included ploughing, sowing, harvesting and 
production of cereals and millet crops, but not fruits or vegetables (definitions taken from Maryland Indian District 
Database). 
6 We thank Shawn Cole for providing these data. 
7 To have only month per year for each district, from December 1972-June 1989, we averaged over December year 
‘x’ and June year ‘x+1’ to get the equivalent of March year ‘x+1’. 
8 Jammu and Kashmir was not surveyed in 1991 due to political instability.  In addition, a number of districts do not 
have areas satisfying the definition of either urban or rural. 
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and other outcomes in India.  The basic estimating equation is: 

(2) , dt
3

td

12

1m
dtmm

j
dtjjdt εtλsγαTOTPRECTMEANθY +++++= ∑∑

=

δ

where Ydt is the log mortality rate (or an alternative outcome) in district d in year t.  The s subscript refers 

to a state.  The last term in the equation is the stochastic error term, dtε .     

The variables of interest are the measures of temperature and precipitation.  The variables 

TMEANdtj denote the number of days in district d and year t where the daily mean temperature is in the jth 

of the fifteen bins used in Figures 2.  Thus, the only functional form restriction is that the impact of the 

daily mean temperature on the annual mortality rate is constant within 2°C degree intervals.  The choice 

of fifteen temperature bins represents an effort to allow the data, rather than parametric assumptions, to 

determine the mortality-temperature relationship, while also obtaining estimates that are precise enough 

that they have empirical content.  This degree of flexibility and freedom from parametric assumptions is 

only feasible because we are using district-level data from 44 years.   

The variables in TOTPRECdtm denote the total precipitation in month m, in district d and year t.  

The average of these variables is displayed in Figure 3.  The equation includes a full set of district fixed 

effects, , which absorb all unobserved district-specific time invariant determinants of the mortality 

rate.  So, for example, permanent differences in the supply of medical facilities will not confound the 

weather variables.  The equation also includes unrestricted year effects, .  These fixed effects control 

for time-varying differences in the dependent variable that are common across districts (e.g., changes in 

health related to the 1991 economic reforms).  The assumption that shocks or time-varying factors that 

affect health are common across districts is unlikely to be valid.  Consequently, equation (2) includes 

separate cubic time trends for each of the five regions of India.  Since the underlying weather data only 

varies for 1° (latitude) × 1° (longitude) squares, it isn’t possible to control for time-varying local 

determinants of health as flexibly as would be ideal.  In the below, we demonstrate that the results are 

robust to a series of methods to control for these shocks.   

dα

tγ

The validity of this paper’s empirical exercise rests crucially on the assumption that the 

estimation of equation (2) will produce unbiased estimates of the and jθ mδ vectors.  By conditioning on 
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the district, year fixed effects, and cubic state time trends, these parameters are identified from district-

specific deviations in weather about the district averages after controlling for the portion of shocks that 

remains after adjustment for the year effects and cubic state-specific trends.  Due to the unpredictability 

of weather fluctuations, it seems reasonable to presume that this variation is orthogonal to unobserved 

determinants of mortality rates.   

There are two further issues about equation (2) that bear noting.  First, it is likely that the error 

terms are correlated within districts over time.  Consequently, the paper reports standard errors that allow 

for heteroskedasticity of an unspecified form and that are clustered at the district level.  Second, we fit 

weighted versions of equation (2), where the weight is the square root of the population in the district 

(i.e., the denominator) for two complementary reasons.  The estimates of mortality rates from large 

population counties are more precise, so it corrects for heteroskedasticity associated with these 

differences in precision.  Further, the results reveal the impact on the average person, rather than on the 

average district, which we believe is more meaningful. 
 

V. Results 

 

This section is divided into several subsections.  The first provides estimates of the impact of 

annual shocks to the temperature distribution on annual mortality rates.  This analysis is stratified by age 

group and by rural/urban sectors.  The second examines the relationship between temperature and 

precipitation shocks on the agricultural outcomes such as wages and employment.  The last section uses 

these relationships to infer the predicted impact of climate change on the mortality rates in the overall 

population.   

 

A. Relationship Between Daily Temperature and Precipitation Exposure and Mortality 

Figure 4 plots the regression coefficients (i.e., ) from the estimation of the pooled regression 

for our two age groups and across urban and rural areas.  Since the number of days per year is always 365 

(we dropped the 366 days in leaping years), we must normalize the coefficient for one of the bins.  The 

bin associated with 22°-24° C was normalized to zero, so each  measures the estimated impact of an 

additional day in bin j on the log annual mortality rate, relative to the impact of a day in the 22° - 24° C 

jθ̂

jθ
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range.  The figure also plots the estimated ’s plus and minus two standard errors, so their precision is 

evident. 

jθ

It is evident that mortality risk is highest at the hottest temperatures.  Indeed, the response 

function shows a significant and increasing relationship between log mortality rates and temperature 

beginning with days that exceed 30°C.  The largest coefficient is for the highest temperature bin (>36C).  

