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Abstract

We develop a model in which innovations in an economy�s growth potential are an

important driving force of the business cycle. The framework shares the emphasis of

the recent "new shock" literature on revisions of beliefs about the future as a source

of �uctuations, but di¤ers by tieing these beliefs to fundamentals of the evolution

of the technology frontier. An important feature of the model is that the process

of moving to the frontier involves costly technology adoption. In this way, news of

improved growth potential has a positive e¤ect on current hours. As we show, the

model also has reasonable implications for stock prices. We estimate our model for

data post-1984 and show that the innovations shock accounts for nearly a third of the

variation in output at business cycle frequencies. The estimated model also accounts

reasonably well for the large gyration in stock prices over this period. Finally, the

endogenous adoption mechanism plays a signi�cant role in amplifying other shocks.

Keywords: Business Cycles, Endogenous Technology Adoption, News Shocks, Stock

Market.

JEL Classi�cation: E3, O3.



1 Motivation

A central challenge to modern business cycle analysis is that there are few if any

signi�cant primitive driving forces that are readily observable. Oil shocks are perhaps

the main example. But even here there is controversy. Not all recessions are preceded

by major oil price spikes and there is certainly little evidence that major expansions

are fueled by oil price declines. Further, given its low cost share of production, there

is debate over whether in fact oil shocks alone could be a source of major output

swings. Credit conditions have been a key factor in some of the postwar recessions,

including the current one, but not in all.

Motivated by the absence of signi�cant observable shocks, an important paper by

[4] Beaudry and Portier (2004) proposes that news about the future might be an

important source of business cycle �uctuations. Indeed, the basic idea has its roots in

a much earlier literature due to Beveridge (1909), Pigou (1927), Clark (1934). These

authors appealed to revisions in investor�s beliefs about future growth prospects to

account for business cycle expansions and contractions.

As originally emphasized by Cochrane (1994), however, introducing news shocks

within a conventional business cycle framework is a non-trivial undertaking. For ex-

ample, within the real business cycle framework the natural way to introduce news

shocks is to have individual�s beliefs about the future path of technology �uctuate.

Unfortunately, news about the future path of technology introduces a wealth e¤ect

on labor supply that leads to hours moving in the opposite direction of beliefs: Ex-

pectation of higher productivity growth leads to a rise in current consumption which

in turn reduces labor supply.

Much of the focus of the �news shock" literature to date has focused on introduc-

ing new propagation mechanisms that deliver the correct cyclical response of hours.

Beaudry and Portier (2004) introduce a two sector model with immobile labor be-

tween the sectors. Jaimovich and Rebelo (2008) introduce preferences which dampen

the wealth e¤ect on labor supply. However, as Christiano, Ilut, Motto and Rostagno

(2007) note, these approaches have di¢ culty accounting for the high persistence of

output �uctuations, as well as the volatility and cyclical behavior of stock prices.

These authors instead propose a model based on overly accommodative monetary

policy.
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In this paper we follow the �news shock� literature in developing a framework

that emphasizes revisions in beliefs about future growth prospects as key factor in

business �uctuations. The framework di¤ers, however, in that news is tied directly

to the evolution of fundamentals that govern these prospects. In particular, growth

prospects depend on an exogenously evolving technology frontier. The technologies

in the frontier eventually will be used in production. A shock to the growth rate

of potential technologies, accordingly, provides news about the future path of the

technology frontier.

Unlike in the standard model, however, news about future technology is not simply

news of manna from heaven. As in Comin and Gertler (2006), the new technologies

have to be adopted prior to being used in production. The �rms� investments in

adopting new technologies leads to a shift in labor demand when the news shock

hits the economy. For reasonable parametrizations, this substitution e¤ect o¤sets

the wealth e¤ect generating a boom in output, investment consumption and hours

worked. This endogenous and procyclical movement of adoption is consistent with

the cyclical patterns of di¤usion found in Comin (2007). Further, because di¤usion

of new technologies takes time, the cyclical response to our news shock is highly

persistent.

In addition to a¤ecting the propagation of the innovation shock, the endogenous

di¤usion mechanism also works to amplify and propagate other conventional distur-

bances to the economy, such as exogenous movements in total factor productivity or

shocks to the cost of capital investments. Thus the mechanism we develop is po-

tentially also relevant to business �uctuations driven primarily by factors other than

news about future technological prospects.

Finally, our framework also broadly captures the cyclical pattern of stock price

movements. Conventional models have problems generating large procyclical move-

ments in stock prices. In these models the value of the �rm is the value of installed

capital. One immediate problem is that, in the data, the relative price of capital

tends to move countercyclically. Of course, by introducing some form of adjustment

costs, it is possible to generate procyclical movements in the market price of installed

capital. However, absent counterfactually high adjustment costs, it is very di¢ cult

to generate empirically reasonable movements in market prices of capital.

Unlike with standard macro models, in our framework �rms have the right to
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the pro�t �ow of current and future adopted technologies, in addition to the value

of installed capital. Revisions in beliefs about this added component of expected

earnings allow us to capture both the high volatility of the stock market and its

lead over output. Further, because the stock market in our model is anticipating the

earnings from projects that are productive only when they are adopted in the future,

the price-earnings ratio is mean reverting, as is consistent with the evidence.1

Before proceeding we should mention a few closely related papers in the literature.

Beaudry, Collard and Portier (2007) emphasize the expansionary e¤ect of unproduc-

tive expenditures in purchasing the rights to new technologies. In our model, instead,

the expenditures in technology adoption a¤ect the speed of di¤usion of technologies.

More generally, there are important di¤erences in the details of the technology and

adoption process, as well as the empirical implementation. In addition, we empha-

size the implications for stock prices, as well as output and investment dynamics.

Iraola and Santos (2007) and Pastor and Veronesi (2009) also study the implications

of the arrival of new technologies for the stock market. We di¤er from their analysis

in the details of the technology and adoption process, as well as in the empirical

implementation.

In section 2 we present a simple expository model to introduce the endogenous

technology adoption mechanism and our innovation shock as a prelude to an estimated

model that we present in section 4. The model adds to a relatively standard real

business model an expanding variety of intermediate goods which determines the

level of productivity. Though intermediate goods arrive at an exogenous rate, how

many can be used in production depends on the agents�adoption decisions. In section

3 we calibrate the model and analyze the impact of a shock to the evolution of new

technologies. As we noted, assuming rational expectations, this shock reveals news

about the economy�s future growth potential.

In section 4, we move to an estimated model. We combine our model of endogenous

technology adoption with a variant of the standard quantitative macroeconomic model

due to Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2006).

We di¤er mainly by having technological change endogenous whereas in the standard

model it is exogenous. Section 5 reports the estimates for a sample period covering

1984:1 to 2008:2. Overall, we show that the main �ndings from the calibrated model

1See for example, Campbell and Shiller (1988).
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are robust to an estimated model that provides a reasonable �t of the data. In

addition, our "news/innovation" shock is an important driver of business �uctuations.

In particular, it explains 27 percent of output growth (32 percent of HP �ltered

output).

In section 6 we analyze the implications for the stock market. We show that,

broadly speaking, the model captures the overall volatility of stock prices, as well as

the co-movement with output. Somewhat surprisingly, it can account for the run-up

of stock prices in the mid 1990s and also some of the decline preceding the most recent

recession. Concluding remarks are presented in section 7.

2 Baseline Model

Our baseline framework is a variation of Greenwood, Hercowitz and Krusell�s (2000)

business cycle model that features shocks to embodied technological change. We

treat the process of technological change more explicitly and allow for endogenous

technology adoption.

2.1 Resource Constraints

Let Yt be gross �nal output, Ct consumption, It investment, Gt government consump-

tion, Ht technology adoption expenses, and Ot �rm overhead operating expenses.

Then output is divided as follows:

Yt = Ct + It +Gt +Ht +Ot (1)

In turn, let Jt be newly produced capital and �t be the depreciation rate of capital.

Then capital evolve as follows:

Kt+1 = (1� �t)Kt + Jt (2)

Next, let P kt be the price of this capital in units of �nal output which is our numeraire.

Given the un-competitive nature of the production of capital goods :

Jt = (P
k
t )
�1��kIt
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where ��k is a weighted markup in the capital goods sector to be de�ned below. A

distinguishing feature of our framework is that P kt evolves endogenously. One key

source of variation is the pace of technology adoption, which depends on the stock

of available new technologies, as well as overall macroeconomic conditions, as we

describe below.

2.2 Production

There are two production sectors: one for new capital, Jt; and one for output, Yt:

Within each in sector there are several stages of production.

New capital
A continuum of Nk

t monopolistically competitive �rms produce di¤erentiated �-

nal capital goods. The aggregate Jt is a CES composite of a continuum of these

di¤erentiated goods as follows, as follows:

Jt =

 Z Nk
t

0

Jt (r)
1

�k dr

!�k
; with �k > 1; (3)

where Jt (r) is the output produced by the rth �nal capital goods producer. Free

entry determines Nk
t ; as we describe below. The parameter �

k is inversely related to

the price elasticity of substitution across new capital goods.

