
Asset-level risk and return in real estate investments∗

Jacob S. Sagi†

Abstract

In stark contrast with liquid asset returns, commercial real estate idiosyncratic return means and

variances do not scale with the holding period. This puzzling phenomenon survives a variety

of controls for vintage effects, systematic risk heterogeneity, and sample selection biases. To

explain these findings, I derive an equilibrium search-based illiquid asset-pricing model which,

when calibrated, provides an excellent fit to the data. Thus a structural model of transaction

risk seems crucial to understanding real estate investment returns. Recent empirical literature

suggests that these insights can be extended to other illiquid asset classes such as private equity

and residential real estate.
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1 Introduction

Research on real estate primarily focuses on aggregated or portfolio-level attributes. Much is

therefore known about the systematic returns of real estate assets held as investments.1 By contrast,

very little seems to have been written about idiosyncratic or property-specific real estate risk. This

is notwithstanding the importance of the subject. Whereas relatively few investors trade real estate

indices (using derivative contracts such as total return swaps), a great number of real estate investors

hold concentrated portfolios. Geltner et. al (2013) estimate that in 2010 the stock of institutional

quality commercial real estate was valued at around $3 trillion, with more than a third held by non-

fund entities they identify as “...private investors, relatively small, typically locally oriented often

family-based enterprises.” This suggests that many direct real estate investors do not hold well-

diversified portfolios of properties and could benefit from a quantitative approach to understanding

the sources and magnitudes of idiosyncratic risk to which they are exposed. Even ignoring that

consideration, real estate properties are often acquired individually and not as portfolios. The

absence of a quantitative approach to assessing individual asset risk forces investors to rely on pro-

forma analyses that ignore variability or at best subject assumptions to sensitivity tests based on

rules of thumb. As further motivation, commercial real estate debt, totaling roughly $2.5 trillion as

of 2015, is mostly secured to individual properties and, in the presence of limited recourse, reflects

both the systematic and idiosyncratic risks to which the property is exposed.2 A solid understanding

of asset-level price dynamics is important for the efficient pricing, monitoring, and regulation of debt

obligations and structured debt products such as commercial mortgage backed securities. Finally,

commercial real estate investments share much in common with other “alternative investments” that

are infrequently traded. Lessons drawn from understanding property-level risk can be extrapolated

to other highly illiquid assets such as other real assets, private equity deals, large whole loans, and

mergers and acquisitions of entire firms.

Infrequent trading of commercial real estate (CRE) assets renders impractical the direct esti-

mation of time-series attributes of individual assets. Instead, inference of “typical” property-level

1In this paper I focus on real estate properties held by institutional investors rather than owner-occupants.
2The figure is taken from Table L.217 of the 2015 U.S. Federal Reserve Bank Balance sheet.
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risk and return characteristics from transaction prices has to leverage the cross-section. A purchase

and sale decision, or equivalently an observed holding period return, can be viewed as a sampling

from the return distribution of the underlying property’s stochastic price process. If such decisions

are unrelated to the underlying process, then the sampling is random and, with adequate controls,

a large cross-section of properties can be viewed as a “Monte Carlo” simulation of idiosyncratic

or asset-level risk and return.3. If decisions to purchase or sell properties depend on attributes of

the stochastic price process, then the sampling is not random and the panel of transaction data

is subject to selection bias. In the latter case, one must account for the selection bias to measure

characteristics of the underlying price process.

To illustrate the central issue, suppose property price evolves as a standard geometric ran-

dom walk, as in the standard pricing model of Black and Scholes (1973), and jointly assume that

transaction decisions are unrelated to the characteristics of the price process. Theoretically, the

idiosyncratic variance and mean of log price appreciation returns should scale linearly with the

holding horizon.4 In Section 2 I show that this prediction is solidly rejected (see Figure 1). In the

data, idiosyncratic return variance is approximately linear in the holding horizon but the intercept

is three times larger than the slope and highly significant. For the mean, even a linear relationship

is statistically untenable and one year holding periods are associated with 4% expected “abnormal”

returns. Failure of the predictions leads to a rejection of the joint hypothesis of a random walk

log-price process and independent transaction decisions. The conclusions are robust to controlling

for cross-sectional heterogeneity and time-variation in property return parameters. Moreover, the

anomalous effects largely disappear if returns from repeat transactions in the panel are replaced

with REIT returns or appraisal-based individual property returns. Further validation comes from

similar empirical findings in related asset classes: residential real estate (Case and Shiller, 1987;

Abraham and Schauman, 1991; Goetzmann, 1993; Goetzmann and Spiegel, 1995; Calhoun, 1996;

3To motivate this, consider a simple example: Suppose that one observes the purchase and sale of 1000 distinct

but similar assets over a similar time horizon. Co-movement, or systematic risk, in the asset returns will contribute

little to the dispersion in the holding period returns. Instead, the dispersion will reflect the “typical” idiosyncratic

variance of an individual asset and can be measured with high precision because of the large cross section
4Henceforth, I use the term “returns” and “price appreciation returns” interchangeably. The reason for focusing

on price appreciation returns rather than total returns is discussed in Section 2.
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Giacoletti, 2016) and individual private equity deals (Axelson, Sorensen, and Stromberg, 2015;

Lopez-de-Silanes, Phalippou, and Gottschalg, 2016).

Guided by the intuition that illiquidity can lead to pronounced differences between short- and

long-term holding strategies, I develop in Section 3 a search-based equilibrium pricing model where

investors vary in how they value the income stream from properties, thus leading to potential gains

from trade. Market inefficiency arises from the presence of transaction costs and the inability of

asset owners to entertain more than one bid per period.5 Because not all bids are accepted, trans-

actions (and therefore holding periods) are endogenous. In a random matching and bargaining

equilibrium the model simultaneously delivers a price process and a distribution of repeat trans-

action returns. When investor private valuations are dynamic but persistent, the model can be

made to fit the holding period return data very well (see Figure 3). In the model, an investor that

recently acquired a property is unlikely to change his or her valuation over a short period. Thus,

when assets are illiquid, an investor will only hold for a short period of time if a much better offer

happens to come along. The corresponding high short-term “alpha” is earned by luck and not by

design. Less fortunate investors do not sell after a short period of time and do not show up in

a panel of short holding period transactions. Selection bias is why the mean of observed holding

period returns extrapolates to a positive value as the holding horizon shrinks.

In the model, randomness in matching and bargaining impacts observed transaction prices

regardless of the horizon, and this explains why the return variance does not vanish as the observed

holding horizon is extrapolated to zero. If transaction costs are eliminated and if all investors

can bid for any given property at any time, the model holding period returns converge to the

usual random walk result. If each investor’s private valuation is serially uncorrelated (i.e., not

persistent), then the model becomes one of “jump transactions” around a “true” fundamental

price. Reduced-form jump transaction models have been proposed by Case and Shiller (1987),

5 Real estate properties under contract for purchase are subject to a due diligence period, typically lasting several

weeks or months, during which the price can be renegotiated by the prospective buyer and no other offer may be

entertained by the seller. Professionals refer to this as “tying up the property”. Between the due diligence period

and contracted closing date, a period that can also last several weeks to several months, the buyer may back out by

forfeiting a deposit of “earnest money” (usually a small percentage of the contract purchase price).
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Goetzmann (1993), and Axelson, Sorensen, and Stromberg (2015). Such models, however, are only

economically consistent if the expected returns are non-positive in the limit of a vanishing holding

period (otherwise they may admit arbitrage opportunities).6 The data, however, suggests positive

“alphas” for short holding periods, underscoring the limitation of reduced-form approaches.

In addition to capturing the holding period risk and return patterns, the model also delivers

a good fit to the observed quarterly turnover, the fraction of properties sold after five years, and

the average transacted income-to-price ratio (or “cap rate”). In contrast with a standard price

diffusion model where the price at date t is known given information at date t, the market price of a

property in the model additionally features transaction risk. This is represented by an equilibrium

probability distribution of transacting as a function of the seller’s reservation cap rate. In the

absence of illiquidity there is no transaction risk and the associated distribution is degenerate. In

fitting to the holding period return data, I find that the implied transaction risk distribution exhibits

significant positive skewness. This leads to a long expected “time on market” for owners who will

not accept any offers below average prevailing market transaction. The model also provides a one-

to-one mapping between a reservation selling price, the expected transaction price, and the expected

(or median) time on the market. Finally, given a strict time horizon for disposition and a strategy

for a seller to accept/reject offers, one can calculate the price of immediacy, corresponding to an

expected discount relative to prevailing transaction prices. Such a measure can be useful in better

understanding the private equity closed-end asset management structure which operates under a

stated liquidation target horizon. More generally, the various model features can be important

for modeling bank sales of foreclosed assets and feeds into the pricing of derivative assets such as

mortgage loans and mortgage backed securities.

The few papers that attempt to quantify attributes of property level risk and return all assume

that, after discounting for risk and time, an individual property’s log-value evolves as a random walk

— a hypothesis on which this study casts serious doubts. The closest work is that of Downing,

Stanton, and Wallace (2008), who back out property-level implied volatility from CMBS loan

information (much as one might do using a Merton, 1974, model). Their annualized estimates are

6This is discussed further in Section 4.
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high and range from 22.7% for apartments to 27.2% for industrial properties. Given that annual

volatilities for transaction based property indices (such as the NCREIF TBI) are about 12%, the

estimates produced by Downing, Stanton, and Wallace (2008) suggest that the property-specific or

idiosyncratic risk comprises between 70% and 80% of the total individual asset risk (or alternatively,

the idiosyncratic volatilities range from 20% to 24%). This figure, significantly higher than my 10%

estimate for the idiosyncratic random walk volatility component, may be the result of neglecting

the impact of the large transaction risk component I identify. In another study, Plazzi, Torous, and

Valkanov (2008) employ average transaction prices in various U.S. metropolitan areas to conclude

that geographic dispersion contributes from 4% to 7% per year to a property’s volatility. Peng

(2015) uses holding period returns, similar to that used in this study, to quantify the systematic

risk exposure of individual assets.7 The latter two papers provide insights into individual property

dispersion but, unlike the first, do not provide a full assessment of property-level risk. Because its

inference approach is indirect, Downing, Stanton, and Wallace (2008) is subject to other criticisms.8

This paper contributes to the literature in several ways. First, I document that real estate

investment holding period returns are not generated by a random walk process. This result is neither

spurious nor, as I argue in Appendix C, consistent with selection bias when the underlying property

price process is random walk. Second, I derive a tractable equilibrium model for illiquid asset prices

that, when calibrated, fits the data very well. Thus, in explaining the sizable non-standard features

7Peng (2015) notes in his study that the variance of idiosyncratic holding period property returns does not

strongly depend on the holding period. Although he does not delve into the possible reasons or the implications for

his assumption of a random walk process, this finding is consistent with mine.
8An important advantage to the methodology used by Downing, Stanton, and Wallace (2008) is that it provides

a forward looking assessment of volatility. However, a potential criticism of the indirect approach taken by Downing,

Stanton, and Wallace (2008) is that it is subject to influences outside the property market, such as movement in credit

spreads due to changes in liquidity or lending standards. In addition, the loans used in their estimates are securitized

and may not be representative of the universe of commercial real estate properties (see Ghent and Valkanov, 2014,

for a comparison between the loan types). Finally, the implied volatility may depend on the particular model of real

estate price appreciation that is used. Model misspecification may conceivably lead to volatility estimates that are

not descriptive. Indeed, my results suggest that asset-level jump-like shocks at disposition should play an important

role in how a bank might price securitized debt — something not captured by the model used in Downing, Stanton,

and Wallace (2008).
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of observed idiosyncratic real estate returns, illiquidity appears to be the most plausible driver. In

principle, the model and analysis can also be applied to other search-based (e.g., broker-mediated)

markets for highly illiquid assets in which repeat transactions are uncommon and the main source

of asset-level data comes from a cross-section of holding period returns. Some examples include

private equity transactions, rarely traded bonds or large whole loans, complex financial assets,

mergers and acquisitions, and other real assets (ships, oil rigs, mines, etc.). Moreover, this study

has important implications for refining the financial econometrics use to analyze such markets (see,

for instance, the approach in Ang and Sorensen, 2012, and references therein).

2 Real Estate Holding Period Returns

Real estate is costly to trade and any given property is traded infrequently. In practice, short-

horizon (e.g., quarterly) property “returns” are imputed from appraisals rather than market prices.

Appraisals, however, are based on averages of historical prices and of comparable assets, and/or

often employ simple rules of thumb (e.g., using a net income multiple). Like any kind of estimate,

appraisal-based returns tend to be smoother than the returns they attempt to capture. Thus by

their very nature, appraisal based returns can be expected, at best, to understate the volatility of

the underlying asset. At worst, appraisals based on poor methodology will add idiosyncratic noise

unrelated to the actual property-level risk.

To properly measure attributes of typical property-level returns, one must therefore deploy a

different strategy. The first challenge is to obtain transaction-based returns from purchases and

sales. With real estate assets, save for the rare instance, there is not enough information on repeat

sales to calculate time series attributes for a single property. Thus one must rely on holding period

returns and make inferences by leveraging the cross-section.
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2.1 The Data

Data of sold and unsold properties comes from the National Council of Real Estate Investment

Fiduciaries (NCREIF) and consists of quarterly financial and accounting information for prop-

erties reported by member firms between 1978Q1 and 2013Q4. The dataset contains property

acquisition dates and prices, as well as capital expenditures in each quarter starting from the ac-

quisition quarter (or 1978Q1 if acquisition is earlier) until 2013Q4 (or until the property is sold or

otherwise exits the database). If a sale (or partial sale) took place, the sale date and net/gross

prices (excluding/including selling costs) are reported. For each property, appraisal-based price

appreciation and income returns are reported each quarter. Details about the property location,

age, real estate category, leverage, owning member firm, and the type of fund in which the property

is held are also available. Fields that are available but not used in this study include detailed

appraisal valuations and breakdowns of income, operating expenses, and capital expenditures. The

dataset also reports whether a given property qualifies for inclusion in the NCREIF Price Index

(NPI). Qualifying properties have a minimum 60% occupancy requirement, correspond to one of

the major property types (Apartments, Industrial, Retail, or Office), and are owned by tax-exempt

institutions. Such properties tend to be well-maintained, are located in high-demand markets, and

are frequently referred to as “core assets” by professionals.

The data contains properties with missing or inconsistent entries that I attempt to filter using

a set of criteria detailed in Appendix A. To summarize, I require that the property history in the

dataset exhibits no gap or appraisal return below -99.9%. The acquisition date must be unique,

documented to be no later than the first quarter the property appears in the dataset, and the

corresponding purchase price must be positive. Properties that exit the dataset must either be sold

or foreclosed. For sold properties, a sale date and a sale price greater than $1 must be reported.

Partial sales cannot be negative or different from the net proceeds if reported during a quarter

of final disposition. The time-series sum of capital expenditures and the transaction-based total

capital appreciation cannot be negative.

