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1. Introduction

We are interested in estimating the average effect of a program

or treatment, allowing for heterogenous effects, assuming that

selection can be taken care of by adjusting for differences in

observed covariates.

This setting is of great applied interest.

Long literature, in both statistics and economics. Influential

economics/econometrics papers include Ashenfelter and Card

(1985), Barnow, Cain and Goldberger (1980), Card and Sulli-

van (1988), Dehejia and Wahba (1999), Hahn (1998), Heck-

man and Hotz (1989), Heckman and Robb (1985), Lalonde

(1986). In stat literature work by Rubin (1974, 1978), Rosen-

baum and Rubin (1983).
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Unusual case with many proposed (semi-parametric) estima-
tors (matching, regression, propensity score, or combinations),
many of which are actually used in practice.

We discuss implementation, and assessment of the critical as-
sumptions (even if they are not testable).

In practice concern with overlap in covariate distributions tends
to be important.

Once overlap issues are addressed, choice of estimators is less
important. Estimators combining matching and regression or
weighting and regression are recommended for robustness rea-
sons.

Key role for analysis of the joint distribution of treatment in-
dicator and covariates prior to using outcome data.
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2. Potential Outcomes (Rubin, 1974)

We observe N units, indexed by i = 1, . . . , N , viewed as drawn
randomly from a large population.

We postulate the existence for each unit of a pair of potential
outcomes,
Yi(0) for the outcome under the control treatment and
Yi(1) for the outcome under the active treatment
Yi(1) − Yi(0) is unit-level causal effect

Covariates Xi (not affected by treatment)
Each unit is exposed to a single treatment; Wi = 0 if unit i
receives the control treatment and Wi = 1 if unit i receives
the active treatment. We observe for each unit the triple
(Wi, Yi, Xi), where Yi is the realized outcome:

Yi ≡ Yi(Wi) =

{
Yi(0) if Wi = 0,
Yi(1) if Wi = 1.
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Several additional pieces of notation.

First, the propensity score (Rosenbaum and Rubin, 1983) is

defined as the conditional probability of receiving the treat-

ment,

e(x) = Pr(Wi = 1|Xi = x) = E[Wi|Xi = x].

Also the two conditional regression and variance functions:

μw(x) = E[Yi(w)|Xi = x], σ2
w(x) = V(Yi(w)|Xi = x).
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3. Estimands and Identification

Population average treatments

τP = E[Yi(1) − Yi(0)] τP,T = E[Yi(1)− Yi(0)|W = 1].

Most of the discussion in these notes will focus on τP , with

extensions to τP,T available in the references.

We will also look at the sample average treatment effect (SATE):

τS =
1

N

N∑
i=1

(Yi(1)− Yi(0))

τP versus τS does not matter for estimation, but matters for

variance.
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4. Estimation and Inference

Assumption 1 (Unconfoundedness, Rosenbaum and Rubin, 1983a)

(Yi(0), Yi(1)) ⊥⊥ Wi | Xi.

“conditional independence assumption,” “selection on observ-
ables.” In missing data literature “missing at random.”

To see the link with standard exogeneity assumptions, assume
constant effect and linear regression:

Yi(0) = α + X′
iβ + εi, =⇒ Yi = α + τ · Wi + X′

iβ + εi

with εi ⊥⊥ Xi. Given the constant treatment effect assumption,
unconfoundedness is equivalent to independence of Wi and εi

conditional on Xi, which would also capture the idea that Wi

is exogenous.
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Motivation for Unconfoundeness Assumption (I)

The first is a statistical, data descriptive motivation.

A natural starting point in the evaluation of any program is a

comparison of average outcomes for treated and control units.

A logical next step is to adjust any difference in average out-

comes for differences in exogenous background characteristics

(exogenous in the sense of not being affected by the treat-

ment).

Such an analysis may not lead to the final word on the efficacy

of the treatment, but the absence of such an analysis would

seem difficult to rationalize in a serious attempt to understand

the evidence regarding the effect of the treatment.
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Motivation for Unconfoundeness Assumption (II)

A second argument is that almost any evaluation of a treatment

involves comparisons of units who received the treatment with

units who did not.

The question is typically not whether such a comparison should

be made, but rather which units should be compared, that is,

which units best represent the treated units had they not been

treated.