To produce a di¤erentiated capital good, r; a producer combines new structures

(Jst (r)) and new equipment (J
e
t (r)) as follows:

Jt (r) = �
 (J
s
t (r))


 (Jet (r))
1�
 ; with 
 2 (0; 1) and �
 = [

(1� 
)1�
]�1 (4)

We distinguish between equipment investment and other forms of investment,

which we generically label "structures", for two related reasons. First, as emphasized

in Greenwood, Hercowitz and Krusell (2000), embodied technology change in�uences

mainly equipment investment, making it important to disentangle the di¤erent forms

of capital. Second, over our sample there have been signi�cant �uctuations in both

commercial and residential structures that a more likely due to factors such as credit

conditions and taxes changes than technological change. By introducing an indepen-

dent disturbance to structures we can capture these factors, at least in a reduced form

way.
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To produce equipment, the rth capital producer uses the Akt intermediate capital

goods that have been adopted up to time t: In particular, let Irt (s) the amount of

intermediate capital from supplier s that �nal capital producer r demands. Then,

equipment Jet (r) is the following CES composite:

Jet (r) =

 Z Akt

0

Irt (s)
1
� ds

!�
; with � > 1: (5)

where the parameter � is inversely related to the price elasticity of substitution across

intermediate capital goods. The evolution of Akt depends on the endogenous technol-

ogy adoption process that we describe shortly. Observe that there are e¢ ciency gains

in producing new equipment from increasing Akt . These e¢ ciency gains are ultimately

what creates the incentive to adopt new technologies, as we discuss below.

Intermediate capital goods, in turn, use �nal output as input. To produce one

unit of an existing type of intermediate capital goods, a supplier uses one unit of

�nal output, which �xes the marginal cost at unity. Because the supplier has a bit of

market power, however, it can charge the �nal capital goods producer a �xed markup.

Given the CES structure for transforming intermediate into �nal capital goods, this

markup equals �:

The process for making structures is simpler than that for equipment. The rth

capital producer can obtain a unit of structures from P kst units of �nal output, where

pkst(� log(P kst)) evolves exogenously according to:

pkst = p
k
st�1 + "st

where "st is a stationary �rst order disturbance. Generally speaking, pkst, re�ects any

factors that could a¤ect the cost of producing structures. While e¢ ciency gains could

be one of these factors, in contrast to the case of equipment investment, there are no

monopoly pro�ts associated with the process, nor is there endogenous di¤usion. In

addition, as we alluded to earlier, pkst could include other factors re�ecting costs of

building structures such as credit costs or taxes.

Output
The composite Yt is a CES aggregate of the output of N

y
t di¤erentiated �nal goods
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producers. Let Yt(j) is the output of producer j. Then:

Yt =

 Z Ny
t

0

Yt(j)
1
�dj

!�
; with � > 1; (6)

where � is inversely related to the price elasticity of substitution across goods. As in

the capital goods sector, entry and exit determines the number of �rms operating.

As do �nal capital goods �rms, �nal output goods �rms use di¤erentiated inter-

mediate inputs. Let Y jt (s) the amount of an intermediate good that �nal goods �rm

j employs from supplier s and let Ayt denote the total number of intermediate inputs.

Then

Yt(j) =

 Z Ayt

0

Y jt (s)
1
#ds

!#
(7)

Just as with capital goods, an expanding variety of intermediate output goods in-

creases the e¢ ciency of producing �nal output goods. As we show, this e¢ ciency

gain will be re�ected in total factor productivity, while the e¢ ciency gain in capital

goods production will be re�ected in the relative price of capital. Similarly, just as

with Akt , the evolution of A
y
t will depend on endogenous technology adoption.

Intermediate goods used in the output sector are produced using the following

Cobb-Douglas technology:

Yt(s) �
Z Ny

t

0

Y jt (s)dj = Xt (Ut(s)Kt(s))
� (Lt(s))

1��

where Xt is the level of disembodied productivity, Ut denotes the intensity of uti-

lization of capital, and Kt(s) and Lt(s) are the amount of capital and labor rented

(hired) to produce the sth intermediate good.2

We assume that xt(� log(Xt)) evolves as follows

xt = xt�1 + & t (8)

where & t is �rst order serially correlated innovation.3 Given that total factor pro-

ductivity will depend on both Xt and A
y
t ; the model allows for both exogenous and

2The assymetry in the production of output and new investment is convenient to simplify the

structure of production. Comin and Gertler (2006) use a completely symmetric structure which

delivers very similar results but which is more cumbersome.
3For simplicity, we assume that it is exogenous. It is quite straightforward to endogenize it as

shown in Comin and Gertler (2006).
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endogenous movements in total factor productivity. In estimated model section 4, we

let the data tell is the relative importance of each.

Finally, following Greenwood, Hercowitz and Hu¤man (1988), we further assume

that a higher rate of capital utilization comes at the cost of a faster depreciation rate,

�. The markets where �rms rent the factors of production (i.e. labor and capital) are

perfectly competitive.

Free entry
We now characterize the free entry decision that determines the number of produc-

ers in the �nal capital and output goods sectors, Nk
t and N

y
t ;respectively: We assume

that the per period operating cost of a �nal goods producer in sector s, ost is

ost = b
sP

k

tKt; for s = fy; kg (9)

where bs is a constant, P
k

t is the wholesale price of capital, and Kt is the aggregate

capital stock. That is, the operating costs grow with the replacement value of the

capital stock in order to have balanced growth. As in Comin and Gertler (2006),

we think of operating costs as increasing in the technological sophistication of the

economy, as measured by P
k

tKt: In any period, the producer pro�ts for �rms j in

sector s; pro�ts of capital producers must cover this operating cost. As we show

below, everything else equal, �rm pro�ts are decreasing in the total number of �rms.

In the symmetric equilibrium, accordingly, free entry will pin down both pins down

Nk
t and N

y
t .

:

2.3 Technology

The e¢ ciency of production depends on the exogenous productivity variables (Xt;

and P kst) and on the number of "adopted" intermediate goods in the production of

capital, Akt ; and �nal output, A
y
t : We characterize next the process that governs the

evolution of these variables.

New intermediate goods
Prototypes of new intermediate goods arrive exogenously to the economy.4 Upon

arrival, they are not yet usable for production. In order to be usable, a new proto-
4An alternative way to introduce shocks to future technologies is to introduce R&D sector (as
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type must be successfully adopted. The adoption process, in turn, involves a costly

investment that we describe below. We also allow for obsolescence of these products.

Let Zst denote the total number of intermediate goods in sector s (for s = fk; yg).
at time t: Note that Zst includes both previously adopted goods and �not yet adopted"

prototypes. The law of motion for Zst is as follows:

Zst+1 = (��s�
�s
t + �)Z

s
t (10)

where � is the fraction of intermediate goods that do not become obsolete, and �t
determines the stochastic growth rate of the number of prototypes and is governed

by the following AR(1) process

�t = ��t�1 + "t

where "t is a white noise disturbance. In addition, we normalize the elasticity of new

technologies with respect to the innovation shock in the capital sector �k to unity.

Though we allow �y to di¤er from unity.

Note that the shock to the growth rate of intermediate goods is the same across

sectors. However, the e¤ect of the shock on the stock of technologies within a sector,

measured by the slope coe¢ cient ��s and the elasticity �s, di¤ers across sectors. Here

we wish to capture the idea of spillovers in the innovation process: Innovations that

lead to new equipment often make possible new disembodied innovations. For exam-

ple, the IT revolution made possible e-commerce. It also accelerated the o¤shoring

process and improved the e¢ ciency of inventories management, and so on.

Evidence of this spillover appears in the data: At medium frequencies, movements

in relative equipment prices are correlated with movements in TFP. As we show

shortly, given that a component of TFP in our model is exogenous, we can calibrate

the parameters of the innovation process to capture this correlation, as well as the

long run di¤erence between growth in TFP and equipment prices.

We emphasize that in this framework, news about future growth prospects, cap-

tured by innovations in �t, govern the growth of potential new intermediate goods.

Realizing the bene�ts of these new technologies, however, requires a costly adoption

process that we turn to next.

in Comin and Gertler, 2006) with stochastic productivity of the R&D investments. This more

elaborated framework yields very similar results to ours.
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Adoption (Conversion of Z to A)
At each point in time a continuum of unexploited technologies is available to be

adopted. Through a competitive process, �rms that specialize in adoption try to

make these technologies usable. These �rms, which are owned by households, spend

resources attempting to adopt the new goods, which they can then sell on the open

market. They succeed with an endogenously determined probability �st ; for s =

fk; yg : Once a technology is usable, all capital producing �rms are able to employ it
immediately.

Note that under this setup there is slow di¤usion of new technologies on average

(as they are slow on average to become usable) but aggregation is simple as once a

technology is in use, all �rms have it. Consistent with the evidence,5 we obtain a pro-

cyclical adoption behavior by endogenizing the probability �st that a new technology

becomes usable, and making it increasing in the amount of resources devoted to

adoption at the �rm level.

Speci�cally, the adoption process works as follows. To try to make a prototype

usable at time t + 1, an adopting �rm spends hst units of �nal output at time t. Its

success probability �st is increasing in adoption expenditures, as follows:

�st = �(�
s
th
s
t)

with �0 > 0; �00 < 0, where hst are the resources devoted to adopting one technology

in time t and where �t is a factor that is exogenous to the �rm, given by

�st = A
s
t=o

s
t

We presume that past experience with adoption, measured by the total number of

projects adopted Ast , makes the process more e¢ cient. In addition to having some

plausibility, this assumption ensures that the fraction of output devoted to adoption

is constant along the balanced growth path.

