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Abstract 
 

Young firms are central to productivity and job growth in the United States, yet they 
fail at high rates. We examine how a recent rise in firms’ ability to access information 
technology as a service affected the survival and performance of young establishments 
in the U.S. manufacturing sector. Using detailed Census Bureau data, we track a large 
representative sample of plants from 2006 to 2014. We find that the ability to “rent” IT 
as needed – in particular, via cloud computing – was associated with significantly higher 
survival and growth among young plants. This contrasts with investments in traditional 
IT capital, which increased the likelihood of failure. Conditional on survival, young 
plants also exhibited much higher productivity than older plants from IT services 
expenditure. The effect was more important in IT-intensive and high-variance 
industries, consistent with a greater option value from reductions in the cost of learning 
about new IT. Also consistent with a learning-based mechanism, the effects are related 
more to age than to size, and apply to new establishments of existing firms. Our study 
provides the first empirical evidence that this emerging technology is changing how 
firms learn about their IT requirements and benefit from shared economies of scale 
before they achieve significant experience and scale of their own.     
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I. INTRODUCTION 

Young firms drive a significant portion of U.S. employment and output growth (Haltiwanger et 

al. 2013, 2016) and innovation (Hansen 1992, Kortum and Lerner 2000). Yet they are more likely to die 

(Decker et al. 2014), and there is concern about declining startup entry and survival in many industries 

(Hathawy and Litan 2014a, b & c; Haltiwanger et al. 2016).  Recently, young firms have become more 

prevalent in manufacturing (see Figure 1) and startups with particularly high growth potential have 

recently increased across the U.S. Economy (Guzman and Stern 2015, 2016). Establishing and 

understanding new facts about young firms has become a topic of increasing interest and importance.  

A popular narrative accompanying these facts is that younger firms are benefitting 

disproportionately from new technologies. Recently, near-ubiquitous high-speed internet infrastructure, 

new software tools for storage and server consolidation (“virtualization”) as well as application 

deployment (“containers”), and rapid entry of service providers into “cloud computing” technologies have 

made it increasingly possible for firms to access frontier information technology (IT) rapidly – and on an 

as-needed basis. The flexibility this affords firms is unprecedented, and anecdotal evidence abounds that 

young firms, in particular, are leveraging the cloud to experiment and scale rapidly in ways that may be 

transformative for the economy as a whole (e.g., Machi 2010, Manyika et al. 2011, Ewens et al. 

forthcoming).3 Yet information on cloud investment is difficult to isolate in economic data, and young 

firms are difficult to observe and track in large numbers. Thus, systematic economic analysis has been 

scarce.  

We provide the first large-scale empirical evidence that recent dramatic increases in firms’ ability 

to access IT as a service is associated with significant changes in the survival and performance of young 

establishments in the United States. Using U.S. Census Bureau micro data on manufacturing, we observe 

                                                      
3 The MIT Entrepreneurship Review reported, “Even for non-computationally-intensive start-ups, cloud computing 

and cloud services have their niche. The economic goals of start-ups are often more geared toward short-term 
survival rather than long-term financial efficiency. With cloud computing, electricity costs, real estate expenses to 
house hardware, and IT administrator fees are largely eliminated. Moreover, the economic benefit extends beyond 
the direct cost of capital equipment. That is, clouds allow companies to become more agile, with respect to changes 
in IT infrastructure.” (Machi 2010). 
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that expenditures on IT services that include cloud computing are disproportionately associated with 

performance gains among young plants. Older establishments do not show the same returns to these 

expenditures, on average. In many ways, this is a surprising result, given the longstanding association of 

IT productivity with firm size and experience (e.g. Tambe and Hitt 2012, McElheran 2015) – both of 

which are associated with age. We argue, however, that key features of the cloud are particularly 

beneficial to firms facing high uncertainty, thereby making young firms the primary – or at least the first 

– beneficiaries of this recent technological advance. 

To understand how this might matter differently for young versus older establishments, we draw 

on models of firm lifecycle dynamics to predict how these tradeoffs will shift as firms age. Early in a 

firm’s life, uncertainty about demand and how best to meet it is highest (Knight, 1957, Jovanovic1982, 

etc.). Often, however, experience at the necessary scale or speed is impossible to acquire, and experiments 

can help young firms learn about which projects are worth pursuing before making risky irreversible 

investments (Kerr et al. 2014, Ewens et al. forthcoming). Lowering the costs of learning through 

experiments increases the likelihood of investing in projects with the highest real option values. We argue 

that this logic governs not only core product market decisions, but also decisions over important inputs 

such as IT. Thus, the lower up-front commitment and ability to rapidly scale IT expenditure (both up and 

down) via cloud technologies will tend to be more valuable in the uncertain early years of an 

establishment’s life. Later, when uncertainty is resolved, firms can better maximize expected value by 

investing in firm-specific IT capital that they own, customize, and maintain themselves. 

We test our hypotheses using an unusually representative panel of roughly 26,000 establishments4 

over nine years (2006-2014) from the U.S. Annual Survey and Census of Manufactures. It is worth 

emphasizing early on that all establishments in this data set have at least one employee, so while it covers 

an unusually large and representative sample of small and young operations, this is not a study of firm 

                                                      
4 We hypothesize that much of the relevant uncertainty may be quite localized (i.e., varying by industry, geography, 

production technology, and even plant-level “know how”); thus, we conduct our main analysis at the establishment 

level and then explore whether this varies for multi-establishment firms.  
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founding. Moreover, we do not restrict our attention exclusively to young firms, per se. Many of the 

young plants in our analysis sample belong to larger, multi-unit entities. The fact that the patterns we 

observe are not sensitive to this distinction is informative about how localized these mechanisms are.  

Using heretofore unexplored fields in the Census micro data, we model survival, employment 

growth, and multi-factor productivity at the plant level as a function of different types of IT investment. 

We exploit a variety of approaches to address endogeneity and measurement error to argue that 

expenditures on outsourced IT services are causally linked to better survival, growth, and productivity in 

the critical first five years of a plant’s life. Interestingly, we also show that traditional IT capital, while 

correlated with productivity – conditional on survival – it is actually associated with a greater likelihood 

of failure among the young. The only gains observed for older plants appear when they are very small or 

are in settings where uncertainty is particularly high.  

A range of mechanism tests rule out alternative hypotheses related to economies of scale or 

financial frictions. First, while shared economies of scale in the cloud are not completely irrelevant, 

among older plants of any size, owned IT capital remains the primary driver of IT-related productivity. 

That said, smaller young plants benefit more from IT services than larger young ones, conditional on 

survival. To explore whether this nuance could be related to financing constraints that are eased by firms’ 

ability to substitute cloud computing for high-fixed-cost IT, we directly test whether plants with less 

financial slack benefit more from the cloud; it is not the case in our sample. Moreover, plants of existing 

firms (which would presumably have access to internal capital markets) follow the same patters as young 

stand-alone plants. Even more compellingly, we observe the learning channel at work: early exploration 

via the cloud increases the productivity of owned IT capital and expenditures on software later on. 

These findings are significant in a research and policy context that has expressed concern over the 

short lifespan of new ventures (e.g. Haltiwanger et al. 2013, Decker et al. 2014), yet has had almost no 

visibility into how significant technological changes have affected the youngest and smallest firms in the 

economy. The magnitude and timing of our results suggest that cloud computing and related IT services 

are rapidly providing a means for the young to achieve better performance before they achieve experience 
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and scale of their own. It is worth emphasizing that, to the extent that the smaller young plants are also the 

ones with the fastest growth rates, IT services appear particularly important for mitigating uncertainty in 

high-growth manufacturing, a sector of particular interest in the literature (Guzman and Stern 2015, 106; 

Haltiwanger et al. 2016). This phenomenon is recent, understudied, and has far-reaching implications for 

productivity and economic growth in the years ahead.  

By providing a lifecycle perspective on how firms benefit from new technologies, our study 

makes a few contributions. First, it contributes to the economics literature focused on learning and the 

importance of experimentation in young firms (Kerr et al., 2014 Ewens et al. forthcoming). One key 

difference is that that our focus is on how firms learn about complementary investments – rather than 

about their core product market – under uncertainty. Also, we are able to show that improving firms’ 

abilities to learn about complementary inputs is associated not only with survival and growth, but also 

with productivity at the micro level. Consistent with prior work (Ewens et al. forthcoming), we find that 

the impact of the cloud is restricted to certain environments; however, we also find that the benefits 

extend beyond the initial startup costs of the firm and are associated with improved performance of IT 

investments made a number of years later. 

Our findings also contribute to the economics and strategy literature on Schumpeterian dynamics. 

First, by favoring entrants in ways that traditional IT capital does not, the cloud may represent a new 

engine for “creative destruction” (Schumpeter 1934, 1942) in the economy as a whole. That said, the fact 

that these patterns hold equally for young plants of existing firms provides insight into how incumbent 

firms may also benefit from new technologies – a topic of active debate in both research and practice 

(Henderson 1993; Christensen 1997; Bresnahan, Greenstein, and Henderson 2011; Gans 2016).   

Economic evidence disentangling age from size also matters for policy because the key 

mechanisms – and frictions –are very different for age-based versus size-based models of firm dynamics. 

Our results point to core frictions rooted in uncertainty and learning – and the unavoidable riskiness of 

making irreversible investments when market and production conditions are new or highly variable. The 

policy solution to this challenge is less straightforward than typical approaches targeting liquidity 
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constraints. One perspective on our findings is that the cloud provides a technological – rather than a 

policy – solution to decreased business dynamism. Thus, at the highest level, our findings contribute a 

new perspective to the rich debate about the value of – and interventions required by – young firms in the 

U.S. economy (e.g. Hurst and Pugsley 2011). Our results thus offer new facts to a growing stream of 

research emphasizing the distinction between size and age in both theoretical and empirical work (e.g., 

Kueng, et al 2016; Hsieh and Klenow 2014; Haltiwanger, et al. 2013 & 2016). 

While size plays a secondary role in this phenomenon, this study nevertheless speaks to a gap in 

the IT productivity literature concerning the behavior of small firms. Prior work has tended to focus 

primarily or even exclusively on large – often public – incumbent firms. Research on small firms is 

flagged as an important area for new work (Dedrick, et al. 2003), and recent contributions (e.g., Tambe 

and Hitt 2012) have relied on data with a somewhat larger proportion of small and medium-sized firms. 

Yet, an essential swath of the firm age and size distribution remains largely absent from our 

understanding of how organizations of different ages and sizes take advantage of IT.  

Finally, this study updates our insights on firm use of IT in the wake of rapid and fundamental 

technological change. The central IT adoption and productivity studies (e.g., Bresnahan and Greenstein 

1996; Bresnahan, et al. 1996; Hubbard 2000; Brynjolfsson and Hitt 2003; Forman, et al. 2005, 2008, 

&2012;  Aral, et al. 2006; Tambe and Hitt 2012; and studies cited therein) pre-date, abstract away from, 

or conclude with the diffusion of the commercial internet.5 Yet “turnkey” solutions now available via the 

cloud have advanced the speed, scalability, and modularity of IT services dramatically over the past 

handful of years (Bryne and Corrado 2016). This raises important questions about how this new type of 

IT may or may not be productive in today’s firms – and why. Our results suggest that established 

intuitions may not apply indiscriminately in the age of cloud computing. In particular, the importance of 

scale and intangible organizational investments may be diminishing in ways that have the potential to 

shift the locus and drivers of economic growth in the long run. 

                                                      
5 See the useful review of this large literature in Forman and Goldfarb (2016). 
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II. PHENOMENON: THE RISE OF CLOUD COMPUTING  

While “IT outsourcing” of some form has been available for decades (Dibbern et.al. 2004), the 

mid-2000s marked a dramatic departure.6 The “on-demand delivery of computing power, database 

storage, applications, and other IT resources via the internet with pay-as-you-go pricing”7 became 

dramatically more available with the launch of Amazon Web Services (AWS). In 2006, Amazon started 

offering its beta version of Elastic Compute Cloud (EC2) services and set the price for an instance 

(1.7GHz Xeon processor/1.74 GB of RAM) at $0.10 per hour –a much more appealing price for startups 

and small- and medium-sized businesses compared to previously available products. In 2007 and 2008, 

Amazon introduced several larger-scale cloud computing services with much higher CPU power and 

more storage and RAM. From this point on, firms’ ability to access quite sophisticated IT services 

without incurring high fixed costs was transformed (Bryne and Corrado 2016). A wider array of offerings 

made it possible for cloud customers to “mix and match” their requirements for infrastructure, processing 

capabilities, storage, and software – and to do so very quickly (McKendrick 2011).  

Price Declines late 2009 and onward 

The price of cloud computing services experienced a sharp decline from late 2009 onward due to 

growth of AWS and entry of new providers (Barr 2009a, 2009b, and 2009c). In addition to growth and 

innovation from AWS, Microsoft fully deployed its own “Azure” cloud computing platform. NASA and 

Rackspace Hosting launched their joint open-source cloud software project in 2010. IBM launched its 

                                                      
6 Some would argue for an earlier inflection point: the introduction of the commercial internet introduced a lower-

cost – and, in particular, a more variable-cost – IT model beginning in the mid 1990’s. Even so, there was an 
important distinction between “basic internet” and “advanced” applications– the former being relatively cheap but 
also less important for firm productivity, and the latter requiring greater co-invention and complementary 
organizational inputs (Forman, Goldfarb, and Greenstein, 2005, 2008, 2012). 

 
7 This definition can be viewed from Amazon website at: https://aws.amazon.com/what-is-cloud-computing/ 
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cloud computing series in 2011, and Oracle subsequently deployed its Oracle cloud in 2012 (Hauger 

2010). The heated market competition among these large vendors stimulated dramatic price declines; the 

cost per “computing unit” per hour for Amazon compute services alone fell from to as low as a few cents 

by 2010 (http://www.gregarnette.com/blog/2011/11/a-brief-history-cloud-cpu-costs-over-the-past-5-

years/i). Byrne, Corrado and Sichel 2017 provide compelling evidence for the decline in cloud computing 

costs beginning in late 2009, followed by further steep price declines in 2012 and 2014 (See Table 1).  

Tradeoffs for Different Types of IT 

IT has been extensively correlated with productivity in a wide range of firms (e.g., Tambe and 

Hitt 2012). Why would the cloud be different from what we have seen in prior waves of computing 

technology?  

The key benefit of this new way of accessing IT services is how it allows businesses to leverage 

large and powerful computing services very quickly and according to changes in their own demand. The 

ability to scale this activity up and down as needed – and as uncertainty about market demand and internal 

production was resolved – is probably most beneficial in IT-intensive services (Ewens et al. forthcoming). 

Yet anecdotal evidence points to benefits for manufacturing firms from cloud-based sales and marketing, 

enterprise resource planning, supply chain management, and payments – to name a few. Also, 

manufactured products increasingly rely on bundled IT services that require data collection, storage, 

analysis, and communication (Columbus 2013).  

A couple of concrete examples are useful to fix ideas. For instance, certain types of 

manufacturing rely heavily on computer-aided design (CAD) and computer-aided manufacturing (CAM) 

technologies that allow product designers and industrial engineers to model product features and design 

interdependencies, experiment with different design choices, and link closely to physical production 

equipment. Other authors (e.g., Kerr et al. 2014) have described how manufacturers that are still 

developing their core products may benefit from computing resources and software applications that 

allow them to experiment with product details before investing in actual production resources.  
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Additionally, it is important to consider that they need to experiment with the types of complementary IT 

applications and related processes that might work for them. Young plants may be innovating based on 

design approaches that are not well supported by all software vendors, but the extent of the functionality 

gap may be difficult to assess without using the technology. Also, a key application of CAD/CAM 

software is collaboration between supply chain partners. Yet young operations may also be unsure about 

which suppliers and customers they will want to cultivate in the long run, many of whom may have 

different – and incompatible – systems in place. Owning the IT required for all of those experiments up-

front is prohibitively expensive; “renting” generic solutions via the cloud until specific uses and 

collaborations are more certain may provide better productivity and also inform later investments – i.e., 

creating real options that support short-term survival and long-term performance. 