The magnitude is nearly 0.01, so exchanging a single day in this range for one in the 22°-24° C range 

would lead to a reduction in annual mortality rates of 1%.  It is noteworthy that the null of equality with 

the base category can be rejected at the conventional significance levels for all bins above the reference 

category, with the exception of the 28°-30° C bin.  Finally, the coefficients associated with the 

temperatures bins below the reference category are all smaller in magnitude and are estimated with lesser 

precision.9

Figure 5 reports the coefficients associated with the 12 variables corresponding to monthly 

precipitation, measured in cm.  The results indicate that the impact of rainfall on mortality is not uniform 

over the course of the year.  For example, an extra cm of rainfall in the month of June leads to a 0.3% 

increase in annual mortality, while an extra cm of rainfall in December leads to a 0.8% decline in annual 

mortality.  It is important to note that only the effect of rainfall in January, February, June, July, 

November, and December are individually statistically significant at the 5% level.  The null hypothesis of 

joint equality to zero of the precipitation effects is easily rejected at the 5% level. 

 

B. Differential Impacts Across Rural and Urban Sectors 

 

Figure 6 presents estimated response functions between log annual mortality rate and temperature 

exposure, estimated separately for rural and urban sectors.  Again, these models pool across age groups 

and pertain to the total population of a sector. 

Panel A shows the rural response function.  The response function shows a significant and 

increasing relationship between log mortality rates and temperature beginning with days that exceed 

24°C.  The largest coefficient is for the highest temperature bin (>36C), and the magnitude is 0.013, so 

exchanging a single day in this range for one in the 22°-24° C range would lead to a reduction in annual 

mortality rates of 1.3% in the rural sector.  The statistical precision of the coefficients above the reference 

category is evidence as shown by the 95% confidence interval that is bounded away from 0.  However, 

the coefficients associated with the temperatures bins below the reference category are all smaller in 

magnitude and not statistically different from 0. 

                                                           
9 The p-value on a joint test of equality of the temperature effects to zero is less than 0.0001. 
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Panel B shows the response function estimated from the urban population.  The results are 

remarkably different than in the rural sector.  The largest coefficient is for the highest temperature bin 

(>36C), and the magnitude is roughly 0.003, so exchanging a single day in this range for one in the 22°-

24° C range would lead to a significant reduction in annual mortality rates of 0.3% in the urban sector.  It 

is notable to none of the other temperature effects are statistically significant, and all are relatively small 

in magnitude. As such the estimates of the response function in urban areas suggest either a better 

availability of adaptation mechanisms to temperature shocks, or perhaps the lesser connection between 

extreme temperatures and well-being in these areas. 

 

C. Specification Analysis and Further Results 

 

Table 4 report estimates of the relationship between temperature and mortality across sub-samples and for 

various specifications, while controlling for monthly precipitations, and the usual set of fixed effects and 

trends.  For brevity, we report these as point estimates rather than figures.  Specifically, we estimate 

variants of equation (2) were we replace the 15 temperature bins by the average daily temperature in a 

district over the course of the year.  This provides a parsimonious specification that captures the salient 

temperature effects reported in the previous figures. 

The first column in Table 4 shows the ‘baseline’ estimates that pool all age groups.  The stark 

rural/urban difference in the effect of high temperatures on mortality documented earlier is also evident 

using this more parsimonious specification.  The estimates indicate that a 1°C increase in average daily 

temperature leads to a 12% increase in mortality in rural areas and essentially no effect on mortality in 

urban areas.  The hypothesis of equality of the temperature effects across urban and rural areas is rejected 

with a p-value of 0.002.   

Rows 2 and 3 pertain to models that are estimated separately for the 2 ages groups available in the 

VSI (infants and ages 1+).  The basic results are also maintained here, with the added information that the 

impacts on infants are slightly larger in magnitude than those for the individuals aged 1+.  For both age 

groups, there is excess rural mortality associated with higher daily temperatures, and the rural/urban 

equality is rejected at the conventional level.   

Row 4 is based on a model pooling the two age groups, but that allows for interactions between 

the temperature and the monthly precipitation effects.  The estimates reported correspond to the marginal 

effects evaluated at the sample mean of the relevant variables.  The point estimates are essentially the 

same as those reported in the first column.  Finally, row 5 adds the controls for the previous years’s 

temperature and precipitation to allow for the possibility that equation (2) inadequately accounts for the 

dynamics of the mortality-weather relationship. The marginal effects reported are the sum of the current 

 15



PRELIMINARY AND INCOMPLETE  NOT FOR ATTRIBUTION 

and previous years’s temperature effects.  The similarity of the estimates in columns 1 and 5 suggest that 

the dynamics are well-captured with a single year of exposure period. 