It is clear that settings where some of necessary covariates are

not observed will require strong assumptions to allow for iden-

tification. E.g., instrumental variables settings Absent those

assumptions, typically only bounds can be identified (e.g., Man-

ski, 1990, 1995).
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Motivation for Unconfoundeness Assumption (III)

Example of a model that is consistent with unconfoundedness:
suppose we are interested in estimating the average effect of
a binary input on a firm’s output, or Yi = g(W, εi).

Suppose that profits are output minus costs,

Wi = argmax
w

E[πi(w)|ci] = argmax
w

E[g(w, εi) − ci · w|ci],

implying

Wi = 1{E[g(1, εi) − g(0, εi) ≥ ci|ci]} = h(ci).

If unobserved marginal costs ci differ between firms, and these
marginal costs are independent of the errors εi in the firms’
forecast of output given inputs, then unconfoundedness will
hold as

(g(0, εi), g(1, εi)) ⊥⊥ ci.
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Overlap

Second assumption on the joint distribution of treatments and

covariates:

Assumption 2 (Overlap)

0 < Pr(Wi = 1|Xi) < 1.

Rosenbaum and Rubin (1983a) refer to the combination of the

two assumptions as ”stongly ignorable treatment assignment.”
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Identification Given Assumptions

τ(x) ≡ E[Yi(1)− Yi(0)|Xi = x] = E[Yi(1)|Xi = x] − E[Yi(0)|Xi = x]

= E[Yi(1)|Xi = x, Wi = 1] − E[Yi(0)|Xi = x, Wi = 0]

= E[Yi|Xi, Wi = 1] − E[Yi|Xi, Wi = 0].

To make this feasible, one needs to be able to estimate the

expectations E[Yi|Xi = x, Wi = w] for all values of w and x in the

support of these variables. This is where overlap is important.

Given identification of τ(x),

τP = E[τ(Xi)]
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Alternative Assumptions

E[Yi(w)|Wi, Xi] = E[Yi(w)|Xi],

for w = 0,1. Although this assumption is unquestionably

weaker, in practice it is rare that a convincing case can be

made for the weaker assumption without the case being equally

strong for the stronger Assumption.

The reason is that the weaker assumption is intrinsically tied to

functional form assumptions, and as a result one cannot iden-

tify average effects on transformations of the original outcome

(e.g., logarithms) without the strong assumption.

If we are interested in τP,T it is sufficient to assume

Yi(0) ⊥⊥ Wi | Xi,
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Propensity Score

Result 1 Suppose that Assumption 1 holds. Then:

(Yi(0), Yi(1)) ⊥⊥ Wi | e(Xi).

Only need to condition on scalar function of covariates, which

would be much easier in practice if Xi is high-dimensional.

(Problem is that the propensity score e(x) is almost never

known.)
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Efficiency Bound

Hahn (1998): for any regular estimator for τP , denoted by τ̂ ,

with

√
N · (τ̂ − τP )

d−→ N(0, V ),

the variance must satisfy:

V ≥ E

[
σ2
1(Xi)

e(Xi)
+

σ2
0(Xi)

1 − e(Xi)
+ (τ(Xi)− τP )2

]
. (1)

Estimators exist that achieve this bound.
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Estimators

A. Regression Estimators

B. Matching

C. Propensity Score Estimators

D. Mixed Estimators (recommended)
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A. Regression Estimators

Estimate μw(x) consistently and estimate τP or τS as

τ̂reg =
1

N

N∑
i=1

(μ̂1(Xi) − μ̂0(Xi)).

Simple implementations include

μw(x) = β′x + τ · w,

in which case the average treatment effect is equal to τ . In
this case one can estimate τ simply by least squares estimation
using the regression function

Yi = α + β′Xi + τ · Wi + εi.

More generally, one can specify separate regression functions
for the two regimes, μw(x) = β′

wx.
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These simple regression estimators can be sensitive to dif-
ferences in the covariate distributions for treated and control
units.

The reason is that in that case the regression estimators rely
heavily on extrapolation.

Note that μ0(x) is used to predict missing outcomes for the
treated. Hence on average one wishes to use predict the control
outcome at XT =

∑
i Wi · Xi/NT , the average covariate value

for the treated. With a linear regression function, the average
prediction can be written as ȲC + β̂′(XT − XC).