Another example comes from the increasingly prevalent practice of bundling IT functionality 

with physical products. Consumer electronics and cars increasingly have embedded features such as 

voice-activated controls, on-board diagnostics, and push notifications from manufacturers that require 

robust and rapidly scalable IT infrastructure. Quickly and flexibly scaling up generic capabilities until 

specific details are “fine-tuned” may be particularly important while firms are learning about consumer 

demand for these new add-ons. Again, learning from generic inputs without committing significant 

resources is valuable. 

This list off benefits gives rise to the question of why any firm – regardless of age – would fail to 

take advantage of these new capabilities? Despite the many benefits, cloud-based IT services come with a 

number of important limitations that give rise to tradeoffs that matter differently for firms of different 

ages. The most important limitation is that the offerings are generally quite standardized and not 

necessarily well-tailored to important core business functions within a specific firm.8 Relatedly, 

                                                      
8 Bruce Schneier at the Berkman Center for Internet & Society at Harvard Law School offers a useful culinary 

analogy: "The downside is that you will have limited customization options. Cloud computing is cheaper because of 
economies of scale and — like any outsourced task — you tend to get what you get. A restaurant with a limited 
menu is cheaper than a personal chef who can cook anything you want.” 
(https://www.schneier.com/blog/archives/2015/06/should_companie.html) 



10 

 

outsourced cloud solutions frequently do not allow the adopting firm to have tight control over its data or 

software upgrade schedule. Data security is an oft-cited concern, and sometimes dominates questions of 

cost or efficiency (Rahid 2016). In addition, unforeseen and uncontrollable downtimes do occur and have 

proven costly (e.g. AWS has had outages in recent years that caused thousands of businesses’ websites to 

be unavailable for a time – see Weise 2017). Finally, at least for large-scale operations, the unit costs of 

the cloud have also not tended to be competitive with owned data center investments. A prominent (albeit 

non-manufacturing) example is Dropbox, which stored all of its files on Amazon’s servers until 2015, 

when it moved to its own servers to improve their unit economics. In a prominent interview about the 

switch, their vice president noted, “Nobody is running a cloud business as a charity. There is some 

margin somewhere."(Metz, 2016). Thus, there are many reasons for firms to prefer their own IT 

capital infrastructure, conditional on knowing what they need and being able to afford it. 

III. BEHAVIORAL MECHANISMS AND RELATED LITERATURE 

How might the tradeoffs presented by cloud computing matter differently for firms of different 

ages?  While the price declines in IT services over this period, and the shift from fixed to variable costs 

are notable, we argue that it is the flexibility of the cloud services model that mattered most for young 

manufacturing operations, and the lack of specificity that mattered most for older ones. 

Irreversible Investments under Uncertainty  

Much prior work on investment dynamics emphasizes the costs to firms of any age from making 

irreversible investments under uncertainty (e.g., Marschak 1949; Bernanke 1983; Pindyck 1990; Dixit & 

Pindyck 1994). While this has been established in the context of traditional (or simply undifferentiated) 

capital investment, the logic extends naturally to IT capital. Prior to the rise of the cloud, firms that 

required significant IT in their production process had to make bets – potentially quite large ones – on 

hardware and software in advance of uncertain growth and with limited ability to adjust as market and 

operational requirements changed. The lead-time for these bets is long: building a bespoke data center can 
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take up to 18 months (Greenstein and Snively 2017). Exacerbating the tension in our context is the high 

rate of depreciation and obsolescence of IT assets due to rapid technological advances. Those bets could 

easily fail to pay off, leaving firms with poorly-performing IT and fewer resources for new investments. 

Anticipating these risks, firms have incentives to underinvest in order to maintain flexibility, or 

“real options” (Dixit and Pindyck 1994). This will promote an inefficiently low level of IT investment, on 

average. Moreover, this distortion will be greater when firms perceive a high option value from waiting. 

Uncertainty exacerbates investment delays (Guiso and Parigi 1999; Bloom, Bond, and Van Reenen 2007), 

and uncertainty tends to be highest in the early in a firm’s life (e.g., Knight 1957, Schumpeter 1934).  

The canonical model in this vein, due to Jovanovic (1982), assumes that entrepreneurs lack even 

private information about their own future profit opportunities and require time to learn about their 

productivity. Foster et al. (2016) explore how firms learn about external demand, showing that this can 

take a long time in manufacturing. Classic learning-by-doing models (Bahk and Gort 1993; and Levitt, 

List, and Syverson 2013 and works cited therein) capture internal learning dynamics. Firms learn how to 

become more efficient as they produce their products, accumulating critical knowledge about their 

processes, equipment, employees, effective managerial practices, supply chain partners, and so on.  

One way to learn more quickly without making costly initial investments is to conduct 

experiments. The cloud reduces the costs of experimenting with different IT products to learn about what 

types of IT work with the processes, customers, and partners they have – or might want to to have. As 

long as experiments are not too costly, they generate real options for firms to reduce uncertainty (Nanda 

et al. 2014). Leveraging the more-affordable learning acquired in the cloud, firms can then make better IT 

investment decisions later on that maximize the expected value of the firm.  

Thus, all else equal, we hypothesize that young firms would tend to benefit disproportionately – 

in terms of both productivity and survival – from new opportunities to access “good-enough” 

functionality, delay market- or relationship-specific investments, and affordably conduct experiments to 

learn about their IT needs. Moreover, we would expect the benefits of better IT experimentation to be 

higher in industries where: IT knowledge is particularly valuable (i.e., IT-intensive industries), the 
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baseline risk to survival is higher (i.e., there is less scope for failed or costly experiments, for instance 

when competition keeps profit margins very thin), or when learning is very difficult (i.e., when variance is 

very high, creating a greater noise-to-signal ratio in the experiments that are conducted and, hence, a need 

for more of them or more time to conduct them). Finally, if experimentation is useful, we should see 

higher productivity of later investment choices compared to firms that did not invest in this type of 

learning. 

While firms are young, the value of the learning might justify the costs of undifferentiated IT 

services. Over time, however, older firms face less uncertainty and can optimize the expected value of the 

firm through their investment choices. Thus, they will benefit more from IT investments that either start 

out as firm-specific or become so through investments in adapting the technology to the firm’s needs 

(Bresnahan and Greenstein 1996). We hypothesize that owned IT capital will therefore be more 

productive for older firms compared to younger ones and also compared to cloud-based IT inputs. 

Alternative Mechanism: Economies of Scale 

We have taken care, as far as is possible, to separate mechanisms related to age from mechanisms 

related to size. However, much prior work has emphasized that firms operating at greater scale have an 

advantage in being able to spread the fixed costs of IT capital across greater output (Forman and Goldfarb 

2005, Tambe and Hitt 2012, McElheran 2015). Financing may be related to profitability and revenues, 

which will also favor larger firms.  

A key benefit of the cloud is its ability to pool resources across a wide range of firms to achieve 

shared economies of scale in IT services. This dramatically drives down the per-unit cost of providing IT 

services at small scale. However, the distinction between cost and price matters in our context. Large 

firms that own their own IT capital can internalize all of the cost savings achieved through scale. Smaller 

firms that can only access these economies through the cloud must pay a price that includes a margin for 

the IT service provider. While this difference may disappear, eventually (as cloud providers grow and 

surpass the scale achievable by all but the very largest firms), the price differential was likely still relevant 
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for the early years in which our study takes place. This, combined with the benefits of customization and 

differentiation for large incumbents firms, will drive a wedge between the benefits of the cloud for young 

(typically smaller) versus older (typically larger firms), but for reasons unrelated to age, per se. We take 

advantage of variation in size for firms of all ages in our data to disentangle these effects. 

Alternative Mechanism: Financial Frictions 

Finally, not all young firms will choose to wait, experiment, or underinvest in IT if they have the 

choice. However, the entrepreneurship literature has extensively explored the role of financial frictions in 

constraining firms’ early investment choices (see Kerr and Nanda 2009). In the face of financial 

constraints, therefore, young firms might find it disproportionately difficult to make essential investments 

in owned IT capital. To the extent that the cloud allows young firms to substitute higher variable costs for 

fixed costs, therefore, this could conceivably alleviate financial frictions in the short term. This would 

particularly improve survival in industries where technology is a key input (and thus represents a large 

share of input costs). However, the predictions on relative productivity as firms grow are ambiguous, as 

the IT comes at a less-attractive per-unit price for larger volumes of output and delivers less-specific IT 

services to the firm. We anticipate that benefits from the cloud that come through the financial channel 

will be concentrated among low-growth operations. 

  

IV. DATA AND EMPIRICAL MODEL 
 
Our study relies on a novel data set to observe this technological shift as it unfolds in the U.S. 

manufacturing sector. Our core data comes from linking rich establishment-level information collected by 

the U.S. Census Bureau from the Annual Survey of Manufactures (ASM), the quinquennial Census of 

manufactures (CMF), and the Longitudinal Business Database (LBD). Important changes to the 

manufacturing surveys in 2002 disaggregated IT investment (on computers and data processing 

equipment) from other types of capital; additional changes in 2006 separated hardware, software, and IT 

services expenditures for the first time. The recurrence of the questions allows us to construct a large 
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panel from 2006 through 2014 (2015 results pending disclosure review) at the establishment level. We 

accumulate and depreciate IT capital stocks using BEA deflators starting in 2002. The LBD tracks the 

plants from the time at which they have at least one employee to the time of their failure, regardless of 

ownership change9, providing critical data on the age and survival of the plant.10 The combined datasets 

allow us to observe critical inputs to the production function (labor, materials, energy) – including distinct 

margins of IT investment –in order to estimate revenue-based total factor productivity at the plant level.  

Measuring Cloud Computing 

Our measure of cloud computing comes from the IT services expenditure data, which becomes 

available in 2006, just as the cloud is beginning to diffuse (though primarily in other industries – see 

Ewens et al. forthcoming for a discussion). This is where cloud investment, once it takes off, gets captures 

in the manufacturing data, potentially in addition to other IT services (such as IT consulting), but 

excluding telecom and internet access. The presence of other costs will increase measurement error in our 

core measure, which will tend to be magnified in our fixed-effects models and alleviated when 

instrumental variables are employed.  

To increase confidence that this is a valid measure of changes in cloud computing investment 

over time, we correlate our measure with cloud-specific uses of IT such as Software as a Service, 

Infrastructure as a Service, and Platform as a Service (Saas, IaaS, and PaaS, respectively) using the largest 

and most-used proprietary database on establishment-level IT use from Aberdeen (formerly Harte Hanks). 

This data set was matched up with the Census data at the establishment level for a large percentage of the 

ASM and shows a strikingly high correlation between the measures (results pending disclosure review).  

 

Sample Frame 

                                                      
9 Note that mergers and acquisitions in our data are treated as continuing operation of the plant. “Exit,” here, refers 

to cessation of operations. 
10 Note that “exit” in our data truly means closing down, and not acquisition by another firm. 
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For technical reasons, we restrict our sample to observations in the ASM and CMF from 2006 to 

201411 with complete information on inputs (including cost of materials, energy, and employment), output 

(total value of shipments), value added, and the IT variables. In addition, we restrict our attention to 

establishments that have positive value-added, employment, and imputed non-IT capital stock. This 

procedure leaves us with about 460,000 establishment-years over the 9 years. We further restrict our 

analysis to observations with reported (as opposed to imputed) IT data, though this turns out not to matter 

much in our robustness checks. Our final analysis contains more than 26,000 establishments per year over 

9 years. Table A1 in the Appendix shows the descriptive statistics for the ASM-based sample before 

dropping imputed observations.  

Industry Information 

We take advantage of the large sample size and fine-grained industry classifications (down to the 

6-digit NAICS level) to control for industry heterogeneity in factor shares. In most specifications, in fact, 

we control for interacted year and industry effects; this effectively controls for industry-specific deflators 

in our productivity estimation.  

Young Plant Coverage 

While we have visibility to a large number of establishments that are within the first year of their 

life, we focus our analysis on plants that are five or fewer years old. This subsample represents around 

18.5% of the data that meet our aforementioned restrictions, totaling approximately 5,000 plant 

observations per year. Prior work (e.g., Haltiwanger 2013, 2016) finds the five-year cutoff to be 

meaningful; our empirical results also support this cutoff in our setting. When exploring growth models, 

the sample size reduces mechanically, since this requires establishments to exist for at least two 

consecutive years. Fixed-effects estimates also are identified only off of the plants that persist for two 

consecutive years and change their investment year-over year.  

                                                      
11 2015 data became available recently. Extending the panel by one year does not materially change our findings 

(pending disclosure review). 
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Figure 1 shows the birth and participation rates of young plants in the entire U.S. manufacturing 

sector for the years covered by our sample. Notably, the birth rate of young firms dropped precipitously 

during the Great Recession and recovered, with a strong up-tick in 2014. The decline of young firm 

participation in the sector stops by 2012 and turns around by 2014, consistent with reports of recent 

increases in high-growth entrepreneurship (e.g. Guzman and Stern 2015, 2016).12 

For comparison with prior work, it is useful to note that the young plants are also small and more 

likely to die. The average size of a young plant is fewer than 50 employees –much smaller than is 

typically observed in related studies (e.g., Tambe and Hitt 2012). The average annual failure rate over our 

panel for young plants is 3.33% - compared to 1.35% for older plants (see Table 2).  

Productivity Estimation 

We take a conventional approach to modeling the plant production function (e.g., Brynjolfsson 

and Hitt 2003, Bartelsman and Doms 2000, Bloom et al. 2012, Tambe and Hitt 2012). Consider a 

production function that is Cobb-Douglas as given in equation (1): 

it it it it it it itY A K IT L M X
α β λ γ µ=                                             (1) 

Where 
it

Y   is total revenue, 
it

A   is technical productivity, 
it

K  denotes the establishment's non-IT 

capital stock at the beginning of the period, 
it

IT  is the establishment’s IT capital stock at the beginning of 

the period 
it

L   is labor input,
it

M   is the establishment’s consumption of material and energy inputs, and

it
X   is a vector of additional factors such as industry and age of the plant.13 We take revenues as our main 

dependent variable, but also explore value-added and other measures of performance in light of concerns 

about capital mismeasurement in young establishments (Bartelsman and Doms, 2000) and interest in 

other measures of firm performance  (e.g., Haltiwanger, et al. 2013). Equation 1 can be considered a first-

                                                      
12 All of our findings are robust to truncating the panel in 2013. 
13 We include the Xit controls in exponential form for the convenience of including them in levels rather than logs. 
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order approximation of a more general production function (such as translog), which we examine later in 

our robustness checks.  

Taking logs provides a tractable form to take to the data:  

( ) log( ) log( ) log( ) log( )it it it it it it i itLog Y K IT L M X pα β λ γ µ ε= + + + + + +        (2) 

where the productivity term can be decomposed into a set of plant fixed effects pi and an added stochastic 

term, itε .   

We innovate by separating out the different types of IT investment into traditional IT capital   (
it

ITk ) 

and IT services (
it

ITpurch ), while controlling for other observed IT-related investments (
it

ITother ). Also, 

because we are primarily interested in how the coefficients on productivity vary over the lifecycle, our core 

specifications interact the input variables with an indicator of being YOUNG or split the sample according to 

this distinction. Equation 3 (or equivalent sample splits) represents our core estimating equation:   

             

0 1 2 3 4

5 6 7

1 2

it ijt ijt ijt

ijt ijt ijt ijt ijt ijt

ijt ijt ijt t j i ijt

Y ITk ITpurch ITother YOUNG

YOUNG ITk YOUNG ITpurch YOUNG ITother

X YOUNG X year ind p

α β β β β

β β β

α α ε

= + + + + +

× + × + ×

+ + × + × + +

        (3) 

Where i denotes the plant, j denotes the industry, and t denotes the year. 
ijtX  is a vector of plant-level 

time-varying controls and inputs to the production function, including capital, labor, and materials.  