Taken as a whole, the evidence provided so far demonstrates an important and pervasive 

rural/urban difference in the impact of exposure to extreme temperatures on annual mortality.  In the next 

section we build on the predictions of our consumption smoothing model and set out to empirically 

understand why the response functions vary so dramatically across urban and rural areas. 

 

D. Impacts of Weather Fluctuations on Agricultural Labor Market and Output 

 

In this section we focus on the rural sector of India and examine the rela 

tionship between inter-annual temperature fluctuations and outcomes in the agricultural labor market 

(wages and labor supply) as well as agricultural output.  Since all agricultural activities take place in the 

rural sector, we use the words interchangeably.  

 Figure 7 shows the response function liking agricultural daily wage and the fifteen temperature 

bins used in all the models so far.  The wage measure corresponds to the average daily agricultural wage 

in a state-district-year, expressed in Rupees.  In addition to the 12 controls for monthly precipitation, the 

regression model also controls for controls for year effects, cubic region*year trends, and district effects.  

The dependent variable is the log agricultural wages and the model is weighted by census population.  

 The salient feature of Figure 7 is the negative impact of exposure to hot temperatures on 

agricultural wages.  Each of the point estimates above the reference category (22°-24° C) are statistically 

significant at the conventional level and range from -0.2% to -0.5%.  For example, the coefficient for the 

highest temperature bin (>36°C) is -0.5%, and so exchanging a single day in this range for one in the 22°-

24° C range would lead to a increase in agricultural wages of 0.4%.  There also appears to be a significant 

relationship between agricultural wages and low temperatures, although the relationship is not as 

precisely estimated.  The key point is that agricultural productivity as measured by the daily wage is 

reduced in period of exposure to too high or too low temperatures, a finding that is confirmed below when 

we examine other measure of agricultural productivity. 

 Figure 8 displays the estimated relationship between labor supply and temperature shocks.  In this 

model, the dependent variable is the log total man-days worked in the agricultural sector.10  It is clearly 

evident that the labor supply response to the wage effects documented in Figure 7 is negligible.  The point 

estimates are very close to zero, and the confidence intervals includes zero in all temperature bins.  One 

interpretation of the findings in Figures 7 and 8 is that the labor supply curve in the agricultural sector is 

essentially vertical and so a change in labor demand induced by temperature shocks leads to an 
                                                           
10 This includes labor supply (in man-days) by agricultural laborers and cultivators. 
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adjustment only on the wage margin and not on the labor supply.  As such increased exposure to extreme 

temperatures is likely to cause agricultural income to decline substantially. 

 

E. Impacts of Weather Fluctuations on Credit Disbursements 

 

In this section we analyze another potential explanation for the rural/urban differential in the effect of 

extreme temperature on mortality.  One possible explanation for the excess rural mortality is a rural/urban 

difference in the direct effect of temperature on mortality (i.e. the heat stress effect).  Any other 

explanation involves differences in the adaptation mechanisms that varies by rural and urban sector. 

One such potential explanation is the differential ability by households to smooth consumption in 

the rural and urban sectors.  The literature on consumption smoothing has focused on access to credit in 

the formal and informal sectors as one the chief instruments available to household to smooth 

consumption.  Here we investigate this possibility and examine how rural/urban differences in availability 

of credit may have contributed to the large rural excess mortality following exposure to extreme 

temperatures. 

To this end, we estimate models that relate log bank credits disbursements per capita to the same 

measures of exposure to daily temperatures and precipitation that we considered before.  A full 

description of the data is presented in Section III.  As before, the models also control for unrestricted year 

effects, cubic region*year trends and unrestricted district effects.  Figure 9 presents the results of this 

analysis.  It shows the estimated response function between log credit disbursements and the 15 

temperature variables, separately by rural and urban areas (Panels A and B, respectively).  There are clear 

differences in the profiles that support the hypothesis of differential access to credit in rural and urbans 

areas following episodes of extreme temperatures.  In rural areas, days above 32C cause log credit 

disbursements to decline by a significant 0.3-0.6%.  The corresponding figure for urban areas suggest that 

exposure to days above 32C increases credit payments by 0.1-0.2%, although the effects are not 

statistically significant.  Nevertheless, a test of equality of the temperature response functions across rural 

and urban rejects the null hypothesis of equality at the 0.001 level.  So clearly there is differential 

availability of smoothing mechanisms, and it may have contributed to the observed mortality differential. 

Taken as a whole, the evidence presented so far suggest a dramatic increase in mortality in 

response to exposure to hot temperatures.  One explanation for this is the direct channel that links 

mortality to exposure, because of thermal stress on the human body (Basu and Samet 2002).  However, it 

is unlikely that heat stress hypothesis can reconcile the large rural/urban mortality differentials.   