To help address concerns about tax motives for transactions, I restrict attention to properties
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that qualified for the NPI when first acquired. Finally, to help mitigate bias from unreported

capital expenditures, I require there to be at most a lag of one quarter from the acquisition date of

a property to the first time it appears in the dataset. The intersection of criteria results in 3,976

properties that experienced a sale (16 of which were part of the sale of a portfolio), 30 properties

that were surrendered to the bank, and 3,148 that had not exited as of 2013Q4. Appendix B reports

the results of applying the main empirical tests of this section to various looser/tighter alternative

filters.

The holding period of property i is calculated as (qis − qia + 1)/4 where qis is the sale quarter

and qia is the acquisition quarter. Let rf,t denote the continuously compounded 3-month Treasury

Bill quarterly rate. For a property bought at date t and sold at date T , denote the purchase price

by Pit, capital expenditures at quarter s ≥ t by Cis, partial net sales at s ≥ t by pis, and the net

final disposition price by PT . The treatment of interim cash flows presents a complicating factor

in calculating holding-period returns. In particular, the riskiness of the returns will depend on the

reinvestment strategy for the interim cash flows. Real estate assets produce a significant amount

of interim cash flows and the reinvestment strategy can matter a great deal to the risk-return

profile. With liquid assets, it is customary to assume that income is reinvested in the same asset

but this strategy is not implementable with real properties. One could employ some feasible income

investment strategy (e.g., bonds, REITs, etc.) but because real estate investments tend to exhibit

high payouts, the total holding period returns would eventually be dominated by the returns from

the reinvestment alternative rather than the property. For this reason, I choose to focus on price

appreciation returns. To that end, the excess log of price-appreciation return over property i’s

holding period is given by,

ri = ln

( ∑T−1
s=t pise

∑T
s′=s+1 rI,s′ + PiT

Pite
∑T
s′=t rf,s′ +

∑T
s=tCise

∑T
s′=s+1 rf,s′

)
, (1)

where rI,s is the quarter s return on investing the proceeds from partial sales. The expression in (1)

corresponds to an excess return because the denominator is capitalized to date T using a risk-free

return. While this expression also appears to depend on a discretionary investment strategy, in

practice only 157 of the final set of filtered properties report partial sales and the reinvestment

strategy chosen has negligible impact on the analysis. The default reinvestment return I employ

8



with partial sales is the NPI corresponding to the property’s major asset type. Henceforth, to avoid

tedious expressions, unless otherwise indicated I employ the term “return” to refer to the “log of

total price-appreciation return net of a risk-free alternative”, as in equation (1).

The return calculated in (1) contains outliers. I deal with these in two ways. To help identify

outliers, I compare each property’s transaction-based return to a similar quantity calculated using

the sum of reported quarterly appraisal-based returns. Absent errors in the data, this difference

should not be too large. I then group repeat transaction returns from (1) into integer holding

period “buckets”. The assignment is made by rounding holding periods to the nearest integer with

random assignment for half-integer holding periods. In each bucket, I then drop all properties

for which the transaction and appraisal difference is greater than or equal to the 99th percentile.

The percentiles are calculated separately for integer holding period buckets because it would be

natural for discrepancies between appraisal and transaction returns to accumulate with horizon.

Without dropping outliers, the squared correlation between the two return calculations is 73.4%.

After dropping the outliers, the squared correlation increases to 83.0%. Whenever running return

regressions, a second way in which I deal with outliers is to drop extreme return observations (below

the first and above the ninety-ninth percentiles) from each integer holding period bucket.

Although on occasion (as in the previous paragraph) I will employ appraisal-based returns, the

majority of analyses in this paper are done using the repeat transaction holding period returns as

calculated in (1). Thus, for the vast majority of properties, there is only one return observation

per property.

2.2 A Simple Null Hypothesis

In this section I investigate the following:

Null Hypothesis. Suppose that property price dynamics correspond to a stochastic diffusion

process and that transaction decisions are unrelated to that process.

It is worth emphasizing that the null is of considerable practical value. If true, it can be
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exploited to design empirical strategies for measuring the diffusion parameters from repeat trans-

actions (i.e., holding period returns) as, in fact, is done below. Key to this is the observation that,

given the null, the expected value and variance of returns should be proportional to the holding

period.

Under a standard random walk hypothesis, the growth in property i’s price over a short time

interval, ∆, takes the form

ri,∆ = αi∆ + βirm,∆ + σi
√

∆εi,∆,

where αi, βi and σi are constants, ε∆ represents a standardized idiosyncratic shock to the property

value, and rm,∆ captures the influence of systematic shifts in property market values over ∆. If

the idiosyncratic shocks are serially independent, then when accumulated over a holding period of

duration τ , the sequence of incremental property returns sums to

ri,τ = αiτ + βirm,τ + σi
√
τεi,τ , (2)

where rm,τ is the change in the systematic risk factor over the same holding period, and εi,τ is

an idiosyncratic mean-zero shock with variance one. In equation (2), the idiosyncratic holding

period return is ri,τ − βirm,τ = αiτ + σi
√
τεi,τ . Because the decision to sell, and therefore τ , is

assumed independent of the parameters of the return process, the expected value and variance of

the idiosyncratic return are both proportional to τ . Moreover, the random walk hypothesis applied

to rm implies that its expected value and variance are proportional to τ . Thus even without netting

out the market component, the expected return and return variance of ri,τ are proportional to the

holding period. Finally, if the constant coefficients in the equation for the incremental return, ri,∆,

vary with time then equation (2) still holds but αi, βi, and σ2
i in (2) would be replaced by their

time-series averages over the holding period.

For a property purchased at date t and sold at t+ τ , it is possible to observe τ and rm,τ . If the

model in (2) applies to commercial real estate properties, then εi,τ is unrelated across properties.

Moreover, because transactions are assumed independent of the price process, εi,τ is unrelated to

τ . Along with the preceding discussion this suggests an empirical strategy for testing the null

and, under the null, identifying the coefficients in (2). Specifically, one can view each property’s
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holding period return from a repeat transaction as a random sampling from a distribution of

possible coefficients and from the distribution of εi,τ (which is standardized, by definition). The

corresponding empirical model for the property return over a holding period of τ can be rewritten

as

r̃ = α̃τ + β̃rm,τ + σ
√
τ ε̃,

where the index i from equation (2) corresponds to a single realization from the distribution of

α̃, β̃, and σε̃. To the last equation, I add an intercept term, α̃0, which I allow to be heterogeneous

across properties. Under the null α̃0 should be zero. To minimize collinearity in the regression

specification to follow, I normalize the resulting equation by
√
τ and then add an intercept term to

the normalized formulation. This results in

r̃√
τ

=
α̃0√
τ

+ α1 + α̃
√
τ + β̃

rm,τ√
τ

+ σε̃,

where it bears repeating that α̃0 and α1 are zero under the null. Further separating the expected

values of the random coefficients above by setting α̃0 ≡ α0 + ε̃0, α̃ ≡ α+ ε̃, and β̃ ≡ β + ε̃β, yields

r̃√
τ

= α0
1√
τ

+ α1 + α
√
τ + β

rm,τ√
τ

+
(
ε̃0

1√
τ

+ ε̃
√
τ + ε̃β

rm,τ√
τ

+ σε̃
)
. (3)

If ε̃ and the ε̃’s are uncorrelated with rm,τ and τ then equation (3) is a regression equation with

heteroskedastic residuals. While this assumption seems plausible for rm,τ , it may not be so for

τ . This is because NCREIF properties have not been added to the dataset at a uniform rate (see

Table 1).

[Table 1 about here.]

In particular, properties with holding periods shorter than five years have been typically added at

or after 2000 while those with holding periods longer than nine years were typically added at or

before 1992. Consequently, time variation in asset-specific characteristics may lead to a mechanical

relationship between the distribution of holding periods and the distributions of σε̃ and the ε̃’s. For

instance, if σ across properties was lower before 1996 than after, then properties held over shorter

horizons (mostly dating from after 1996) would spuriously appear to exhibit more idiosyncratic

variance per unit time than properties held over longer horizons. To control for such “vintage
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effects” I decompose each of α and σ2 into a sum of heterogeneous year-specific contributions as

follows:

r̃√
τ

=
α0√
τ

+ α1 +
∑
y

υα,y
eτ,y√
τ

+ β
rm,τ√
τ

+
(
ε̃0

1√
τ

+ ε̃
√
τ + ε̃β

rm,τ√
τ

+
(∑

y

υσ,y
eτ,y
τ

) 1
2 ε̃
)
, (4)

where eτ,y is the overlap (in years) between the property’s holding period and year y, while υα,y

and υσ,y are, respectively, the year y contributions to α and σ2. By definition
∑

y eτ,y = τ , thus if

υα,y = α and υσ,y = σ2 for every year y, then equation (4) reduces to (3).

Because α0, α1, and ε̃0 are zero under the null, equation (4) is simultaneously a test of the

null and, assuming the null holds, a model for estimating key property price diffusion parameters.

Despite the fact that the residual term (in parentheses) is heteroskedastic, the coefficients α0,

α1, the υα,y’s, and β can be consistently (but not efficiently) estimated via OLS. The estimation

strategy for the distributional properties of the residual term loosely follows Beran and Hall (1992)

who advocate a sequence of n regressions to estimate the first n moments. The idea is as follows.

Denote the OLS residual from the regression equation (4) as ẑ. The squared residuals can be

written as

ẑ2 = E[ẑ2] + Ũ ,

=
1

τ
σ2

0 + τσ2
α +

(rm,τ )2

τ
σ2
β +

∑
y

υσ,y
eτ,y
τ

+ 2remσαβ +O(
1

N
) + Ũ , (5)

where σ2
0 = Var[ε̃0], σ2

α = Var[ε̃], σ2
β = Var[ε̃β], and σαβ = Covar[ε̃β, ε̃], while Ũ is a zero-mean

random variable uncorrelated with 1
τ , τ,

(rem)2

τ ,
eτ,y
τ or rem. The O( 1

N ) term signifies an expression

that is inversely proportional to the number of observations and arising from the estimation error

in the coefficients of first regression. Missing from equation (5) are covariance terms between ε̃ and

ε̃β or ε̃, and between ε̃0 and the other variables. The former case is justified by considering that

while an owner may be able to control a property’s αi and βi (and thus the two could be related),

under the null, εi is unrelated to these quantities. In addition, under the null, ε̃0 = 0 and setting

its covariance with other variables to zero does not bias the test against the null.

For large N , the coefficients, σ2
0, σ

2
α, σ

2
β, σαβ, and the υσ,y’s in (5) can again be estimated via

OLS. In principle, one can continue this process and estimate higher joint moments of the error
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distributions. In practice, the power can rapidly dwindle after the second pass (i.e., beyond second

moments). To avoid collinearity and identify the estimated moments, it is important for there to

be sufficient dispersion in the explanatory variables. This is a particular problem in the data and

motivates the earlier choice of normalization by
√
τ . Normalizing by

√
τ leads to substantially less

collinearity in the second pass regression than either dispensing with a normalization or normalizing

by τ . The actual estimation procedure attempts to correct for the inefficiency of the coefficient

estimates from the first pass arising from the heteroskedasticity of the residual (see, for instance,

Hildreth and Houck, 1968; Swamy, 1970; Raj, Srivastava, and Ullah, 1980), and proceeds as follows:

1. Regress the normalized holding period returns r̃√
τ

against
rm,τ√
τ

, 1√
τ

and the
eτ,y√
τ

’s, and calcu-

late the residuals, ẑ.

2. Regress ẑ2 against 1
τ , τ,

(rm,τ )2

τ , rem and the
eτ,y
τ ’s without a constant. Calculate ẑ2

p , the

predicted value of ẑ2 using the regression coefficient estimates, representing an estimate of

the property-specific residual variance from the first pass regression.

3. Correct for heteroskedasticity in the first regression by regressing r̃√
τ ẑp

against
rm,τ√
τ ẑp

, 1√
τ ẑp

and the
eτ,y√
τ ẑp

’s.

4. Use the heteroskedasticity-adjusted first-moment coefficient estimates to recalculate ẑ2 and

regress against 1
τ , τ,

(rm,τ )2

τ , rem and the
eτ,y
τ ’s without a constant to obtain estimates of the

heteroskedasticity adjusted second-moments.

Before implementing this estimation approach I drop holding period return outliers: observations

above or below the 1st and 99the percentiles within each integer holding period “bucket” (rounding

holding periods to the nearest integer to determine their censorship bucket, as discussed earlier in

this section). I also exclude observations with holding periods less than one year. This is consistent

with how the NCREIF calculates its NPI index and is done out of concern that very short holding

periods often correspond to portfolio acquisitions in which the acquirer quickly sells “undesirable”

properties out of the portfolio. In such cases, there may not be an objective purchase price for the

undesirable property and the acquirer may potentially allocate it an arbitrary purchase price (and
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therefore an arbitrary price appreciation). The results are qualitatively unchanged if one includes

these properties.

[Table 2 about here.]

For each property I use the corresponding property type-specific NPI price appreciation returns

in excess of the three-month treasury bill to compute a proxy for the systematic factor, r̃m,τ , over

the corresponding holding period. Table 2 reports the regression parameter estimates. Comparing

the first two columns in each panel, it seems that adjusting for heteroskedasticity does not markedly

impact the coefficient estimates. The average beta of the properties, as might expected, is close

to one. The sum, 1
36

∑
y υα,y, is an estimate of the annualized expected return diffusion drift in

the property market averaged across all years. If the υα,y were equal across years this would be an

estimate of α in (3). The average diffusion drift is only marginally significant, suggesting that at

least on average the NPI price appreciation index return accounts for most of the return drift. This,

of course, is not surprising given that the analysis is restricted to NPI properties. The probability

that the alpha is constant across years, denoted in the table as “P (υα,y) const”, is negligible. Thus

vintage effects are highly significant and controlling for them is important. Under the null, α0 and

α1 should be zero. This is solidly rejected in the data. The variance analysis in Panel B suggests

that dispersion in βi’s and αi’s does not contribute much to holding period return variance in the

data.9 The sum 1
36

∑
y υσ,y corresponds to the average annualized diffusion variance, and its most

precise estimate (fifth column) is 0.0101 per year, corresponding to a diffusion volatility of roughly

10% per year. This would be an estimate of σ in (3) if the υσ,y’s were equal across all years. The

latter hypothesis is solidly rejected (“P (υσ,y) const” is smaller than 0.0001 across all specifications).

The other (highly) significant variance component, σ2
0 should be zero under the null. Instead, it

represents nearly three times the annual diffusion variance.

A main takeaway from the estimation summarized in Table 2 is that the null is solidly rejected.