The value to the adopter of successfully bringing a new technology into use vst , is

given by the present value of pro�ts from operating the technology. Pro�ts �st arise

from the monopolistic power of the producer of the new good. Accordingly, given

that ��t;t+1 is the adopter�s stochastic discount factor for returns between t+ 1 and

t, we can express vst as

5See Comin (2007).
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vst = �
s
t + �Et

�
��t;t+1v

s
t+1

�
: (11)

If an adopter is unsuccessful in the current period, he may try again in the sub-

sequent periods to make the technology usable. Let jst be the value of acquiring an

innovation that has not been adopted yet. jst is given by

jst = max
hst
�hst + Etf��t;t+1�[�stvst+1 + (1� �st)jst+1]g (12)

Optimal investment in adopting a new technology is given by:

1 = Et
�
��t;t+1��t�

s0 (�sth
s
t)
�
vst+1 � jst+1

��
(13)

It is easy to see that hst is increasing in v
s
t+1 � jst+1, implying that adoption expendi-

tures, and thus the speed of adoption, are likely to be procyclical. Note also that the

choice of hst does not depend on any �rm speci�c characteristics. Thus in equilibrium,

the success probability is the same for all �rms attempting adoption.

2.4 Households

Our formulation of the household sector is reasonably standard. In particular, there

is a representative household that consumes, supplies labor and saves. It may save

by either accumulating capital or lending to innovators and adopters. The household

also has equity claims in all monopolistically competitive �rms. It makes one period

loans to adopters and also rents capital that it has accumulated directly to �rms.

Let Ct be consumption. Then the household maximizes the present discounted

utility as given by the following expression:

Et

1X
i=0

�i

"
lnCt+i � �w

(Lt+i)
1+�

1 + �

#
(14)

with � > 0. The budget constraint is as follows:

Ct = WtLt +�t + [Dt + P
k
t ]Kt � P kt Kt+1 +RtBt �Bt+1 � Tt (15)

where �t re�ects the pro�ts of monopolistic competitors paid out fully as dividends to

households, Bt is total loans the households makes at t� 1 that are payable at t, and
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Tt re�ects lump sum taxes which are used to pay for government expenditures. The

household�s decision problem is simply to choose consumption, labor supply, capital

and bonds to maximize equation (14) subject to (15).

For the calibrated model we keep the preference parameters � and �w �xed. Once

we turn to estimation in section 5 we allow these parameters to follow stationary

stochastic processes in order to achieve identi�cation.

2.5 Symmetric equilibrium

The following relationships hold in the symmetric equilibrium of this economy:

Evolution of endogenous states, Kt and A
y
t and A

k
t :

Kt+1 = (1� �(Ut))Kt + (P
K
t )

�1��kIt; (16)

where ��k � �k�
�
+(1�
) is the average markup in the production of new capital.

��k � �k�

�
 + (1� 
)

Ast+1 = �
s
t [Z

s
t � Ast ] + �Ast ; for s = fk; yg : (17)

and where the evolution of the stock of new technologies in each sector, Zst , is given

by equation (10).

Resource Constraint:

Yt = Ct +Gt +
P kt Jt
��k

+

Entry Costsz }| {
�� 1
�

Yt +
�k � 1
�k

It +
X

s=fk;yg

Adoption Costsz }| {
(Zst � Ast)hst (18)

Aggregate production:

Yt = Xt (A
y
t )
#�1 (Ny

t )
��1 (UtKt)

� L1��t (19)

where total factor productivity; Xt (A
y
t )
#�1 (Ny

t )
��1 ; depends on the stock of adopted

intermediate output goods Ayt .

Factor market equilibria for Lt; and Ut:

(1� �)Yt
Lt
= ��wL�t=(1=Ct) (20)
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�
Yt
Ut
= ��0(Ut)P

K
t Kt (21)

New Capital:

Let Iet denote the amount output devoted to producing equipment and I
s
t denote

the amount devoted to structures. Then the optimal pricing of equipment, and struc-

tures capital goods and �nal capital goods implies that

P kt Jt
�k

= �Iet + I
s
t

where from cost minimization:

�Iet
Ist
=
1� 




Consumption/Saving:

Etf��t;t+1 � [�
Yt+1
�Kt+1

+ (1� �(Ut+1)PKt+1]=P kt g = 1 (22)

where �rt+1 = Ct=Ct+1:

Optimal adoption of innovations in sector s = fk; yg :

1 = ��Et

�
�t+1

Ast
ost
�0
�
Ast
ost
hst

��
vst+1 � jst+1

��
(23)

with

vst = �
s
t + ��Et

�
�t+1v

s
t+1

�
and

�kt = (1� 1
�
)(1� 
) It

Akt�k

�yt = (1� 1

#
)
Yt
Ayt�

jst = �hst + ��Et
�
�t+1

�
�stv

s
t+1 + (1� �st)jst+1

��
where

�st =
��
s

�
Asth

s
t

ost

���
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Free entry into production of �nal goods and �nal capital goods:

�� 1
�

Yt
Ny
t

= oyt (24)

�k � 1
�k

It
Nk
t

= okt

Relative price of retail and wholesale capital

PKt = �k(Nk
t )
�(�k�1) �PKst �
 �PKet �1�
 (25)

where PKet is equal to

PKet = �
�
Akt
��(��1)

and the wholesale price of capital is

P
K

t = �
(1�
) �Akt ��(1�
)(��1) �PKst �


Observe that the wholesale price of capital varies inversely with the number of adopted

technologies. Thus, the same is true for the retail price. However, the retail price

also varies at the high frequency with entry. The gains from agglomeration introduces

e¢ ciency gains in the production of new capital in booms and vice-versa in recessions.

This leads to countercyclical movements in PKt at the high frequency. At the medium

and low frequencies, endogenous technology adoption is responsible for countercyclical

movements in PKt :

Finally, we are now in a position to get a sense of how "news" about technology

play out in this model. Consider �rst the standard model where both embodied

and disembodied technological change is exogenous. News of a future decline in the

relative price of capital or increase in total factor productivity leads to the expectation

of higher labor productivity in the future. Current consumption increases, inducing

a negative e¤ect on labor supply, as equation (20) suggests. Since current labor

productivity does not increase, the net e¤ect of the positive news shock is to reduce

hours. By construction, in our model the news is of improved technological prospects

as opposed to improved technology per se. When those prospects are realized, hours

depend on the intensity of adoption. Hence, the good news in this framework sparks a

contemporaneous rise in aggregate demand driven by the desire to increase the speed

of adoption. This substitution e¤ect, in turn, leads to a higher demand for capital
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and labor o¤setting the wealth e¤ect. As a result, hours, investment, and output

increase in response to the positive technology prospects. Next, we present some

simulations that illustrates how our framework can induce a procyclical movements

in these variables in response to innovation shocks.

3 Model Simulations of "Innovation" Shocks

In this section we �rst calibrate our model and then present simulations of the impact

of a shock in the growth rate of new intermediate goods. As we have been noting, one

can interpret this shock as capturing news about the economy�s growth potential.

3.1 Calibration

The calibration we present here is meant as a reasonable benchmark that we use to

illustrate the qualitative and quantitative response of the model to a shock about

future technologies. These responses are very robust to reasonable variations around

this benchmark. In section 5, we estimate the values of some of these parameters. To

the extent possible, we use the restrictions of balanced growth to pin down parameter

values. Otherwise, we look for evidence elsewhere in the literature. There are a total

of eighteen parameters. Ten appear routinely in other studies. The other eight relate

to the adoption processes and also to the entry/exit mechanism. Table 1 reports the

value for these parameters.

We begin with the standard parameters. A period in our model corresponds to

a quarter. We set the discount factor � equal to 0:98; to match the steady state

share of investment to output. Based on steady state evidence we also choose the

following numbers: (the capital share) � = 0:35; (the equipment share) (1 � 
) =
0:17=0:35; (government consumption to output) G=Y = 0:2; (the depreciation rate)

� = 0:015; and (the steady state utilization rate) U = 0:8.6 We set the inverse of the

Frisch elasticity of labor supply � to unity, which represents an intermediate value for

the range of estimates across the micro and macro literature. Similarly, we set the

elasticity of the change in the depreciation rate with respect to the utilization rate,

6We set U equal to 0.8 based on the average capacity utilization level in the postwar period as

measured by the Board of Governors.
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(�00=�0)U at 0:15 following Rebelo and Jaimovich (2006). Finally, based on evidence

in Basu and Fernald (1997), we �x the steady state gross valued added markup in

the �nal output, �; equal to 1:1 and the corresponding markup for the capital goods

sector, �k; at 1:15:

We next turn to the �non-standard� parameters. To approximately match the

operating pro�ts of publicly traded companies, we set the gross markup charged by

intermediate capital (�) and output goods (#) to 1.4 and 1.25, respectively. Following

Caballero and Ja¤e (1992), we set � to 0.99, which implies an annual obsolescence

rate of 4 percent. The steady state growth rate of the relative price of capital, depends

on ��k; the markup �; the obsolescence rate and �k. We normalize �k to 1. To match

the average annual growth rate of the Gordon quality adjusted price of equipment

relative to the BEA price of consumption goods and services (-0.035), we set ��k to

3.04 percent.