Therefore, we have also investigated the source of this differential. 

First, the evidence suggests that agricultural workers in rural India have limited capacity to adjust 
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to the temperature shocks and smooth consumption across periods.  Real wages strongly decline in years 

with more extreme temperatures.  Labor supply adjustment to these shocks appears small and therefore 

the total agricultural wage bill must decline substantially in these years.  Combined with the evidence of 

higher crop prices and lower crop revenues per hectare it is clear that exposure to extreme temperatures 

causes significant declines in agricultural real income.  Finally, there is clear evidence of differential 

rural/urban access to credit following exposure to extreme temperatures.  We are currently investigating 

the role of local public health infrastructure in mitigating the impact of the temperature shocks. 

 

VI.  Implications for Climate Change 

 

Climate Change Prediction Data.  Climate predictions are based on two state of the art global 

climate models.  The first is the Hadley Centre’s 3rd Coupled Ocean-Atmosphere General Circulation 

Model, which we refer to as Hadley 3.  This is the most complex and recent model in use by the Hadley 

Centre.  We also use predictions from the National Center for Atmospheric Research’s Community 

Climate System Model (CCSM) 3, which is another coupled atmospheric-ocean general circulation model 

(NCAR 2007).  The results from both models were used in the 4th IPCC report (IPCC 2007). 

Predictions of climate change from both of these models are available for several emission 

scenarios, corresponding to 'storylines' describing the way the world (population, economies, etc.) may 

develop over the next 100 years.  We focus on the A1FI and A2 scenarios.  These are “business-as-usual” 

scenarios, which are the proper scenarios to consider when judging policies to restrict greenhouse gas 

emissions.  See the Data Appendix for more details on these scenarios.   

We obtained daily temperature and precipitation predictions for grid points throughout India from 

the application of A1FI scenario to the Hadley 3 model for the years 1990-2099 and the A2 scenario to 

the CCSM 3 for the years 2000-2099.  The Hadley model gives daily minimum and maximum 

temperatures, while the CCSM model reports the average of the minimum and maximum.  Each set of 

predictions is based on a single run of the relevant model and available for an equidistant set of grid 

points over land in India.   

We calculate future temperature and precipitation realizations by assigning each district a daily 

weather realization directly from the Hadley and CCSM predictions.  Specifically, this is calculated as the 

inverse-distance weighted average among all grid points within a given distance from the county’s 

centroid.  These daily predicted temperature realizations are used to develop estimates of predicted end of 

century climate.11  The Hadley 3 model has predictions for the years 1990 through 2099.  We utilize the 

                                                           
11 We follow an analogous procedure to obtain precipitation predictions. 

 18



PRELIMINARY AND INCOMPLETE  NOT FOR ATTRIBUTION 

historical predictions to account for the possibility of model error.12  In particular, we undertake the 

following multiple step process: 

 
1. For each Hadley 3 grid point, we calculate the daily mean temperature for each of the 
year’s 365 days during the periods 1990-2000 and 2070-2099.  These are denoted as 

 and , respectively, where the H superscript refers to Hadley 3, g 
indicates grid point and t references one of the 365 days in a year (e.g., January 15).      
TH

2099gt2070− TH
2000gt1990−

 
2. We calculate the grid point-specific predicted change in temperature for each of the 
365 days in a year as the difference in the mean from the 2070-2099 and 1990-2000 
periods.  This is represented as TH

gtΔ  = ( T  - ).     H
2099gt2070− TH

2000gt1990−

 
3. We then take these grid-point specific predicted changes for all 365 days and assign 
district-specific predicted changes by taking weighted averages within 250 KM of the 
district centers.  Again, the weight is the inverse of the square of distance.   This 
procedure yields a predicted change in the daily mean temperature for all 365 days for 
each district or , where d denotes district.   TH

dtΔ
 
4. Using the NCC weather data, we calculate the grid-point specific daily mean 
temperature for each of the 365 days over the 1957-2000 period.  We then take weighted 
averages of these daily mean temperatures for all grid points within 100 KM of each 
district’s geographic center, with the same weights as above.  This yields . TNCC

2000dt1957−

 
5. The predicted end of century climate for each day of the year is equal to T  + 

.  To preserve the daily variation in temperature, we apply the fifteen temperature 
bins from above to these 365 daily means.  The resulting distribution of temperatures is 
the Hadley 3 predicted end of century distribution of temperatures that is utilized in the 
subsequent analysis. 

NCC
2000dt1957−

TH
dtΔ

 

In the case of the CCSM 3 predictions, we are unable to account for model error because these 

predictions are only available for the years 2000 through 2099, so there aren’t historical years available to 

remove model error.  
 