Idiosyncratic expected returns are not proportional to the holding period, instead featuring both

9One can constrain the variance estimate of σ2
β and σ2

α to be positive using non-linear least squares. All this

achieves is to drive their estimates to zero.
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a non-zero intercept and a non-linear component. Likewise, idiosyncratic return variance is not

proportional to the holding period, instead featuring a large intercept component. To examine the

robustness of these findings using a simpler approach, I first group properties by integer year holding

periods, rounding non-integer holding periods, and randomly rounding up or down with half-integer

holding periods. For each such grouping, indexed by the integer holding period τ , I estimate the

following regression after dropping returns below the first and above the 99th percentiles:

r̃τ = ατ + βτ r̃m,τ + στ ε̃τ . (6)

[Fig. 1 about here.]

Figure 1 plots the ατ ’s and σ2
τ ’s from the sequence of regressions in (6) against the holding

period (point estimates in green triangles, 95%-confidence interval in thin dotted lines) alongside

the predictions from the more elaborate specification in (4) (point estimates in black circles, 95%-

confidence interval in thick gray lines). The two estimation approaches roughly agree both visually

as well as statistically (chi-squared tests for the difference in the predictions between the procedures

are highly insignificant). While, of the two approaches, the multi-stage estimation with vintage

effects is clearly the more econometrically sophisticated, the agreement is reassuring. It is clear

from these plots that expected return and variance tend toward significantly positive values as the

holding period vanishes. The non-linear dependence of expected returns on holding period is also

visually evident.

It is worth noting that each of Plazzi, Torous, and Valkanov (2008), Downing, Stanton, and

Wallace (2008), and Peng (2015), employs a model consistent with the vanishing of return expected

values and variances as τ → 0. In the language of continuous-time finance, Table 2 and Figure

1 suggest that the idiosyncratic drift and volatility of the return process, corresponding to the

expected return and variance per unit time, are divergent as τ → 0. These results suggest either

that the holding period returns are subject to some bias or that the underlying price process is

distorted by some market frictions at short horizons. In the next section, I offer an illiquidity-based

model to explain why holding period expected returns and variances deviate markedly from their

prediction under the null. Before doing so, I summarize other evidence that reinforces the empirical
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conclusions of this section.

2.3 Robustness

Appendix B provides additional evidence that the results of the previous section are not spurious.

For instance, when one randomly matches the return of a single property held over consecutive

periods ∆1 and ∆2 with the compounded return from two properties, one of which was held

over ∆1 and the other over ∆2, then the return variance of the single property is lower than the

variance of the compound returns from the two matched properties by essentially the estimate of

σ2
0 from Table 2. Because the holding periods of the two strategies coincide, the only material

difference between the two returns is that the latter involves an additional two-way transaction

(i.e., purchase and sale). This hints that the anomalous return behavior observed in Figure 1 stems

from transactional frictions.

Indeed, evidence similar in spirit to that presented in Section 2.2 has been documented for

other highly illiquid asset classes, such as residential real estate and individual private equity

deals. Case and Shiller (1987) and Goetzmann (1993) document an anomalously large variance for

short-term residential housing repeat transaction returns, while Abraham and Schauman (1991)

additionally detects nonlinearity in the variance growth against holding periods. Goetzmann and

Spiegel (1995) suggest that such findings might be attributable to the fact that calculated repeat

transaction returns for residential housing ignore renovations (i.e., capital expenditures), and model

this by adding a jump component with positive mean to explain holding period returns. Giacoletti

(2016) is able to include home improvement expenditures in his return calculations, yet continues

to find that holding period returns deviate from the random walk prediction. In the context of

private equity buyout deals, and similarly to this study, Axelson, Sorensen, and Stromberg (2015)

document a significant intercept to both variance and expected return components as functions of

a deal’s holding period. Likewise, Lopez-de-Silanes, Phalippou, and Gottschalg (2016) document

that private equity average holding-period returns are not proportional to the holding period. A

common feature of these different asset markets is the presence of (sometimes severe) illiquidity.10

10Peng (2015) notes that the variance of idiosyncratic holding period commercial property returns does not strongly
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The literature just surveyed provides some external validity to the notion that the results

here are not spurious. Correspondingly, it is shown in Appendix B that the null hypothesis is

not rejected when one repeats the analysis substituting publicly traded real estate investment

trust (REIT) returns for individual property holding period returns. This too suggests that the

findings are driven by the relative illiquidity of physical properties. Finally, the analysis reported

in Table 2 and depicted in Figure 1 is qualitatively robust to various alternative specifications, such

as: Excluding properties purchased before 1997, including non-NPI properties, and removing the

constraint that the purchase date must not lag the initial reporting date for the property by more

than a quarter.

The rejection of the null from the previous section implies that either property fundamentals

deviate substantially from a random walk with time-varying coefficients or that transaction deci-

sions, underlying observed holding period returns, are not independent from the underlying process.

Each of these possibilities presents a challenge to understanding asset-level risk and return. The

first suggests market inefficiency in that it may be possible to earn abnormally large risk-adjusted

returns in the commercial property market. The second suggests that one cannot model and esti-

mate property-level fundamentals without jointly modeling endogenous repeat transactions. The

presence of similar evidence from other asset classes makes the market inefficiency story less per-

suasive for it would have to apply across a much larger set of markets. In addition, the set of

properties forming the basis of analysis here tend to be competitively owned and managed by in-

dustry professionals in an institutional context. Such a market setting does not intuitively furnish

fertile ground for easily exploitable inefficiencies.

This leaves the possibility that observed holding period returns suffer from a selection bias

because actual holding period returns are only observed when a property is sold, and the selling

decision may not be independent of the original purchase or subsequent sale price. In Appendix

C I consider various potential biases that are unrelated to liquidity, but that can lead to effects

documented in Figure 1. One simple possibility is that institutions prefer to hold riskier assets for

depend on the holding period, although he does not delve into the possible reasons or the implications for his

assumption of a random walk process.
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shorter periods of time, thus mechanically creating a negative correlation between holding period

and property risk. Another is that the option to sell a property is exercised contingent on individual

property performance. For instance, if properties are only sold if they underperform relative to some

benchmark, then one might find a relationship between risk adjusted return characteristics and the

holding period. To summarize the analysis in Appendix C, I find no empirical support for the

predictions coming from the liquid market alternative hypotheses considered.

3 A model of holding-period returns for illiquid assets

Under the random walk model of equation (2), the idiosyncratic Sharpe ratio for holding the asset

over a period τ is αiτ
σi
√
τ

= αi
σi

√
τ , which vanishes as τ approaches zero. In particular, in a frictionless

market the absence of arbitrage rules out the possibility of a finite and positive Sharpe ratio for a

vanishingly small holding period. In Figure 1, the extrapolated Sharpe ratio for arbitrarily small

τ is 0.216√
0.0107

≈ 2, which is both finite, positive, and large. However, because commercial real estate

assets are highly illiquid and take months to transact, there is no possibility of exploiting such

lucrative extrapolated short-term returns. A natural conjecture is that illiquidity borne of market

frictions may help explain the peculiar properties of observed holding period returns documented in

the Figures. This section offers such an explanation for the phenomenon, supported by a calibrated

equilibrium model.

I consider an approach reminiscent of the search models employed in Duffie, Gârleanu, and

Pedersen (2005, 2007). There are N infinitely-lived income-producing properties. Time is discrete

and each period corresponds to a quarter, matching the structure of the data. Each property is

held and managed by some investor of a type indexed by a. At date t + 1, a property owned by

an investor of type a will pay income d̃t+1 = dte
(µ−σ

2

2
)+σε̃t+1 , where dt is the property’s income

in the previous period, ε̃t+1 is a standard normally distributed and serially uncorrelated random

variable, while the volatility σ and drift µ are constant. I assume that d̃t+1

dt
is identically distributed

across properties. Later, I will also assume that ε̃t+1 can be decomposed into an idiosyncratic and

a common shock for each property. For now, to avoid burdensome notation, I suppress reference
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to any specific property.

To calculate his or her private value for a property at date t, investor a discounts next period’s

expected income and private property value by a factor e−ra . If investors’ private values do not

change then eventually all properties would be owned by the investors with the lowest discount

rate. To derive an equilibrium in which a steady state of ownership exists it seems sensible for

investors’ private discount factors to mean-revert. To that end, I assume that the growth-adjusted

capitalization factor, ηa ≡ era−µ, is a regular Markov process taking one of 2S + 1 values, where

S is a positive integer, and where each state is indexed by a ∈ A ≡ {1, . . . , 2S + 1}. Without loss

of generality assume that η1 ≥ η2 ≥ . . . ≥ η2S+1. Denote by η(t) some investor’s type at date t.

The transition probability matrix for this investor’s type is Πâa ≡ Prob
(
η(t+ 1) = ηâ|η(t) = ηa

)
,

where a, â ∈ A. Let x ∈ (0, 1
2) and assume that the transpose of the transition matrix is given by

ΠT ≡ Pn where n is a positive integer exponent and where

P =



1− 2x 2x 0 0 . . . 0 0 0 0

x 1− 2x x 0 . . . 0 0 0 0

0 x 1− 2x x . . . 0 0 0 0

...
...

...
... . . .

...
...

...
...

0 0 0 0 . . . x 1− 2x x 0

0 0 0 0 . . . 0 x 1− 2x x

0 0 0 0 . . . 0 0 2x 1− 2x



(7)

ΠT describes a discretized reflected random walk on a finite interval. The exponent n determines the

number of states accessible from the central state, S+ 1.11 This is a flexible modeling environment

in that, other than the assumed monotonicity, it does not constrain the values taken by the ηa’s.

Denote by πUa the unconditional probability that an investor is in state a at date t.12 An advantage

of modeling ΠT as above is that, as is easy to check, the unconditional distribution of η(t) is simply

11For example, if n = 1 then only the nearest states, S and S + 2 are accessible from the central state in one

period’s transition. If n ≥ S then all states are accessible within one period’s transition.
12Regularity of the Markov process implies that the row vector (πU )T is given by any row of the matrix defined by

limn→∞(ΠT )n. The superscript T refers to the transpose of the vector or matrix in question.
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given by

πU = (
1

4S
,

1

2S
,

1

2S
, . . . ,

1

2S
,

1

2S
,

1

4S
)T .

The process η(t) is assumed to be independent and identical across investors, and independent

of ε̃t′ ∀t′. One can view, ηa, the time-varying growth-adjusted capitalization factor of a property

owner/manager as a reduced-form proxy for the effects of institutional liquidity and capital con-

straints, individual managerial beliefs and/or preferences, portfolio effects, managerial constraints,

and agency concerns. Ultimately, this modeling approach is chosen for its tractability.

At date t, immediately after income is distributed, every investor and owner is subject to a

type transition according to the probability law described by Π. Post-transition, each property

receives an offer from some randomly chosen investor and its owner must decide whether or not to

sell at a cost, c× dt, assumed for analytic convenience to be proportional to the property’s income.

It is also assumed that the number of investors is sufficiently large so that the probability that a

property receives an offer from an investor of type a′ at date t is πUa′ . The motivation to trade

in this model comes from the heterogeneity generated by different private values. The frictions

in this model consist of the cost of transacting a sale and, more importantly, the limited trading

opportunities — each period the counterparty is a single potential buyer rather than a market of

potential buyers. As discussed in Footnote 5, the assumption of limited trading opportunities is

particularly fitting in the context of real estate, but may be applicable to other broker-mediated

(rather than dealer-mediated) markets. It is further assumed that investors face no explicit funding

constraints and that there are no constraints on the number of properties that an investor may

hold. Thus the ratio of investors to properties is immaterial.13

A sale between dates t and t+ 1 takes place between an owner of type â and investor of type

a′ if and only if the owner’s certainty equivalent (i.e., private value) of the property value, pt,â, is

smaller than the investor’s certainty equivalent, pt,a′ , less cdt. If the difference between bidder’s

and owner’s private values exceeds the transaction costs, assume that in the ensuing bargaining

13The ratio of investors to properties would become important if one wished to make endogenous the number of

offers received each period by, say, including a cost to investors of embarking on a search. Here, this is finessed by

assuming that each property receives a single offer each period.
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the seller receives a random fraction, λ̃ ∈ [0, 1] with mean λ̄, of the gains from trade. Thus,

when a sale takes place the transaction price net of costs is pt,â + λ̃
{
pt,a′ − pt,â − cdt

}+
(where

{x}+ = max{0, x}). I assume that λ̃ is identically and independently distributed across time and

buyers/sellers, and unrelated to ε̃t, ηâ or ηa′ .

An owner or prospective buyer between dates t and t+ 1 values the property (ex-dividend and

post-transition) by taking into account the sequence of events described earlier, but projected one

period ahead. This projection, from the point of view of a prospective owner of type a, is depicted

as a time-line schematic in Figure 2.

[Fig. 2 about here.]

Thus, the ex-dividend and post-transition property certainty equivalent of an owner of type a

is determined by

pt,a = e−raE
[
d̃t+1 + p̃t+1,â + λ̃

{
p̃t+1,a′ − p̃t+1,â − cd̃t+1

}+]
(8)

where p̃t+1,â and p̃t+1,a′ correspond, respectively, to the owner’s and bidder’s private values (ex-

dividend and post transition) at date t+1. While â depends on a via the Markov transition process,

the distribution of a′ only depends on the unconditional probability vector πU . In words, the owner’s

valuation, pt,a, equals the discounted continuation value of holding the income producing property

plus the option value of selling (at a cost) to a prospective buyer.

Definition. An equilibrium is a positive and finite random variable pt,a that solves (8) for every

a ∈ A.

If A is a singleton set, then a = â = a′ and pt+1,â = pt+1,a, so that pt = e−rE[d̃t+1 + pt+1]

defines the equilibrium. In other words, if all investors are identical then prices are set as if the

market is frictionless and each investor discount all cash flows at some constant rate r. Liquidity

has no role to play in such a market because there are no gains from trade.

It is instructive to consider a situation where the owner faces multiple bidders, each having a
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different valuation and bargaining power. In this case, (8) becomes

pt,a = e−raE
[
d̃t+1 + p̃t+1,â + max

{
0, λ̃
(
p̃t+1,a′ − p̃t+1,â − cd̃t+1

)
λ̃′
(
p̃t+1,a′′ − p̃t+1,â − cd̃t+1

)
λ̃′′
(
p̃t+1,a′′′ − p̃t+1,â − cd̃t+1

)
, . . .

}]
.

If c = 0, then as the number of independent bidders grows the equilibrium will approach one where

only the investors with highest private values and least bargaining power will acquire the asset, and

the property price will reflect their valuation. This can be viewed as the frictionless limit in which

the asset is always held by those who derive the most utility from it. If c > 0, then even with a

large number of bidders the equilibrium price will not converge to a single value, but transactions

will be limited to prices within a band determined by c.

To proceed with the analysis, conjecture an equilibrium private valuation (ex-dividend and

post transition) of

pt,a = dtQa.