�y a¤ects the correlation between TFP growth and the growth rate of the relative

price of equipment. Many other variables a¤ect this correlation in the short run.

However, these other forces are likely to have virtually no e¤ect over them in the

medium term (i.e., cycles with periods between 8 and 50 years). Under this premise,

and a log-linear approximation, the covariance between medium term growth in TFP,

and the relative price of equipment, and their variances depend on the variance of

�t; the variance of xt and �y: Hence, we can use these three moments in the data to

identify �y: This yields an estimate for �y of approximately 0.6. Our results are quite

robust to variation in �y between 0:5 and 0:8.

The growth rate of GDP in steady state depends on the growth rate of capital and

on the growth rate of intermediate goods in the output sector. To match the average

annual growth rate of GDP per working age person over the postwar period (0.024)

we set ��y to 2.02 percent.

For the time being, we also need to calibrate the autocorrelation of the shock to

future technologies. When we estimate the model, this will be one of the parameters

we identify.. One very crude proxy of the number of prototypes that arrive in the

economy is the number of patent applications. The autocorrelation of the annual

growth rate in the stock of patent applications is 0.95. This value is consistent with

the estimate we obtain below and is the value we use to calibrate the autocorrelation

of �t:
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We now consider the parameters that govern the adoption process. We use two

parameters to parameterize the function �s(:) as follows:

�st =
��
s

�
Asth

s
t

ost

���
These are ��s and ��: To calibrate these parameters we try to assess the average

adoption lag and the elasticity of adoption with respect to adoption investments.

Estimating this elasticity is di¢ cult because we do not have good measures of adoption

expenditures, let alone adoption rates. One partial measure of adoption expenditures

we do have is development costs incurred by manufacturing �rms trying that make

new capital goods usable, which is a subset of the overall measure of R&D that

we used earlier. A simple regression of the rate of decline in the relative price of

capital (the relevant measure of the adoption rate of new embodied technologies in

the context of our model) on this measure of adoption costs and a constant yields

an elasticity of 0:9: Admittedly, this estimate is crude, given that we do not control

for other determinants of the changes in the relative price of capital. On the other

hand, given the very high pro-cyclicality of the speed of adoption estimated by Comin

(2007), we think it provides a plausible benchmark value.

Given the discreteness of time in our model, the average time to adoption for any

intermediate good is approximately 1=� + 1=4. Mans�eld (1989) examines a sample

of embodied technologies and �nds a median time to adoption of 8.2 years. However,

there are reasons to believe that this estimate is an upper bound for the average

di¤usion lag . First, the technologies typically used in these studies are relatively

major technologies and their di¤usion is likely to be slower than for the average

technology. Second, most existing studies oversample older technologies which have

di¤used slower than earlier technologies.7 For these reasons, we set ��s to match an

average adoption lag of 5 years and a quarter.8

We next turn to the entry/exit mechanism. We set the overhead cost parameters

so that the number of �rms that operate in steady state in both the capital goods
7Comin and Hobijn (2007) and Comin, Hobijn and Rovito (2008).
8It is important to note that, as shown in Comin (2008), a slower di¤usion process increases

the ampli�cation of the shocks from the endogenous adoption of technologies because increases the

stock of technologies waiting to be adopted in steady state. In this sense, by using a higher speed of

technology di¤usion than the one estimated by Mans�eld (1989) and others we are being conservative

in showing the power of our mechanism.
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and �nal goods sector is equal to unity, and the total overhead costs in the economy

are approximately 10 percent of GDP.

3.2 Model Simulations

We now analyze the e¤ect of a positive shock to the growth rate of new technologies.

To compare with the literature, we �rst consider a variation of the model that elim-

inates the key features we have added that in�uence model dynamics. In particular

we �rst suppose that technology di¤usion is instantaneous and exogenous and that

�rm entry and exit is shut o¤. In this case, our experiment closely mimics the "news"

shock scenario analyzed in the literature. In particular, the expected increase in the

arrival of new technologies leads to an expected increase in the growth rate of total

factor productivity that is independent of any actions that individual �rms or house-

holds make. As Figure 1 shows, the increase in the expected new technology arrival

rate initially reduces labor supply and output. At work is the wealth e¤ect, noted by

Cochrane (1994) and many others.

We next return to our baseline model by adding back the relevant features. In

this instance, as Figure 2 shows, the increase in the expected technology arrival rate

produces an initial increase in both output and hours. Now the increase in expected

productivity growth is not simply manna from heaven. Rather, it may be realized

only if resources are devoted to technology adoption. Further, the more resources

are devoted, the faster the technology will be adopted. The initial increase in labor

demand in part re�ects an intertemporal substitution e¤ect: Because more labor and

capital is needed for adoption in the future, it is optimal to build up the capital stock

today, before the technologies come in line. The associated rise in capital utilization

and entry increases the marginal product of labor, everything else equal, contributing

to the increase in labor demand. This in turn leads to an increase in real wages and

labor supply.

What is key to producing a positive co-movement between output and expected

technology growth is the combination of slow di¤usion and costly adoption. We

illustrate this point in Figure 3 by examining the response of output and hours for

di¤erent variations of the model. The top panel is our baseline. In the second panel

we keep endogenous adoption but remove entry and exit. As the �gure shows, the
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output and hours responses is weaker than in the baseline case, but qualitatively the

same. One other di¤erence, is that consumption declines initially. By contrast, the

agglomeration e¤ect from entry in our baseline boosts output su¢ ciently to introduce

an increase in consumption. In the bottom panel we also remove endogenous adoption.

New technologies di¤use exogenously at the same rate as in the steady state of our

baseline. As the panel shows, output and hours decline at the onset of the shock, as

in the conventional literature. Thus it appears that within our framework endogenous

technology adoption is key to getting the right co-movement.

Though we do not report the results here, endogenous entry alone does not gen-

erate the right quantitative co-movements in response to innovation shocks.9 Entry

interacts with endogenous adoption to magnify the overall response of real activity.

As the top two panels of Figure 3 indicate, the output and hours response is nearly

four times as large in our baseline model as in the model without entry. Intuitively,

the agglomeration e¤ects from entry expand output and investment, which in turn

raises pro�tability and enhances the incentives to adopt.

Finally, it is the case, as in Comin and Gertler (2006), that the endogenous tech-

nology feature of our model introduces a signi�cant propagation mechanism that

operates over the medium term. Associated with the increase in output following the

positive news shock, there is an increase in the expected returns to both intermediate

capital goods and intermediate output goods. Hence, the present discounted value

of future pro�ts from selling an adopted technology, vt; also increases, which increase

the adoption rate, as illustrated by the increase in �t in Figure 2.10 The acceler-

ation in the speed of adoption of new intermediate capital goods in turn improves

the overall e¢ ciency of producing new capital goods and is thus responsible for the

decline in the relative price of capital over the medium and long term. (In the short

run, endogenous entry of new capital producers reduces the relative price of capital,

due to agglomeration e¢ ciencies). The endogenous decline in the relative price of

capital fuels in turn investment. Similarly, endogenous adoption of new intermediate

output goods raise total factor productivity over the medium term, which feeds back

to further stimulate economic activity.

9The impulse response functions for this case are reported in the extended estimated model below.
10Speci�cally, we plot the responses of �kt and v

k
t : The responses of �

y
t and v

y
t are qualitatively

the same.
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The mechanism we have just outlined propagates not only the innovation shock but

also other shocks that may disturb the economy. Any disturbance that in�uences the

pro�tability of intermediate goods will induce adoption, triggering sustained feedback

between endogenous technology movements and real activity. Since a key issue is the

quantitative importance of this propagation mechanism, we defer the analysis of this

issue to section 5 where we present an estimated version of this model.

4 An Extended Model for Estimation

In this section we generalize our model and then estimate it. We add some key features

that have proven to be helpful in permitting the conventional macroeconomic models

(e.g. Christiano, Eichenbaum and Evans (2005) and Smets and Wouters (2006)) to

capture the data. Our purpose here is twofold. First we wish to assess whether the

e¤ects of our news shock that we identi�ed in our baseline model are robust in a

framework that provides an empirically reasonable description of the data. Second,

by proceeding this way, we can formally assess the contribution of our innovation

shock as we have formulated them to overall business cycle volatility.

4.1 The Extended Model

The features we add include: habit formation in consumption, �ow investment ad-

justment costs, nominal price stickiness in the form of staggered price setting, and a

monetary policy rule.

To introduce habit formation, we modify household preferences to allow utility to

depend on lagged consumption as well as current consumption in the following simple

way:

Et

1X
i=0

�ibt+i

"
ln(Ct+i � �Ct+i�1)� �wt+i

(Lt+i)
1+�

1 + �

#
(26)

where the parameter �, which we estimate, measures the degree of habit formation.

In addition, the formulation allows for two exogenous disturbances: bt is a shock to

household�s subjective discount factor and �wt is a shock to the relative weight on

leisure. The former introduces a disturbance to consumption demand and the latter
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to labor supply. Overall, we introduce a number of shocks that is equal to the number

of variables we use in the estimation in order to obtain identi�cation.

Adding �ow adjustment costs leads to the following formulation for the evolution

of capital:

Kt+1 = (1� �t)Kt + Jt

 
1� 


�
Jt

(1 + gK)Jt�1
� 1
�2!