Before proceeding, it is important to underscore that the validity of the paper’s estimates of the 

impacts of climate change depend on the validity of the climate change predictions.  The state of climate 

modeling has advanced dramatically over the last several years, but there is still much to learn, especially 

about the role of greenhouse gases on climate (Karl and Trenberth 2003).  Thus, the Hadley 3 A1FI and 

CCSM 3 A2 predictions should be conceived of as two realizations from a superpopulation of models and 

scenarios.  The sources of uncertainty in these models and scenarios are unclear, so it cannot readily be 

                                                           
12 At least in the case of the Hadley model, there is evidence of model error.  See, for example, Deschenes and 
Greenstone (2008) for some evidence of model error in the Hadley 3 A1FI predicted temperature in the US.  
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incorporated into the below estimates of the impacts of climate change.  Nevertheless, the use of two sets 

of daily business as usual climate change predictions provides some sense of the variation. 

Figure 10 provides a fuller opportunity to understand how climate change is expected to change 

the full distributions of daily mean temperatures.  The figure reveals that there will be large reductions in 

the number of days in the 14° to 28° C range.  These reductions are predicted to be offset by increases in 

days with temperatures exceeding 28° C.  Thus, the mortality impacts of climate change rest on the 

impact of the days in the 14° to 28° C ranger, relative to days at higher temperatures.  Due to India’s 

already warm climate, it is unlikely to get much benefit from reductions in the number of days in its left 

tail of the temperature distribution, which stands in stark contrast to Russia and other relatively cold 

countries.   

Finally, Figure 11 reports the predicted change in the monthly precipitations according to our two 

climate models.  Both models suggest an increase in total annual precipitations of about 30 cm (38 cm in 

CCSM and 25 cm in Hadley), but this increase is not distributed uniformly across the year.  The largest 

predicted increases in the CCSM model are in the months of April and May (a combined increase of 

about 20cm), while the largest increases in the Hadley predictions are in June and July (a combined 

increase of about 11 cm).  These model differences in predicted change in precipitation will in turn 

explain some of the model differences in the predicted impacts of climate change on mortality. 

 

Climate Change Impacts on Mortality in India. The revealed mortality-weather relationship can be 

combined with any predictions about climate change to develop estimates of mortality impacts.  As noted 

before, this approach will produce an overestimate of the costs of climate change, because individuals can 

engage in a limited set of adaptation in response to inter-annual variation.   

Figure 10 demonstrated that the state of the art climate models predict dramatic increases in the 

number of days in the two highest temperature bins, especially the > 32°c bins.  Further, these increases 

are largely predicted to be offset by decreases in the number of days in the middle of the temperature 

distribution where mortality rates are the lowest.  Under these scenarios, India will exchange relatively 

low mortality days for high mortality ones.   

We now turn to a more precise calculation of the predicted mortality impacts of climate change 

on India.  Table 6 presents estimates based on the estimation of equation (2) for the various subsamples.  

The predictions are based on the Hadley 3 A1FI and CCSM 3 A2 models, and pertain to the years 2070-

2099.  The impacts reported are based on district-level predictions calculated as the population weighted 

average of: 

(3)  )ˆ()ˆ(
12

1
∑∑
=

Δ•+Δ•
m

dmm
j

djj PRECTMEAN δθ
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That is, the predicted change in the number of days in each temperature cell in a district ( ) is 

multiplied by the corresponding impact on log mortality rate ( ).  A similar calculation is done for the 

number of days in each precipitation bin.  The final estimate corresponds to the weighted average of (3) 

across all districts in India, where the weight is the population.  The standard errors of the predictions are 

calculated accordingly. 

djTMEANΔ

jθ̂

Columns (1a) – (1c) summarize this calculation for the three daily mean temperature categories 

(i.e., < 16° C, 16° - 32° C, and > 36° C).  Column (2) reports the total temperature impact and column (3) 

adds in the impact of the change in monthly precipitation.  Column (4) reports the total effect of climate 

change by summing the temperature and precipitation impacts.  Finally the rows correspond to different 

statistical models and different climate change models. 

 For each climate change model, we calculate the predicted % change in annual mortality for rural 

areas, urban areas, and India as a whole.  All models are based on the pooled age specification.  The top 

panel reports the Hadley 3 A1FI results and suggests that climate change would lead to a 56.4% increase 

in the annual mortality rate in India.  These estimates are precise and importantly the null hypothesis of a 

zero effect is rejected at conventional significance levels.  Examination of column (1c) shows that the 

increased mortality is entirely attributable to the increase in the number of very hot days (where the mean 

temperature exceeds 32°C). 

The next columns break down the analysis by rural/urban area.  As before, the results are sharply 

different for urban and rural areas.  For rural areas, annual mortality rates are predicted to increase by 

71% and this estimate is precise, with robust t-statistics in excess of 3.  Again, the increased mortality is 

almost entirely attributable to the increase in the number of very hot days (where the mean temperature 

exceeds 32°C).  Column 3, which focuses on urban areas tells a completely different story.  The predicted 

change in annual mortality is 11.8%, and is not statistically distinguishable from zero at the conventional 

level. 