Then from (8) and the model assumptions, Qa must solve the linear system of equations:

∀a ∈ A, ηaQa = (1 +
∑
a′∈A

ΠT
aa′Qa′) + λ̄

∑
a′,b∈A

ΠT
aa′π

U
b

{
Qb −Qa′ − c

}+
,

where ΠT denotes the transpose of Π.14 The dependence on types is completely captured by the

vector of ηa’s. If ηa is constant across types then, assuming r − µ > 0, an equilibrium solution is

given by Qa = (η − 1)−1 ≈ (r − µ)−1 — a simple growing annuity factor. Henceforth, I assume

model parameters are chosen so that an equilibrium exists.

A transaction takes place at date t if and only if the arriving buyer’s private value less the

transaction cost exceeds the private value of the seller. This is true if and only if Qa′ − Qa ≥ c,

where Qa′ corresponds to the valuation of the prospective investor while Qa to that of the incumbent

owner. Thus, the realization of a transaction is a random variable whose distribution depends on

14The {·}+ appears to make the set of equations non-linear. However, if {Qa}a∈A solves this set of equations, then

it also solves a corresponding linear system of the form T · ~Q = ~b for some matrix T , where ~Q is the vector of Qa’s

and ~b is a constant vector.
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the incumbent owner type. If a trade occurs between an owner of type a and an investor of type

a′ at date t, the observed net transaction price is

pt,aa′ = dt

(
Qa + λ̃

(
Qa′ −Qa − c

))
s.t. Qa′ −Qa ≥ c. (9)

This expression is a function of property market characteristics as well as the identities of the seller

and bidder, and their relative bargaining power. In other words, as a function of property market

information alone, the property transaction price at date t is not a number but a distribution (i.e.,

it can take on multiple values). In this model, it is meaningful to speak of the probability of sale (by

an owner) as a function of some reservation price, whereas with liquid assets such a probability is

trivially set to be one below the market clearing price and zero above it. This additional stochastic

feature of prices can be important for modeling the price of immediacy of execution and feeds into

the pricing of derivative assets such as mortgage loans and mortgage backed securities.

3.1 Holding Period Returns

To analyze holding-period returns, consider a property that at date t is purchased from some owner

of type o ∈ A by an investor of type a ∈ A. Suppose the property is held until date t+ τ , at which

point the current owner has transitioned to type â and sells to a buyer of type b ∈ A. Then the

observed holding period price appreciation total return corresponding to the repeat transaction is:

R̃t,τ (o, a, â, b) =
Qâ + λ̃′

(
Qb −Qâ − c

)
Qo + c+ λ̃

(
Qa −Qo − c

) d̃t+τ
dt

=
Qâ + λ̃′

(
Qb −Qâ − c

)
Qo + c+ λ̃

(
Qa −Qo − c

) e(µ−σ
2

2
)τ+σ

√
τñ,

where ñ = 1√
τ

τ∑
j=1

ε̃t+j is a standard normally distributed random variable and where λ̃ and λ̃′

are iid. Note that the purchase price paid is gross of costs but the selling price received is net of

costs (i.e., in the presence of transaction costs a buyer will pay more than the seller receives). In a

frictionless setting (e.g., c = 0 and there is only one type of owner), R̃t,τ (o, a, â, b) = e(µ−σ
2

2
)τ+σ

√
τñ.

This is the standard geometric random walk result in which the identities and private values of

the transactors are immaterial in that there is no dependence on o, a, â or b. In the presence of

limited trading opportunities, R̃t,τ (o, a, â, b) depends not only on property-specific characteristics

between t and t + τ but also on the attributes of the investors involved in the repeat transaction.
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This feature is what drives the joint hypothesis problem: One cannot properly infer the property

parameters, µ and σ, from holding period returns without also modeling (implicitly or explicitly)

transaction dynamics.

The logarithm of the holding period return separates into three sources of risk:

ln R̃t,τ (o, a, â, b) = ln
(
Qâ + λ̃′

(
Qb −Qâ − c

))︸ ︷︷ ︸
Selling shock

− ln
(
Qo + c+ λ̃

(
Qa −Qo − c

))︸ ︷︷ ︸
Purchasing shock

(10)

+ σ
√
τ ñ︸ ︷︷ ︸

Income shock

+ (µ− σ2

2
)τ.

In equation (10), both the purchasing and selling shocks are idiosyncratic to the property. Using

the subscript i to refer to a specific property, the more conventional income shock component can

be further decomposed into an idiosyncratic and systematic part as

σñi = σM ñM + σI ñI,i,

where ñM is a systematic shock common to all properties, ñI,i is specific to property i, and σ2
M+σ2

I =

σ2. The risk-adjusted, or idiosyncratic, distribution of property holding returns can therefore be

written as

ln R̃It,τ (o, a, â, b) = ln
(
Qâ + λ̃′

(
Qb −Qâ − c

))
− ln

(
Qo + c+ λ̃

(
Qa −Qo − c

))
(11)

+σI
√
τ ñI,i −

σ2
I

2
τ,

where it is assumed that a well-diversified portfolio or index of properties will appreciate at an

expected rate of µ− σ2
M
2 (i.e., risk-adjustment eliminates (µ− σ2

M
2 )τ and σM

√
τ ñM from (10)).

Equation (11) describes the main object of interest in Section 2. The idiosyncratic shock

component, σI
√
τ ñI,i, whose variance grows linearly with the holding period, is independent of the

purchasing and selling shocks. The purchase and sale shocks, however are correlated because â and

a are not independent. As τ increases, because an owner’s type is stationary, the dependence of â

on a grows weaker and the purchase and sale shocks become asymptotically independent. In this

limit, the contribution of the purchase and sale shocks to the holding period variance will remain

constant as the horizon is increased. In addition, because the purchase price is gross of costs while
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the selling proceeds are net of costs, one expects that the purchase shock will (asymptotically)

stochastically dominate the selling shock. Their expected difference in (11) will therefore approach

a negative constant as τ increases.

3.1.1 Distribution of Holding Period Returns

To calculate the distribution of holding period (i.e., repeat transaction) returns from (11) and

compare its predictions with the data, one can consider the following:

1. The probability that the initial transaction involved an owner of type o depends on the

distribution of ownership at date t, post-transition and just before an offer is received (see

Figure 2). In principle, this distribution could be nearly arbitrary and depends on the initial

ownership conditions. To constrain this degree of freedom, I only consider a steady state

equilibrium (one in which the distribution of ownership is not expected to change).

2. The model assumes that the distribution of offers coincides with the unconditional distribution

of types, πU . Thus the likelihood that some fixed type o is matched with and sells to type a,

or that some fixed type â is matched with and sells to type b, can be derived from πU and

the additional constraints that Qa −Qo ≥ c and Qb −Qâ ≥ c.

3. The probability of observing a holding period of τ depends on the likelihood that τ − 1

previous offers were rejected.

Steady State Distribution of Ownership. A steady state is achieved once the distribution of

ownership across properties is not expected to change. If the number of properties and investors is

sufficiently large, then the expected distribution of property ownership would correspond with the

actual distribution of property ownership. The distribution of ownership from one period to the

next changes because of sales and type transitions. Denote the initial distribution just before an

offer is received as πO. Once an offer is received, ownership can change as described via the matrix

ΠSale to be shortly derived. Finally, before arriving at an offer in the next period, ownership type

transitions based on the Markov evolution described by ΠT = Pn in Equation (7). A steady state
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is achieved if

πOo =
∑
i,j∈A

πOi ΠSale
ij ΠT

jo. (12)

Equation (12) asserts that the pre-offer distribution of ownership is stable in the steady state. It

also pins down the distribution corresponding to the random variable Q̃o in (11).

To calculate ΠSale
ij , let ΠSale

ij,t correspond to the probability that a property owned by an investor

of type i just before an offer is received at date t, is subsequently owned by an investor of type

j just after the offer is accepted/rejected. Because bids arrive from investors drawn from the

unconditional distribution, πU , and a transfer of ownership requires Qj −Qi ≥ c, one can write,

ΠSale
ij,t =



πUj if Qj −Qi ≥ c and i 6= j∑
Qk−Qj<c

πUk if i = j and c > 0

πUi +
∑

Qk−Qi<c
πUk if i = j and c = 0

0 otherwise.

(13)

The first case corresponds to a transfer of ownership.15 The second and third cases correspond to

rejected offers. The last case corresponds to the zero probability case in which an offer with lower

valuation is accepted by the owner. Note also that ΠSale
ij,t is time-independent, justifying the absence

of the time index in (12).

Probability of rejecting sequential offers. A subsequent sale at date t+τ by the same investor

that purchased at date t depends on the distribution of offers (determined by πU ) as well as the

likelihood that the original investor did not sell at any date strictly between t and t + τ . To pin

down the latter, first define

πsa =
∑

Qi−Qa≥c
πUi ,

15It is assumed that if buyer and seller are indifferent to the transaction, i.e., Qi −Qj = c, the property is sold.
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the probability that a property of type a is sold to any other type subsequent to an offer.16 and

consider the (2S + 2)× (2S + 2) modified transition probability matrix defined by

P̂aa′ =



ΠT
aa′ (1− πsa′) a, a′ ∈ A∑
i∈AΠT

ai πsi i ∈ A, a′ = 2S + 2

0 a = 2S + 2, a′ ∈ A

1 a = a′ = 2S + 2

(14)

To clarify intuition, consider the case S = 1, c > 0, and Q1 < Q2 < Q3, in which case πs3 = 0 and

P̂ =



Q1 Q2 Q3 Sold

Q1 ΠT
11(1− πs1) ΠT

12(1− πs2) ΠT
13 ΠT

11πs1 + ΠT
12πs2

Q2 ΠT
21(1− πs1) ΠT

22(1− πs2) ΠT
23 ΠT

21πs1 + ΠT
22πs2

Q3 ΠT
31(1− πs1) ΠT

32(1− πs2) ΠT
33 ΠT

31πs1 + ΠT
32πs2

Sold 0 0 0 1


(15)

Notice that P̂ is non-negative and that the elements in each row sum to one. Thus P̂ is (the

transpose of) a Markov transition matrix. The matrix P̂ corresponds to the probability that a

current owner of type a transitions into type a′ next period, and then sells or remains the owner

next period. The “Sold” state is absorbing. Correspondingly, for a, a′ ∈ A, the aa′ element of P̂τ−1

is the probability that investor a remains the property owner after τ − 1 periods (and τ − 1 offers)

but has transitioned to type a′ by the end of the (τ − 1)th period. This motivates defining P̂τ−1
A as

the upper (2S + 1)× (2S + 1) submatrix of P̂τ−1.

Probability of observing R̃t,τ (o, a, â, b). Consider the following “path”: A property is sold to

an investor of type a at date t by an owner of type o drawn from the steady state distribution of

owners. The property is then held without being sold (despite the arrival of offers) until the new

owner transitions to type â at date t + τ . Following this last type transition the owner receives a

satisfactory bid from an investor of type b. From the preceding discussion, we can calculate the

16As with Equation (12), it is implicitly assumed that if buyer and seller are indifferent to the transaction, i.e.,

Qi −Qa = c, the property is sold.
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unconditional probability of such a path as

π(o, a, â, b, τ) =


πOo π

U
a

( ∑
a′∈A

(
P̂τ−1
A
)
aa′

ΠT
a′â

)
πUb if Qa −Qo ≥ c and Qb −Qâ ≥ c

0 otherwise.

(16)

The two terms in the parentheses appear because one must account for the path from t until t+τ−1,

during which the property receives offers and isn’t sold, as well as the last transition at date t+ τ

(captured by ΠT
a′â).

Observing a holding period return is tantamount to observing one of these paths. Thus, the

distribution of the purchasing and selling shocks in (11), holding λ̃ and λ̃′ constant, and conditioning

on the observation that a repeat transaction took place, is

π(o, a, â, b, τ | λ̃, λ̃′, Qa −Qo ≥ c,Qb −Qâ ≥ c
)

=
π(o, a, â, b, τ)∑

o,a,â,b∈A
π(o, a, â, b, τ)

, (17)

Equation (17) completes the specification of the probability law for the holding period log-return

equation (11).

3.2 Other transaction statistics

The NCREIF data from which holding period price-appreciation returns are calculated can be

used to estimate other transaction statistics. Among these are: (1) the acquiring transaction’s

capitalization rate or “cap rate” (the ratio of the forecast of the next twelve months’ property

income to the price), (2) the transaction costs reported by owners when a property is sold, (3) the

quarterly rate of property turnover, and (4) the probability that a property will be sold within τ

periods.

Turnover rate. The turnover rate can be calculated from the distribution of property ownership

as follows. For each type of owner, o, first calculate the probability that o will receive a satisfac-

tory offer. Because offer arrivals correspond to the distribution of types, πU , this probability is∑
a∈A

Qa−Qo≥c

πUa . One then multiplies this quantity by the share of properties owned by o and sums
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across all owner types. If the property market is at a steady state, then the distribution of owner

types is πO as calculated in (12). The steady state per-period turnover rate is therefore

Turnover rate =
∑
a,o∈A

Qa−Qo≥c

πOo π
U
a . (18)

Mean transaction costs. When they sell their properties, NCREIF member firms often report

both a gross and a net transaction cost. From this, one can estimate the average transaction cost

as a proportion of the property value. To do this in the model, define the proportional transaction

cost to equal to one minus the ratio of the net sale price to the gross sale price. In the model, when

the sale takes place between an owner of type o and a buyer of type a, this is c

Qo+c+λ
(
Qa−Qo−c

) .

Assuming once more that the distribution of owners corresponds to the steady state, then averaging

over all possible owner and buyer types, and over all realizations of λ, yields

Steady state mean transaction costs =

∑
a,o∈A,λ
Qa−Qo≥c

πOo π
U
a πλ

c

Qo+c+λ
(
Qa−Qo−c

)
∑
a,o∈A

Qa−Qo≥c

πOo π
U
a

. (19)

The turnover rate in the denominator reflects the fact that the mean is calculated conditional on a

sale taking place.

Acquisition cap rates. In the data, it is not clear whether the acquisition price of a property

purchased by a NCREIF member is reported net or gross of costs. If one assumes that it is equally

likely to be reported net and gross of costs, then one can calculate,

Mean acquisition cap rate =

∑
a,o∈A,λ
Qa−Qo≥c

πOo π
U
a πλ

1
2

(
4

Qo+λ
(
Qa−Qo−c

) + 4

Qo+c+λ
(
Qa−Qo−c

))
∑
a,o∈A

Qa−Qo≥c

πOo π
U
a

. (20)

One half times the term in parentheses averages over the net and gross acquisition cap rates. The

factor of four arises because the Qa’s are quarterly. As with the previous two calculations, the

independent probabilities πO, πU and πλ correspond respectively to the steady state distribution of

property ownership, the unconditional distribution of offer types, and the distribution of λ ∈ [0, 1].