Lower-case letters denote the log transform of the variable.  

 

Identification 

A primary concern in this literature had centered on the opportunity for unobserved demand or 

productivity shocks to simultaneous boost output and IT investment, creating a spurious relationship and 

upwardly biased estimates of the productivity impact of IT on economic output. We leverage a number of 

econometric techniques (Blundell and Bond 2000; Levinsohn and Petrin 2003; and Ackerberg, Caves, and 

Frazer 2006) that, while demanding a great deal from the data, leverage dynamic panel data estimators to 
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identify the coefficients of interest. We also explore the timing of the effects, in order to at least rule out 

reverse causality 

In addition, we exploit findings from prior work that technology diffusion has a local geographic 

component (e.g., Griliches 1956; Rogers 1995; Baptista 2000; No 2008; Forman et al. 2005; Conley and 

Udry 2010; Tambe 2014), to construct an additional instrumental variable. Leveraging the exhaustiveness 

of the LBD data on U.S. non-farming business, we calculate the percentage of establishments in a focal 

plant’s county that are classified as being in the data hosting and processing industry (NAICS 518210). 

This industry contains the providers of a variety of IT services including application service providers 

(ASPs), automated data processing, computer data storage, computer time leasing, and computer time 

sharing services, to name a few. All aforementioned services constitute the main services provided by 

Amazon Web Services and other larger cloud-computing vendors.14  

We take the location of these service providers as conditionally exogenous with respect to local 

demand based on an influential report published at UC Berkeley’s Reliable Adaptive Distributed Systems 

Laboratory in 2009 (Armbrust et al. 2009) arguing that the location of large-scale data centers and cloud 

services providers is more cost-efficiency-driven than demand-driven. In particular, they provide 

evidence that key drivers of location choices for large cloud-computing providers centered on the cost 

efficiency of electricity, cooling, labor, and other operating costs. Other descriptions also cite real-estate 

costs as a driver of location choice (citation pending source approval). Among those, electricity and 

cooling play a dominant role as these two factors alone account for approximately one-third of the total 

costs. We are able to control, separately for energy expenditure at the plant level (which will incorporate 

local energy prices) to control for this. To quote the report, “Physics tells us it’s easier to ship photons 

than electrons; that is, it’s cheaper to ship data over fiber optic cables than to ship electricity over high-

voltage transmission lines.”  (Armbrust et al. 2009). We furthermore lag the measure by two years to 

reduce the likelihood of simultaneity, and use it as an instrument for cloud expenditure. 

                                                      
14 For more details about NAICS 518210, see 

https://www.census.gov/econ/isp/sampler.php?naicscode=518210&naicslevel=6#  
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Figure 2 shows a map of the county-level intensity of data-services providers as a percentage of 

all local non-farm establishments from 2010 (2006 and 2010 coming soon). Notably, the areas of greatest 

concentrated are sprinkled all over the U.S., many of them in unexpected locations, such as northern 

Virginia and Quincy, Washington.  

 

V. Results  

 
Investment Levels across IT Types and Age Groups 

 
Before looking at survival and performance, we first examine how investment in these different 

types of IT changed over the period covered by our sample, for both young and old plants. The 

descriptive statistics alone are informative. Looking at mean investment levels of IT capital (computers 

and data processing equipment, winsorized at the 1st and 99th percentiles of the distribution)15 by age 

group over time in Figure 3, we observe that older firms, on average, cut back on investment in new IT 

capital at the time of the financial crisis in 2008 more readily than young firms. Young firms delayed their 

cutbacks and also cut less in absolute magnitudes. Over time, the combined effects of lower level of 

annual spend, having less time to accumulate IT capital (due to their age), and deferred investment show 

up in dramatically lower and falling accumulated IT capital stock for younger plants, as shown in Figure 

4.16 In contrast, expenditure on IT services increases (though moderately) for young plants, while initially 

falling for older plants as the recession hits, and then recovering and climbing over time (Figure 5). It is 

worth emphasizing that these are nominal expenditure levels. To the extent that prices for IT are declining 

– and precipitously so for cloud computing in later years – this represents a significant increase in the 

quantity of IT purchased by manufacturing firms. 

                                                      
15 Winsorization is used to address outliers in the empirical distribution for investment and calculated capital stock 

variables from the Census survey. See Giroud (2015) for an example in the prior literature. 
16 This figure reports the winsorized IT capital stocks for young and old firms created using a conventional 

perpetual inventory method and using deflators provided by the US Bureau of Economic Analysis (e.g., Bloom, et 
al. 2013).   
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To get a sense of what these trends look like controlling for size, Figure 6 shows IT capital levels 

and IT services expenditure on a per-employee basis for young and old plants. A central take-away from 

this figure is that, adjusted for size, the expenditure levels between young and old are not very different, 

and all are trending up over time – or, in the case of IT capital, in the years following the Great Recession. 

There is a noticeable increase in 2014 in IT expenditure, particularly for young plants. (We verified that 

none of our findings in any of tables to follow are sensitive to this late trend in our data.)  

To examine whether these differences between young and old are significant – and to control for 

potential differences between young and old in terms of industry composition –  Table 3 presents results 

from multiple regression (OLS) with an indicator “Young” for being five or fewer years old regressed on 

different categories of IT expenditure. These specifications include unreported industry controls (at the 6-

digit NAICS level),17 as well as either unreported year controls (columns 1-2) or an indicator for being in 

the “Late” years in our sample (2008-2014 – columns 3 through 4d). The latter highlights trends during 

and after the financial contraction of 2008-2009.18 As in Figure 6, this table describes expenditure on a 

per-employee basis to better compare firms of different sizes. Consistent with Figure 6, the differences, 

while statistically significant at the 1% level, are economically quite small. Column 1 indicates that the 

average (winsorzied) accumulated IT capital stock per employee for plants that are five or fewer years old 

(“Young”) was 5% lower19 on average than for their older counterparts. Annual expenditure (on IT of all 

kinds) in column 2 is also lower by about 2%.20 

Columns 3 and 4 explore how much this changes over our sample timeframe. Consistent with the 

descriptive statistics, we observe that even within industries, IT capital accumulates faster than it 

                                                      
17 An example of the narrowness of the North American Industry Classification (NAICS) at the 6-digit level would 

be the distinction between motor and generator manufacturing (NAICS 335312) and switchgear and switchboard 
manufacturing (NAICS 335315) within the category of Electrical Equipment Manufacturing (NAICS 3353).   
18 We report the coefficient for all of the later years combined for ease of exposition, noting that the results are 

similar for both the 2008-2009 period and the 2009-2014 period, possibly showing the persistent effect of the Great 
Recession on investment (Fort et al. 2013).  
19 This percentage change is calculated by taking the coefficient of 0.063 and dividing by the mean of IT capital 

stock per employee for the combined sample, which is 1.27 (not reported in Table 2). 
20 The sample mean for IT expenditure of all kind per employee is 1.06 (not reported in Table 2). 
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depreciates, ending up 12% higher on average in the later years (2008-2014), though it remains lower for 

the young plants on average by 6% percent.21 In column 4, IT flows (all kinds combined) per employee 

go down, on average, about 8% in the later years. The differences between the young and old when we 

look at average flows are not statistically different from zero. 

However, differences appear when we break the IT flows down by type in columns 4a-4d. In 

columns 4a and 4c we observe that, controlling for industry, young plants spend slightly more on a per-

employee basis than the old on IT capital and equipment (though only the IT capital coefficient is 

statistically significant, at the 10% level). The young actually spend significantly less – about 9% less – 

on a per-employee basis on IT services than the old do; similarly for software expenditure, at 16% less (se 

also Table 2). The overall trend, regardless of age or industry, is towards less IT capital and equipment in 

later years, with more IT services and software, suggesting a substitution away from hardware towards 

software and services across the board. We explore this in more detail, below. 

The interaction effect of being young and later in the sample is consistently negative in these 

models, but never statistically significant. This may be due, in part, to large reductions in young-firm 

employment levels during the Great Recession (Zarutskie and Young 2016) that may have exceeded the 

rate of IT expenditure contraction in the later years. Another interpretation is that, while all plants cut 

back their level of investment in the recessionary years, startups may face basic initial investments that 

are difficult to defer. This has implications for young firm survival, which we explore later. 

Expenditure Shares 

We explore the shares of observed IT spend across the different types of IT for both young and 

old in Table 4. Controlling for industry and year fixed-effects, column 1 of table 4 shows that both young 

and old plants allocated about 5.4 percentage points less of their IT spend to accumulating computer and 

                                                      
21 We first examined three periods: 2006-2007, 2008-2010, and 2010-2014, but the latter two were not 

significantly different from each other and thus were combined for ease of interpretation. 
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data processing equipment in the recessionary and post-recession years.22 Conversely, both groups also 

allocated higher percentages of their budgets to IT services (2.1 percentage points) and software (3.6 

percentage points) in later years. These results are significant at the one-percent level and consistent to 

what we observed in Table 3. That said, young plants exhibit a small but statistically significant greater 

shift into IT services as a percentage of expenditure, and it shows up in the years associated with the 

diffusion and price decline of the cloud. 

A key missing piece of the puzzle is how many “units of IT services” firms are able to acquire 

through different types of IT expenditures, and how much they may be able change them via these modest 

adjustments. Considering the observed reduction in prices for cloud-based IT during our sample period, 

and combined with anecdotal evidence concerning the rapid increases in speed, quality, and reliability of 

cloud computing over this time, it is likely that the expenditure levels and allocation underrepresent the 

actual change in use of IT services. The actual shift in IT input mix might exceed the reallocation of 

dollars. Unfortunately, quantities of IT inputs are beyond the reach of our data. 

For completeness, it is worth recognizing that the cost of IT capital is falling over this period, as 

well; however, the cost savings from this channel should show up for both in-house IT and outsourced IT 

services. To best understand how changes in price and availability of the new technology impacted 

performance, we turn to measures of survival, growth, and productivity.  

Survival  

To test hypotheses about how different types of IT might relate to survival, we model the survival 

process directly using a Cox proportional hazard model, with failure as the dependent variable (other 

related survival models produce similar results). Table 5 presents these findings. We split the sample 

between young and old for ease of interpretation, so comparisons run across pairs of columns. Recall that 

numbers above 1 indicate an increased chance of failure; numbers below 1 indicate improved survival. 

                                                      
22 Again, since the results are similar for both the 2008-2009 and 2010-2014 periods, we simplified the exposition 

by combing the two periods into one “Late” category. Results available upon request. 
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We start with traditional IT capital stock to establish a baseline for comparison. Strikingly, columns 1a 

and 1b indicate that traditional IT capital investments are associated with an increase in the likelihood 

that a young plant will fail (decreased chance of survival); while they appear to be negatively correlated 

with failure in older firms. The magnitude of the coefficient is 1.046 for young, which suggests that a 

one-unit increase in logged IT capital stock for young (about a $23,000 increase) is associated with a 

roughly 4.6% higher risk of failure. In contrast, a one-unit increase in logged IT capital stock for old 

(about $77,000) is associated with a 3.2% lower risk of failure.23 This is compared to a baseline yearly 

failure rate of 3.3% for the young sample and 1.3% for the older sample (Table 2). 

In contrast, IT services are negatively correlated with the failure of both young and old 

establishments. A one-unit increase at the mean of the logged IT services distribution is associated with a 

4.9% (or 1.6 percentage point) lower risk of exiting for young plants and a 10% (0.13 percentage point) 

lower risk of exiting for older plants.  

Columns 2a and 2b explore the results by using “high IT” indicators, rather than continuous 

expenditure measures. The cutoff for the indicator is that the plant be in the top quartile for that type of 

expenditure within the same NAICS4 industry (this also addresses potential concerns surrounding 

mismeasurement of IT that could downwardly bias the other results). The results are consistent with the 

first two columns, though the higher IT investment thresholds increase the magnitudes of the coefficients. 

For instance, young establishments with high IT capital stock have a roughly 26.3% higher risk of failure, 

while old establishments with high IT capital stock have a roughly 15.1% lower risk. In addition, all else 

equal, high investment in IT services lowers the exiting risk by 17.6% and 27.3%, respectively for young 

and old. 

Growth  

                                                      
23 The dollar value of this effect for young is calculated based on the mean of the logged IT capital stock 

distribution for young at 2.6 (reported in table 2), which is around $13,000. A one-unit increase from the mean of 
the logged IT capital stock is 3.6, indicating a roughly $23,000 increase. Similarly, the dollar value of the effect for 
old is calculated based on the mean of the logged IT capital stock distribution for old of 3.8. A one-unit change in 
the logged value is 4.6, indicating a $77,000 increase in IT capital stock for this subsample. 
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In addition to being concerned about survival, the business dynamics literature highlights the 

importance of young firms for aggregate employment growth (Haltiwanger et al. 2013, 2016). In columns 

3a and 3b we observe that increases in IT investment of all kinds – with the notable exception of software 

– are associated with increases in employment. The differences between young and old, however, are 

primarily seen in the IT services expenditure. Table A3 shows the results when the combined sample is 

analyzed using a model that interacts all of the explanatory variables with an indicator for being young; 

the coefficient on Young interacted with IT services is 0.008 and significant at the 5% level. Thus, any 

output gains associated with these technologies are not coming at the expense of jobs in our sample. In 

short, IT services has a disproportionately greater association with both survival and growth for plants 

that are five are fewer years old, compared to older establishments.  

 
IT Productivity in Young vs. Older Plants 

 

Table 6a presents the results of an OLS estimation of the standard Cobb-Douglas production 

function described in equation (3) (columns 1, 2, 3, 4, & 7), as well as analogous models including plant 

fixed effects (columns 5 & 6). All columns focus on aggregate output (sales) as the dependent variable, 

controlling for a rich set of inputs including the cost of materials, the cost of energy (electricity and fuel 

combined), labor (both expenditure on temporary employees and the count of regular employees at the 

plant), accumulated non-IT capital stock, and year-industry fixed effects. We do not separately observe 

quantities and prices, so this represents a revenue-based measure of total factor productivity (“TFPR” as 

discussed in Foster et al. 2008). Note that the number of employees is included as an input, thus all results 

in this table are conditional on size measured in terms of employment.  

We draw attention to the average coefficients for the different types of IT in column 1 to make a 

couple of observations. The first is that, despite concerns about slowing IT productivity in the wake of the 

internet boom of the late 1990s (Stiroh 2008), we find no evidence of slowing. All types of IT 

investments captured in the US Census data have positive coefficients, suggesting that they contribute to 

revenues in excess of their marginal input costs (subject to the standard concerns about causality and 
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omitted input factors, which we address in more detail, below). This holds across all sizes and ages of 

plants.24  

In column 1, the coefficient for IT capital stock is about 0.015 and significant at the one-percent 

level. The log-transformed production function allows us to interpret elasticities directly: a one-percent 

increase in IT capital stock is associated with a 0.015% increase in the total value of shipments, all else 

equal. This result is largely consistent with previous estimates of the productivity of traditional IT capital 

(e.g., Tambe and Hitt 2012, and Brynjolfsson and McElheran 2016).25  

IT services, in sharp contrast, has a smaller association with productivity on average. The 

coefficient is not even statistically distinguishable from zero in the overall sample. 

Columns 2 and 3 of table 6a are identical to column 1, but split our sample by an indicator of 

being five or fewer years old.  This is the core finding of the paper: for the subsample of firms that are 

five or fewer years old, IT services are significantly correlated with productivity.  Specifically, a one-

percent increase in young firms’ spending on IT services is associated with a roughly 0.01% increase in 

sales.  