(27)

where 
; another parameter we estimate, measures the degree of adjustment costs. We

note that these adjustment costs are external and not at the �rm level. Capital is per-

fectly mobile between �rms. In the standard formulation (e.g. Justiniano, Primiceri,

and Schaumberg (2008)), the relative price of capital is an exogenous disturbance. In

our model it is endogenous. As equation (25) suggests, P kt depends inversely on the

volume of adopted technologies Akt and the cyclical intensity of production of new

capital goods, as measured by Nk
t :

We model nominal price rigidities by assuming the �nal output goods producing

�rms (6)) set nominal prices on a staggered basis. For convenience, we now restrict

entry in this sector and instead �x the number of these �rms at the steady state value

N: Following Smets and Wouters (2006) and Justiniano, Primiceri and Schaumberg

(2008), we used a formulation of staggered price setting due to (1983), modi�ed to

allow for partial indexing. In particular, every period a fraction 1 � � are free to
optimally reset their respective price. A fraction � instead adjust price according to

a simple indexing rule based on lagged in�ation. Let Pt(j) be the nominal price of

�rm j0s output, Pt the price index and �t�1 = Pt=Pt�1 the in�ation rate. Then, the

indexing rule is given by:

Pt+1(j) = Pt(j) (�t)
�p (�)1��p (28)

where � and �p are parameters that we estimate: the former is the steady state rate of

in�ation and the latter is the degree of partial indexation. The fraction of �rms that

are free to adjust, choose the optimal reset price P �t to maximize expected discounted

pro�ts given by.
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given the demand function for �rm j�s product (obtained from cost minimization by

�nal goods �rms):

Yt(j) = (
Pt(j)

Pt
)
��
��1Yt (30)

Given the law of large numbers and given the price index, the price level evolves

according to

Pt = [(1� �)(P �t )
��1
� + �(Pt�1)

��1
� ]

�
��1 (31)

Finally, de�ne Rnt as the nominal rate of interest, de�ned by the Fisher relation

Rt+1 = R
n
t Et�t+1: The central bank sets the nominal interest rate R

n
t according to a

simple Taylor rule with interest rate smoothing, as follows:

Rnt
Rn

=

�
Rnt�1
Rn

��r  ��t
�

��p � Yt
Y 0t

��y!1��r
exp(�mp;t) (32)

where Rn is the steady state of the gross nominal interest rate and Y 0t is trend output,

and �mp;t is an exogenous shock to the policy rule.

Including habit formation and �ow investment adjustment costs give the model

more �exibility to capture output, investment, and consumption dynamics. We in-

clude nominal rigidities and a Taylor rule for two reasons. First, doing so allows us to

use the model to identify the real interest rate which enters the �rst order conditions

for both consumption and investment. The nominal interest rate is observable but

expected in�ation is not. However, from the model we identify expected in�ation.

Second, having a monetary policy allows us to evaluate the contribution of the mon-

etary policy rule to the propagation of innovation shocks, similar in spirit to what

Christiano, Ilut, Motto and Rostagno (2007) emphasize for news shocks.

One widely employed friction that we do not add is nominal wage rigidity. While

adding this feature would help improve the ability of the model in certain dimensions,

we felt that at least for this initial pass at the data, the cost of added complexity

outweighed the marginal gain in �t.
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We emphasize that the critical di¤erence in our framework is the endogenous com-

ponent of both embodied and disembodied productivity. The standard model treats

the evolution of both of these phenomena as exogenous disturbances. In our model the

key primitive is the innovation process. Shocks to this process in�uence the pace of

new technological opportunities which are realized only by a costly adoption process.

5 Estimation

5.1 Data and Estimation Strategy

We estimate the model using quarterly data from 1984:I to 2008:II on seven key macro-

economic variables in the US economy: output, consumption, equipment investment,

non-equipment investment, in�ation, nominal interest rates and hours. The vector of

observable variables is:

[�logYt �logCt �logIet �logIst Rt �t log(Lt)]

The standard models typically include real wage growth. However, since we abstract

from wage rigidity we do not use this variable in the estimation.

Following Smets and Wouters (2007) and Primiceri et al. (2006 and 2008), we

construct real GDP by diving the nominal series (GDP) by population and the GDP

De�ator. Real series for consumption and investment in equipment and structures are

obtained similarly. Consumption corresponds only to personal consumption expendi-

tures of non-durables and services; while non-equipment investment includes durable

consumption, structures, change in inventories and residential investment. Labor is

the log of hours of all persons divided by population. The quarterly log di¤erence

in the GDP de�ator is our measure of in�ation, while for nominal interest rates we

use the e¤ective Federal Funds rate. Because we allow for non-stationary technology

growth, we do not demean or detrend any series.

The model contains seven structural shocks. Five appear in the standard models.

These include shocks to: the household�s subjective discount factor, the household�s

preference for leisure, government consumption; the monetary policy rule, and the

growth rate of TFP. The key new shock in our model is the disturbance to the growth
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rate of potential new intermediate capital goods, which we refer to as an "innovation"

shock. Since this shock signals opportunities for future growth, it is also similar in

spirit to a "news shock". Finally, we allow for an exogenous shock to the cost of

producing non-equipment investment, but are agnostic about the deep underlying

source of this shock.

We continue to calibrate the parameters of the embodied technology process. How-

ever, we estimate the rest of the parameters of the model, all of which appear in the

standard quantitative macroeconomic framework. In particular, we estimate are the

parameters that capture habit persistence, investment adjustment costs, elasticity of

utilization of capital, labor supply elasticity and the feedback coe¢ cients of the mon-

etary policy rule. We also estimate the persistence and standard deviations of the

shock processes.

We use Bayesian estimation to characterize the posterior distribution of the struc-

tural parameters of the model (see An and Schorfheide (2007) for a survey). That is,

we combine the prior distribution of the parameters with the likelihood of the model

to obtain the posterior distribution of each model parameter.

5.2 Priors and Posterior Estimates and Model Fit

Table 2 presents the prior distributions for the structural parameters along with the

posterior estimates. Tables 3 presents the same information for the estimates of the

serial correlation and standard deviation of the stochastic processes. To maintain

comparability with the literature, for the most part we employ the same priors as in

Justiniano, Primiceri and Schaumberg (2007).

The parameter estimates are very close to what has been obtained elsewhere in

the literature (e.g. Smets and Wouters (2006), Justiniano, Primiceri and Schaumberg

(2007) and Justiniano, Primiceri and Tambalotti (2008) ). It is interesting to note

that we get a reasonable estimate for the degree of price rigidity, despite the fact that

the model does not include wage rigidity. The implied average time that a price is

�xed is just over two quarters, which is in line with the micro evidence.

To get a sense of how well our model captures the data, Table 4 presents the

standard deviations of several selected variables. Overall, our baseline model is in

line with the data. It slightly underpredicts the standard deviations of output and
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consumption growth and slightly overpredicts the standard deviation of the growth

in equipment investment and hours.

To assess how important the innovation shock is as a business cycle driving force,

Table 5A and 5B report the contribution of each shock to the unconditional vari-

ance of �ve observable variables: output, consumption and equipment and structures

investment and hours worked. We explore the variance decomposition both for the

growth rate (Table 5A) and the HP �ltered level (Table 5B). As earlier, we refer

to the disturbance to the growth rate of potential new intermediate goods as the

"innovation" shock.

The innovation shock accounts for 27 percent of output growth �uctuations and

32 in HP �ltered output. It is of nearly equal importance to the neutral technology

shock, which accounts for 43 percent of �uctuations in output growth and 34 percent

in HP �ltered output. Investment shocks combined, however, account for more the

half the high frequency variation in output, in keeping with the �ndings of Justiano,

Primiceri and Tambalotti (2008). The di¤erence in our model is that we disentangle

shocks to equipment versus non-equipment investment and also endogenize the pace

of technological change. The shock to non-equipment investment is the third most

important in explaining approximately 11 percent of output growth �uctuations, and

25 percent of HP �ltered output. The other 4 shocks seem much less important in

explaining output �uctuations, representing a combined 20 percent of output growth

�uctuations and less than 9 percent of HP �ltered output.

Finally, we note that our model provides a reasonable �t of the data, at least as

compared to reasonable competing alternatives. The two alternatives are as follows:

The �rst is our baseline model but with endogenous adoption shut o¤. The second

is a version of the conventional DSGE model. In particular, we make di¤usion in-

stantaneous, shut o¤ entry, and also eliminate the distinction between equipment and

structures. In e¤ect, this alternative model is identical to Justiniano, Primiceri and

Tambalotti (2007) and very similar to Christiano, Eichenbaum and Evans (2005), and

Smets and Wouters (2007), though without wage rigidity (in order to be comparable

to our baseline model) Table 6 shows that the marginal likelihood for our baseline

model is signi�cantly higher than the alternative formulation with exogenous adoption

and also (our version of) the conventional DSGE.
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5.3 Estimated Impulse Response Functions

Next we analyze the impulse responses to our innovation/news shock using the es-

timated model. Figure 2 presents the results for our model (solid line) and for the

version with exogenous adoption (dashed line).11 The qualitative patterns are very

similar to what we obtained from the calibrated model. The economy with exogenous

adoption experiences a recession in response to a positive news shock. In contrast,

in our model, there is a positive and prolonged response of output, investment, con-

sumption and hours worked.