Here too the denominator reflects the fact that the mean is calculated conditional on observing a

transaction.
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Distribution of holding periods. The probability that a property, purchased at date t by an

investor of type a ∈ A, will be sold by date t + τ can be gleaned from the ath element of the last

column of the matrix P̂τ defined in (14). To obtain the probability that a property, bought by any

type at date t, will be sold within τ periods, one calculates (similar to the calculations above)

Steady state mean transaction costs =

∑
a,o∈A

Qa−Qo≥c

πOo π
U
a P̂τa,2S+2∑

a,o∈A
Qa−Qo≥c

πOo π
U
a

. (21)

4 Fitting the model to the data

The purchasing and selling shocks in (11) contribute to the holding period return volatility, even

if the holding period is short. An important question is whether this contribution can be as large

as identified in the data. A more difficult issue to address is whether the observed average holding

period return can be positive for short holding periods as suggested by the data. To see the problem,

consider the case where there is no persistence in private values. I.e., each row of ΠT is identical.17 In

this case, the unconditional distributions of Qo, Qa, Qâ and Qb in (11) are independently distributed

as πU , thus rendering the purchase and sale shocks independent. The selling shock component in

(11) can be denoted as ln Ã while the purchasing shock will contribute ln
(
Ã′ + c

)
, where Ã and Ã′

are identically and independently distributed.18 Because Ã′+c first-degree stochastically dominates

Ã, it must be that E[ln Ã
Ã′+c

] ≤ 0. In other words, without persistence, it is not possible to generate

a positive average holding period return for short holding periods. If c = 0 then one obtains the

Goetzmann (1993) and Case and Shiller (1987) setting in which holding period returns exhibit two

iid shocks (when the property is bought and subsequently sold). For any finite c > 0, however,

expected returns from the purchase and sale shocks are negative, suggesting that their reduced-form

model is not only inconsistent with the data but may lack a microeconomic foundation.

Axelson, Sorensen, and Stromberg (2015) add an “alpha” to the independent jump processes

at purchase and disposition considered by Goetzmann (1993) and Case and Shiller (1987). This

17Recall that ΠT = Pn, where P is define by Equation (7). As n→∞, all rows of ΠT approach the unconditional

distribution of types, πU .
18The random variables Ã and Ã′ have the same distribution asQo+λ̃

′(Qa−Qo−c) conditional on
(
Qa−Qo−c

)
≥ 0.
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however, may not be consistent with the absence of arbitrage because the implied Sharpe ratio does

not vanish with the holding period, meaning that infinite profit can be obtained by a sequence of

purchase and sales of arbitrarily small holding periods.19 In the arbitrage-free model offered here,

the “jumps” at purchase and disposition are generally not independent because the observed holding

periods are endogenous. Moreover, as explained next, the positive alpha in observed transactions

arises endogenously as well and a reduced-form description can miss important structure that is

informative about the underlying asset market.

Beside persistence, a necessary condition for modeling a positive alpha for short-hold transac-

tions is the existence of more than two types of investors/owners. To see this, consider that if there

are only two types and c > 0, a purchase can only take place if the high valuation type purchases

from a low valuation type. A subsequent sale can only take place if the high valuation type tran-

sitions to a low type and sells to a high type. The net selling prices in the repeat transaction just

described will necessarily have the same distribution because in each case a low type is selling to a

high type. Similar to the argument above when there is no persistence, transaction costs will lead

to negative expected alphas in the observed transaction regardless of the horizon. Thus, positive

short-hold alphas require that the cardinality of A is greater than two, which rationalizes setting

the number of types to be 2S + 1 with S a positive integer.20

To see why both persistence and the presence of intermediate types might lead to positive alphas

in observed transactions, consider a situation with three highly persistent types, QH > QM > QL.

In this case, when an asset is first purchased at date t by a type a investor, it is most likely that

the type remains a at t + 1 just before offers are received. Because the presence of transaction

costs ensures that a sale will not be consummated between two investors with the same valuation,

19One could avoid arbitrage opportunities in the reduced-form model of Axelson, Sorensen, and Stromberg (2015)

by restricting holding periods to be no less than some finite value τ∗. Additional requirements would then have to

hold to ensure that it is never optimal to hold the asset for less than τ∗ (which also seems be inconsistent with the

data). Such exogenous requirements limit ones’ ability to shed light on the economic fundamentals (i.e., illiquidity)

driving the jumps and the positive zero holding period alpha. I note that the model in this paper can be extended

to continuous time (without allowing for arbitrage opportunities) by using a Poisson arrival process for the bids.
20Heterogeneity across investor types also plays a key role in the search and bargaining model of Hugonnier, Lester,

and Weill (2014).
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a short holding period is most likely to be characterized by the arrival of a new buyer with an even

higher valuation. Thus, an intuitively likely situation for a short holding period, when valuations

are persistent, is that the selling price is higher than the recent purchase price. This may appear as

a large premium for short holding periods, but the causality is reversed: The apparent “premium”

is function of the fact that an investor will only hold for a short period if a much better offer

comes along — i.e., it represents the upside for having recently purchased the asset. The downside

is not observed because the property will be otherwise held longer. This example demonstrates

how, in equilibrium, transactions data in the model exhibit a selection bias. Moreover, it highlights

how intermediate investors act as intermediaries in the property market (or, alternatively, property

“flippers”). The presence of such intermediaries and the profits that they make in equilibrium

contain information about structural illiquidity in the market, which is most pronounced in short-

term transactions.21

4.1 Model parameter calibration

To get a better sense of whether the model delivers a plausible quantitative description beyond

the qualitative effects outlined above, I undertake a fitting/calibration exercise where each period

represents a quarter. I set S = 5 so that there are 11 type states, and fix n = 4 in ΠT = Pn, with

P defined in (7). To simplify the calculation of model statistics, I assume that λ̃ is one or zero with

50%-50% probability. Three parameters are used to characterized the ηa’s:

ηa =
(
ηH − ηL

)(2S + 1− a
2S

)v
+ ηL, a ∈ {1, . . . , 2S + 1}

where v > 0, ηH corresponds to the largest growth-adjusted capitalization factor, erH−µ, while ηL

corresponds to the smallest. When v = 1, the ηa’s are distributed linearly across the 2S + 1 states.

When v > 1 or v < 1, the distribution is respectively, strictly convex or strictly concave. Beyond

ηL, ηH and v, the remaining three free model parameters are x, c, and σI .
22 To calibrate to the

21The model in Lovo and Spaenjers (2016) similarly delivers a negative relationship between holding periods and

returns.
22As assumed in the derivation of (11), the adjustment for systematic risk in Section 2 obviates the need to calibrate

µ.
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data, I minimize a function of the following type:

FO(x, c, σI , ηH , ηL, v) =
M∑
j=1

(
mj − m̂j(x, c, σI , ηH , ηL, v)

)2
s2
j

,

where mj is one of M quantities estimated from the data, sj is its standard deviation, and

m̂j(x, c, σI , ηH , ηL, v) is the model-calculated value of the quantity. The objective function FO(x, c, σI , ηH , ηL, v)

is akin to a sum of squared standardized, but correlated, normal variables — or, in other words, a

generalized χ2 statistic. The analogy, however, is not exact because some of the quantities to which

I calibrate are themselves estimates from the econometric model of Section 2.2. In other words,

the exercise undertaken here should be understood as a calibration rather than an estimation. In

particular, I do not derive standard errors for the calibrated model parameters.

Setting M = 9, I attempt fit the model to data statistics derived in Sections 3.1.1 and 3.2:

Quarterly turnover, Average transaction costs, Average acquisition cap rate, Fraction sold within

five years, the expect value of one, six, and eight year risk-adjusted holding period returns, and the

variance of one and eight year risk-adjusted holding period returns. I choose three expected return

horizons because of the non-linearity in the expected return detected in Section 2.2. I choose two

return variance horizons because the empirical holding period return variance is roughly linear in

horizon. The discussion in Appendix A.1 provides details for calculating these statistics from the

data. It turns out that, at least in matching the selected quantities, decreasing v corresponds to

a narrower interval defined by ηL and ηH . The objective function, FO(x, c, σI , ηH , ηL, v), is not

very sensitive to v ∈ [0.05, 1]. I therefore fix v = 0.50 and minimize over the remaining unfixed

parameters to arrive at FO ≈ 3.02.23 The calibrated model parameters are reported in Table 3.

The data and model statistics are compared in Table 4.

[Table 3 about here.]

[Table 4 about here.]

23If FO was indeed a generalized χ2 distribution, then the corresponding p-value would be at least as high as a

standard χ2 with nine degrees of freedom. With FO = 3.02, this translates to p > 0.96, suggesting that the fit to the

data is excellent.
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The model fit to the data is very good. Figure 3 plots the model predictions along with the

predictions of the two-pass regression model from Section 2. At every horizon, the calibrated

model prediction is within the 95% confidence interval about the econometric estimates. Although

the calibrated model does not incorporate parameters that depend on calendar time, it fits the

econometric model predictions which do include calendar year effects. This raises the possibility

that the calendar year effects are significant because without them the econometric model is not

sufficiently non-linear.

[Fig. 3 about here.]

Figure 4 is a histogram of the steady-state property ownership for the calibrated model. Types

are denoted by their private valuation annualized cap rate, 4
Qa

. These range from 6.1% for the

highest valuation type to 9.9% for the lowest valuation type. Although the highest valuation type

represents only 2.5% of the investors in the economy, this class of investors represents nearly 50%

of the steady state ownership base. The histogram makes clear that virtually all properties are

owned by the top four valuation types comprising 17.5% (=
11∑
a=8

πUa = 5% + 5% + 5% + 2.5%)

of the investor base. Turnover is low because types are persistent — each investor has only about

a 6.3% per quarter of changing type — and because property owners correspond to the highest

valuation quintile.

[Fig. 4 about here.]

The weighted average private value of properties in the economy is given by Q′ · πO = 60.14,

corresponding to an annualized cap rate of 6.65%. This represents a premium of 60.14
(4/7.04%)−1 ≈ 5.9%

over the average transaction. The reason for the premium is simply that the highest valuation types,

comprising a large proportion of owners, never sell. They do, however, buy at prices that are on

average below their private values. An implication is that an index based on sales will understate

the true value of the property market to its steady state owners (i.e., the sum of private values

across all owners).
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4.2 Transaction Risk and Model Implications

In the limit of a liquid property market (e.g., c = 0 and ra = r for all investors), property transaction

prices are consistent with a dividend-discount model and the income-to-price ratio, or cap rate, is

objective and constant at 1
Q = η − 1 = er−µ − 1. In the presence of illiquidity, the cap rate will be

a distribution corresponding to the private values of investors in the economy. This distribution

drives the transaction risk in the model and the calibration to the holding period return data allows

one to quantify it. In this subsection I attempt to do that in three different ways.

Transaction probability. Figure 5 plots the probability that an owner will receive a satisfactory

bid, given a reservation cap rate gross of costs and within one period (a quarter). The probability

is calculated using the model parameters from Table 3, the equilibrium solution to the Qa’s, and

the probability πUa of the arrival of a bid from type a. For instance, the probability that a bid will

arrive at a cap rate lower than 9.033% is 45% because there are five types whose private values

correspond to a cap rate lower than 9.033%, and
∑

4
Qa
≤9.033%

πUa = 0.45. The greater the reservation

cap rate, the greater the probability that a bidder will arrive who will transact at a satisfactory

price. Because the number of types in the model is finite, the model probability of transaction is a

step function. The points at which the step function “jumps” are plotted as red squares in Figure

5. The continuous curve in blue is a least squares fit to the red squares taking the form

Prob
(
cap rate bid ≤ x

)
= exp

( 3∑
n=0

anx
n
)
,

where x is the seller’s reservation cap rate gross of costs (i.e., the seller has to agree to pay the

transaction costs out of pocket).

For comparison, also plotted in Figure 5 is the corresponding transaction probability for a

perfectly liquid asset whose annualized market income to price ratio is 0.0704, coinciding with the

unconditional expected transaction cap rate in the property market calculated in (20) using the

calibrated model parameters. For a perfectly liquid asset, an offer to sell at an income-to-price

ratio higher than market would be instantly transacted with probability one. An offer to sell at a

lower income-to-price ratio would never be transacted.
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[Fig. 5 about here.]

The Figure clarifies that transaction risk is substantial. The probability of transacting at a “fair

market price” of 0.0704 (or better), which might correspond to an appraised value in the property

market, is only 12% per quarter. Owners with a high cost of capital would therefore be forced to

list at higher cap rates (lower prices) in order to transact with a high probability. To achieve a

probability of sale per quarter greater than 2
3 a seller must be prepared to accept a cap rate bid

as high as 0.0946. Such a “fire sale” amounts to a discount of 25% relative to average prevailing

transaction prices. The ability to quantify such discounts can be useful in pricing mortgages or

CMBS securities, in which the foreclosing entity has a high cost of capital and/or lacks the expertise

to manage the asset while searching for a liquidation opportunity. In other words, the equilibrium

curve in Figure 5 should be considered when calculating recovery rates and is linked to the cost

of capital of the foreclosing institution. Correspondingly, it may be possible to use the model

calibration to back out the implicit cost of capital of lending institutions.

A testable implication of the shape of the transaction risk curve in Figure 5 is that property

transaction risk has a pronounced negative skew with respect to cap rates, which translates to a

positive skew with respect to prices. A deeper exploration of this point may provide insights into

property portfolio and risk management, the pricing of contingent claims such as mortgages, and

managerial incentives in a private equity setting where waterfall structures are prevalent.

Time to sell. A related notion to the probability of transaction, is the expected or median time

to sell. If p is the probability of a serially independent event per period, then the expected number

of periods to first occurrence of the event is 1
p . The model is based on quarterly periods so the

annualized time to a sale is 1
4p , where p is the probability of a sale per quarter. Likewise, the

median time to sell is ln .5
4 ln(1−p) . Figure 6 plots the mean and median time to sell given the seller’s

reservation cap rate (solid blue and dashed red curves). Also plotted, and corresponding to the

right vertical axis, is the expected transaction cap rate for a seller, given their reservation cap rate.

All of the curves are calculated off the continuous per-period transaction likelihood in Figure 5. For

reservation cap rates below 0.0704, the prevailing transaction rate in the market, it can take years
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to transact. The expected cap rate corresponding to such a reservation value is necessarily lower

than prevailing cap rates. Thus patient sellers trade immediacy for lower cap rates (i.e., higher

expected transaction prices).

[Fig. 6 about here.]

The large circle denotes the reservation cap rate at which the seller can expect to transact at

prevailing market prices. When fit to the holding period return data, the model predicts that a

seller expecting to transact at prevailing market prices must also be prepared to sell at a cap rate

as high as 0.0835 — significantly above market rates. The time to sell curves predict that such

a seller can expect to sell within 0.9 years. Although the NCREIF data does not report time to

sell, the predicted figure is consistent with CoStar data reporting average “days on market” figures

varying from 250 in January 2007 to as high as 450 in July 2012, and then coming back down to

284 as of November 2016.24

Need for immediacy. Yet another measure of property market illiquidity that can be inferred

from the model is the “price of immediacy”. I define a seller to have a need for immediacy of q/4

years whenever the seller must liquidate a position within q quarters. The corresponding price of

immediacy is the discount relative to prevailing market prices which the seller expects to experience.