Column 4 shows results for the complete sample, but fully interacted with the Young indicator. 

This provides quick evidence that the difference between the IT Services coefficients for young versus 

older plants is statistically significant, at the one-percent level. The equivalent result for IT capital is quite 

the opposite. The effect of being young on the returns to traditional IT capital is negative, but not 

statistically significant. We cannot reject that the young receive, on average, the same productivity benefit 

as the old from their investments in traditional IT capital. Note that this is conditional on survival, 

                                                      
24 The IT coefficients in column 1 are robust to including or excluding plant and firm age controls and indicators of 

multi-unit status (not reported). 
25 We also tested a specification with value added as our dependent variable and estimated the production function 

similar to Brynjolfsson and Hitt (1995). The magnitude of our estimate on IT capital stock in the value-added 
specification is positive and significant but slightly smaller than the results they report. Our study differs in 
important ways that may explain this. First, our sample includes many more smaller and younger establishments, 
which tend to have smaller returns to IT capital. In addition, we are controlling for more fine-grain industry codes at 
the level of 6-digit NAICS. Finally, we are measuring IT productivity for recent years while their sample is 
constructed from 1988 to 1992, so the technology in question is also different across studies. 
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however, which is likely upwardly biased by the increased likelihood of failure associated with IT capital 

expenditure observed in Table 5. We example a similar model with continuous age interactions in a 

column pending disclosure review; the results are similar.  

Columns 5 & 6 include plant fixed effects, which identifies the effects of interest off of changes 

within the plant. This will differ in important ways from estimates based on levels. In particular, any 

benefits to plants with high initial investments who stay at that level will not contribute to the estimation. 

It also is based on a smaller underlying number of observations, as it only uses plants that persist for at 

least two consecutive years (roughly 2/3 of the young sample). Perhaps more importantly, it removes the 

effects of unobserved time-invariant organizational capital that may serve as an important complement to 

IT in the production function. In Column 5, it is interesting to find that the coefficient on IT services 

changes hardly at all for young plants. Among older plants (column 6), the returns to IT services are now 

positive and statistically significant from zero, suggesting that any long-lived organizational 

characteristics are actually unhelpful for IT services productivity (i.e., might generate adjustment costs). 

However, they are still smaller than the returns that young firms enjoy from IT services, and the 

difference remains statistically significant. 

Selection 

To the extent that young plants may be making large bets on IT, unsuccessful or unlucky plants 

will exit the sample without contributing to our productivity estimates. As discussed, we expect that this 

will exert a systematic upwards bias, contributing to high “excess returns” for owned IT capital. For IT 

services, the direction of the bias is harder to sign. To the extent that the cloud helps the marginal firm 

survive when it might otherwise fail, this will exert downward pressure on the observed average 

productivity of young users of the cloud.  On the other hand, if other selection pressures are causing the 

cohort of surviving young firms to be unusually productive during and after the Great Recession (Lee and 

Mukoyama 2015), the relationship between IT services and productivity in young plants which weather 
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these difficult financial times -- while also taking advantage of new cloud technology -- might be 

upwardly biased and our estimates need to be interpreted with this selection process in mind. 

Organizational Complements 

Comparing the coefficients on IT capital and IT services in the models with and without fixed 

effects is informative about the importance of organizational capital in IT productivity from these 

different types of IT. To the extent that organizational capital may be time-invariant (e.g., Tambe et al. 

2012), plant fixed effects will strip these effects from the productivity estimations. Consistent with prior 

studies, unobserved organizational capital appears to matter a great deal for the returns to traditional IT 

capital. The point estimate on IT capital drops by over 75% when plant-level fixed effects are included. 

The coefficients remaining very precisely measured, consistent with high levels of unmeasured 

organizational inputs interacting positively with the accumulated IT stocks.  

In sharp contrast, however, the coefficient for IT services changes almost not at all, on average, 

when plant fixed effects are included (and is not statistically lower than the estimate without fixed 

effects). The point estimate becomes noisier due to the demands that this specification places on the data, 

but the pattern suggests that accumulated plant “know-how” or other organizational capital is less of a 

contribution to the productivity of IT services, both on average and among younger plants. This finding is 

consistent with anecdotal evidence that cloud-based IT is relatively standardized and therefore not reliant 

on the “co-invention” of processes and technology at the plant (Bresnahan and Greenstein, 1996).  

How IT Productivity has Changed in the Age of Cloud Computing 

An interesting question we can answer with these results is whether young or old plants appear to 

be more productive with their IT, overall, in the age of cloud Computing. Given the indistinguishable IT 

capital productivity between the two age groups and the distinct advantage for young plants in IT 

services, the combined returns show that the young are able to use generic IT in the cloud to close the 

productivity gap – and even overtake the older ones (conditional on survival). Table 6b reports on joint 

tests of linear combinations of the coefficients from Table 6a. Two observations are important to note. 
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The first is that failing to account separately for IT services would misrepresent the magnitude and source 

of IT productivity in the U.S. economy in recent years. In table A.6, we find that omitting IT services 

does not inflate the IT capital coefficient to the point of accounting for this omitted variable. In short, 

studies that do not measure the cloud are missing a critical part of the modern IT productivity story. 

The second observation of note is that the magnitude and age distribution of the effect we 

estimate for the cloud is fundamentally shifts our understanding of which types of firms are productive in 

the age of the cloud. The differences between the young and the old – with or without plant-fixed effects 

– is statistically significant and redounds disproportionately to young plants (Table 6b). Thus, the 

combined effect of traditional IT capital and new IT services is sufficient to make young plants the 

leaders when it comes to returns on IT investments. To the extent that this is a recent trend, young 

establishments may be contributing more to aggregate productivity growth in ways that have been 

systematically missing from prior studies. 

Causal Identification 

Table 7 shows how these results change when we use a range of techniques developed to account 

for endogenous investment decisions in productivity estimation. Column 1 shows our OLS estimates from 

table 6a for comparison. Column 2 uses dynamic panel structural estimation relying on 2-period lagged 

differences for all variable investments to instrument for current-period investment levels (Blundell and 

Blond 200). We find that the coefficient on IT services is higher and significant at the one-percent level in 

this specification. Column 3 reports estimates developed by Levinsohn and Petrin (2003), using 

expenditure on intermediate inputs – in this case, cost of temporary employees, though results are 

consistent when we use cost of materials – to instrument for the unobserved productivity shock. This 

yields a coefficient much closer to our OLS estimate. Ackerberg-Caves-Frazer (2006) discuss some 

limitations of this approach; using their estimator, the effect in column 4 is again larger than our OLS 

estimate. The results of this table suggest that the results in table 6a may actually be biased downward.  
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Column 5 shows the second stage of our instrumental variables estimation, which again yields a 

higher estimate, but quite significantly so. The results pass both the weak- and under- identification tests 

but fail to reject the null hypothesis that IT services is exogenous. Taken at face value, all of these 

measures are consistent with non-trivial measurement error in the IT services variable (which is plausible, 

given that the survey includes a number of different expense categories in its definition). They are also 

consistent with stronger local average treatment effects (Angrist and Pischke 2009), whereby the 

instrument is picking up a stronger productivity response among plants that are also sensitive to the 

instrument – i.e., whose IT services expenditure is strongly affected by the presence of local suppliers 

and/or by industry-level factors. That said, the dramatic jump in the magnitude of the coefficients is 

reason to take these estimates as informative within a larger “collage” of results. Because all of these 

approaches rely on very different identifying assumptions and yet come to largely similar conclusions, we 

take this as evidence that endogenous adoption of IT services is not driving the results we report here.      

Table 8 explores the timing of these effects to further explore whether these estimates may be 

interpreted as causal. Following the approach for a standard Granger Causality Test, (Granger 1969) it 

shows that the timing of the effects runs from IT services investment to productivity, not vice versa. In 

columns 1-3, we show models of lagged IT investments regressed on current sales (including the usual 

controls for other inputs). Column 1 shows a productivity correlation with lagged IT variables. The results 

here indicate that expenditure on lagged IT services is positively and significantly correlated with current 

sales, all else equal. In column 2, we further include lagged sales in the model as a control – and find that 

the effect of lagged IT services disappears. This is consistent with IT services having a contemporaneous 

(at least within the same year) effect on sales that disappears once we control for the productivity effect 

from that year. In addition, much less variation is left to explain once we control for lagged sales, as 

output is highly serially correlated (Foster et al. 2016). Column 3 goes on to include forward IT services 

in the model. For reverse causality to be a problem, we would expect a relationship between past sales 

and future IT investments, but we do not observe this to be the case for IT services. Interestingly, we see 

the potential for reverse causality with traditional IT capital, which would make sense if past performance 
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is required to access the financial liquidity needed to make future investments or if learning is important 

for productivity from this type of investment.  

To complete the analysis, we reverse the dependent and explanatory variables in columns 4 and 5, 

putting IT services on the left-hand side. Here, we see that there is serial correlation in IT investment, but 

that the relationship between past sales and current investment in IT services is negative and of arguable 

statistical significance; in fact it loses statistical significance in column 5 when we separately control for 

forward sales (which is positive and significant and in line with the causality in the behavioral model). In 

addition to the estimation procedures discussed above, we take this as reasonable evidence for a causal 

relationship between IT services investment and productivity in our data. 

Is this Really the Cloud? 

 Given our concerns about measurement error, we further probe the extent to which we can 

attribute these effects to cloud computing, per se, as opposed to other outsourced IT services (such as IT 

consulting). Table 9 shows that the effects do not show up until the price declines and greater diffusion of 

cloud computing from roughly 2010 onward. To our knowledge, other types of outsourced IT services did 

not experience similar price shocks (if anything, the Great Recession should have pushed prices for 

consulting and related services down, earlier, but this did not have an effect we can observe in our data). 

Column 1 reports on our continuous measure for IT services, column 2 uses a “High IT” indicator to 

capture expenditure that is in the top quartile for the plant’s industry. Both columns show that our effects 

are largely confined to the later years, when cloud computing had diffused further and fallen in price. For 

the higher levels of expenditure, the effects show up a bit earlier, during the recession years. There is no 

variation in the IT capital stock coefficients across these periods. 

We also correlated our IT services measure with an external data set that specifically provides 

information on cloud computing use. We use the information available in the Harte Hanks Intelligence 

Infocorp data set (which is the only large-scale data set we know of that directly measures cloud use such 

as software as a Service (SaaS), Infrastructure as a Service (IaaS), etc. While Harte Hank coverage of 
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these new technologies leaves much to be desired, the measures – derived in very different ways from 

each other – are highly correlated at the county-industry level (results pending disclosure review). 

Mechanism Tests and Nuances: Industry Context Variation 

Table 10 further explores the nuances and underlying drivers of these patterns. Again, restricting 

attention to the subsample of young plants, columns1 and 2 interact the IT variables with an indicator of 

whether the plant is in an industry that intensively relies on IT as an input. This is constructed by 

identifying the 3-digit NAICS26 industries with above-sample mean IT capital in 2005 (pre-cloud). 

Examples of typically IT-intensive industries (Jorgenson  et al. 2007) include printing, semiconductors, 

instruments manufacturing, aerospace, and other transportation equipment. We consider these to be 

industry settings where learning about IT would tend to be particularly important. This does not account 

for shifts over time in the IT-intensity of industries, but has the virtue of being uncontaminated by 

industry variation in cloud diffusion (which is likely to be more endogenous).  

For the continuous measure of investment in column 1, the interaction is noisy. For indicators of 

top-quartile (by NAICS 4) expenditure (which applies for all of the IT variables in the table, not just IT 

services) in column 2, the interaction is large at 0.062 and significant at the five-percent level. All of the 

correlation of IT services with plant productivity in this specification shows up where our hypotheses 

predict it would matter the most. 

Column 3 of table 10 interacts the IT variables with an indicator of being in a “high-competition” 

industry.27 This indicator includes roughly 200 6-digit NAICS industries and includes a wide range of 

activities from fluid milk manufacturing to boxes to fabricated metal and motor vehicle metal stamping. 

We would expect continuation risks to be higher in more-competitive settings were margins are thinner, 

and thus where the consequences of failed or costly experiences would be greater. The interaction term is 

                                                      
26 3-digit NAICS codes are required to keep plants in well-defined categories throughout our sample, when there 

were some NAICS industry classifications at finer levels of aggregation. 
27 We calculate the Lerner Index for the plant’s 4-digit NAICS industry, taking the bottom quartile as indicative of 

being in a more competitive industry context.  
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again positive, but significant at only the ten-percent level. The main effect persists at a similar level of 

statistical significance. We interpret this as mixed evidence for our expectation that we would see that the 

effect of cloud-based show up disproportionately in settings where firms face lower profit margins. 

Next, we explore the impact of market and production variability on these estimates. When 

variance is higher, learning is more difficult. Columns 4 and 5 show that the effects of IT services on 

productivity are dramatically increased in industries where the yearly variance in plant capacity utilization 

for the industry (6-digit NAICS) is higher. For the young, the coefficient on the interaction term is 0.015 

and significant at the five-percent level. Interestingly, in these specific industry contexts, even older 

plants demonstrate productivity gains from the cloud. The coefficient is much smaller at 0.005, but also 

statistically significant. We interpret this as confirmatory evidence for our hypothesized importance of 

uncertainty in driving this overall patter in the data.  

Age vs. Size 

Next, we explore the extent to which these effects are due to age versus size, a distinction that has 

become increasingly important in the firm lifecycle literature (Keung et al. 2016). We test this distinction 

by interacting Young, size indicators, and the same set of IT variables in Table 11.28 While the previous 

productivity results all control for size measured as total employment, here, we explore a sharper cutoff to 

further differentiate the effects. We construct an indicator for “Large” that is equal to one when the plant 

has a total number of employees greater than or equal to the sample median for their 4-digit NAICS 

industry. Unsurprisingly, large plants are much more productive in our sample, on average.  

The interaction effects between the different IT measures and size are surprising in light of prior 

work showing that IT tends to be more productive in large firms (e.g., Tambe and Hitt 2012, McElheran 

2015). These coefficients are not statistically different from zero, except for IT services, which are 

                                                      
28 Inputs to the production function are all included, but not interacted in order to preserve degrees of freedom. 
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significantly (in both the economic and statistical meaning of the word) less productive in large plants 

compared to small ones.   

To get a clearer sense of how age and size interact, we estimate linear combinations of the 

coefficients and test their joint statistical significance in table 11. Some meaningful patterns emerge. 

When it comes to traditional IT capital, the effects are primarily about age, and not about size: old plants 

of any size enjoy higher IT capital productivity benefits than young plants of any size. These results 

conform to a model of firm lifecycle dynamics based only on age effects, where learning and co-invention 

take time.  

The results on IT services require some care to interpret. If we organize plants into size-age 

categories: young and small, young and large, old and small, old and large, we find that the plants that 

benefit the most from IT services are both young and small (YS). The joint coefficient, which is 

significant at the one percent level, shows an output elasticity of 2.2%. Plants that are young and large 

(YL) benefit, too, though not as much. Their output elasticity is 0.9% and statistically undifferentiated 

from the comparison group, which is old and small (OS) and has an output elasticity of 1.2%.  Plants that 

are both old and large (OL) derive some positive benefit from their investments in IT services, but the 

magnitude of the effect is considerably smaller at 0.2%. 

 The first and last results are the easiest to interpret. YS plants are the ones we would expect to 

have the most frictions according to all of the lifecycle models. While these results provide the strongest 

evidence for the impact of cloud computing on young plants, they are in some respect the least 

informative, in that they do little to disentangle the underlying mechanisms. The OL plants make the most 

sense from an economic equilibrium perspective, because the diffusion of the technology over time and 

the lack of differentiation should make this sort of technology less useful for this population of firms. 