The lower panel shows the results derived from the CCSM 3 A2 model.  The predicted change in 

annual mortality are smaller than in Panel A, but still large and concentrated in the rural areas, ranging 

from -3% to 15.5%.  The discrepancy between the Hadley and CCSM predictions reflects in part the fact 

that the A1FI scenario is associated with larger increases in temperature than the A2 scenario.  In 

addition, the increase in precipitation in the CCSM model is associated with significant predicted declines 

in mortality. 

The overall CCSM impacts are insignificant, but like in Panel A, it is clear that the increase in 

annual mortality is caused by the predicted increase in exposure to extreme temperatures.  It is 

 21



PRELIMINARY AND INCOMPLETE  NOT FOR ATTRIBUTION 

noteworthy that the segment of the temperature distribution that is predicted to increase the most (days 

above 32°C) is associated with large and significant increase in annual mortality rates. 

 

VI. Conclusions 

 

This study has produced the first such large-scale study of the impact of weather shocks on 

mortality and adaptations for a developing country that we are aware of.  It is based on the finest 

geographical data available on mortality for India over the period 1957-2000, augmented with rich high-

frequency data on historical daily weather realizations and predicted future climates. 

The results are striking and indicate a highly nonlinear relationship between daily temperatures 

and annual mortality rates.  For example, we find that a single additional day with a mean temperature 

above 32° C, relative to a day with a mean temperature in the 22° - 24° C range, increases the annual 

mortality rate by roughly 0.8%.  This effect is even larger in the rural regions of India where even now 

more than two thirds of the population lives. 

 We then empirically examine possible explanations for this large impact in the rural areas of 

India.  One key finding is that an extra day with a mean temperature exceeding 32° C, again relative to a 

day with a mean temperature in the 22° - 24° C range, leads to a roughly 0.5% decline in the annual wage 

rate of agricultural workers.   Further, we fail to find any evidence that workers adjusted their labor 

supply either to seek out new types of work or in a dynamic labor supply context.  The result is that their 

annual incomes appear to have declined substantially.  The key point is that in addition to any direct 

effect of heat exposure on mortality because of thermal stress on the body, part of the large mortality 

effect in rural areas is caused by limited capacity of the rural Indians engage in sufficient consumption 

smoothing to preserve life in response to temperature shocks.   

Finally, the paper takes the estimated response functions between temperature and mortality to 

provide some predictions on the impacts of climate change on mortality in India.  It is important to bear in 

mind that this paper relies on inter-annual variation in temperature.  This will produce an overestimate of 

the costs of climate change, because individuals can engage in a limited set of adaptation in response to 

inter-annual variation.   

With this caveat in mind, we combine the estimated impacts of temperature on mortality with 
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predicted changes in climate from ‘business as usual’ scenarios to develop estimates of the mortality 

impacts of climate change in India.  The preferred mortality estimates suggest an increase in the overall 

Indian annual mortality rate of approximately 8% - 56% by the end of the century.  The estimated 

increase in rural areas ranges between 16% and 71%.   

These mortality impacts are large.  This is true regardless of whether one views them as the 

current impact of weather shocks on mortality in India or as informative about the costs of climate 

change.  
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Figure 1: Trends in Mortality Rates by Rural/Urban Designation, 1957-2000 
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(B) Annual Infant Mortality Rate Per 1,000 Live Births 
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Figure 2: Annual Distribution of Daily Mean Temperature, 1957-2000 
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Figure 3: Average Monthly Precipitations, 1957-2000 (cm) 
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Figure 4:  Estimated Response Function Between Daily Temperature Exposure and Log 
Annual Mortality Rate (All Ages) 
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Standard errors are clustered by district.  Regressions weighted by census population.  See the text for more details.   
     



Preliminary and Incomplete  Not For Attribution 

Figure 5: Estimated Impact of Monthly Precipitation on Log Annual Mortality Rate (All 
Ages) 
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Notes: The dependent variable is the log annual all-age mortality rate.  The model also includes controls for 15 
temperature bins and controls for unrestricted year effects, cubic region*year trends and unrestricted district effects.  
Standard errors are clustered by district.  Regressions weighted by census population.  See the text for more details.    



Preliminary and Incomplete  Not For Attribution 

Figure 6:  Estimated Response Function Between Daily Temperature Exposure and Log 
Annual Mortality Rate (All Ages), by Rural/Urban Designation 
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(B) Urban Areas 

-0.02

-0.01

0.00

0.01

0.02

<10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26 26-28 28-30 30-32 32-34 34-36 36>

Estimated Impact of a Day in 15 Temperature (C) Bins on Log Annual Mortality Rate,
 Relative to a Day in the 22° - 24°C Bin

-2 std err coefficient +2 std err
 

Notes: The dependent variable is the log annual all-age mortality rate.  The model also includes controls for monthly 
total precipitation and controls for unrestricted year effects, cubic region*year trends and unrestricted district effects.  
Standard errors are clustered by district.  Regressions weighted by census population.  See the text for more details.   