I calculate this quantity as follows. Let Q(0) ≡ 0 and recursively define

Q(n) = E
[
{Q̃,Q(n−1)}+

]
=
∑
a∈A

πUa {Qa, Q(n−1)}+.

Then Q(1) is just the expected price to income ratio if a seller must liquidate in one period. One

can interpret Q(2) as the expected transaction price for a two-period strategy in which one sells in

the first period only if a bid higher than Q(1) arrives; otherwise, the first-period bid is ignored and

one accepts whatever bid comes along in the second period. For q > 2, Q(n) is similarly defined for

an n-period strategy. There is no time (or risk) discounting in this calculation because discount

factors are heterogeneous in the model and thus there is no objective strategy for accepting or

rejecting a bid.

24See https://goo.gl/mc1OpM.
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[Fig. 7 about here.]

The price of immediacy is defined as 1− Q(n)

Q∗ , where Q∗ is price corresponding to the average

prevailing transaction cap rates ( 4
0.0704 = 56.8 in the calibrated model). Figure 7 plots this for the

model parameters in Table 3. A seller can expect to experience a discount to prevailing prices if

(s)he must liquidate within three years or less. Given more flexibility to “wait out the market”, a

seller can expect to perform at least as well as average prevailing transactions.

The closed-end private equity fund structure, frequently used by commercial real estate in-

vestors, commits the general partner to liquidate the portfolio by a certain date. It is quite com-

mon, however, for the general partner to exercise a two to four year option to wait out the market.

Thus, here too the model appears able to provide sensible quantitative predictions.

5 Conclusions

Real estate risk is different from the risk of liquid traded assets. Though this may seem self-

evident, quantifying the risk of individual real estate assets has been left relatively unexplored in

the literature. Using purchase and sale data from the National Council of Real Estate Investment

Fiduciaries (NCREIF) to compute and analyze holding period returns for commercial properties,

I find that the data is not consistent with the joint hypothesis that individual real estate property

prices follow a geometric random walk and that transaction decisions are unrelated to the underlying

price process. This conclusion is robust to controlling for heterogeneity in random walk parameters

across time and across properties. In addition, the data also appears inconsistent with the random

walk assumption when accounting for possible selection biases in transaction data.

The data is consistent, however, with a calibrated search-based illiquid asset pricing model. In

the model, owners periodically receive bids for their property from investors but gains from trade

only exist if the valuation of bidders (net of transaction costs) exceeds that of owners. Holding

period returns therefore exhibit selling and purchasing shocks that arise from the random matching

and bargaining. If private valuations are persistent, observed short horizon holding periods will
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exhibit a positive “alpha” in equilibrium because a short hold will only be observed when an owner

receives a bid significantly higher than the price recently paid for the property. This is consistent

with the data. Both the model and the data imply that idiosyncratic property risk comes in two

forms: a volatility component similar to that exhibited by liquid assets measuring roughly 10% per

year (annualized); and a purchasing/selling shock that, in an optimal transaction, has a variance of

roughly 0.01. Thus round-trip observed transaction returns exhibit a “time-independent” variance

component of roughly 0.02.

The model can be applied to the pricing of real estate derivative instruments such as debt or

mortgage backed securities. It can also be extended to other illiquid assets, such as rarely-traded

bonds, private equity, or complex financial assets.
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A Appendix: Cleaning the Data

I provide here details of how the raw NCREIF data is cleaned for use in Section 2. Table A.1

documents the sequential steps taken in culling properties from the dataset. The table reports the

number of properties in the dataset left after the corresponding step is implemented. The steps are

explained below.

1. The total number of properties in the dataset.

2. No missing appraisal returns in any but the last period in the panel. Sales are often reported

in the “last period” that a property is reported in the dataset without reporting any cash

flows or other economic performance measures. In such cases, the sale is assumed to take

place at the end of the previous quarter.

3. Each property should be characterized by a unique “SaleCode” identifying its status as of the

last reporting period. E.g., “F” if it is ongoing in the dataset, “S” if it is separately sold, “P”

if it is sold as part of a portfolio, “R” if it is surrendered to the bank in foreclosure, “T” if it

is transferred to another manager, etc. All but “F” correspond to some type of exit from the

dataset and the SaleCode is updated and backfilled each quarter. Properties whose SaleCode

varies while it is in the dataset are dropped. In addition, most of the analysis only includes

“S”, “F”, “P” and “R” properties, the vast majority of which are “S” or “F”.

4. If an appraisal-based return measure (“total”, “price appreciation”, or “income”) in any

quarter is below -0.999, then the property is droppped.

5. The acquisition date, redundantly reported each quarter, should be available and consistently

reported (i.e., the same in each quarter and no later than the first period that the property

appears in the dataset).

6. The property type should correspond to one of the major commercial real estate asset cat-

egories (Apartments, Industrial, Retail, or Office) and should not change across reporting

periods.
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7. The net sale price for sold properties should be reported as a number greater than $1.

8. According to the procedures manual, NCREIF members are instructed that partial sales

“...may include items such as the sale of an easement, a parcel of land, or a single building

in an industrial park” and are to report “the consideration received, less any selling expenses

incurred.” When partial net sales are reported in the quarter of final disposition, they should

coincide with the net proceeds from disposition. Reported partial sales should be positive.

9. It is standard accounting practice to report capital expenditures that are allocated but not

actually spent. Funds that are not spent should be eventually recorded as negative capital

expenditures. If a property is sold, then the sum of capital expenditures across all reporting

periods should be positive.

10. The initial acquisition price should be positive.

11. The total price appreciation return, as defined in (1), should be well defined (i.e., the argument

of the logarithm should be a positive number).

12. Out of concern that important initial capital expenditure data is missing when there is a gap

between the acquisition quarter and the first reporting quarter, I drop properties that exhibit

such gaps. This results in a loss of nearly half of the properties remaining after the previous

filters are implemented. About a third of the properties report the acquisition date a year or

more before the first reporting period.

[Table A.1 about here.]

A.1 Estimating turnover, cap rates, transaction costs, and ‘survival’ rates

Figure A.1 plots calendar year statistics for some of the different data attributes used to calibrate

the model in Section 3: The proportion of properties sold within five years, acquisition cap rates,

proportional transaction costs, and quarterly turnover. From the plots, it is clear that these char-

acteristics of the commercial property market exhibit a great deal of time variation, suggesting the
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presence of significant correlations across properties and time. Calculating unconditional moments

for each characteristic would therefore drastically overstate the accuracy of the point estimate. To

get around that, I calculate the time-series averages of the points in each of the plots, weight-

ing each point depicted by the number of properties it represents. I then calculate the property

number-weighted time-series estimation error. The results are used in Table 4.

[Fig. A.1 about here.]

The remaining statistics used for calibrating the model correspond to the expect value of one,

six, and eight year risk-adjusted holding period returns, and the variance of one and eight year risk-

adjusted holding period returns. For each of these, point estimates and corresponding standard

errors are calculated using the predictions of the four-stage econometric model in Section 2.2.

B Appendix: Robustness Exercises

Here, I provide additional evidence that the results from Section 2 are not spurious. Firstly,

I repeat the econometric estimation with randomly sampled real etate investment trust (REIT)

returns substituted for the property holding period returns. In this case, I find that the null is not

rejected, suggesting that any discrepancy is attributable to the properties of repeat transactions

of individual real estate assets rather than the real estate market per se. Then, I demonstrate

that the amount of transaction risk (i.e., σ2
0) identified in 2 can be reproduced using an alternative

specification, thus reinforcing the original findings. Finally, I survey some additional experiments

involving the tightening or loosening of the filtering criteria discussed in Appendix A.

B.1 REIT-simulated holding period returns

Each property’s return in the dataset is replaced with a matched unlevered return constructed

from randomly selected publicly traded real estate investment trusts (REITs). For instance, if a

property’s first and last quarters in the dataset are 1997Q3 and 2001Q1 then each quarter, starting
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with 1997Q3 and ending with 2001Q1, a quarterly return is randomly drawn from REITs trading

at the beginning of that quarter. The sequence of randomly drawn REIT unlevered returns is then

compounded to yield a matched holding period return for that property. Likewise, the market

benchmark is based on a return index of equally weighted unlevered REIT returns in each quarter.

To unlever, I used Moody’s BBB bond total return index. To reproduces the analysis in Table 2

and Figure 1 I simulate a panel and run the corresponding regressions. This is repeated 1000 times

and the resulting statistics are pooled. The results are presented in Table B.1 and Figure B.1.

Presumably, any systematic changes in property market characteristics that might lead to spu-

rious conclusions in the analysis of Section 2 would also affect unlevered REIT returns. Comparing

the corresponding tables and figures, this seems not to be the case. The simulated REIT panel

exhibits virtually no alpha in expected returns let alone one that is non-linear in the holding period,

and the variance decomposition suggests that there is no significantly positive contribution coming

from any source other than a standard diffusion. The exercise confirms that, as with the physi-

cal property market, the publicly traded property market exhibits time variation in the diffusion

parameters.

The punchline is that the null hypothesis of Section 2.2 is confirmed, meaning that publicly

traded real estate is priced consistent with a random walk with time varying coefficients. This

suggests that the “anomalous” behavior of holding period returns in the physical market arises

from endogenous considerations and/or illiquidity.

[Table B.1 about here.]

[Fig. B.1 about here.]

B.2 A test of matching return horizon

To further rule out vintage effects I employ a procedure motivated by the following intuition.

Consider a property purchased in 1998 and held for eight years, and suppose one can randomly

match it with two properties held for four years, one purchased in 1998 and another purchased
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in 2002. By “rolling” the investment from the first to the second of the four-year properties one

effectively creates an eight-year property investment initiated in 1998. Assuming all three properties

are chosen at random and purchase/sale decisions are unrelated to the price process, the random

walk model predicts no difference between the actual and the synthetic eight year investment —

on average both are exposed to the same time-varying economic conditions. For various values

of k and τ , I use a linear program to “vintage-match” the largest possible number of properties

having holding period k × τ with k properties of (non-overlapping) holding periods τ . In the

illustrative example, k = 2 and τ = 4. Two equally-sized samples are created in this way: One

containing the holding period returns of selected properties with maturity k×τ , and one containing

the corresponding vintage-matched synthetic holding period returns. When the matching entails

a strict subset of eligible properties, the subset is chosen randomly. The regression in (6) is then

estimated for each one of the two matched samples, and the difference between the residual variances

as well as between the intercepts is calculated. To increase the accuracy of the estimates, and allow

for all property returns to enter the estimation (through randomization), the procedure is repeated

1000 times and the resulting statistics are averaged.

[Table B.2 about here.]

Table B.2 documents the results of the vintage-matched sample analyses with N corresponding

to the size of the sample where each property has maturity of k × τ years. The difference in

regression residual variances and the difference in average returns (or “α’s”) are normalized by

k−1 to account for the fact that each time a property is rolled over the transaction risk component

(if any) of return variance and mean should be accrued. Under the null, both differences should be

zero. The t-statistics, which reflect pooled values of the coefficients and their standard errors, are

likely to be conservative.

Despite the relatively low average number of matches, the test has sufficient power to measure

the variance of the transaction risk component (“(Var Diff)/(k − 1)” ). All but one of the com-

parisons correspond to a positive difference between the property rolling strategy and the single

property strategy. A χ2 test that all the variance differences are zero is rejected with p < 0.01.
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Moreover, the GLS estimate of the average normalized variance difference yields a number (0.0342)

that is statistically consistent with the estimate of σ2
0 from Table 2. Unfortunately the test does

not have sufficient power to identify differences in the slope coefficients (the alphas). One cannot

reject the null that they are all identical and equal to zero. Still, the upshot of this exercise is that

the null hypothesis of zero variance difference is soundly rejected, providing an alternative channel

of support to the findings of Section 2.

B.3 Additional tests

The application of the econometric specification in (4) seems quite robust to different ways of

treating the NCREIF dataset. I examine the following alternatives (details of the estimates are

available upon request).

1. Exclude all properties that appear in the dataset before 1997. This is done to address concerns

about the quality of the data in the earlier period.

2. Include non-NPI properties.

3. Use only non-NPI properties.

4. Include properties that are sold less than a year after purchase.

5. Permit the acquisition quarter to be up to two quarters before the first reporting quarter

(thus allowing a gap of one quarter in the property history).

In every case, the null hypothesis of 2.2 is rejected with a very high degree of confidence. In

particular, each of α0, α1, and σ2
0 is highly significant and the coefficients share the same signs across

all specifications, meaning that the qualitative results are robust. Restricting analysis to non-NPI

properties corresponds to the most dramatic magnification of the effect. This is intuitive given

that NPI properties are generally deemed less risky than their counterparts in the data. Including

properties that are sold almost immediately after purchase results in the most pronounced decline

in the effect (though it remains significant). This too is consistent with the concern outlined earlier
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that such properties are inherently “noisy”, perhaps because many are purchased as part of a larger

deal and are quickly shed by their new institutional owners. In such instances, the purchase price

and other accounting details may be subjectively assessed, possibly introducing either noise or bias.

C Appendix: Testing Alternative Hypotheses

Many studies in the literature model the price of a single real estate property as a geometric random

walk. Section 2, and the additional robustness exercises in Appendix B, cast some doubt on such

a modeling approach. The question remains whether it is possible for the underlying price process

to be a geometric random walk but for the decision to purchase or sell to be dependent on the

price history.25 Specifically, the econometric tests reject a joint null but not the possibility that

the property price is random walk and τ in equation (2) depends on εi,τ or rm,τ . In particular, I

focus on alternatives that can explain the robust finding that as the holding period decreases the

holding period variance does not proportionately decrease.

In this section, I demonstrate that property-level measures associated with higher risk have

little ability to predict shorter holding horizons, thus dispensing with one potential form of sample

selection bias. Then, while I find some evidence that selling is linked to poor performance, there

is also evidence that this endogeneity is not enough to explain the large and significant time-

independent variance component.

C.1 Endogeneity I: Investor risk preferences

Supose that property prices follow a geometric random walk and that investors prefer to hold riskier

properties for shorter periods of time. Then, when analyzing holding period returns, this might give

rise to the non-zero intercept in Figure 1b. To explore whether there is a basis for this channel, I

investigate whether determinants of property risk have any power to predict holding periods. To do

this, various property-level attributes are compiled to create a time series panel where each quarter

25See Fisher, Gatzlaff, Geltner, and Haurin (2003), Gatzlaff and Haurin (1997), Goetzmann and Peng (2006), and

Hwang and Quigley (2004).
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the dependent variable is set to one if a property is within four quarters of its final sale. I choose a

lag of four quarters because the decision to sell a property typically takes place months before an

actual sale is consummated. Both sold and unsold properties in the data are used. The following

is a list of the cross-sectional variables used in the regression along with their expected relation,

if any, to the property’s risk. This information would in principle be available to the property

investor before the decision to sell is made.