Adjustment costs beyond the reach of our data may also play a role. 

 The results in the middle provide some progress towards disentangling mechanisms. Their 

interpretation benefits from a lens emphasizing variation in “entrepreneurial quality” (e.g., Guzman and 

Stern 2015). Old small plants are plants that have had time to grow and signal their quality to the market – 
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and yet they remain small, suggesting either that they have no aspirations to grow or limited ability to do 

so. For this group, some cheap (and getting cheaper) generic IT may be better than no IT, hence the 

association with higher productivity. To the extent that entrepreneurial quality is difficult to observe, this 

omitted factor would go far to explain the weaker performance of IT in smaller firms in prior studies. 

The YL plants clearly have growth aspirations and capabilities – in fact, they had to have either 

entered at scale or grown very quickly to become large in five or fewer years. If size were the primary 

consideration, therefore, they should be more productive with all types of IT. We interpret their weaker 

performance with traditional IT capital compared to older plants and the weaker performance with IT 

services compared to smaller young plants as consistent with having made some big bets already (lower 

option value) but still being behind the older plants when it comes to co-invention (Bresnahan and 

Greenstein 1996) . They may also be subject to unobservable adjustment costs associated with 

organizational size.  

Multi-Unit Status 

Our analysis thus far has concerned plants, but not firms. However, roughly 70% of both young 

and old samples are made up of plants that belong to multi-establishment firms. All of our results are 

robust to the inclusion of a multi-unit indicator and to models fully interacted multi-unit status with all 

other inputs.  Table 12 presents this evidence. This mimics table 11, but substituting an indicator for 

belonging to a multi-unit firm (MU) with the age indicators and all of the IT variables. The joint tests of 

the combined coefficients show that there is no statistical difference between young single-unit plants and 

young multi-unit plants. This was surprising to us, as one would expect learning from the parent firm to 

diffuse to new extensions of the organization. To test this intuition, we further interacted the MU indicator 

with an indicator for being in a different industry from the parent firm.29 Within the young firm sample (to 

avoid a four-way interaction), we learned that the higher IT services productivity is concentrated entirely 

                                                      
29 Firm industry is determined by taking the 6-digit NAICS classification of the oldest plant in the firm; ties are 

broken based on revenues and employment. 
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in the subsample of plants that are doing something different from the founding establishment of the firm 

(results pending disclosure review).  

This finding is consistent with our hypothesis about learning and provides a strong contradiction 

to mechanisms rooted in financial frictions. To the extent that multi-unit plants should be able to rely on 

internal capital markets to finance IT investment (Kuppuswamy and Belen 2010), there should be a sharp 

distinction between these types of plants where none exists.. Conversely, to the extent that learning about 

the operating system, its IT requirements, and how to align the two of them to each other requires very 

localized learning-by-doing or may be consistent with very localized uncertainty in supply of demand 

conditions, this lack of a distinction is precisely what our hypothesizing would predict. 

Financial Frictions – pending disclosure review 

 We explore whether establishments with lower profit margins have a different return from 

expenditures on IT services. We also look at geographic variation in housing prices (correlated with 

financing constraints) and industry-level variation in profit margins. However, we find no significant 

correlation between any of these measures and variation in returns to the cloud (pending disclosure 

review). 

IT Interactions 

Table 13 explores whether these different types of IT are complements or substitutes in the 

production functions for both young and old plants and provides evidence (pending disclosure review) 

consistent with learning. Controlling for industry at the 6-digit NAICS level, we observe in columns 1 

and 2 that there is some substitution between traditional IT capital and IT services for both young and old 

plants. Although the coefficients are relatively modest; they are statistically significant at the 5% level. 

This is useful for interpreting the investment patterns observed at the beginning, where we some 

reallocation of expenditure from traditional IT capital to cloud-based IT in later years. If the types of IT 

were good substitutes for each other and cloud was simply cheaper, we might expect this effect to be 
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bigger. The substitution is weaker, consistent with differing willingness to tradeoff between these two 

types of IT for plants of different ages.  

More fine-grained data would be needed to understand the details of how firms are combining 

these new technologies. An important concern, however, is that firms cannot combine them well, and that 

older firms with robust legacy IT systems are unable to adjust to the cloud-based platform. Column 3 lags 

IT capital stock by one period, and interacts it with all of the other IT variables.30 The coefficient is 

negative, but noisy, providing no strong evidence that prior IT capital stock interacts negatively with 

cloud-based IT. 

Columns 4 and 5 (pending disclosure review) lag IT services by several periods to see if our 

hypotheses about the benefits of cloud-based experimentation lead to better IT investments, later in a 

plant’s life. The lag required varies by the type of IT, and can only be observed for the subset of plants 

that a) use the cloud relatively early, b) survive a number of years. Column 4 reports that 5 or 6 years 

later, the early use of IT service is associated with high productivity for IT capital. The coefficient is 

positive and significant at the 5% level. Within 3 to 4 years, prior IT services expenditure has a positive 

interaction with software investments; again, this is significant at the 5% level. While there is surely 

selection underlying these results, the pattern is highly suggestive. 

Robustness Checks 

Table 14 provides evidence that our findings are robust to a range of other econometric choices.  

Columns 1 shows the results for a translog specification. The statistical significant on IT services 

disappears, potentially in part due to the tremendous demands this specification places on the data.  Other 

results are very consistent: including interactions and squares for all of the input variables (column 2); 

including regional controls in addition to industry-year fixed-effects (column 3), and using a quality-

                                                      
30 We accidentally disclosed only the young subsample. However, the results for the old are qualitatively similar. 
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adjusted measure of labor input31 (column 4). Columns 5 and 6 test robustness to our data cleaning 

choices: we get similar results if we actually include observations with imputed IT values (and more than 

double the sample size). We conclude that our productivity findings are also robust to outliers (probably 

due to the log-transformed production function), as we see similar results using the non-winsorized values 

(column 6). The core of the paper centers on winsorized results because the descriptive statics actually are 

sensitive to this decision and this keeps the underlying data consistent throughout the core analysis.  

VI. Conclusion  

In this paper, we provide the first large-scale empirical evidence related to the survival and 

performance prospects for U.S. firms in the age of cloud computing. Based on arguments from the 

entrepreneurial finance literature, we hypothesize that the key benefit of the cloud comes from a new 

ability to experiment with rapidly available, flexible, yet relatively generic IT early in a firm’s life. Over 

time, as uncertainty resolves, firms should benefit more from firm-specific IT capital investments. The 

conditional correlations are strongly consistent with our hypotheses. Young firms show a much higher 

association between IT services expenditure and survival, growth, and performance. Older firms show 

little or no benefit, except in certain specifications and industry settings, and even so the estimates are 

much lower. 

 

We find almost no support for alternative explanations. Barring differential adjustment costs, if 

the cloud reduced IT costs with no tradeoffs, we would expect older firms – with richer complementary 

organizational capital, among other advantages – to benefit at least as much as the young. This is not the 

case. To the extent allowable with our data, we explore explanations related to adjustment costs such as 

legacy IT or management practices that may be systematically absent among young plants; findings here 

are a bit mixed but cannot account for the magnitude of the young-old divide. Financial frictions that 

                                                      
31 Calculated by multiplying the total number of production-worker hours times the ratio of total production worker 

wages to total salaries and wages. See Foster, Grim and Haltiwanger (2016). 
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might make it more attractive for young firms to substitute higher variable costs for up-front fixed costs 

are unlikely to explain our findings, insofar as young plants belonging to larger, multi-establishment firms 

(which have better access to both internal and external financing) show the same pattern of results as 

young single-unit firms. In contrast, we do find additional support for learning-based benefits from cloud 

investments. It takes a while, and only applies to relatively early-adopters in our sample who survive, but 

lagged IT services expenditure is positively and significantly associated with even higher returns to IT 

capital and software investment later in life (pending disclosure review). 

It is important to contextualize these results, as they stand in marked contrast to prior evidence 

indicating that IT tends to be most productive in large firms. How can we reconcile these findings? To 

begin, we have unusually good visibility to a representative sample of young firms, along with accurate 

age data. Thus, we can more precisely estimate coefficients for this tail of the distribution and can 

disentangle age effects from size.  Also, we explore both productivity and survival. A key insight is that 

firm-specific IT investments are risky for young firms – they can be productivity-enhancing conditional 

on survival, but they tend to promote exit as well. Firms that survive to become large will be those that 

have won their early IT bets. 

Moreover, if we had restricted our attention only to traditional IT capital, we would have come to 

similar conclusions as prior studies. While our main take-away is that learning and co-invention remain 

central to traditional IT productivity, these mechanisms dramatically favor older, more established firms – 

which also tend to be large.  What has fundamentally shifted is the technological landscape – and our 

ability to measure it.  

Our results also strongly contradict common assumptions that cloud benefits are largely to the 

easing of financial frictions faced by young firms. We are not claiming that there is no benefit for capital-

constrained early stage ventures from substituting higher variable costs for fixed costs via this new model. 

However, many of the patterns in our data (in particular, the results on plants belonging to multi-unit 

firms) strongly contradict this as the main channel at work. Detailed mechanisms tests also support our 

experimentation and learning-based explanations. 
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Like many studies of new phenomena, our findings are not free of limitations. In particular, we 

worry about measurement error. While the Census data is remarkably detailed, we cannot precisely 

disentangle cloud-specific expenditure from other IT services. The timing and profound reversal in core 

patterns of IT productivity advantage just as the cloud diffuses and becomes cheaper is striking. We also 

corroborate our measure with and external data set on cloud use, but only at the county-industry level, 

Ideally, we would see IT services separated by cloud and non-cloud expenditure at the plant level. This 

would be a useful direction for future survey development.  

Also, as we discuss throughout, standard techniques for addressing endogeneity of many types 

are of limited effectiveness (though the evidence against reverse causality is relatively strong). 

Ultimately, we lean on the rapid diffusion of the technology, the sharpness of the timing, controlling for 

unobserved time-invariant plant characteristics, and detailed mechanism tests to suggest that there was a 

causal link between this important technological change and meaningful firm outcomes.  

Finally, another limitation of our study is that it tells us about IT performance over the lifecycle 

only in the short term. It becomes difficult to track the long-term effects of these investments in young 

firms due to their high baseline exit rates. Moreover, the changes are still quite recent. It would be useful 

to replicate this study as time passes and we can observe longer-term effects.  

We can only sketch out the implications for what may follow in the long run. Uncertainty is a 

permanent feature of the economic landscape, and the association with firm age and certain industry 

settings is unlikely to change. Thus, we expect that these associations might be long-lived. This has 

important implications for market-level dynamics including entry, the basis of firm competition, and 

equilibrium market structure. Unpacking how this may play out for industrial organization over time 

would be an interesting area for future research. 
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Figure 1. Population Statistics on Birth Rate and Prevalence of Young Plants in U.S. 
Manufacturing, 2006-2014. 
 

 
 
Note: Based on the U.S. Census Bureau’s Longitudinal Business Database for industries in the 

manufacturing sector, 2006 -2014.   
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Note: Values represent the ratio of establishments in Data Processing, Hosting, and Related 

Services (NAICS 518210) to the total number of establishments within the county. Based on 

public County Business Pattern 2010 data from the U.S. Census Bureau. Values reported are in 

percentage points – i.e., the most concentrated counties have a ratio of 0.23% to 3.33% of 

establishments belonging to the Data Services industry. 
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Figure 2. Data Processing, Hosting, and Related Services Intensity by County in the U.S. 2010 
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Figure 3. Annual Capitalized Investments in Computers and Data Processing Equipment in U.S. 
Manufacturing, 2006-2014 ($Thousands) 
Winsorized at the 99th percentile

 

Figure 4. Accumulated and Depreciated IT Capital Stocks (Computers and Data Processing 
Equipment) in U.S. Manufacturing, 2006-2014 ($Thousands) 
Winsorized at the 99th percentile
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Figure 5. Annual Expenditures on IT Services in U.S. Manufacturing, 2006-2014 ($Thousands)  
Winsorized at the 99th percentile 

 

Figure 6. Per-Employee Annual Expenditures on IT Capital flows and IT Services in U.S. 
Manufacturing, 2006-2014 ($Thousands)  
Winsorized at the 99th percentile 
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Table 1. Change of Pricing for Amazon EC2 and Database Product Price Indices 

 

Source: Byrne, Corrado and Sichel 2017 
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Table 2. Descriptive Statistics 

Variable Definition 

Young 
Less than or 

equal to 5 years 
old 

Older 
Greater than 5 

years old 
(S.D.) 

Age Plant age 
2.50 

(1.45) 
25.3 

(9.98) 

Exit (failure) Average annual rate (percent) of plant exit due to failure 
3.33 

(17.9) 
1.35 

(11.5) 

Number of 
Employees 

Total number of employees 
68.5 
(166) 

189 
(421) 

Sales Total value of shipments ($Millions) 
30.0 

(149.7) 
116 

(611) 

Value Added Value added ($Millions) 
12.4 

(66.7) 
44.4 
(243) 

IT Capital Stock† Stock of IT capital such as computers and data-processing 
equipment ($Millions) 

0.09 
(0.33) 

0.23 
(0.58) 

IT Capital annual 
flow†  

Capital expenditure for the year on computers and data 
processing equipment ($Millions) 

0.03 
(0.13) 

0.07 
(0.20) 

IT Services†  
Operating expenses on data processing and other 
purchased computer services ($Millions) 

0.02 
(0.08) 

0.04 
(0.14) 

Software† Operating expenses on software ($Millions) 
0.01 

(0.06) 
0.03 

(0.10) 

Equipment† Operating expenses on equipment ($Millions) 
0.02 

(0.075) 
0.04 

(0.13) 

Non-IT Capital 
Stock† 

Traditional capital stock on non-IT equipment and 
structure ($Millions) 

10.2 
(37.6) 

28.0 
(65.2) 

Multi-Unit Status Indicator for whether plants belong to a multi-unit firms 
0.70 

(0.46) 
0.69 

(0.46) 

Log(Sales) Plant total sales in log terms ($Thousands) 
8.88 

(1.58) 
10.2 

(1.56) 

Log (IT Capital 
Stock†) 

IT capital stock in log terms ($Thousands) 
2.60 

(1.90) 
3.80 

(1.98) 

Log (IT Capital 
flows†) 

IT capital expenditure in log terms ($Thousands) 
1.29 

(1.73) 
1.95 

(0.21) 

Log (IT Services†) 
Operating expenses on Data processing and other 
purchased computer services in log terms ($Thousands) 

0.87 
(1.49) 

1.30 
(1.90) 

Log (Equipment 
Expenditure†) 

Operating expenses on equipment in log terms 
($Thousands) 

1.13 
(1.51) 

1.79 
(1.89) 

Log (Software 
Expenditure†) 

Operating expenses on software in log terms ($Thousands) 
0.83 

(1.37) 
1.39 

(1.82) 

Number of 
Observations 

 ~41,300 ~198,400 

Note: Std. Deviations in parentheses; † indicates the variable is winsorized at the 1% and 99% levels. 
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Table 3. IT Capital and Expenditures per Employee for Young vs. Older Plants in U.S. Manufacturing 2006-2014         

 (1) (2) (3) (4) (4a) (4b) (4c) (4d) 

Dependent Variable 

IT Capital 

Stock per 

Employee 

Annual IT 

Flows 

 (all kinds) 

per 

Employee 

IT Capital 

Stock per 

Employee 

Annual IT 

Flows 

 (all kinds) 

 per 

Employee 

IT Capital 

Flows 

per 

Employee 

IT Services 

Spend per 

Employee 

Software 

Spend per 

Employee 

Equipment 

Spend per 

Employee 

Young 
-.063*** 

(0.012) 

-.021*** 

(0.010) 

-0.037* 

(0.022) 

-0.008 

(0.019) 

0.017* 

(0.009) 