If XT and XC are close, the precise specification of the regres-
sion function will not matter much for the average prediction.
With the two averages very different, the prediction based on
a linear regression function can be sensitive to changes in the
specification.
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B. Matching

let �m(i) is the mth closest match, that is, the index l that

satisfies Wl 	= Wi and

∑
j|Wj 	=Wi

1{‖Xj − Xi‖ ≤ ‖Xl − Xi‖} = m,

Then

Ŷi(0) =

{
Yi if Wi = 0,
1
M

∑
j∈JM(i) Yj if Wi = 1,

Ŷi(1) =

{
1
M

∑
j∈JM(i) Yj if

Yi if

The simple matching estimator is

τ̂ sm
M =

1

N

N∑
i=1

(
Ŷi(1)− Ŷi(0)

)
. (2)

21



Issues with Matching

Bias is of order O(N−1/K), where K is dimension of covariates.

Is important in large samples if K ≥ 2 (and dominates variance

asymptotically if K ≥ 3)

Not Efficient (but efficiency loss is small)

Easy to implement, robust.
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C.1 Propensity Score Estimators: Weighting

E

[
WY

e(X)

]
= E

[
E

[
WYi(1)

e(X)

∣∣∣∣∣X
]]

= E

[
E

[
e(X)Yi(1)

e(X)

]]
= E[Yi(1)],

and similarly

E

[
(1 − W )Y

1 − e(X)

]
= E[Yi(0)],

implying

τP = E

[
W · Y
e(X)

− (1 − W ) · Y
1 − e(X)

]
.

With the propensity score known one can directly implement
this estimator as

τ̃ =
1

N

N∑
i=1

(
Wi · Yi

e(Xi)
− (1 − Wi) · Yi

1 − e(Xi)

)
. (3)
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Implementation of Horvitz-Thompson Estimator

Estimate e(x) flexibly (Hirano, Imbens and Ridder, 2003)

τ̂weight =
N∑

i=1

Wi · Yi

ê(Xi)
/

N∑
i=1

Wi

ê(Xi)

−
N∑

i=1

(1 − Wi) · Yi

1 − ê(Xi)
/

N∑
i=1

(1 − Wi)

1 − ê(Xi)

Is efficient given nonparametric estimator for e(x).

Potentially sensitive to estimator for propensity score.
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Matching or Regression on the Propensity Score

Not clear what advantages are.

Large sample properties not known.

Simulation results not encouraging.
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D.1 Mixed Estimators: Weighting and Regression

Interpret Horvitz-Thompson estimator as weighted regression
estimator:

Yi = α + τ · Wi + εi, with weights λi =

√
Wi

e(Xi)
+

1 − Wi

1 − e(Xi)
.

This weighted-least-squares representation suggests that one
may add covariates to the regression function to improve pre-
cision, for example as

Yi = α + β′Xi + τ · Wi + εi,

with the same weights λi. Such an estimator is consistent
as long as either the regression model or the propensity score
(and thus the weights) are specified correctly. That is, in the
Robins-Ritov terminology, the estimator is doubly robust.
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Matching and Regression

First match observations.

Define

X̂i(0) =

{
Xi if Wi = 0,
X�(i) if Wi = 1,

X̂i(1) =

{
X�(i) if Wi = 0,

Xi if Wi = 1.

Then adjust within pair difference for the within-pair difference
in covariates X̂i(1)− X̂i(0):

τ̂
adj
M =

1

N

N∑
i=1

(
Ŷi(1) − Ŷi(0) − β̂ ·

(
X̂i(1)− X̂i(0)

))
,

using regression estimate for β.

Can eliminate bias of matching estimator given flexible speci-
fication of regression function.
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Estimation of the Variance

For efficient estimator of τP :

VP = E

[
σ2
1(Xi)

e(Xi)
+

σ2
0(Xi)

1 − e(Xi)
+ (μ1(Xi) − μ0(Xi) − τ)2

]
,

Estimate all components nonparametrically, and plug in.

Alternatively, use bootstrap.

(Does not work for matching estimator)
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Estimation of the Variance

For all estimators of τS, for some known λi(X,W)

τ̂ =
N∑

i=1

λi(X,W) · Yi,

V (τ̂ |X, W) =
N∑

i=1

λi(X, W)2 · σ2
Wi

(Xi).