SqFt — Square footage proxies for size. A larger property is more likely to have a well diversified

pool of tenants and therefore less idiosyncratic risk.

JV — A joint venture dummy variable. A joint venture ownership structure might be associated

with a need for risk sharing and thus linked to the property’s riskiness.

Age when acquired — Older properties may have more idiosyncratic risk because capital

expenses are less predictable.

Percent Leased — Higher vacancy may signify higher risk.

Loan spread — If the property is mortgaged, then the spread of the initial interest rate over

the average prevailing mortgage rate paid by other properties proxies for the property’s risk.

Property type — Apartment/Office/Industrial/Retail might be characterized by different risk

attributes.

Region — East/Midwest/South/West. Supply and demand varies by region, potentially result-

ing in different growth risk.
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Appraisal-based lagged return — The accumulated (appraisal based) total return on the

property lagged four quarters. This is included to control for performance motives for selling.

Appraisal-based time series properties — The property’s appraisal-based time-series of re-

turns, up to four quarters before its last quarter in the database, is regressed against its NPI

benchmark to calculate the property’s appraisal-based market adjusted R2, market β, and idiosyn-

cratic variance. Remaining lease duration, an important risk measure that is not available in the

data, will be captured by the annual independent appraisal valuations and thus impact appraisal

time series variance.

Fund Type — Many properties are held through funds. Closed-end funds (CEFs) are finite-lived

entities and have taget liquidations dates, while open-end funds (OEFs) are essentially infinite-life

investment vehicles. The ODCE (Open End Diversified Core Equity) funds comprise a subset of

the OEF properties in the NCREIF dataset.

[Table C.1 about here.]

Table C.1 reports the results of a logistic regression, with and without year, fund-type, and

manager fixed effects. For continuous variables, the “Marginal impact” column reports the change

in the probability of sale if the explanatory variable is shifted from its 10th percentile in the database

of sold properties to the 90th percentile. For dummy variables, this column reports the impact of

changing the variable from zero to one.

When significant, small size, JV ownership, property age, vacancy, and high loan spreads

all seem to be associated with a higher probability of sale and therefore a propensity towards

shorter holding horizons. Intuitively, these are all linked to higher risk. On the other hand,

there is much evidence that apartment buildings are the least risky commercial property type,

and yet in the data their average holding period is one year shorter than other asset types. In

addition, arguably the most direct proxy linking idiosyncratic risk to holding horizon should be the

imperfectly measured idiosyncratic volatility obtained from appraisal-based returns. This measure,
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however, is significantly linked to a lower propensity to sell and therefore a longer holding period.

It is also important to note that the sum of the absolute marginal impact of the the variables with

the “correct” sign (i.e., size, JV, age, occupancy, and relative loan spread) declines from 23.9% to

5.3% when year, fund-type, and manager fixed effects are added. Much of the explanatory power

is taken up by the type of fund in which the property is held. Not surprisingly closed-end funds,

typically committed to a liquidation date, are substantially more likely to sell than an open-end

fund (ODCE or otherwise). When year, fund, and manager effects are taken into account the total

impact of the variables with the “correct” sign is comparable to that of the ones without the correct

sign (Idiosyncratic variance and Apartments) at 4.4%. Moreover, in the latter case the impact of

both sets of characteristics on disposition is swamped by that of property-specific variables not

obviously related to property-specific risk: The lagged total appraisal return and the percentage of

systematic variance comprising the property’s total appraisal return. The sum of absolute marginal

impact of these two variables is about 14%.

Once one controls for year, fund, and manager effects, the single most impactful property

characteristic linked to the decision to sell is, surprisingly, the diversifiability of its returns. The

more idiosyncratic the return, as measured by the appraisal-based adjusted R2 of returns relative to

the corresponding NPI benchmark, the more likely it is to be sold.26 That said, the effects studied

in Section 2 are net of a systematic risk exposure, and to explain them away one must argue for

a positive relationship between the magnitude of appraisal-based idiosyncratic time series risk and

the likelihood of a sale — a relationship that appears to be solidly rejected in Table C.1 .

Summarizing, while some risk-related property-level variables do predict disposition, this is

not consistent across measures and the economic magnitudes do not appear decisive. In particular,

there is no compelling evidence demonstrating a link between the magnitude of idiosyncratic risk

26A natural concern is that the appraisal-based R2 might be artificially low for properties with short holding

horizons because of the shorter time series available. This motivates the use of properties’ adjusted R2 in the logistic

regression. To further allay such concerns, the adjusted R2 is only calculated when the number of observations

available for the time-series regression equal to or exceeds 10. I substitute the median adjusted R2 of the former for

the remaining properties in the database. Whether it is followed or not, this procedure does not qualitatively alter

the results of the logistic regression.
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and shorter holding periods. Under the assumption of a random walk price process, it does not

appear that the econometric model estimation in Section 2 is an artifact of a preference among

managers for holding properties with less idiosyncratic risk over longer periods.

C.2 Endogeneity II: Strategic asset disposition and holding period returns

At any given point in time, property investors have the option but seldom the obligation to sell

their investments. Consequently, the holding period of an asset, τ , is endogenously determined

and potentially contingent on the property’s performance. This raises concerns that holding period

returns exhibit a selection bias that masks the underlying geometric random walk price process. A

natural economic link between τ and idiosyncratic return is as follows: An investor will purchase a

property only if it is deemed to provide risk-adjusted value (i.e., “alpha”) on a forward-looking basis

and will the sell the asset when this is no longer the case.27 Suppose, for instance, that the investor

purchases the property believing that its annualized alpha is 2%. If the property underperforms,

the manager will update his or her beliefs. Sufficient underperformance will eventually cause the

manager to conclude that the alpha is zero or negative, at which point the property will be sold.

The logistic regression in Table C.1 supports this view in that negative appraisal-based performance

in the year prior to a sale is one of the most significant predictors of a sale.28 If properties are

mostly sold because they underperform up to some threshold, then the risk-adjusted price paths

associated with sold properties will only portray a strict subset of possible price paths and thus

exhibit a lower variance. One possibility is that this will be more pronounced for properties held

over a longer period of time.

To explore this and the empirical implications, consider a model of a single property whose

27Properties will also be sold to finance the purchase of more lucrative properties. As long as a held property delivers

risk-adjusted value, selling for this purposes is only necessary for financially constrained entities. The NCREIF

member firms tend to be large and seemingly well-capitalized institutional investors. In addition, real estate assets

possess high collateral value suggesting that selling over-performing assets to fund other purchases will be exceptional.
28An alternative to the updating story is disposition due to tax loss selling (Constantinides, 1983, 1984; Dammon

and Spatt, 1996; Williams, 1985). This, however, is unlikely to be the culprit here because NPI qualifying properties

are held by or on behalf of tax-exempt institutional investors.
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risk-adjusted, cumulative and continuously compounded price appreciation returns evolve as:

drt = drOt + drUt ,

where rOt corresponds to the part of the return process observable by the investor (e.g., the income

stream from the property, its appraised value, etc.), and rUt is not observed. Assuming that drt

is consistent with a random walk, the goal is to see whether selection bias can lead to a holding

period return variance that is not proportional to the holding period.

Suppose that the investment’s abnormal returns or α(t) is a constant that it is not known to the

manager. When the property is first purchased, the investor’s prior over α(t) is normally distributed

with mean α0 and variance η2. From observing rOt , the investor updates at = Et[α(t)] accordingly.

Here, Et[·] corresponds to a conditional expectations based on all observable information. Assuming

that the observed part of the return process is Brownian motion with instantaneous innovation

σWdWt, the manager observes

drOt = α(t)dt+ σWdWt

with rO0 = 0, and must use this to update his or her estimate of the expected value of α(t). Because

rOt and the manager’s prior are jointly normally distributed, a standard result (see Theorem 12.1

in Liptser and Shiryayev, 1978) is that their joint dynamics is given by

drOt = atdt+ σWdWt (22)

dat =
σW
κ+ t

dWt, κ =
σ2
W

η2
, (23)

where a0 = α0 and rO0 = W0 = 0. Assume that the unobserved (until the sale at t = τ) component

of the property return evolves as

drUt = σZdZt,

where Zt is standard Brownian motion that is uncorrelated with Wt and rU0 = 0.29 Thus, the

evolution of the total returns realized when the property is sold is

drt = drOt + drUt = atdt+ σWdWt + σZdZt, (24)

29One can also consider rUt to be observed by the manager but containing no information about α(t).
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where r0 = 0 and Z0 = W0 = 0, and where at evolves according to (23). Suppose that the manager

will sell the property at the first instance, τ , that the expected value of α(τ) falls below some

threshold αL < α0. I.e., τ = inftEt[α(t + s)] ≤ αL for all s > 0. Given the martingale property

of the updating rule (which is an optimal forecast), Et[α(t + s)] = at is constant for all s. Thus

a sale takes place at holding period of τ if and only if τ is the first passage time for at = αL. An

important result follows from this observation.

Proposition 1. Let α̂ ≡ α0 − αL. At the first passage time, τ = inft{at ≤ αL},

rτ = σZZτ − κα̂+ αLτ. (25)

Thus E[rτ ] = −κα̂+ αLτ and VAR[rτ ] = σ2
Zτ .

Proof. The result follows from the observation that rOt = (κ + t)(at − α0) + α0t. To see this, first

note that this equation holds at t = 0. Next, consider that

d[(κ+ t)(at − α0) + α0t] = atdt+ (κ+ t)dat = atdt+ σWdWt = drOt .

Thus equality follows from the fact that rOt and (κ+ t)(at − α0) + αt are processes with identical

evolutions that coincide at t = 0. One can therefore write,

rt = σZZt + (κ+ t)(at − α0) + α0t.

Evaluating this at t = τ , the first passage time defined by aτ = αL yields (25). The expected value

and variance of rτ follow from the fact that Zt is independent of τ .

If κα̂ is fixed, then Proposition 1 establishes that, despite the endogeneity of the decision to

sell, the variance of holding period returns should still be proportional to the holding period. It may

be possible, however, that variability in κα̂ across investors leads to a perceived time-independent

variability in the cross-section of holding period returns.30 This, however, implies a counter-factual

30Assume κ across investors is on average equal to ten, corresponding to an investor with ten years of experience

for forming a prior, and that α̂ is on average 5%. Assume further that across investors κα̂ is uniformly distributed

from 25% to 75%. This would be sufficient to deliver a time-independent variability of 0.021, in line with the observed

quantity.
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prediction. Specifically, the additional variation should also appear in the observable cumulative

returns (i.e., rOt ) near the first passage time. In other words, the additional variation should also

appear in appraisal-based cumulative returns with holding periods close to the actual holding period

of the property. Figure C.1 depicts the results of repeating the variance analysis of Section 2.2 using

appraisal-based returns accumulated until one year before the sale. It is evident that a positive

intercept component, σ2
0 > 0, is missing in comparison with the analogous Figure 1.

[Fig. C.1 about here.]

Another problem with the predictions of this model is that expected holding period returns

are negative for short holding periods (τ → 0) in equation (25). This too is not in line with the

findings of Section 2.2.

A related alternative model is that properties are sold if they underperform to a low threshold

αL (as in the model above) or overperform to high threshold αH (e.g., the property is sold to exercise

an option for redevelopment). In this case, the distribution of holding period returns should be

bimodal, and the results in Proposition 1 will be modified to

VAR[rτ ] = σ2
Zτ + p(τ)

(
1− p(τ)

)
(τ + κ)2(αH − αL)2, (26)

E[rτ ] = −κα0 + (κ+ τ)
(
p(τ)αL +

(
1− p(τ)αH

)
, (27)

where p(τ) is the probability that a sale occurs because of underperformance rather than because

of overperformance.31 The expression for the variance is non-zero at τ = 0, thus mimicking the

effect of σ2
0 in (5). Given sufficiently high precision, κ, it may even be made to fit both Figure 1a

and 1b, as long as α0 − αL > αH − α0. An immediate implication is the prediction of bi-modality:

The holding period return distributions of underperforming and overperforming properties should

separate with time.

[Table C.2 about here.]

31It is tedious to derive an expression for p(τ) and there is no need to do so in the ensuing analysis.
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Table C.2 reports the results of the Hartigan and Hartigan (1985) “dip” test for multi-modality

at each integer holding horizon and/or vintage-year combination for which at least 30 observations

are available. All 37 tests, save for one, are unable to reject the null of a unimodal distribution

at any conventional level. Visual inspection and kernel density estimates of the number of modes

confirm the unimodal distribution of the holding period returns. The alternative model therefore

appears to furnish an unlikely explanation for the findings in Section 2.2.

In summary, while models of strategic disposition under a random walk hypothesis can account

for the time-independent effects, they also make counter-factual predictions about the appraisal-

based and actual return distributions, thereby rejecting this joint hypothesis.
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Table 1: The histogram reports entries of properties into the “clean” dataset (see Appendix A) and
includes both sold and unsold properties. The table reports the average vintage for various holding
periods of sold properties. If property market volatility varies through time, because vintage is not
uniform across holding horizons, it stands to reason that holding period variance will also vary with
time.
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1 2003 403
2 2001 634
3 2001 823
4 2000 685
5 1999 779
6 1999 715
7 1998 722
8 1996 685
9 1993 473
10 1992 382
11 1991 361
12 1991 283
13 1991 252
14 1991 182
15 1991 137
16 1991 124
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Table 2: Panels A and B report the first and second stage regressions for estimating the model with random

effects in Equation (4). The estimation procedure is described in the text. Under the null α0 = α1 = σ2
0 = 0,

while υα,y and υσ,y are the idiosyncratic excess expected return and variance, or α and σ2, accumulated

while holding the property for the entirety of year y ∈ {1978, . . . , 2013}. The terms 1
36

∑
y
υα,y and 1

36

∑
y
υσ,y

correspond to the average annualized α and σ2 under the null. P (υα,y) (resp. P (υσ,y)) is the probability

that all υα,y’s (resp. υσ,y’s) are equal.