-0.021*** 

(0.009) 

-0.025*** 

(0.004) 

0.006 

(0.006) 

Late 

(2008 – 2014) 
  

0.150*** 

(0.011) 

-0.081*** 

(0.010) 

-0.029*** 

(0.004) 

0.018*** 

(0.003) 

0.026*** 

(0.002) 

-0.078*** 

(0.003) 

Young x Late   
-0.041 

(0.026) 

-0.035 

(0.022) 

-0.011 

(0.010) 

-0.002 

(0.007) 

-0.002 

(0.005) 

-0.020 

(0.007) 

Industry Fixed 

Effects 
Y Y Y Y Y Y Y Y 

Year Fixed Effects Y Y N N N N N N 

N ~239,700 ~239,700 ~239,700 ~239,700 ~239,700 ~239,700 ~239,700 ~239,700 

R-Squared 0.094 0.099 0.093 0.097 0.048 0.047 0.085 0.060 

Note: Results from columns 1 and 2 are from unweighted OLS regressions controlling for year- and industry- (6-digit NAICS) fixed effects. Results from 

columns 3 to 4d are from OLS regressions controlling for industry-fixed effects (6-digit NAICS). All columns use the entire analysis sample containing both 

young and old plants from 2006 to 2014. The dependent variables are the IT capital stock and annual IT expenditure variables winsorized at the 99th percentile. In 

addition, the rate of outliers is not correlated with age as we observe similar percentages in both young and old. Young is an indicator for an plant being less than 

or equal to 5 years old. Late is the indicator for the sample years 2008 through 2014. Statistical significance is denoted as follows: * 10%, ** 5%, *** 1%. 
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Table 4. IT Expenditure Breakdown by Type for Young and Older Plants, 2006 – 2014 

 (1) (2) (3) (4) 

Dependent Variables 

% Expenditure 

on IT Capital 

Flows 

% Expenditure 

on IT Services 

% Expenditure 

on Software 

% Expenditure 

on Equipment 

Young 
0.009** 

(0.004) 

-0.004 

(0.003) 

-0.015*** 

(0.003) 

0.010*** 

(0.003) 

Late 
-0.054*** 

(0.002) 

0.021*** 

(0.002) 

0.036*** 

(0.001) 

-0.003* 

(0.002) 

Young x Late 
-0.006 

(0.004) 

0.011** 

(0.003) 

0.002 

(0.003) 

-0.007* 

(0.004) 

Industry Fixed Effects Y Y Y Y 

N ~239,700 ~239,700 ~239,700 ~239,700 

R-Squared 0.152 0.086 0.097 0.131 

Note: Results are from OLS regressions controlling for industry (6-digit NAICS) fixed effects. The dependent 

variables are the percentage of each type of IT spending with respect to the total expenditure reported on IT. All 

columns include an unreported indicator for whether the plant reported zero IT expenditure (note that these are 

reported, not imputed zeroes). Late is the indicator for the sample years 2008 through 2014. There is no statistical 

difference between the 2008-2009 and 2010-2014 periods, so they are combined for ease of exposition. Statistical 

significance is denoted as follows: * 10%, ** 5%, *** 1%.
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Table 5. IT Expenditure, Survival, and Employment Growth in Young vs. Older Plants, 2006-2014 

Model Description 

(1a) 
Survival 
Young 

(1b) 
Survival 

Older 

(2a) 
Survival 
(High IT 
dummies) 

Young 

(2b) 
Survival 
(High IT 
dummies) 

Older 

(3a) 
Employment 

Growth 
Young 

(3b) 
Employment 

Growth 
Older 

Dependent Variable 
Probability of 

Failure 
Probability of 

Failure 
Probability of 

Failure 
Probability of 

Failure 
Change in 

Employment 
Change in 

Employment 

IT Capital stock 
1.046** 
(0.023) 

0.968** 
(0.014) 

1.263** 
(0.147) 

0.849*** 
(0.053) 

0.014*** 
(0.004) 

0.008*** 
(0.002) 

IT Services 
0.951* 
(0.026) 

0.900*** 
(0.014) 

0.824** 
(0.073) 

0.727*** 
(0.040) 

0.014*** 
(0.003) 

0.008*** 
(0.001) 

Software 
0.923** 
(0.030) 

0.846*** 
(0.016) 

1.014 
(0.092) 

0.777*** 
(0.046) 

-0.141*** 
(0.017) 

-0.092*** 
(0.012) 

Equipment 
0.875*** 
(0.027) 

0.823*** 
(0.014) 

0.616*** 
(0.075) 

0.523*** 
(0.036) 

0.026*** 
(0.003) 

0.017*** 
(0.001) 

Non-IT Capital Stock 
0.879*** 
(0.014) 

1.007 
(0.018) 

0.885*** 
(0.012) 

0.972* 
(0.015) 

0.019*** 
(0.005) 

0.035*** 
(0.009) 

Industry Controls NAICS4 NAICS4 NAICS3 NAICS3 N N 

Industry x Year Fixed Effects N N N N Y Y 

# of Plants per Year ~4,900 ~22,400 ~4,900 ~22,400 ~2,400 ~14,500 

# of Years 6 6 6 6 8 8 

R-Squared     0.105 0.081 

Note: Results in columns 1a, 1b, 2a, and 2b are hazard rates from a Cox proportional hazard model of the likelihood of failure. Columns 3a and 3b report OLS 

coefficients of a regression on year-over-year change in employment at the plant. The independent variables for the first two columns include levels of IT 

investment; the next two substitute indicators for being in the 75th percentile of that type of IT investment for that plant’s NAICS4 industry. Additional controls 

include accumulated and depreciated non-IT capital stock in log terms and plant age (not reported but available upon request). For columns 3a and 3b, the 

explanatory variables are year-over-year changes in IT (calculated using log differences) and changes in non-IT capital stock in log terms. The sample for the 

survival models from columns 1a to 2b included data from 2006 to 2012 due to limitations in the 2013 LBD preventing identification of plant exit. The sample 

for the growth models requires that plants persist at least two consecutive years in the sample. Columns 1a and 1b control for 4-digit NAICS code; columns 2a 

and 2b control for 3-digit NAICS code because IT indicators are constructed based on 4-digit NAICS. Standard errors from specifications in columns 3a and 3b 

are clustered at the plant level. Statistical significance is denoted as follows: *10%, **5%, ***1%.
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Table 6a.  Estimates of IT Productivity for Young vs. Older Plants, 2006-2014 

 (1) (2) (3) (4) (5) (6) (7) 

Model Description All 
Young 
Only 

Older Only 
Sales 

x Young 

Sales 
Young 

Only + F.E. 

Sales 
Older Only 

+ F.E. 

Young 
Only 

(High IT 
indicators)  

IT Capital Stock  
0.015*** 

(0.001) 

0.011** 

(0.003) 

0.014*** 

(0.001) 

0.014*** 

(0.001) 

0.007** 

(0.004) 

0.003** 

(0.001) 

0.068*** 

(0.013) 

IT Services 
0.001 

(0.001) 

0.010*** 

(0.003) 

0.001 

(0.001) 

0.001 

(0.001) 

0.009*** 

(0.003) 

0.0014** 

(0.0007) 

0.026** 

(0.010) 

Software 
0.002* 

(0.001) 

0.005* 

(0.003) 

0.001 

(0.001) 

0.001 

(0.001) 

0.009*** 

(0.003) 

0.003** 

(0.001) 

0.018 

(0.011) 

Equipment 
0.014*** 

(0.001) 

0.018*** 

(0.003) 

0.013*** 

(0.001) 

0.013*** 

(0.001) 

0.012*** 

(0.003) 

0.006*** 

(0.001) 

0.053*** 

(0.010) 

Young 
0.013*** 

(0.005) 
  

0.212*** 

(0.039) 
  

 

IT Capital Stock x 
Young  

   
-0.003 

(0.003) 
  

 

IT Services x 
Young  

   
0.009*** 

(0.003) 
  

 

Software x Young    
0.005 

(0.003) 
  

 

Equipment x 
Young 

   
0.006** 

(0.003) 
  

 

Non-IT Capital 
Stock 

0.055*** 

(0.002) 

0.027*** 

(0.003) 

0.073*** 

(0.003) 

0.073*** 

(0.003) 

0.011*** 

(0.004) 

0.019*** 

(0.004) 

0.029*** 

(0.003) 

Non-IT Capital 
Stock x Young 

   
-0.047*** 

(0.004) 
  

 

Inputs: Labor & 
Materials 

Y Y Y Y Y Y Y 

Inputs x Young N N N Y N N N 

Industry x Year 
Fixed Effects 

Y Y Y Y N N Y 

Plant & Year 
Fixed Effects 

N N N N Y Y N 

# of Plants 
per Year 

~26,600 ~4,600 ~22,000 ~26,600 ~4,600 ~22,000 ~4,600 

# of Years 9 9 9 9 9 9 9 

R-Squared 0.943 0.911 0.947 0.943 0.585 0.600 0.911 

Note:  Results in columns 1, 2, 3, 4, and 7 are based on weighted OLS regression using ASM sampling weights controlling for 
year-industry (6-digit NAICS) fixed effects. Columns 5 and 6 are based on plant fixed effect models controlling for year trends. 
The dependent variable for all columns is total sales in log terms. Production inputs are also controlled for (but not reported) in all 
models in log terms, including: cost of material, cost of energy, and labor (both expenditure on temporary employees and the count 
of regular employees). In addition, the coefficients for interaction terms between Young and the production inputs in column 4 are 
not reported to save space (available upon request). Standard errors for all columns are clustered at the plant level. Results are 
robust to two-way clustering at county & plant and firm & plant levels, as well (pending disclosure review). Statistical significance 
is denoted as follows: * 10%, ** 5%, *** 1%. 
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Table 6b. Linear Combinations of IT Productivity Coefficients from Table 6a: 

 (1) (2) (3) (4) 

Model Description 
Sales 

Young Only 
Sales 

Older Only 

Sales 
Young Only 

+ F.E. 

Sales 
Older Only 

+ F.E. 

IT Capital Stock 
0.011** 
(0.003) 

0.014*** 
(0.001) 

0.007** 
(0.004) 

0.003** 
(0.001) 

IT Capital Stock + Equipment  
0.029*** 
(0.004) 

0.027*** 
(0.002) 

0.019*** 
(0.005) 

0.009*** 
(0.001) 

IT Capital Stock + IT Services 
0.021*** 
(0.004) 

0.014*** 
(0.002) 

0.016*** 
(0.005) 

0.004*** 
(0.001) 

IT Capital Stock + IT Services + 
Equipment 

0.039*** 
(0.005) 

0.028*** 
(0.002) 

0.027*** 
(0.006) 

0.010*** 
(0.001) 

IT Capital Stock + IT Services + 
Equipment + Software 

0.044*** 
(0.005) 

0.029*** 
(0.002) 

0.036*** 
(0.007) 

0.013*** 
(0.002) 

Industry x Year Fixed Effects Y Y N N 

Plant & Year Fixed Effects N N Y Y 

Note: The coefficients are calculated using the lincom command in Stata 13, based on coefficients from Table 6a, 
columns 4-7 respectively for young and old samples. Statistical significance is denoted as follows: * 10%, ** 5%, 
*** 1%.  
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Table 7. Alternative Estimates of IT Performance Benefits for Young Plants, 2006-2014 

 (1) (2) (3) (4) (5) 

Model 
Description 

OLS Blundell-Bond 
Levinsohn-

Petrin 
Ackerberg-

Caves-Frazer 

Data Center 
Intensity 
(lagged 2 

years) 

Dependent 
Variables 

Sales Sales Sales Sales Sales 

IT Capital Stock  
0.011** 

(0.003) 

0.005 

(0.010) 

0.013*** 

(0.002) 

0.029 

(0.035) 

-0.004 

(0.007) 

IT Services 
0.010*** 

(0.003) 

0.031*** 

(0.012) 

0.007*** 

(0.002) 

0.022*** 

(0.007) 

0.402** 

(0.146) 

Software 
0.005* 

(0.003) 

-0.002 

(0.013) 

0.010*** 

(0.003) 

0.026 

(0.022) 

-0.079* 

(0.032) 

Equipment 
0.018*** 

(0.003) 

0.032*** 

(0.012) 

0.023*** 

(0.002) 

0.040*** 

(0.013) 

-0.015 

(0.014) 

Non-IT Capital 
Stock 

0.073*** 

(0.003) 

0.008 

(0.015) 

0.031*** 

(0.011) 

0.041*** 

(0.015) 

0.023*** 

(0.003) 

Inputs: Labor & 
Materials 

Y  Y   Y   Y   Y   

Plant & Year 
Fixed Effects 

N Y Y Y N 

Industry x Year 
Fixed Effects 

Y N N N Y 

      

First Stage       

Data Center 
Intensity 

N/A N/A N/A N/A 
29.17*** 

(8.02) 

F-test  N/A N/A N/A N/A 13.22 

# of Plants per 
Year 

~4,600 ~4,600 ~4,600 ~4,600 ~4,600 

# of Years 9 7 9 9 9 

Note: Note: Column 1 is identical to Table 6a, column 2. Column 2 employs the system GMM estimator following 
Blundell and Bond (2000) to address potential endogeneity of IT adoption in the productivity estimation. It uses 
two-period lagged differences and levels as GMM instruments for IT services expenditure. This specification passes 
both over-identification and autocorrelation tests. Column 3 follows the approach in Levinsohn and Petrin (2003), 
using expenditure on intermediate inputs (cost of temporary employees) as proxy for unobservable productivity 
shocks. Column 4 employs the method developed by Ackerberg, Caves, and Frazer (2006) to further account for 
collinearity problems when estimating productivity using the Levinsohn-Petrin techniques. Column 5 used the 
lagged data center intensity (percentage of number of data centers to total establishments) in the local county as the 
instrument. The results in column 5 pass all tests including weak identification, under identification, and 
endogeneity tests. Production inputs are also controlled for (but not reported) in all models in log terms, including: 
cost of materials, cost of energy (both electricity and fuel), and labor (both expenditure on temporary employees and 
the count of regular employees). Statistical significance is denoted as follows: * 10%, ** 5%, *** 1%. We also 
tested the semiparametric method developed by Olley and Pakes (1996), which uses capital investment (both 
structure and equipment) as a proxy for unobservable shocks that could lead to spurious correlation between IT 
services expenditure and productivity. The results from this method are consistent with the results presented in this 
table. 
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Table 8. Reverse Causality Tests in Young Plants 

Model Description 
(1) 

No lagged 
TVS 

(2) 
Lagged TVS 

(3) 
Forward IT 

(4) 
Lagged TVS 

(5) 
Forward 

TVS 
Dependent 
Variables 

Sales Sales Sales IT Services IT Services 

Lagged IT Capital 
Stock 

0.006 

(0.004) 

-0.006* 

(0.003) 

-0.019*** 

(0.005) 

0.016** 

(0.007) 

0.021** 

(0.010) 

Lagged IT Services 
0.013*** 

(0.004) 

0.0004 

(0.003) 

0.004 

(0.005) 

0.698*** 

(0.011) 

0.708*** 

(0.016) 

Lagged Software 
0.001 

(0.005) 

-0.005 

(0.003) 

-0.003 

(0.005) 

0.043*** 

(0.011) 

0.062*** 

(0.016) 

Lagged Equipment 
0.018*** 

(0.005) 

0.007 

(0.004) 

-0.012** 

(0.006) 

0.008 

(0.009) 

0.022* 

(0.013) 

Lagged Sales  
0.510*** 

(0.017) 

0.527*** 

(0.019) 

-0.033** 

(0.017) 

-0.047 

(0.031) 

Forward IT 
Capital Stock  

 
 

 

0.017** 

(0.006) 
  

Forward IT 
Services 

  
-0.004 

(0.004) 
  

Forward Software 
 

 
 

-0.004 

(0.005) 
  

Forward 
Equipment 

  
0.019*** 

(0.005) 
  

Forward Sales 
 

 
   

0.056** 

(0.027) 

Industry x Year 
Fixed Effects 

Y Y Y Y Y 

# of Plants per 
Year 

~2,100 ~2,100 ~1,200 ~2,100 ~1,200 

# of Years 8 8 7 8 7 

R-Squared 0.923 0.954 0.962 0.625 0.641 

Note: Results are from the weighted OLS regression using ASM sampling weights. All columns use young sample 

only and control for industry-year fixed-effects. The dependent variables for columns 1 to 3 are total value of 

shipment in log terms while the dependent variables for columns 4 and 5 are the IT services in log terms. The 

sample size is similar to those in the growth models since lagged and forward variables are needed to test for reverse 

causality and hence the plants in the analysis sample are required to show up two or three consecutive years. 