In contrast to the simple calibrated model we analyzed earlier, the response of out-

put and investment in the estimated model is humped-shaped, re�ecting the various

real frictions such as investment adjustment costs that are now present. The response

of hours relative to output, however, is somewhat weaker. The introduction of the

various frictions has likely dampened the overall hours response. This is somewhat

mitigated in conventional models by incorporating wage rigidity.

The speed of technology adoption (�rst panel in the third row) strongly reacts to

the arrival of news about future technology. This is the case because of the sharp

increase in the value of new adopted technologies in response to the news shock

(second panel in the third row). As we shall see below, this mechanism plays a key

role in inducing �uctuations in the stock market.

One may wonder whether the monetary policy rule may be playing a role in propa-

gating our news shock by being overly accommodating. We have explored this possi-

bility by shutting o¤ the price rigidity in the model and instead allowing prices to be

perfectly �exible. In the process, we have kept the estimated structural parameters

from the full blown model. When conducting this exercise, we �nd that the results

for the sticky and �exible price models are very similar. The responses of output and

hours are only slightly more dampened in the �exible price model. Thus within our

framework, the monetary policy rule has only a small impact of the dynamic response

of the model economy to an innovation shock.

The estimated model not only delivers a plausible response to the innovation shock

,but does so to the other shocks as well. Figures 3 and 4 report the impulse response

functions of our baseline model to the structures shock and to the neutral technology

11Just to be clear, the version with exogenous adoption has also endogenous entry, as our model.
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shock (solid lines). (To save space we only report results for the major shocks, but the

responses to the other shocks are reasonable as well.) As with a positive news shock,

a positive shock to TFP or to structures leads to an increase in output, hours, in-

vestment and adoption expenses. In response to a TFP shock, consumption, initially,

experiences a very small decline due to the large substitution e¤ect introduced by

technology adoption and entry. After, that, consumption increases. For the shock to

structures, instead, consumption is pro-cyclical. It is also worth noting that, because

these shocks induce pro-cyclical �uctuations in the value of adopted technologies,

they also generate large, pro-cyclical �uctuations in the speed of adoption of new

technologies.

In Figures 3 and 4 we also report (in dashed lines) the impulse responses to the

structures TFP shocks of the version of our model with exogenous adoption (i.e.

constant �s; for s = fk; yg). One striking observation from this �gures is that the

response of the models to these shocks is signi�cantly more muted when adoption

is exogenous than when it is endogenous. Accordingly, the endogenous adoption

mechanism greatly ampli�es the model�s response not only to the news shock but also

to the other shocks considered here. Thus, even in instances where our innovation

shock is not the key driving force, the endogenous technology mechanism we have

characterized may be relevant.

5.4 Historical Decompositions

To get a better feel for the role of our innovation shock and the two other major shocks,

structure and TFP, in output �uctuations, we present a historical decomposition of

the data. Figure 7 present three panels. Each plots the contribution to output

growth the model implies for one of the three major shocks. The top panel reports

results for the innovation shock, the middle for the structures shock, and the bottom

for the TFP shock.

As the top panel indicates, the innovation shock contributes signi�cantly to cyclical

output growth. In particular, the shock seems to play a prominent role in recessions

and early stages of the expansions. As one might expect, it also appears to play a

role in the late 1990s period of high output and productivity growth.

The structures shock is very important in the recession of the early 1990s and
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also the period of slow growth at the end of our sample, which just precedes the

most recent recession. These results are consistent with the role that the contraction

in commercial structures played in the 1990s recessions and the collapse of housing

investment in the very recent period. In each instance, of course, credit conditions

likely in�uenced the slowdown in structures. In this respect, our structures shock

may capture in a reduced form way the in�uence of credit conditions. A more explicit

modeling of this phenomenon would be of interest, though.

6 The Stock Market

6.1 Theory

In standard macro models, the market value of corporations is equal to the value

of installed capital. This creates a serious challenge for these models. Since capital

is a stock, the short run evolution of the value of installed capital is driven by the

dynamics of the price of installed capital, which for reasonable adjustment costs is

not very di¤erent from the price of new capital. In the data, the price of new capital

is countercyclical and moves approximately as much as output. The stock market,

however, is strongly pro-cyclical and moves about ten times more than output. A

theory that equalizes the two variables will have to be inconsistent with the empirical

behavior of at least one of the two.

Unlike standard macro models, in our framework �rms have the rights to the pro�t

�ows from selling current and future adopted technologies. Thus, the market value

of companies is given by the present discounted value of these pro�ts in addition to

the value of installed capital. Formally, the value of the stock market Qt is composed

of four terms as shown in (33).

Qt =

Value of installed capitalz }| {
P inskt Kt +

Value of adopted technologiesX
s=fk;yg

z }| {
Ast(v

s
t � �st) (33)

+

Value of existing not adopted technologiesX
s=fk;yg

z }| {
(jst + h

s
t)(Z

s
t � Ast) +

Value of future non-adopted technologies

Et

264 X
s=fk;yg

z }| {
1X
i=0

��t;t+1+ij
s
t+1+i(Z

s
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where P inskt is the value of a unit of installed capital in the �rm (i.e. the shadow

value of a unit of capital to the �rm).

The �rst term in (33) captures the fact that the market values the capital stock

installed in �rms. The second term re�ects the market value of adopted intermediate

goods that are currently used to produce new capital and output. The third term

corresponds to the market value of existing intermediate goods which have not yet

been adopted. The �nal term captures the market value of the intermediate goods

that will arrive in the future. The rents associated with the arrival of these prototypes

also have a value which is priced in by the market.

Of course, only the �rst term appears in conventional models. It is the last three

terms, however, that account for the enhanced volatility of asset prices within our

framework. Unlike the �rst term, the last three are highly pro-cyclical since both

current and future pro�ts as well as the �ow of current and future technologies increase

sharply in booms and decline (relative to trend) in recessions. While the shadow value

of a unit of installed capital is procyclical, the replacement is countercyclical. Indeed,

the estimates of our model will suggest that overall the value of installed capital is

countercyclical on average. Thus it is the terms that re�ects the value of current

and expected future technologies that ultimately account for the strong procyclical

volatility of asset prices within our framework.

6.2 Impulse responses

Figure 8 plots the responses of the stock market and its components to the news

shock. The stock market jumps as soon as the news about the future technology

hits the economy. In particular, following the same positive news shock that led

output to increase initially by about 5% (Figure 4), stock prices increase by about 10

times more. This boom in the stock market occurs despite the fact that the value of

installed capital (third panel in �rst row, Figure 8) declines driven by the decline in

the relative price of capital (second panel in �rst row) which, as in the data moves

roughly as much as output (Comin and Gertler, 2006). What drives the stock market

boom is the expectation of higher pro�ts from selling intermediate goods in both the

near term and over the long run.

The output and investment booms drive up the demand for intermediate goods.
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The persistence of the output and investment responses to the shock induces higher

pro�ts per adopted intermediate good not only upon impact but also in the future.

Furthermore, the growth rate of the number of adopted intermediate goods also in-

creases. This is the case for two reasons. First, adoption intensity jumps in response

to the increase in the market value of an adopted intermediate good. As a result,

unadopted intermediate goods become usable in production more quickly. Second,

with the innovation shock, the rate at which unadopted intermediate goods arrive

in the economy increases. Hence, the number of intermediate goods that can poten-

tially be adopted also increases. Though, the arrival of these new technologies does

not a¤ect output immediately, it is immediately re�ected in the stock market, Qt:

Figure 8 illustrates this phenomenon: The are sharp immediate increases in the value

of: adopted technologies (�rst panel in second row); existing technologies that have

not been adopted (second window in second row); and the technologies that have not

arrived in the economy yet (third panel in second row).

There are other interesting observations from Figure 8. First, the response of the

stock market to the shock is persistent. This is the case because of the persistence

in the responses of output, investment and in the number of current and future

intermediate goods.12 Second, the stock market leads output. Intuitively, this is the

case because the stock market value at t incorporates the value of future pro�ts which

strongly co-move with future output. The response of output, instead is hump-shaped

as a result of the frictions that impede a full adjustment in response to the shock.

As we show below, the lead of the stock market over GDP is a salient feature of the

data.

Our model also has implications for the evolution of the price-dividend ratio. The

natural de�nition of dividends from (33) is capital rental income plus pro�ts from

the sale of intermediate goods minus adoption expenses.13 We �nd that the price-

dividend ratio is mean reverting (Figure 8, �rst panel third row). Intuitively, this is

the case because the market�s response to the shock declines after the initial impact.

12Of course, the persistence of the shock also contributes towards the persistence of Qt: However,

a signi�cant share of the persistence in Qt is endogenous to the model as will be more clear from the

impulse responses to the price of capital and TFP shocks which have signi�cantly less persistence

than the news shock.
13Note that the pro�ts for �nal output and capital producers are equal to the entry costs.
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In contrast, the slower response of output leads to a more persistent evolution of

the pro�ts of intermediate goods producers which are a key component of dividends.