Panel A

(1) (2)
r̃√
τ

Adj r̃√
τ

β 0.957*** (0.0632) 0.994*** (0.0593)

α0 0.210*** (0.0384) 0.225*** (0.0401)

α1 -0.171*** (0.0401) -0.182*** (0.0393)

1
36

∑
y υα,y 0.0166 (0.01) 0.0189* (0.0094)

P (υα,y) const <1E-6 <1E-6
Observations 3322 3322

Panel B

(1) (2) (3) (4) (5)
ẑ2 Adj ẑ2 Adj ẑ2 Adj ẑ2 Adj ẑ2

σ2
α -0.000432 -0.000398 -0.000178 -0.000198

(0.000363) (0.000366) (0.000277) (0.000263)

σαβ -0.00632 -0.00574
(0.00619) (0.00625)

σ2
β -0.0391 -0.0435 -0.00758

(0.0498) (0.0502) (0.0316)

σ2
0 0.0237*** 0.0258*** 0.0276*** 0.0274*** 0.0298***

(0.00494) (0.00499) (0.00458) (0.00453) (0.00324)

1
36

∑
y υσ,y 0.0131*** 0.013*** 0.012*** 0.012*** 0.0101***

(0.0031) (0.0032) (0.003) (0.003) (0.0015)

P (υσ,y) const 0.000015 <1E-6 <1E-6 <1E-6 <1E-6
Observations 3322 3322 3322 3322 3322

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001
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Table 3: Model parameter choices

Parameter Fixed value

λ̃ ±1 with 50/50 probability
v 0.50

Calibrated value

σ 0.0112
x 0.00817
c 1.297
ηH 1.0737
ηL 1.004
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Table 4: Comparison of statistics estimated from the data (point estimates and their standard er-
rors) versus their counterparts calculated from the calibrated model. To control for the correlations
across properties and time, the quarterly turnover, average transaction costs, average acquisition
cap rates, and fraction sold within five years are first calculated by calendar year. The point es-
timates and standard deviations are then calculated using the corresponding time series statistics,
weighted according to the number of properties in each calendar year (see discussion and plots in
Appendix A.1).

Quantity Point estimate SD Calibrated Model

Idiosyncratic diffusion volatility, σ2
I 0.0101 0.0015 0.0112

Quarterly Turnover 0.031 0.015 0.031
Average Transaction Costs 0.0201 0.0062 0.0226
Average Acquisition Cap Rate 0.071 0.014 0.070
Fraction Sold
Within 5 Years 0.33 0.16 0.43

Holding Period Return Statistics
1yr Adj. Exp. Return 0.0401 0.0210 0.0397
1yr Adj. Variance 0.0310 0.0067 0.0308
6yr Adj. Exp. Return -0.1057 0.0308 -0.0714
8yr Adj. Exp. Return -0.1182 0.0313 -0.0882
8yr Adj. Variance 0.1050 0.0168 0.1134
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Table A.1: This table reports the number of properties remaining in the NCREIF dataset, 1978Q1-
2013Q4 after applying a sequence of filters. Details of each step are reported in Appendix A.

Step All “S”/“F”/“P” /‘R”
Properties Started as NPI NPI Properties

1 30,895 20,547
2 30,362 20,473
3 30,362 20,473 16,045
4 24,403 19,278 15,929
5 22,971 18,375 15,048
6 20,825 17,808 14,536

All “S” “S”/“F”/“P” /‘R”
Total Return Filters Properties NPI Properties NPI Properties
Only applicable to return analysis 10,145 9,038 14,536
7 10,144 9,037
8 10,121 9,020
9 9,832 8,791
10 8,818 8,115
11 8,817 8,115

“S” NPI Properties “F” “P” /‘R”
w/wo Return Filter NPI Properties NPI Properties

9,038 / 8,115 5,318 180
12 3,960 3,148 46
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Table B.1: Panels A and B report the first and second stage regressions for estimating the model with

random effects in Equation (4) using randomly sampled REIT holding period returns substituted for the

property holding period returns in the panel. The estimation procedure is described in the text. Under

the null α0 = α1 = σ2
0 = 0, while υα,y and υσ,y are the idiosyncratic excess expected return and variance,

or α and σ2, accumulated while holding the property for the entirety of year y ∈ {1978, . . . , 2013}. The

terms 1
36

∑
y
υα,y and 1

36

∑
y
υσ,y correspond to the average annualized α and σ2 under the null. P (υα,y) (resp.

P (υσ,y)) is the probability that all υα,y’s (resp. υσ,y’s) are equal.

Panel A

(1) (2)
r̃√
τ

Adj r̃√
τ

β 0.8837*** (0.1058) 0.902*** (0.0975)

α0 0.008 (0.0769) 0.0033 (0.0172)

α1 0.005 (0.0805) 0.04 (0.1208)

1
36

∑
y υα,y 0.0004 (0.0256) -0.001 (0.0182)

P (υα,y) const <1E-6 <1E-6
Observations 3206 3191

Panel B

(1) (2) (3) (4) (5)
(6)
ẑ2 Adj ẑ2 Adj ẑ2 Adj ẑ2 Adj ẑ2

Adj ẑ2

σ2
α -0.0002 -0.0003 -0.0006 -0.0003

(0.0009) (0.0009) (0.0009) (0.0009)

σαβ -0.0163 -0.0169
(0.0101) (0.0102)

σ2
β -0.0574 -0.0574 -0.0884

(0.0594) (0.0601) (0.057)

σ2
0 -0.0447** -0.05** -0.0452** -0.0408** -0.0366***

(0.0149) (0.0155) (0.0152) (0.015) (0.0106)

1
36

∑
y υσ,y 0.0793*** 0.0813*** 0.0814*** 0.0762*** 0.073*** 0.065***

(0.0184) (0.0186) (0.0186) (0.0183) (0.0164) (0.0162)

P (υσ,y) const <1E-6 <1E-6 <1E-6 <1E-6 <1E-6 <1E-6
Observations 3206 3191 3191 3191 3191 3191

Standard errors in parentheses

* p < 0.05, ** p < 0.01, *** p < 0.001
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Table B.2: Properties with holding period k× τ are matched with k properties of non-overlapping
holding period τ so that the total horizon of the latter matches that of the former. The equation
(6) regression residual variance and intercept of the k × τ horizon properties are compared with
those of the compounded returns of the matched properties. The normalized variance difference
measures the transaction risk variance component while controlling for vintage (likewise for the
normalized difference in regression intercepts). The GLS estimate is the error-weighted mean of
the 10 variance (or alpha) differences in the table.

k τ N Avg Vintage (Var Diff)/(k − 1) t-stat (α Diff)/(k − 1) t-stat

2 4 79 2002 0.0588 2.18 0.015 0.26
2 3 97 2001 0.0355 1.74 -0.015 -0.28
2 2 128 2003 0.0387 2.50 -0.029 -0.76
2 1 75 2004 0.0382 2.60 0.026 0.57
3 3 57 2002 0.0104 0.58 0.020 0.26
2 5 45 1997 0.0396 0.88 -0.144 -1.30
2 6 27 1995 -0.0706 -0.71 -0.106 -0.46
2 7 23 1994 0.0115 0.13 -0.351 -1.33
3 5 23 1996 0.0426 1.04 -0.124 -0.58
2 8 21 1989 0.0834 0.83 -0.434 -0.53

p-value for χ2(Var Diff= 0) 0.0072
p-value for χ2(α = 0) 0.68

Statistic GLS Estimate se

Var Diff 0.0342 0.0081
α -0.009 0.020
p-value for χ2(Var Diff = GLS Estimate ) 0.90
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Table C.1: Results of a logistic regression for the probability of a property sale. The dependent
variable is one if a property is within four quarters of a sale and zero otherwise. Quarterly data
for sold and unsold properties and quarters are used, including properties that were purchased
more than one quarter prior to the first reporting period. The explanatory variables are property-
specific attributes discussed in the text. Vintage year and manager fixed effects are included but
their coefficients not reported. The marginal impact reports the change in probability of a sale
when the corresponding variable changes from its 10th to its 90th percentile (for dummy variables
the change is from zero to one).

No year or mgr FEs Includes year and mgr FEs
variable coeff t-stat Marginal impact coeff t-stat Marginal impact

SqFt -0.0855 -13.49 -0.034 -0.057 -6.01 -0.012
JV 0.3540 26.09 0.068 0.029 1.20 0.003
Age 0.3797 45.10 0.131 0.225 18.58 0.042
Percent Leased 0.0242 0.54 0.001 -0.191 -3.03 -0.005
Relative Loan spread 4.7618 4.84 0.005 1.004 0.70 0.000
Apartments 0.1380 7.56 0.026 0.271 9.45 0.029
Industrial 0.1575 9.66 0.029 0.037 1.41 0.004
Office -0.0691 -3.91 -0.013 -0.120 -4.47 -0.012
East -0.0195 -1.25 -0.004 -0.026 -1.19 -0.003
Midwest -0.1495 -8.42 -0.027 0.053 2.13 0.005
South -0.0178 -1.20 -0.003 0.043 2.04 0.004
Lagged return -0.6791 -27.59 -0.063 -0.820 -23.14 -0.040
Idiosyncratic variance -3.1538 -11.58 -0.014 -6.374 -13.63 -0.015
R2
a -0.7867 -26.80 -0.076 -1.914 -39.57 -0.100

β 0.0232 15.77 0.012 0.022 9.15 0.006
CEF 0.666 24.14 0.080
ODCE -0.150 -5.74 -0.015
Unclassified fund 1.579 13.99 0.266
Non-ODCE OEF -0.176 -4.96 -0.017
Constant -1.1110 -11.91 -0.896 -3.24
Observations 174,115 146,302
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Table C.2: Results of a Hartigan and Hartigan (1985) “dip” test for deviations from unimodality of
the holding period returns. At the top of the table analyzed returns are grouped by their nearest
integer holding periods (half-integer holding periods are randomly rounded). In the bottom part
of the table, the analysis is extended to subgroups of the same vintage (acquisition year). In the
latter case, the test is done only with groups containing 30 or more observations . A low p-value
rejects the null of a unimodal distribution.

Holding Period Vintage n dip p-value Holding Period Vintage n dip p-value

1 213 0.0173 0.961 9 172 0.0286 0.539
2 379 0.0162 0.803 10 101 0.0243 0.964
3 487 0.0115 0.97 11 99 0.0281 0.887
4 338 0.0122 0.992 12 75 0.031 0.911
5 353 0.0248 0.241 13 70 0.0258 0.985
6 305 0.0182 0.774 14 48 0.0351 0.934
7 351 0.015 0.914 15 48 0.0446 0.738
8 309 0.019 0.73 16 28 0.0604 0.641

1 2003 35 0.0387 0.955 4 2002 40 0.0597 0.425
1 2005 49 0.0314 0.973 4 2005 30 0.0683 0.422
2 2003 50 0.0486 0.586 4 2006 34 0.0699 0.348
2 2004 45 0.0423 0.827 4 2007 33 0.0421 0.929
2 2005 60 0.0367 0.826 5 2007 52 0.0448 0.681
2 2006 31 0.0799 0.251 6 2006 31 0.0479 0.867
3 2002 72 0.0973 0.004 6 2007 42 0.0334 0.967
3 2003 101 0.0554 0.109 7 2006 90 0.0264 0.954
3 2004 35 0.0642 0.427 7 2007 34 0.049 0.823
3 2005 49 0.0313 0.958 8 2005 57 0.0351 0.893
3 2007 37 0.0534 0.679
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Fig. 1: The top figure depicts point estimates and their 95% confidence intervals for property
expected idiosyncratic excess returns. The black circles and thick gray confidence intervals corre-
spond to the in-sample predictions obtained from the econometric specification in (4) (including
vintage effects). The green triangles and thin dashed confidence intervals correspond to predictions
obtained from the simple regression model in (6). The bottom figure repeats the exercise for the
idiosyncratic excess return variance.
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Fig. 2: Time line representing the sequence of events between dates t + 1 and t + 2. This is the
relevant time line for an ex-dividend valuation of the property between dates t and t + 1 by an
investor of type a (post-transition).
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Fig. 3: The figures depict the predictions of the calibrated theoretical model (blue diamonds)
against those of the estimated econometric model in (4) (red squares for the point estimates and
thin dashed line for the 95% confidence interval). The top figure compares expected holding period
returns while the bottom figure compares variance of holding period returns.
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Fig. 4: The histogram plots the distribution of steady-state ownership for the model with the
calibrated parameters in Table 3. The horizontal axis lists the owner type by the owner’s annualized
(private value) cap rate, 4
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. The average transaction cap rate in the model is 0.0704.
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Fig. 5: Transaction Risk in Commercial Real Estate Properties. Each plot depicts the probability
of transacting an asset within one quarter as a function of the seller’s reservation income-to-price
ratio (i.e., “cap rate”). The step function corresponds to the probability distribution transacting
a perfectly liquid asset. The calibrated model yields significant transaction risk for commercial
properties, as shown by the distribution function labeled “Property Market”.

71



0.045

0.05

0.055

0.06

0.065

0.07

0.075

0.08

0.085

0

0.5

1

1.5

2

2.5

3

3.5

4

0.055 0.065 0.075 0.085 0.095

Ex
pe

ct
ed

 tr
an

sa
ct
io
n 
ca
p 
ra
te
 (n

et
 o
f c
os
ts
)

Ye
ar
s

Reservation cap rate (gross of costs)

Fig. 6: The solid blue and dashed red lines trace the mean and median, respectively, of the time
to sell given a seller’s reservation cap rate (gross of costs). The black dash-dotted line graphs
the expected transaction cap rate (corresponding to the right vertical axis). The large solid circle
signifies the reservation cap rate at which a seller can expect to sell at prevailing market rates.
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Fig. 7: An owner is said to have a need for immediacy of y years if (s)he must sell the property
within y years. The graph depicts the discount relative to prevailing transaction prices that the
seller expects to experience if using the disposition strategy described in the text.
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Fig. A.1: The four figures plot property statistics from the “cleaned” dataset described in Appendix
A. Figure (a) depicts the proportion of properties sold within five years of purchase by the year they
were acquired. Only properties that began reporting into the dataset no more than one quarter
after acquisition are included. Figure (b) depicts the acquisition cap rate of these properties by
the year of acquisition. The cap rate is calculated as sum of first four quarters of reported NOI
divided by the purchase price. Medians are used to avoid bias from outliers. Figure (c) reports
transaction costs for sold properties by year of sale. This is calculated as gross transaction price less
net transaction price, divided by the gross transaction price. Here too medians are used. Figure
(d) plots the quarterly turnover per year, calculated as the number of property-quarters in which a
sale is reported in a given year divided by the number of property-quarters in that year. Property
number-weighted time-series averages of each quantity graphed are used in the calibration of the
model from Section 3.
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Fig. B.1: The top figure depicts point estimates and their 95% confidence intervals for expected
idiosyncratic excess returns when property holding period returns are replaced with randomly
sampled REIT returns. The black circles and thick gray confidence intervals correspond to the
in-sample predictions obtained from the econometric specification in (4) (including vintage effects).
The green triangles and thin dashed confidence intervals correspond to predictions obtained from
the simple regression model in (6). The bottom figure repeats the exercise for the idiosyncratic
excess return variance.
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Fig. C.1: The figure depicts point estimates and their 95% confidence intervals for the variance of
commercial property idiosyncratic excess returns. The holding period returns are appraisal-based
and are calculated up to one year prior to the sale of the property. The black circles and thick
gray confidence intervals correspond to the in-sample predictions obtained from the econometric
specification in (4) (including vintage effects). The green triangles and thin dashed confidence
intervals correspond to predictions obtained from the simple regression model in (6).
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