Additional controls include cost of material, cost of energy (both electricity and fuel), imputed non-IT capital stock, 

and labor (both expenditure on temporary employees and the count of regular employees) in log terms. Standard 

errors are clustered at the plant level. Statistical significance is denoted as follows: * 10%, ** 5%, *** 1%. 
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Table 9.  Timing of IT Productivity Effects, 2006-2014 

Model 
Dependent Variable = Total Revenues 

(1) 
Continuous IT 

(2) 
High IT Indicators  

(Top Quartile) 

IT Capital Stock 
0.008* 
(0.004) 

0.077*** 
(0.018) 

IT Services 
0.002 

(0.004) 
0.006 

(0.016) 

Equipment 
0.006 

(0.004) 
0.029* 
(0.016) 

Software 
0.001 

(0.005) 
-0.011 
(0.022) 

IT Capital Stock x Middle Period (2008-
2009) 

0.005 
(0.006) 

-0.026 
(0.025) 

IT Services x Middle 
0.006 

(0.006) 
0.050** 
(0.023) 

Software x Middle 
0.010 

(0.007) 
0.060** 
(0.029) 

Equipment x Middle 
0.020*** 
(0.007) 

0.018 
(0.023) 

IT Capital Stock x Later Period 
(2010-2014) 

0.002 
(0.005) 

-0.007 
(0.025) 

IT Services x Late  
0.012** 
(0.005) 

0.040* 
(0.022) 

Software x Late 
0.004 

(0.007) 
0.050* 
(0.027) 

Equipment x Late 
0.017*** 
(0.006) 

0.041* 
(0.021) 

# of Plants per Year ~4,600 ~4,600 

# of Years 9 9 

R-Squared 0.911 0.911 

Note: Results in all columns are based on the weighted OLS regression using ASM sampling. All columns use 
young sample only and control for industry-year fixed-effects. The dependent variable for all columns is total value 
of shipment in log terms. The coefficients for both period dummies are omitted since we controlled for year-industry 
fixed-effects. Additional variables including cost of material, cost of energy (both electricity and fuel), imputed non-
IT capital stock, and labor (both expenditure on temporary employees and the count of regular employees) in log 
terms are controlled but not reported to save space (available up on request). In addition, the coefficients for 
interaction terms between young and other inputs are not reported in the table to save space. Standard errors for all 
columns are clustered at the plant level. Statistical significance is denoted as follows: * 10%, ** 5%, *** 1%. 
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Table 10. Industry Variation in IT Productivity, 2006-2014 

Model Description 

(1) 
IT-Intensive 

in 2005 

(2) 
IT-Intensive 

in 2005 
 (High IT 
Dummies) 

(3) 
High 

Competition  
(Lerner 
Index) 

(4) 
High-

Uncertainty  
(Young) 

(5) 
High-

Uncertainty  
(Older) 

Dependent Variables Sales Sales Sales Sales Sales 

IT Capital Stock 
0.012*** 
(0.004) 

0.039* 
(0.016) 

0.016*** 
(0.004) 

0.020*** 
(0.004) 

0.020*** 
(0.002) 

IT Services 
0.002 

(0.004) 
-0.014 
(0.013) 

0.007* 
(0.003) 

0.003 
(0.004) 

-0.001 
(0.001) 

Software 
0.005 

(0.005) 
0.016 

(0.013) 
0.006 

(0.004) 
0.015*** 
(0.004) 

0.007*** 
(0.001) 

Equipment 
0.019*** 
(0.004) 

0.042*** 
(0.014) 

0.027*** 
(0.003) 

0.024*** 
(0.004) 

0.017*** 
(0.001) 

IT Capital Stock x High IT 
Intensity in 2005 

0.001 
(0.005) 

0.063* 
(0.025) 

   

IT Services x High IT Intensity 
in 2005 

0.010 
(0.005) 

0.062** 
(0.020) 

   

Software x High IT Intensity in 
2005 

0.005 
(0.006) 

-0.001 
(0.022) 

   

Equipment x High IT Intensity 
in 2005 

0.012 
(0.006) 

0.035 
(0.021) 

   

IT Capital Stock x High 
Competition 

  
-0.006 
(0.006) 

  

IT Services x High Competition   
0.011* 
(0.006) 

  

Software x High Competition   
0.012 

(0.008) 
  

Equipment x High Competition   
-0.001 
(0.007) 

  

IT Capital Stock x High 
Uncertainty 

   
-0.012* 
(0.005) 

-0.004 
(0.002) 

IT Services x High Uncertainty    
0.015** 
(0.005) 

0.005** 
(0.002) 

Software x High Uncertainty    
-0.014* 
(0.006) 

-0.005* 
(0.002) 

Equipment x High Uncertainty    
0.007 

(0.006) 
0.005* 
(0.002) 

Industry and Year Fixed Effects  Y Y Y Y Y 

# of Plants per Year ~4,600 ~4,600 ~4,600 ~4,600 ~22,000 

# of Years 9 9 9 9 9 

Note: Results in all columns are based on weighted OLS regressions using ASM sampling weights. All columns control 

for sector (2-digit NAICS) and year fixed effects using the young sample only (except column 5). The dependent variable 

for all columns is logged total value of shipments. High IT Intensity in 2005 is an indicator for plants in industries (3-digit 

NAICS) with above-mean IT capital stock in 2005. High Competition is an indicator equal to 1 if the one-period lagged 

industry (6-digit NAICS) Lerner index is in the bottom 25th percentile for the entire ASM. High Uncertainty is an 

indicator for being in 6-digit NAICS industries with above-mean industry variance in the quarterly plant capacity 

utilization rate (based on data from the US Census Bureau’s Plant Capacity Utilization Survey matched to our sample). 

Inputs including costs of material, cost of energy (both electricity and fuel), imputed non-IT capital stock, and labor (both 

expenditure on temporary employees and the count of regular employees) in log terms are controlled for but not reported 

(available up on request). Standard errors for all columns are clustered at the plant level. Statistical significance is denoted 

as follows: * 10%, ** 5%, *** 1%. 
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Table 11. Size vs. Age in IT Productivity, 2006-2014  

Dependent Variable Sales  Comparison Group: IT 
Capital Stock + older + 

small 

0.039*** 
(0.002) 

IT Capital Stock 
0.039*** 

(0.002) 
 

IT Services 
0.012*** 

(0.002) 
 Linear Combination: IT 

Capital Stock + young + 
small 

0.006* 
(0.004) 

Software 
0.012*** 

(0.002) 

 

Equipment 
0.026*** 

(0.002) 
 Linear Combination: IT 

Capital Stock + young + 
large 

0.006 
(0.005) 

Young 
0.027* 

(0.014) 

 

Large 
0.305*** 

(0.011) 
 Linear Combination: IT 

Capital Stock + older + 
large 

0.040*** 
(0.002) 

Large x Young 
0.089*** 

(0.023) 

 

IT Capital Stock x Large 
0.002 

(0.003) 

   

IT Services x Large 
-0.011*** 

(0.002) 

 

Comparison Group: IT 
services + older + small 

0.012*** 
(0.002) 

Software x Large 
-0.003 

(0.003) 

 

Equipment x Large 
-0.002 

(0.003) 

 

Linear Combination: IT 
services + young + small 

0.022*** 
(0.004) 

IT Capital Stock x Young 
-0.032*** 

(0.004) 

 

IT Services x Young 
0.010* 

(0.004) 

 

Linear Combination: IT 
services + young + large 

0.009*** 
(0.004) 

Software x Young 
0.014** 

(0.005) 

 

Equipment x Young 
0.018*** 

(0.005) 

 

Linear Combination: IT 
services + older + large 

0.002 
(0.001) 

IT Capital Stock x Young x Large 
-0.002 

(0.006) 

 

IT Services x Young x Large 
-0.002 

(0.006) 

      Note: Results of weighted OLS regression using 

ASM sampling weights. Young indicates 5 or 
fewer years old. Large indicates above-median 
employment compared to the plant’s 4-digit 
NAICS industry in a given year. Additional 
controls include logged cost of materials, cost of 
energy (both electricity and fuel), imputed non-IT 
capital stock, and labor (both expenditure on 
temporary employees and the count of regular 
employees); these are not interacted with Young 
or Large in this specification. Joint tests of 
significant for the linear combinations are 
conducted using the STATA 13 lincom 
command. Standard errors are clustered at the 
plant level. Statistical significance is denoted as 
follows: * 10%, ** 5%, *** 1%. 

Software x Young x Large 
-0.010 

(0.007) 

 

Equipment x Young x Large 
-0.020*** 

(0.007) 

 

Industry x Year Fixed Effects Y  

# of Plants per Year ~26,000  

# of Years 9  

R-Squared 0.932 
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Table 12. Age and Multi-Unit Status in Multi-Factor IT Productivity 2006-2014 

Dependent Variable Sales  Comparison Group: IT 
Capital Stock + older + 

single-unit 

0.013*** 
(0.002) 

IT Capital Stock 
0.013*** 

(0.002) 
 

IT Services 
0.007*** 

(0.002) 
 Linear Combination: IT 

Capital Stock + young + 
single-unit 

-0.005 
(0.005) 

Software 
0.002 

(0.002) 

 

Equipment 
0.011*** 

(0.002) 
 Linear Combination: IT 

Capital Stock + young + 
MU 

0.0005 
(0.003) 

Young 
0.021 

 (0.017) 

 

MU 
0.042*** 

(0.011) 
 Linear Combination: IT 

Capital Stock + older + 
MU 

0.021*** 
(0.002) 

MU x Young 
0.024 

(0.021) 

 

IT Capital Stock x MU 
0.007*** 

(0.003) 

   

IT Services x MU 
-0.008*** 

(0.002) 

 
Comparison Group: IT 
services + older + single-

unit 

0.007*** 
(0.002) 

Software x MU 
-0.001 

(0.002) 

 

Equipment x MU 
0.004* 

(0.002) 

 
Linear Combination: IT 
services + young + single-

unit 

0.010*** 
(0.004) 

IT Capital Stock x Young 
-0.019*** 

(0.005) 

 

IT Services x Young 
0.004 

(0.005) 

 

Linear Combination: IT 
services + young + MU 

0.011*** 
(0.003) 

Software x Young 
0.010* 

(0.005) 

 

Equipment x Young 
0.011*** 

(0.005) 

 

Linear Combination: IT 
services + old + MU 

-0.001 
(0.001) 

IT Capital Stock x Young x MU 
-0.001 

(0.006) 

 

IT Services x Young x MU 
0.009 

(0.006) 

      Note: Results of weighted OLS regression using 

ASM sampling weights. Young indicates 5 or 
fewer years old. MU indicates whether the plants 
belong to multi-unit firms. Additional controls 
include logged cost of materials, cost of energy 
(both electricity and fuel), imputed non-IT capital 
stock, and labor (both expenditure on temporary 
employees and the count of regular employees); 
these are not interacted with Young or MU in this 
specification. Joint tests of significant for the 
linear combinations are conducted using the 
STATA 13 lincom command. Standard errors are 
clustered at the plant level. Statistical significance 
is denoted as follows: * 10%, ** 5%, *** 1%. 

Software x Young x MU 
-0.005 

(0.007) 

 

Equipment x Young x MU 
-0.007 

(0.006) 

 

Industry x Year Fixed Effects Y  

# of Plants per Year ~26,000  

# of Years 9  

 
R-Squared 0.943 
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Table 13. IT Complementarities for both Young and Older Plants 

Model Description 
(1) 

Same-Year 
Interaction 

(2) 
Same-Year 
Interaction 

(3) 
Lagged IT 

Capital 

(4) 
Lagged IT 
Services 

(5) 
Lagged IT 
Services 

Sample Young Older Young All All 

Dependent Variables Sales Sales Sales Sales Sales 

IT Capital Stock 
0.013*** 
(0.004) 

0.014*** 
(0.002) 

0.006 
(0.006) 

  

IT Services 
0.015*** 
(0.005) 

-0.0001 
(0.003) 

0.011 
(0.008) 

  

Software 
-0.016** 
(0.006) 

-0.006* 
(0.003) 

-0.031** 
(0.010) 

  

Equipment 
0.027*** 
(0.005) 

0.012*** 
(0.003) 

0.030*** 
(0.009) 

  

IT Capital Stock x IT 
Services 

-0.003** 
(0.001) 

-0.001** 
(0.0006) 

-0.003 
(0.002) 

  

IT Capital Stock x 
Lagged† IT Services 

  
 +**  

Software x IT Services  
0.004*** 
(0.002) 

0.002*** 
(0.001) 

0.005* 
(0.002) 

  

Software x Lagged†† IT 
Services 

  
  +** 

Equipment x IT Services 
-0.0001 
(0.001) 

0.001 
(0.001) 

0.001 
(0.002) 

  

IT Capital Stock x 
Software 

0.004*** 
(0.002) 

0.001 
(0.001) 

0.007** 
(0.002) 

  

IT Capital Stock x 
Equipment 

-0.003** 
(0.001) 

0.0002 
(0.001) 

-0.003 
(0.002) 

  

Non-IT Capital Stock 
0.027*** 
(0.003) 

0.073*** 
(0.003) 

0.043*** 
(0.008) 

  

Other inputs  Y Y Y 
  

Industry x Year Fixed 
Effects 

Y Y Y 
  

# of Plants per Year ~4,600 ~22,000 ~2,000 
  

# of Years  9 9 8 
  

R-Squared 0.911 0.947 0.923 
  

†Lagged 5-6 years; other lags are noisy.  
††Lagged 3-4 years; other lags are noisy. 

Note: Results in all columns are based on the weighted OLS regression using ASM sampling weights.  Column 1 

uses young sample only and column 2 uses the older sample. Column 3 uses young sample and interacts other 

variables with one period lagged IT capital stock. All specifications control for industry-year fixed-effects. 