Preliminary and Incomplete  Not For Attribution 

Figure 7:  Estimated Response Function Between Daily Temperature Exposure and Log 
Real Agricultural Wages  
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Notes: The dependent variable is the log daily real agricultural wage.  The model also includes controls for monthly 
total precipitation and controls for unrestricted year effects, cubic region*year trends and unrestricted district effects.   
Standard errors are clustered by district.  Regressions weighted by census population.  See the text for more details.   
     



Preliminary and Incomplete  Not For Attribution 

Figure 8:  Estimated Response Function Between Daily Temperature Exposure and Log 
Agricultural Total Labor (Man-Days) 
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Notes: The dependent variable is the log total agricultural labor (man-days).  The model also includes controls for 
monthly total precipitation and controls for unrestricted year effects, cubic region*year trends and unrestricted 
district effects.   Standard errors are clustered by district.  Regressions weighted by census population.  See the text 
for more details.        



Preliminary and Incomplete  Not For Attribution 

Figure 9:  Estimated Response Function Between Daily Temperature Exposure and Log 
Bank Credit Disbursements Per Capita, by Rural/Urban Designation 
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-0.02

-0.01

0.00

0.01

0.02

<10 10-12 12-14 14-16 16-18 18-20 20-22 22-24 24-26 26-28 28-30 30-32 32-34 34-36 36>

Estimated Impact of a Day in 15 Temperature (C) Bins on Log Bank Credit Disbursements Per Capita,
 Relative to a Day in the 22° - 24°C Bin

-2 std err coefficient +2 std err
 

 
(B) Urban Areas 
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Notes: The dependent variable is the log bank credits per capita.  The model also includes controls for monthly total 
precipitation control for unrestricted year effects, cubic region*year trends and unrestricted district*area effects.  
Standard errors are clustered by district.  Regressions weighted by census population.  See the text for more details.   
     



Preliminary and Incomplete  Not For Attribution 

Figure 10: Predicted Change in Distribution of Daily Mean Temperature 
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Notes: Means weighted by average district population, 1957-2000. 



Preliminary and Incomplete  Not For Attribution 

Figure 11: Predicted Change in Monthly Average Precipitation 
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Notes: Means weighted by average district population, 1957-2000. 
 



PRELIMINARY AND INCOMPLETE   NOT FOR ATTRIBUTION 

Table 1: Summary of Vital Statistic Data, By State, 1957-2000 

Annual Averages:
State (1961 designation) Population Births Deaths Infant Deaths Death Rate Infant Death Rate

(per 1000) (per 1000)

All States 546,738,680 9,543,675 3,578,092 439,014 6.6 40.5

All States, Rural Areas 408,165,500 6,119,540 2,397,919 287,890 6.5 47.1
All States, Urban Areas 128,351,100 3,230,657 847,244 115,478 7.5 35.8

Andhra Pradesh 50,202,710 680,926 247,150 24,549 5.4 36.1
Bihar 65,722,030 846,359 386,398 33,869 6.3 40.3

Gujarat 33,389,420 817,606 220,084 29,255 7.5 35.8
Himachal Pradesh 1,479,823 26,902 7,326 809 5.5 30.1

Jammu and Kashmir 6,571,914 110,641 30,353 2,214 4.9 20.1
Kerala 22,330,980 461,318 115,527 8,138 5.5 17.7

Madhya Pradesh 51,849,850 948,526 381,024 56,213 8.4 59.3
Madras 47,324,520 1,007,699 375,627 45,913 8.9 45.6

Maharashtra 62,041,520 1,412,751 476,264 71,261 8.8 50.4
Mysore 35,835,590 717,996 260,517 23,107 7.9 32.2
Orissa 750,293 11,350 167,063 28,729 8.4 71.3
Punjab 23,130,620 403,321 221,499 32,954 8.0 43.0

Rajasthan 31,560,240 766,886 94,594 8,207 3.4 34.1
Uttar Pradesh 30,441,050 242,035 391,547 50,638 5.2 46.6
West Bengal 84,108,120 1,089,360 203,117 23,157 4.3 32.1  



PRELIMINARY AND INCOMPLETE   NOT FOR ATTRIBUTION 

Table 2: Average Historical Weather Exposure, By State, 1957-2000 

 Temperature: Precipitation:
Daily Average (C) Annual Days Annual Average Annual Days Annual Days

Above 32C (cm) Less Than 0.2 cm More Than 3 cm
(1) (2) (3) (4) (5)