As a result, the price-dividend ratio is mean reverting , which is consistent with the

evidence in the literature.14

So far we have focused on the responses of the stock market to a positive news

shock. However, the market responds very similarly to all the other shocks we have

considered in the estimation. Consequently, all the �ndings uncovered for the in-

novation shock also hold for these other shocks. To save space, we just report the

responses to the shocks that were most important in the variance decomposition: the

shock to the price of structures and the TFP shock. The market responses to these

shocks are reproduced in Figures 9.

Note that in out model that stock prices lead movements in TFP. This is also

true for movements in stocks prices that are orthogonal to TFP, which is consistent

with the evidence in Beaudry and Portier (2006). In particular, within our model

the innovation shock does not a¤ect current measured TFP nearly as much as it

a¤ects it in the future. Stock prices, instead, rise immediately. (Compare Figures 4

and 8.) It is also the case that other shocks generate this pattern. For example, a

shock to structures also in�uences expected future productivity due to the endogenous

di¤usion mechanism. Again, stock prices increase immediately, consistent with the

BP �nding. (Compare Figures 5 and 9).

6.3 Unconditional moments

How well does the model fare in matching the stock market in the data? To answer

this question, we �rst compare some basic unconditional moments in the model and in

the data. Speci�cally, we simulate 1000 runs of the estimated model each 98 quarters

long and compute the volatility (Table 7) and �rst order autocorrelation (Table 8) of

the �rst di¤erences and HP �ltered levels of the stock market and dividends. Then

we compare these moments with various data counterparts. For the stock market, we

use both the market value of all stocks traded in the US markets and the S&P500

both de�ated by the GDP de�ator. It is harder to �nd the right data counterpart

to the dividends in our model. We report two di¤erent variables. The dividends

14See for example, Cambell and Shiller (1988).
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distributed by publicly traded companies15 and the compensation to capital from the

NIPA tables.16 To control for the seasonality of some of these variables we report also

seasonally adjusted moments whenever relevant.

The �rst �nding is that, the volatility of the stock market in the model is approx-

imately two thirds of the volatility in the data. That is true both when comparing

the model with the seasonally adjusted market value and with the S&P500.17 For

example, the average standard deviation of stock market growth in the model is 5.2%

while for the seasonally adjusted stock market growth in the data is 6.6% and in the

S&P500 it is 7.7%.18

This gap in the volatility between the model and the data is almost reassuring

since our model abstracts from countercyclical risk premia which many authors have

stressed is an important component of high frequency �uctuations in the stock market.

In particular, Campbell and Shiller (1988) show that revisions in expectations about

future dividend growth from simple VAR models cannot account for the observed

variation in price-dividend ratios. On the other hand, our model suggests that the

contribution of cyclical movements in pro�ts to overall stock market volatility is surely

greater than what much of the literature has suggested.

Interestingly, our model is consistent with the Campbell-Shiller tests. Speci�cally,

when conducting a Campbell-Shiller test on data simulated from our model we also

�nd that revisions in expected future dividend growth, when expected future divi-

dends are computed using the simple VARs used by CS, only account for a fraction

of the �uctuations in price-dividend ratios of the simulated series.19 ;20 Since in our

15Speci�cally, we follow Campbell and Shiller (1988) and compute the dividends from the value

weighted returns including and excluding distributions from COMPUSTAT.
16That is income minus compensation to employees minus taxes.
17The seasonal adjustment removes the seasonality in the issuance and reporting of corporate

debt.
18The gap between the stock market in the model and in the data is even smaller when looking at

the volatility of the HP-�ltered series (6.3% in the model vs. 5.8% of the seasonally adjusted market

value and 6.4% in the S&P500).
19Speci�cally, using the simple one lag 2-variable VAR in Campbell and Shiller (1988) in 1000

(98 quarters-long) simulations, the ratio of predicted over actual standard deviation of the (log)

price-dividend ratio is 0.24 with a 95 con�dence interval of (0.11, 0.46).
20This is not surprising because, as Cochrane (2005) shows the Campbell-Shiller test is closely

linked to the predictability of dividends. As we shall see below, the dividends generated by the
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model none of the �uctuations in the price-dividend ratio are driven by �uctuations

in risk premia, this shows that the CS test surely underpredicts the contribution of

expected dividend growth to asset price �uctuations. In other words, in our model,

and surely in the world too, the dynamics of dividends are rather complex. The

simple VARs used by CS cannot properly capture this complexity and, as result, the

expected dividend growth series from the VAR forecast are much less volatile than if

a more sophisticated model of the economy was used.

Our model does not perform as well in reproducing the volatility of dividends. In

the model, the average standard deviation of dividend growth is 1.27% while the data

counterparts are much more volatile (8.7% for seasonally adjusted dividends from

publicly traded companies). This di¤erence is in part due to the gap between the

model and data de�nition of dividends. In particular, the model measure includes

rental income to capital while the data does not. The NIPA measure of dividends

includes rental payments to capital and its volatility (2.1%) is closer to the model.

Table 9 reports the �rst order autocorrelation of the growth rate and HP �ltered

levels of the stock market value and dividends. We �nd that the average persistence

of the stock market growth in the model is slightly higher than in the data (0 vs.

-0.15 for seasonally adjusted market value and 0.01 for the S&P500). However, these

di¤erences are small and statistically insigni�cant. This is also the case for the HP-

�ltered stock market series. Finally, the model also does a good job in matching the

persistence of both dividend growth and HP-�ltered dividends.

Tables 8 and 9 also report the moments for the stock market series generated from

a model with a conventional real and monetary sector similar to Justiniano, Primiceri

and Tambalotti (2008). Overall, this model fails to account for the volatility of stock

prices. In particular, while the average volatility of stock market growth in our model

is 5.2% and of the HP-�ltered stock market value is 6.3%, the equivalent statistics

from this alternative model are both 2%. Hence, the more conventional model is

unable to generate the observed large �uctuation in asset prices.

In addition to the variance and autocorrelation, another important feature of the

stock market in the data is that it leads output, unconditionally. This is illustrated

in Figure 12 which plots the cross-correlogram of HP-�ltered output and the stock

market value in the data. Overall, the model captures the lead in the stock market.

model have similar predictability as the dividends in the data.
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Figure 13 plots the average cross-correlogram of output and the stock market in the

1000 runs of our model together with the 95% con�dence interval. As in the data,

the stock market in the model strongly co-moves contemporaneously with output.

Further, there is a lead of about one quarter of the stock market over output which

is also consistent with the data.

The pattern of co-movement of the stock market and output is another dimension

where our model di¤ers from the conventional framework. Figure 14 plots the average

cross-correlogram between output and the stock market for this model. Two obser-

vations are worth making. First, the contemporaneous co-movement between output

and the stock market is negative rather than positive. This is driven by the shocks to

the relative price of capital which, as in Justiniano, Primiceri and Tambalotti (2008)

are an important source of �uctuations when this model is estimated. A shock that

reduces the price of capital, causes an output expansion but, despite the presence of

adjustment costs, a reduction in the price of installed capital. Since capital is �xed

in the short run, this shock causes a decline in the value of the capital stock which

is the stock market in this model. Second, the co-movement pattern between output

and the stock market in this model does not capture the observed lead of the stock

market over output.

6.4 Historical evolution of the stock market

How closely does the stock market value predicted by the model given the estimated

shocks track the actual evolution of the US stock market? Figure 15 plots the evo-

lution of the predicted and actual (real) value of the stock market together with the

S&P500 de�ated using the GDP de�ator. The stock market value in the data is the

value of all publicly-traded companies plus the value of their corporate debt de�ated

also by the GDP de�ator.

The �nding is that, to a �rst order, the predicted stock market value tracks fairly

closely the actual series. In particular, the model captures the relatively slow growth

between 1984 and 1994, the acceleration starting in 1994-95. The peak takes place

in 2001 rather than in 2000. Then there is a small decline though not nearly as

pronounced as in the 2001 crash. The model also captures the recovery until the end

of 2007. Finally, it captures the decline in the stock market in 2008.
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Beyond the qualitative patterns, the model does a surprisingly good job in cap-

turing the magnitude of the run up during the second half of the 90s. While the US

stock market went from a value of $3.55 trillion in 1984:I21 to $24 trillion in 2000:I,

our model predicts an increase from $3.55 trillion to $21.3 trillion in 2001:I. The

similarity of these increases is somewhat surprising, given that we have not used any

information from the stock market to estimate the model.

The predictions of the model for the evolution of the stock market in 2008 are also

worth noting. In particular, the model predicts a decline in the stock market value

of 18% which is approximately half of the decline that experienced the S&P500. It

is important to stress, though, that our model abstracts from �nancial factors that

appear to be relevant in the sharp decline in stock prices since October 2008. Further,

the data used in the estimation of the model and identi�cation of the shocks runs

only until the second quarter of 2008. It is interesting though that the macroeconomic

conditions identi�ed in the estimation were su¢ cient to generate such a signi�cant

drop in asset prices in the context of our model.

7 Conclusions

We have modi�ed a conventional business cycle model to allow for changes in the

rate of growth of new technologies and endogenous technology di¤usion. An "inno-

vation" shock has the �avor of a news shocks because it in�uences expectations of

future growth without a¤ecting current productivity. As we, show, with endogenous

di¤usion, news about future growth prospects produces movements in current output

and hours that is positively correlated with the news. In this way the paper addresses

a conundrum in the literature, originally identi�ed by Cochrane (1994). We also �nd

that in an estimated version of the model, the innovation shock accounts for nearly

a third of the variation of output �uctuations, and even more at the business cycle

frequencies. The model also accounts surprisingly well for asset price movements, at

least relative to most other business cycle models.