Additional controls include cost of material, cost of energy (both electricity and fuel), and labor (both expenditure 

on temporary employees and the count of regular employees) – all in log terms. The coefficients for these variables 

are not reported to save space (available up on request). Standard errors for all columns are clustered at the plant 

level. Statistical significance is denoted as follows: * 10%, ** 5%, *** 1%.
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Table 14. Robustness Tests  

Models 

(1) 
Translog 

Production 
Function 

(2) 
Regional 
Controls 

(3) 
Different 

Labor 
calculation 

(4) 
Including 
Imputed 

Data 

(5) 
Non-

Winsorized 

(6)  
Propensity-

Score 
Weights 

(pending) 
Dependent 
Variables 

Sales Sales Sales Sales Sales  

IT Capital 
Stock 

0.017 

(0.015) 

0.013*** 

(0.003) 

0.025*** 

(0.003) 

0.013*** 

(0.002) 

0.011*** 

(0.003) 

 

IT 
Services 

0.026 

(0.025) 

0.010*** 

(0.003) 

0.018*** 

(0.003) 

0.019*** 

(0.002) 

0.010*** 

(0.003) 

 

Software 
0.017 

(0.018) 

0.005 

(0.003) 

0.021*** 

(0.003) 

0.011*** 

(0.003) 

0.005* 

(0.003) 

 

Equipment  
0.076*** 

(0.018) 

0.016*** 

(0.003) 

0.029*** 

(0.003) 

0.024*** 

(0.002) 

0.018*** 

(0.003) 

 

Industry x 
Year Fixed 
Effects 

Y Y Y Y Y 
 

# of Plants 
per Year 

~4,600 ~4,600 ~4,600 ~11,300 ~4,600 
 

# of Years 9 9 9 9 9 
 

R-Squared 0.933 0.914 0.904 0.924 0.911 
 

Note: Column 1 estimates a translog production function including interactions and the squares for all inputs. To 

account for geographical differences, column 2 further controls for reginal, industry and year fixed effects. Column 

3 addresses the concern of omitted variable bias on the quality of the labor input by using the quality adjusted labor 

measure (calculated by multiplying the total production hours with the ratio of the production worker wage to the 

total salary in log term following Foster, Grim, and Haltiwanger 2016). In column 4, the specification utilizes the 

observations with the Census imputed values for IT variables to test the sensitivity of our results to the Census 

imputation. Finally, column 5 re-estimates the production function using the non-winsorized variables from the 

ASM and CMF. Results for columns 1 to 5 are based on the weighted OLS regression using ASM sampling weights 

controlling for industry-year fixed-effects. Additional variables including cost of material, cost of energy, imputed 

non-IT capital stock, and labor (both expenditure on temporary employees and the count of regular employees) – all 

in log terms are controlled for all columns. Young sample is used for all columns in the table. Standard errors for all 

columns are clustered at the plant level. Statistical significance is denoted as follows: * 10%, ** 5%, *** 1%. 
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Appendix Table A.1 Descriptive Statistics for ASM-based Sample (Young vs. Older) 

Variable Definition 
ASM-based  

Sample 
Young 

ASM-based  
Sample 
Older 

Missing no IT data All four IT variables are reported 
0.41 

(0.49) 
0.56 

(0.50) 

Missing only IT 
Services data 

Only the IT services expenditure is 
missing 

0.01 
(0.09) 

0.02 
(0.13) 

Missing all Expensed IT Missing all IT operating expenses 
0.50 

(0.50) 
0.31 

(0.46) 

Missing all IT data Missing all IT variables 
0.47 

(0.50) 
0.28 

(0.45) 

Age 
Plant age (truncated due to the start of 
the LBD in 1967). 

2.13 
(1.58) 

24.9 
(10.1) 

Number of Employees Total number of employees 
56.1 
(184) 

178 
(419) 

Sales Total value of shipment (in $millions) 
23.9 
(164) 

102 
(532) 

Sales per employee Total value of shipment per employee 
0.41 

(1.35) 
0.50 

(1.52) 

Value Added Value added (in $millions) 
10.4 

(89.8) 
41.1 
(234) 

Value-Added per 
employee 

Value added per employee (in 
$thousands) 

176 
(518) 

201 
(624) 

IT Capital Stock† 

Traditional IT capital stock 
(accumulated and depreciated using a 
perpetual inventory method) (in 
$thousands) 

70.9 
(285) 

220 
(543) 

IT Capital Stock per 
employee† 

Accumulated and depreciated IT 
capital stock per employee (in 
$thousands) 

1.25 
(2.25) 

1.33 
(2.22) 

IT Capital flows† 
Capital expenditure on computers and 
peripheral data processing equipment 
(in $thousands) 

24.0 
(103) 

62.0 
(181) 

IT Capital flows per 
year per employee† 

Capital expenditure on computers and 
peripheral data processing equipment 
per employee (in $thousands) 

0.39 
(0.85) 

0.36 
(0.79) 

IT Services†  
Operating expenditure on data 
processing and other purchased 
computer services (in $thousands) 

11.5 
(57.7) 

32.9 
(111) 

IT Services per 
employee† 

Operating expenditure on data 
processing and other purchased 
computer services per employee (in 
$thousands) 

0.19 
(0.48) 

0.21 
(0.53) 

Software† 
Operating expenditure on purchased 
software, including prepacked, custom 

8.63 
(42.20) 

26.8 
(80.64) 
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coded or vendor customized software 
(in $thousands) 

Software per employee† 
Operating expenditure on software per 
employee (in $thousands) 

0.13 
(0.31) 

0.16 
(0.35) 

Equipment† 

Operating expenditure on equipment 
(expensed computer hardware and 
other equipment such as copiers, fax 
machines, telephones, shop and lab 
equipment, CPUs, monitors) (in 
$thousands) 

12.4 
(56.4) 

36.2 
(107) 

Equipment per 
employee† 

Operating expenditure on equipment 
per employee (in $thousands) 

0.20 
(0.47) 

0.22 
(0.48) 

Non-IT Capital Stock† 

Traditional (non-IT equipment and 
structure) capital stock. Accumulated 
and depreciated using a perpetual 
inventory method) (in $millions) 

9.60 
(38.4) 

24.6 
(55.7) 

Non-IT Capital Stock 
per employee† 

Traditional (non-IT equipment and 
structure) capital stock per employee 
(in $thousands) 

151 
(275) 

160 
(249) 

Multi-Unit Status 
Indicator for whether plants belong to 
a multi-unit firms 

0.62 
(0.49) 

0.67 
(0.47) 

Log (IT Capital Stock†) 
Traditional IT capital stock in log 
terms 

2.41 
(1.85) 

3.76 
(1.95) 

Log (IT Capital flows†) IT capital expenditure in log terms 
1.32 

(1.63) 
1.93 

(2.08) 

Log (IT Services†) 
Operating expenditure on data 
processing and other purchased 
computer services in log terms 

0.92 
(1.34) 

1.36 
(1.83) 

Log (Equipment 
Expenditure†) 

Operating expenditure on equipment in 
log terms 

1.08 
(1.36) 

1.76 
(1.83) 

Log (Software 
Expenditure†) 

Operating expenditure on purchased 
software in log terms 

0.84 
(1.24) 

1.39 
(1.75) 

Note: Std. Deviations in parentheses; † indicates the variable is winsorized at the 1% and 99% levels.
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Appendix Table A.2. Testing Age Cutoffs  

Model 
(1) 

Age Cutoff 

Sample All 

Dependent Variables Sales 

IT Capital Stock 
0.011*** 
(0.003) 

IT Services 
0.010*** 
(0.002) 

Software 
0.006* 
(0.003) 

Equipment  
0.018*** 
(0.003) 

Age quintiles (2, 3, 4, and 5) Y 

IT Services x Age 6-15 
-0.006* 
(0.003) 

IT Services x Age 16-25 
-0.008** 
(0.003) 

IT Services x Age 26-35 
-0.010*** 

(0.003) 

IT Services x Age 36+ 
-0.011*** 

(0.003) 

Industry x Year Fixed Effects Y 

Other IT x Age Indicators Y 

# of Plants per Year ~26,000 

# of Years 9 

R-Squared 0.943 

Note: Results are based on the weighted OLS regression using ASM sampling weights. The dependent variable is 

total sales log terms. Additional controls include cost of material, cost of energy (both electricity and fuel), imputed 

non-IT capital stock, and labor (both expenditure on temporary employees and the count of regular employees) in 

log terms. The coefficients for these variables are not reported to save space (available up on request). Standard 

errors for all columns are clustered at the plant level. Statistical significance is denoted as follows: * 10%, ** 5%, 

*** 1%. Age groups one is defined for the plants from new entries to less than 6 years old; age group two contains 

the plants from 7 to 15 years old; age group three contains the plants from 16 to 25 years old; age group four 

contains the plants from 25 to 34 years old; the rest of older plants are considered age group five. These cutoffs are 

selected to make sure there are roughly equal number of plants in each group. Results are generally consistent and 

robust across various age cutoffs and grouping methods.  
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Appendix Table A3. Employment and Output Growth (Young vs. Older Plants) 

Models 
(1) 

Employment Growth 
 

(2) 
Output Growth 

 

Dependent Variables 
Change in 

Employment 
Change in Sales 

IT Capital Stock 
0.008*** 

(0.002) 

0.001 

(0.002) 

IT Services 
0.008*** 

(0.001) 

0.003*** 

(0.001) 

Software 
-0.092*** 

(0.012) 

0.039*** 

(0.008) 

Equipment 
0.017*** 

(0.001) 

0.008*** 

(0.001) 

Young 
0.013*** 

(0.004) 

0.008* 

(0.004) 

IT Capital Stock x 
Young  

0.004 

(0.004) 

0.007* 

(0.004) 

IT Services x Young  
0.008** 

(0.004) 

0.001 

(0.003)  

Software x Young 
-0.034 

(0.021) 

0.062*** 

(0.022) 

Equipment x Young 
0.007* 

(0.004) 

0.001 

(0.003) 

Non-IT Capital Stock 
0.034*** 

(0.008) 

-0.015 

(0.013) 

Industry x Year Fixed 
Effects 

Y Y 

# of Plants per Year ~16,900 ~16,900 

# of Years 8 8 

R-Squared 0.076 0.525 

Note: Results in both columns reported the coefficients from the employment and output growth models. The 

common independent variables for columns 1 and 2 are the changes in IT variables (calculated using log 

differences) and changes in non-IT capital stock in log term. Note that all the changes in IT except those for IT 

services are likely to be a bit lumpy. Column 2 contains additional controls for input changes including changes in 

cost of material, cost of energy, and changes in the cost of temporary employees and total number of employment. 

The coefficients for these controls are omitted to save space but available upon request. The sample for the growth 

models requires the plants to show up at least two consecutive years in the analysis sample. Standard errors from 

specifications in both columns are clustered at the plant level. Statistical significance is denoted as follows: * 10%, 

** 5%, *** 1%. 
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Appendix Table A.4. Pairwise Correlation  

 E-

AGE 

Log 

EMP 

Log 

TVS 

Log 

VA 

Log 

nonIT-

KST 

Log 

ITK 

Log 

IT 

Serv 

Log 

ITK 

Flow 

Log 

Exp 

SW 

Log 

Equip 

Log 

Ctemp 

MU IT-

Using 

High 

Comp 

Plant Age 1              

Log Total 

Employment 
0.350 1             

Log Total Value of 

Shipment 
0.324 0.826 1            

Log Value Added 0.321 0.822 0.916 1           

Log non-IT K stock 0.364 0.689 0.760 0.706 1          

Log IT K stock 0.239 0.598 0.551 0.558 0.555 1         

Log IT Services 0.109 0.279 0.247 0.255 0.201 0.280 1        

Log IT Capital Flow 0.137 0.436 0.388 0.408 0.318 0.557 0.259 1       

Log Expenditure on 

Software 
0.150 0.392 0.349 0.370 0.292 0.404 0.319 0.375 1      

Log Expenditure 

Equipment 
0.152 0.452 0.420 0.435 0.346 0.398 0.280 0.352 0.505 1     

Log Cost of 

Temporary Emp 
0.109 0.442 0.467 0.460 0.380 0.349 0.218 0.273 0.293 0.331 1    

Multi-Unit Status 0.005 0.168 0.316 0.258 0.278 0.065 -0.024 -0.007 -0.001 0.082 0.182 1   

IT-Using Industries -0.009 0.057 -0.034 0.016 -0.062 0.119 0.0799 0.111 0.125 0.108 0.055 -0.080 1  

High-competitive 

Industries 
0.006 0.063 0.167 0.043 0.085 -0.036 -0.030 -0.046 -0.052 -0.036 -0.013 0.100 -0.138 1 

 Note: All correlations are significant at least the 5% level except the correlations between MU status and plant age, and between MU status and 
log expenditure on software. The correlations are based on non-imputed sample. 
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Appendix Table A.5. Correlation between IT Services and Other Inputs  

Models 

(1) 
Cost of 
Temp 

Employee 

(2) 
Cost of 

Material 

(3) 
Cost of 
Energy 

(4) 
Total 

number of 
Employee 

(5) 
IT 

software 

(6) 
Equipment  

(7) 
All 

Dependent 
Variables 

IT 
Services 

IT 
Services 

IT 
Services 

IT 
Services 

IT 
Services 

IT 
Services 

IT 
Services 

Cost of 
Temporary 
Employee 

0.061*** 
(0.011) 

     
0.043*** 
(0.011) 

Cost of 
Material 

 
0.085*** 
(0.018) 

    
0.033* 
(0.019) 

Cost of 
Energy 

  
0.036* 
(0.019) 

   
-0.003 
(0.019) 

Number of 
Total 
Employee 

   
0.189*** 
(0.037) 

  
0.080** 
(0.038) 

Expenditure 
on IT 
software 

    
0.147*** 
(0.022) 

 
0.117*** 
(0.022) 

Expenditure 
on Equipment  

     
0.105*** 
(0.018) 

0.069*** 
(0.017) 

Non-IT 
Capital Stock 

      
-0.006 
(0.017) 

IT Capital 
Stock 

      
0.026 

(0.017) 

Plant & Year 
Fixed Effects 

Y Y Y Y Y Y Y 

# of Plants 
per Year 

~4,600 ~4,600 ~4,600 ~4,600 ~4,600 ~4,600 ~4,600 

# of Years 9 9 9 9 9 9 9 

R-Squared 0.654 0.653 0.651 0.653 0.657 0.655 0.663 

Note: Results in columns 1 to 6 reported the correlations between IT services and other key inputs from the basic 

OLS model controlling for plant and year fixed-effects respectively. Column 7 also controls for plant and year fixed-

effects but include all key inputs in the same specification. Standard errors for all specifications are clustered at the 

plant level. Statistical significance is denoted as follows: * 10%, ** 5%, *** 1%. 

 

 

 

 

 

 



Appendix Table A.7. IT Expenditure Breakdown by Type for Young and Older (IT Intensive vs. 

Not IT Intensive Industries, 2006 – 2014) 

 (1) (2) (3) (4) 

Dependent Variables 

% Expenditure 

on IT Capital 

Flows 

% Expenditure 

on IT Services 

% Expenditure 

on Software 

% Expenditure 

on Equipment 

Young 
0.005** 

(0.005) 

-0.011** 

(0.004) 

-0.013*** 

(0.003) 

0.020*** 

(0.005) 

Late 
-0.062*** 

(0.003) 

0.024*** 

(0.002) 

0.036*** 

(0.002) 

0.002 

(0.002) 

Young x Late 
-0.006 

(0.006) 

0.014** 

(0.005) 

0.005 

(0.004) 

-0.012* 

(0.006) 

Young x high IT Capital 

Stock in 2005 

0.008 

(0.008) 

0.015* 

(0.006) 

-0.002 

(0.005) 

-0.021** 

(0.007) 

high ITK in 2005 x Late 
0.016*** 

(0.004) 

-0.007* 

(0.003) 

0.001 

(0.003) 

-0.009** 

(0.004) 

Young x high IT Capital 

Stock in 2005 x Late 

0.003 

(0.009) 

-0.006 

(0.007) 

-0.005 

(0.006) 

0.011 

(0.008) 

Industry Fixed Effects Y Y Y Y 

N ~239,700 ~239,700 ~239,700 ~239,700 

R-Squared 0.150 0.086 0.097 0.131 

Note: Results are from OLS regressions controlling for industry (6-digit NAICS) fixed effects. The dependent 

variables are the percentage of each type of IT spending with respect to the total expenditure reported on IT. All 

columns include an unreported indicator for whether the plant reported zero IT expenditure (note that these are 

reported, not imputed zeroes). Late is the indicator for the sample years 2008 through 2014. The High ITK in 2005 

is an indicator for the industries with higher than the sample mean IT capital stock in 2005 at the 3 digit NAICS 

level. Statistical significance is denoted as follows: * 10%, ** 5%, *** 1%. 

 

 
 

 

 
 