All States 25.7 33.5 106.1 257.0 3.0

Andhra Pradesh 27.5 42 89.9 255 2
Bihar 25.0 26 122.2 242 2

Gujarat 26.8 42 82.9 292 4
Himachal Pradesh 15.5 1 86.1 275 3

Jammu and Kashmir 11.9 4 76.8 275 2
Kerala 25.8 0 165.0 195 6

Madhya Pradesh 25.6 50 107.0 268 3
Madras 27.2 13 101.3 235 2

Maharashtra 26.3 31 99.0 255 2
Mysore 25.6 11 101.2 234 2
Orissa 26.1 23 128.2 237 3
Punjab 23.5 49 66.3 306 4

Rajasthan 25.5 61 60.1 310 3
Uttar Pradesh 24.7 49 96.0 279 4
West Bengal 26.0 22 171.5 220 5  

Notes: Means weighted by census population.



PRELIMINARY AND INCOMPLETE   NOT FOR ATTRIBUTION 

Table 3: Averages of Agricultural Outcomes, By State, 1957-1987 

Real Ag. Wage Total Labor Agricultural Laborers Cultivators
(Rs / Day) (Mil. Man-Days) (Mil. Man-Days) (Mil. Man-Days)

All States 6.88 20,839* 5,826* 14,501*

Andhra Pradesh 6.33 1,545 589 956
Bihar 6.45 2,197 806 1,391

Gujurat 7.82 820 212 608
Madhya Pradesh 5.34 2,057 486 1,571

Madras 5.80 1,721 633 1,088
Maharashtra 6.00 2,142 739 1,403

Mysore 6.35 1,100 301 799
Orissa 5.46 1,061 302 760
Punjab 12.67 981 269 712

Rajasthan 9.58 1,122 94 1,029
Uttar Pradesh 6.55 3,990 788 3,202
West Bengal 7.94 1,590 608 982

 
Notes: Weighted by census population.  Entries with * represent average totals. 



PRELIMINARY AND INCOMPLETE   NOT FOR ATTRIBUTION 

Table 4: Alternative Estimates of the Impact of Exposure to Extreme Temperature on Annual Mortality Rates  

Marginal Effect of Average Daily Temperature
(1) (2) (3)

Rural areas Urban Areas Test of equality
(p-value)

Baseline (All Age) 0.120 -0.009 0.002
(0.035) (0.033)

Infants 0.144 0.009 0.041
(0.037) (0.047)

Age +1 0.106 -0.020 0.008
(0.042) (0.032)

Interacted with precipitations 0.129 -0.005 0.002
(0.037) (0.033)

Including lags 0.127 0.007 0.038
(0.048) (0.047)

 
Notes: The dependent variable is the log annual all-age mortality rate.  The model also includes controls for  
monthly total precipitation and controls for unrestricted year effects, cubic region*year trends and unrestricted  
district effects.  Standard errors are clustered by district.  Regressions weighted by census population.   
See the text for more details.   



PRELIMINARY AND INCOMPLETE   NOT FOR ATTRIBUTION 

Table 5: Predicted Impacts of Climate Change on Log Annual Mortality Rates, 2070-2099 

Impact of Change in Days with Temperature: Total Temperature Total Precipitation Temperature and
<16C 16C-32C >32C Impact Impact Precipitation Impact
(1a) (1b) (1c) (2) (3) (4)

A. Based on Hadley 3, A1FI

Pooled -0.011 -0.144 0.671 0.516 -0.108 0.408
(0.032) (0.047) (0.126) (0.127) (0.022) (0.132)

Rural Areas -0.029 -0.168 0.846 0.648 -0.130 0.519
(0.039) (0.056) (0.151) (0.154) (0.027) (0.160)

Urban Areas 0.046 0.006 0.143 0.195 -0.017 0.179
(0.032) (0.058) (0.111) (0.097) (0.019) (0.103)

B. Based on CCSM3, A2
Pooled -0.008 0.033 0.155 0.180 -0.057 0.123

(0.014) (0.043) (0.029) (0.062) (0.019) (0.066)

Rural Areas -0.014 0.064 0.195 0.245 -0.068 0.177
(0.017) (0.050) (0.035) (0.073) (0.023) (0.079)

Urban Areas 0.012 0.036 0.041 0.089 -0.015 0.073
(0.014) (0.039) (0.023) (0.050) (0.018) (0.056)  

Notes: Based on models that include 15 temperature bins, controls for monthly total precipitation, and controls for unrestricted year effects, cubic region*year 
trends and unrestricted district*area effects.  Standard errors are clustered by district.  Regressions weighted by census population.  See the text for more details.     
Standard errors are clustered by district.  Regressions weighted by census population.  Projections compares historical period (average over 1957-2000) with end 
of century (average over 2070-2099).  Hadley model predictions are adjusted for model error.  See the text for more details.     
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