To estimate σ2
Wi

(Xi) one uses the closest match within the set
of units with the same treatment indicator. Let v(i) be the
closest unit to i with the same treatment indicator.

The sample variance of the outcome variable for these 2 units
can then be used to estimate σ2

Wi
(Xi):

σ̂2
Wi

(Xi) =
(
Yi − Yv(i)

)2
/2.

29



5.I Assessing Unconfoundedness: Multiple Control Groups

Suppose we have a three-valued indicator Ti ∈ {−0,1,1} for the

groups (e.g., ineligibles, eligible nonnonparticipants and partic-

ipants), with the treatment indicator equal to Wi = 1{Ti = 1},
so that

Yi =

{
Yi(0) if Ti ∈ {−1,0}
Yi(1) if Ti = 1.

Suppose we extend the unconfoundedness assumption to in-

dependence of the potential outcomes and the three-valued

group indicator given covariates,

Yi(0), Yi(1) ⊥⊥ Ti

∣∣∣ Xi
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Now a testable implication is

Yi(0) ⊥⊥ 1{Ti = 0}
∣∣∣ Xi, Ti ∈ {−1,0},

and thus

Yi ⊥⊥ 1{Ti = 0}
∣∣∣ Xi, Ti ∈ {−1,0}.

An implication of this independence condition is being tested

by the tests discussed above. Whether this test has much bear-

ing on the unconfoundedness assumption depends on whether

the extension of the assumption is plausible given unconfound-

edness itself.
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5.II Assessing Unconfoundedness: Estimate Effects on
Pseudo Outcomes

Suppose the covariates consist of a number of lagged outcomes
Yi,−1, . . . , Yi,−T as well as time-invariant individual characteris-
tics Zi, so that Xi = (Yi,−1, . . . , Yi,−T , Zi).

Now consider the following two assumptions. The first is un-
confoundedness given only T − 1 lags of the outcome:

Yi,0(1), Yi,0(0) ⊥⊥ Wi | Yi,−1, . . . , Yi,−(T−1), Zi,

and the second assumes stationarity and exchangeability: Then
it follows that

Yi,−1 ⊥⊥ Wi | Yi,−2, . . . , Yi,−T , Zi,

which is testable.
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6.I Assessing Overlap

The first method to detect lack of overlap is to plot distribu-

tions of covariates by treatment groups. In the case with one

or two covariates one can do this directly. In high dimensional

cases, however, this becomes more difficult.

One can inspect pairs of marginal distributions by treatment

status, but these are not necessarily informative about lack of

overlap. It is possible that for each covariate the distribution

for the treatment and control groups are identical, even though

there are areas where the propensity score is zero or one.

A more direct method is to inspect the distribution of the

propensity score in both treatment groups, which can reveal

lack of overlap in the multivariate covariate distributions.
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6.II Selecting a Subsample with Overlap

Define average effects for subsamples A:

τ(A) =
N∑

i=1

1{Xi ∈ A} · τ(Xi)/
N∑

i=1

1{Xi ∈ A}.

The efficiency bound for τ(A), assuming homoskedasticity, as

σ2

q(A)
· E

[
1

e(X)
+

1

1 − e(X)

∣∣∣∣∣X ∈ A

]
,

where q(A) = Pr(X ∈ A).

They derive the characterization for the set A that minimizes

the asymptotic variance .
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The optimal set has the form

A
∗ = {x ∈ X|α ≤ e(X) ≤ 1 − α},

dropping observations with extreme values for the propensity
score, with the cutoff value α determined by the equation

1

α · (1 − α)
=

2 · E

[
1

e(X) · (1 − e(X))

∣∣∣∣∣ 1

e(X) · (1 − e(X))
≤ 1

α · (1 − α)

]
.

Note that this subsample is selected solely on the basis of the
joint distribution of the treatment indicators and the covari-
ates, and therefore does not introduce biases associated with
selection based on the outcomes.