Our endogenous technology di¤usion mechanism is also relevant to other distur-

bances besides innovation shocks. For example, the mechanism ampli�es and prop-

21All these �gures are in 2000 US dollars.
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agates the impact of a shock to structures on the movement of both output and

asset prices. As we noted, our structures shock, which a¤ects both residential and

non-residential investment may in a reduced form sense partly capture movements

in credit frictions. Indeed, our historical decomposition suggests that this structures

shock was important in both the 1990-91 recession and the period leading up to

the current recession, episodes where disruptions in credit markets appear to have

a¤ected structures investment. Even though the initiating disturbance does not in-

volve technology, the endogenous di¤usion mechanism works to propagate the e¤ects

of the shock on output and the stock market. Explicitly modeling the interactions

between credit marker frictions and our endogenous di¤usion mechanism, we think,

is an important next step to take.
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Table 1: Calibrated Parameters

Parameter Value

β 0.98
δ 0.015
G/Y 0.2
α 0.35
αs 0.17/0.35
ζ 1
θ 0.7
χy so that growth rate of y=0.024/4
χk so that growth rate of pKet = −0.035/4
U 0.8
(δ′′/δ′)U 0.15
φ 0.99
µ 1.1
µw 1.2
µk 1.15
λ
y

so that λy = 0.02/4
λ
k

so that λk = 0.02/4
ρλ 0.9
y 0.7
yz 0.8
ξy 0.6



Table 2: Prior and Posterior Estimates of Structural Coefficients

Prior Posterior

Parameter Distribution max mean 5% 95%

ν Beta(0.50,0.10) 0.502 0.565 0.104 0.952
ρr Beta(0.65,0.10) 0.642 0.623 0.518 0.800
ξ Beta(0.50,0.10) 0.565 0.557 0.366 0.758
ιp Beta(0.50,0.10) 0.488 0.487 0.280 0.694
γ Normal(1.00,0.50) 1.305 1.185 0.818 1.510
φp Gamma(1.70,0.30) 1.707 1.944 1.226 2.746
φy Gamma(0.125,0.10) 0.079 0.082 0.062 0.106
ζ Gamma(1.20,0.10) 1.193 1.344 1.150 1.516
δ′′U
δ′ Gamma(0.10,0.10) 0.025 0.022 0.003 0.043

Table 3: Prior and Posterior Estimates of Shock Processes

Prior Posterior

Parameter Distribution max mean 5% 95%

ρb Beta(0.25,0.05) 0.235 0.230 0.185 0.284
ρm Beta(0.25,0.05) 0.248 0.247 0.186 0.301
ρw Beta(0.35,0.10) 0.346 0.349 0.331 0.364
ρrd Beta(0.95,0.15) 1.000 0.999 0.999 0.999
ρg Beta(0.6,0.15) 0.349 0.894 0.893 0.894
ρs Beta(0.95,0.15) 1.000 0.999 0.999 0.999
σrd IGamma(0.25,∞) 0.285 0.292 0.255 0.337
σw IGamma(0.25,∞) 0.254 0.263 0.254 0.272
σg IGamma(0.25,∞) 0.252 0.267 0.248 0.287
σb IGamma(0.25,∞) 0.252 0.261 0.227 0.296
σm IGamma(0.25,∞) 0.251 0.268 0.191 0.352
σx IGamma(0.25,∞) 0.253 0.277 0.269 0.287
σs IGamma(0.25,∞) 0.306 0.206 0.164 0.245



Table 4: Standard Deviations

Observable Data Model

∆Yt 0.50 0.63
∆Iet 2.92 2.23
∆Ist 2.80 2.70
∆Ct 0.33 0.43
∆Lt 0.66 0.60

Table 5: Variance Decomposition

Observable Gov Lab. Supp. Inter. Pref. Innov. TFP Struc. Monet. Pol.

∆Yt 3.45 0.38 9.94 27.15 42.57 10.62 5.89
∆Iet 0.07 0.08 0.74 49.36 35.15 13.67 0.93
∆Ist 0.08 0.09 0.83 33.53 42.05 22.13 1.29
∆Ct 0.16 1.70 19.38 18.05 40.03 9.43 11.25
∆Lt 1.61 32.34 0.99 13.69 49.04 1.64 0.69

Table 6: Variance Decomposition (HP-filtered)

Observable Gov Lab. Supp. Inter. Pref. Innov. TFP Struc. Monet. Pol.

∆Yt 1.45 0.21 3.84 32.29 34.24 24.78 3.19
∆Iet 0.07 0.06 0.62 35.52 38.00 24.03 1.71
∆Ist 0.08 0.07 0.72 36.92 39.93 20.64 1.65
∆Ct 0.31 3.61 16.91 15.93 25.60 24.31 13.33
∆Lt 2.09 35.87 0.75 20.06 29.16 11.24 0.84



Table 7: Log-Marginal Density Comparison

Specification Log Marginal (Laplace approximation)

Conventional Model −2781.03
Exogenous Adoption −2249.70
Endogenous Adoption −2209.44

Table 8: Stock Market Standard Deviations (quarterly)

Variable Data Our model Conventional model

Growth rate of stock market value 0.093 0.052 0.021
(0.045, 0.059) (0.018, 0.024)

Growth rate of stock market value, seasonally adjusted 0.066

Growth rate of S&P500 0.077

HP-filtered stock market value 0.089 0.063 0.02
(0.049, 0.079) (0.016, 0.023)

HP-filtered stock market value, seasonally adjusted 0.058

HP-filtered S&P500 0.064

Dividend growth (publicly traded companies) 0.114 0.0127 0.014
(0.0107, 0.014) (0.012, 0.016)

Dividend growth, seasonally adjusted 0.087

Profit growth (NIPA) 0.021

HP-filtered dividends 0.082 0.0106 0.0134
(0.009, 0.0127) (0.011, 0.016)

HP-filtered dividends, seasonally adjusted 0.07

HP-filtered profits 0.022



Table 9: Stock Market Autocorrelations (quarterly)

Variable Data Our model Conventional model

Growth rate of stock market value −0.48 0 −0.18
(−0.64,−0.31) (−0.20, 0.19) (−0.35,−0.01)

Growth rate of stock market value, seasonally adjusted −0.15
(−0.35, 0.05)

Growth rate of S&P500 0.01
(−0.22, 0.25)

HP-filtered stock market value 0.48 0.67 0.45
(0.29, 0.66) (0.49, 0.80) (0.27, 0.60)

HP-filtered stock market value, seasonally adjusted 0.27
(0.03, 0.5)

HP-filtered S&P500 0.4
(0.18, 0.63)

Dividend growth (publicly traded companies) −0.71 −0.36 −0.25
(−0.94,−0.48) (−0.51,−0.20) (−0.43,−0.06)

Dividend growth, seasonally adjusted −0.56
(−0.83,−0.29)

Profit growth (NIPA) −0.24
(−0.67, 0.18)

HP-filtered dividends 0.03 0.30 0.46
(−0.14, 0.2) (0.04, 0.49) (0.25, 0.64)

HP-filtered dividends, seasonally adjusted 0.29
(0.06, 0.52)

HP-filtered profits 0.55
(0.28, 0.82)
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Figure 1: Impulse responses to innovation shock in conventional model (immediate diffusion).
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Figure 2: Impulse responses to innovation shock in baseline model (slow diffusion, endogenous
adoption).
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Figure 3: Robustness. Impulse responses to innovation shock.
Top row: baseline model (slow diffusion, endogenous adoption).
Middle row: baseline model without entry. Bottom row: baseline
model without endogenous adoption.

Figure 3: Robustness. Impulse responses to innovation shock. Top row: baseline model (slow
diffusion, endogenous adoption). Middle row: baseline model without entry. Bottom row: baseline
model without endogenous adoption.
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Figure 4: Estimated impulse responses to innovation shock, our model (solid) and model with entry
and exogenous adoption (dashed).
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Figure 5: Estimated impulse responses to structures shock, our model (solid) and model with entry
and exogenous adoption (dashed).
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Figure 6: Estimated impulse responses to TFP shock, our model (solid) and model with entry and
exogenous adoption (dashed).



1985 1990 1995 2000 2005
−2

−1

0

1

2

1985 1990 1995 2000 2005
−2

−1

0

1

2

1985 1990 1995 2000 2005
−2

−1

0

1

2

Figure 7: Historical decomposition of output growth. Data in dotted green and counterfactual in
solid blue, for innovation shock (first panel), structures shock (second panel) and TFP shock (third
panel).
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Figure 8: Impulse responses to innovation shock for stock market value and its components: in-
stalled capital (first row, third column), adopted technologies (second row, first column), unadopted
technologies (second row, second column) and future unadopted technologies (second row, third
column).
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Figure 9: Impulse responses of stock market variables to positive shock to structures (first row)
and TFP (second row).
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Figure 10: Corr(yt, stockt+k) in the data (first panel), our model (second panel) and conventional
model (third panel).
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Figure 11: Stock market value in model (solid blue), data (dotted green) and S&P500 (triangled
red, right axis).