Calculations for Beta distributions for the propensity score sug-
gest that α = 0.1 approximates the optimal set well in practice.
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7. Applic. to Lalonde Data (Dehejia-Wahba Sample)

Controls Trainees CPS
(N=260) (N=185) (N=15,992)

mean (s.d.) mean (s.d.) diff / sd mean (s.d.) diff / s
Age 25.1 7.06 25.8 7.16 0.1 33.2 11.1 -0.7
Black 0.83 0.38 0.84 0.36 0.0 0.07 0.26 2.8
Ed 10.1 1.61 10.4 2.01 0.1 12.0 2.87 -0.6
Hisp 0.11 0.31 0.06 0.24 -0.2 0.07 0.26 -0.1
Marr 0.15 0.36 0.19 0.39 0.1 0.71 0.45 -1.2
E ’74 2.11 5.69 2.10 4.89 -0.0 14.0 9.57 -1.2
E ’75 1.27 3.10 1.53 3.22 0.1 0.12 0.32 1.8
U ’74 0.75 0.43 0.71 0.46 -0.1 13.7 9.27 -1.3
U ’75 0.68 0.47 0.60 0.49 -0.2 0.11 0.31 1.5
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Table 2: Estimates for Lalonde Data with Earnings ’75 as Outcome

Experimental Controls CPS Comparison Grou
mean (s.e.) t-stat mean (s.e.) t-stat

Simple Dif 0.27 0.30 0.9 -12.12 0.68 -17.8
OLS (parallel) 0.15 0.22 0.7 -1.15 0.36 -3.2
OLS (separate) 0.12 0.22 0.6 -1.11 0.36 -3.1
P Score Weighting 0.15 0.30 0.5 -1.17 0.26 -4.5
P Score Blocking 0.10 0.17 0.6 -2.80 0.56 -5.0
P Score Regression 0.16 0.30 0.5 -1.68 0.79 -2.1
P Score Matching 0.23 0.37 0.6 -1.31 0.46 -2.9
Matching 0.14 0.28 0.5 -1.33 0.41 -3.2
Weighting and Regr 0.15 0.21 0.7 -1.23 0.24 -5.2
Blocking and Regr 0.09 0.15 0.6 -1.30 0.50 -2.6
Matching and Regr 0.06 0.28 0.2 -1.34 0.42 -3.2



Table 3: Sample Sizes for CPS Sample

ê(Xi) < 0.1 0.1 ≤ ê(Xi) ≤ 0.9 0.9 < ê(Xi) All

Controls 15679 313 0 15992
Trainees 44 141 0 185
All 15723 454 0 16177

Dropping observations with a propensity score less than 0.1

leads to discarding most of the controls, 15679 to be precise,

leaving only 313 control observations. In addition 44 out of

the 185 treated units are dropped. Nevertheless, the improved

balance suggests that we may obtain more precise estimates

for the remaining sample.
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Table 4: Summary Statistics for Selected CPS Sample

Controls (N=313) Trainees (N=141)
mean (s.d.) mean (s.d.) diff / sd

Age 26.60 10.97 25.69 7.29 -0.09
Black 0.94 0.23 0.99 0.12 0.21
Education 10.66 2.81 10.26 2.11 -0.15
Hispanic 0.06 0.23 0.01 0.12 -0.21
Married 0.22 0.42 0.13 0.33 -0.24
Earnings ’74 1.96 4.08 1.34 3.72 -0.15
Earnings ’75 0.57 0.50 0.80 0.40 0.49
Unempl ’74 0.92 1.57 0.75 1.48 -0.11
Unempl. ’75 0.55 0.50 0.69 0.46 0.28
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Table 5: Estimates on Selected CPS Lalonde Data

Earn ’75 Outcome Earn ’78 Outcome
mean (s.e.) t-stat mean (s.e.) t-stat

Simple Dif -0.17 0.16 -1.1 1.73 0.68 2.6
OLS (parallel) -0.09 0.14 -0.7 2.10 0.71 3.0
OLS (separate) -0.19 0.14 -1.4 2.18 0.72 3.0
P Score Weighting -0.16 0.15 -1.0 1.86 0.75 2.5
P Score Blocking -0.25 0.25 -1.0 1.73 1.23 1.4
P Score Regression -0.07 0.17 -0.4 2.09 0.73 2.9
P Score Matching -0.01 0.21 -0.1 0.65 1.19 0.5
Matching -0.10 0.20 -0.5 2.10 1.16 1.8
Weighting and Regr -0.14 0.14 -1.1 1.96 0.77 2.5
Blocking and Regr -0.25 0.25 -1.0 1.73 1.22 1.4
Matching and Regr -0.11 0.19 -0.6 2.23 1.16 1.9




