
Moral Hazard, Wildfires, and the Economic

Incidence of Natural Disasters

Patrick Baylis Judson Boomhower∗

March 2018

Increased wildfire risk is one of the most salient impacts of climate change
in North America. As is the case for many other impacts of climate change,
adaptive responses to worsening wildfires include large government investments.
These growing public expenditures raise classic public economics questions
about moral hazard, distributional impacts, and allocative efficiency. We con-
sider these questions in the context of wildland firefighting expenditures in
the United States, which are now several billion dollars per year and are in-
curred almost entirely by the federal government. We assemble administrative
firefighting expenditure data from five federal and state agencies, yielding the
most comprehensive database of firefighting costs in existence. We merge this
to parcel-level data on the universe of western U.S. homes. We make two main
contributions. First, we measure the share of firefighting expenditures that
are dedicated to protecting private homes. To do this, we take advantage of
natural variation in ignition locations to measure the causal impact of private
home presence and density on firefighting costs. Next, we use our data and es-
timates to calculate parcel-level implicit transfers via firefighting for the entire
western U.S. We find that firefighting expenditures are overwhelmingly driven
by efforts to protect homes. Costs are strongly non-linear in the number of
homes threatened, meaning housing density strongly affects per-home protec-
tion costs. Wildland firefighting represents a large transfer of federal revenues
to landowners in high-risk, low-density places. For the highest-cost categories
of homes, the expected present value of firefighting costs exceeds 10% of the
transaction value. We evaluate the moral hazard implications of this implicit
subsidy through a back-of-the-envelope exercise using price elasticities for new
residential construction.
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1 Introduction

The burden of natural disasters has increased over the past several decades and is

predicted to grow larger as the climate continues to warm. Floods, cyclones, land-

slides, heat waves, droughts, and wildfires are all predicted to increase in frequency

and severity.1 As with the other impacts of climate change, the costs of these in-

creased natural hazards will depend on how societies respond and adapt. Many

important adaptive responses are likely to occur through government investments in

public goods like infrastructure, national security, scientific research, public health,

emergency response, and other areas. These large public investments may lessen the

costs of climate change, but they also raise basic public economics questions about

moral hazard, distributional impacts, and allocative efficiency.

We consider these questions in the context of wildland fires in the United States.

Increased frequency and severity of wildfires is one of the most salient impacts of

climate change in North America. The primary policy response has been a dramatic

increase in public spending on wildland firefighting. Over the past 30 years, annual

costs have risen from $240 million to over $2 billion in for the federal government

alone, and those costs continue to increase rapidly. Wildland fires now consume

more than 50% of the U.S. Forest Service’s annual budget.2 Every summer and fall,

tens of thousands of men and women and millions of dollars worth of equipment

are continuously dispatched throughout the western United States by a complicated

combination of federal and state agencies. Almost all of the costs of these efforts

are ultimately borne by the federal government, either through direct expenditures

by federal agencies or through reimbursements to states and other entities through

FEMA grants.

Wildfires are unusual among natural hazards in that it is feasible to prevent private

property damage while an incident is ongoing through large investments of manpower

1For a review of natural disasters and climate change, see IPCC, 2012: Managing the Risks of
Extreme Events and Disasters to Advance Climate Change Adaptation. [Field, C.B., V. Barros,
T.F. Stocker, D. Qin, D.J. Dokken, K.L. Ebi, M.D. Mastrandrea, K.J. Mach, G.-K. Plattner, S.K.
Allen, M. Tignor, and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, UK, and New
York, NY, USA.

2National Interagency Fire Center. “Federal Firefighting Costs (Suppression Only)”.
https://www.nifc.gov; and USDA Forest Service 2015. “The Rising Cost of Wildfire Operations:
Effects on the Forest Service’s Non-Fire Work.” .



and equipment. Unlike cyclones or earthquakes, for example, wildfires can often be

“stopped in their tracks” to protect homes and other valuable assets. While tragic

losses of life and property do occur and (appropriately) receive great attention, a large

share, if not the majority, of the costs imposed on society by wildfires come in the

form of extremely costly efforts to prevent property damage. At least in the United

States, those efforts benefit homeowners in high-risk areas but are paid for out of

general government revenues and are thus borne equally by all taxpayers.

In this paper, we provide the first estimates of which we are aware of the implicit

transfer to homeowners due to fire protection at the individual parcel level for homes

throughout the western United States. We combine parcel-level data on the universe

of single family homes in the West with administrative data on historical firefight-

ing expenditures to estimate federal government expenditures dedicated to protecting

each home from wildfires. We assembled the firefighting cost data from administrative

records of five different federal and state agencies through multiple Freedom of Infor-

mation Act and public records requests, yielding the most comprehensive dataset on

wildland firefighting expenditures in existence. We first take advantage of randomness

in ignition locations to measure the share of firefighting expenditures that are solely

devoted to protecting homes. We then use these estimates to construct expected

protection costs across groups of similar-risk homes. Finally, we apply simple spatial

equilibrium reasoning to quantify potential distortions in new residential construction

due to moral hazard, and to explore a policy counterfactual where developers pay a

fee equal to the expected net present value of fire protection costs at the time of initial

home construction.

We find that residential development dramatically increases fire suppression costs.

Efforts to protect private homes account for over two-thirds of all firefighting expen-

ditures. Surprisingly, among fires that threaten homes, the number or total value of

homes threatened has little effect on firefighting costs. This means that development

density is an important determinant of per-home protection cost. Overall, firefighting

represents a remarkably large transfer to a few landowners in high-risk, low-density

places. In our highest-risk category, the net present value (NPV) of fire protection

exceeds 10% of total property value. Because the supply of new homes in these ar-

eas is relatively elastic (Saiz, 2010), this large implicit subsidy suggests substantial

distortions in new home construction. We also consider the distributional effects of
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these large transfers.

Our paper contributes to a small literature about natural hazards and location choice.

Kousky et al. (2006) and Boustan et al. (2012) examine adaption to hurricanes and

floods. A related paper is Kousky and Olmstead (2012), which shows that changes

over time in federal firefighting policy affected the number of homes built near public

lands. We make several novel contributions. By introducing data on firefighting costs,

we are able to quantify the implicit firefighting subsidy. To our knowledge, we are

the first to measure this subsidy and to calculate the optimal “fire protection fee” for

each home. We also demonstrate a strongly non-linear response of firefighting costs

to the number of threatened homes, meaning that housing density affects protection

costs. Finally, by using parcel-level data on 18 million western homes, we are able

to be geographically precise about risks and costs. This specificity is important since

fire and other disaster risks can vary substantially over small distances.

2 Background

2.1 Increasing Costs of Wildland Firefighting

The rapid increase in firefighting cost over the past several decades has been at-

tributed to three primary factors: the lengthening of the fire season as a result of

climate change, the buildup of increasingly dangerous fuel loads, and increased hu-

man habitation in fire-prone areas. Changes in climate can increase wildland fire

activity by either increasing the amount of fuel available for fires or by drying out ex-

isting fuel, rendering it more flammable. Prior work estimates that climate change is

responsible for an additional 4.2 million acres in burned area between 1984 and 2015,

accounting for nearly half of the increase in acres burned (Abatzoglou and Williams,

2016).

However, the increase in available fuels has not been solely driven by climate change.

Land use change in beginning in the 19th century and an increase in fire suppression

activity in the 20th century have both altered the type and the extent of fuel avail-

ability in the Western United States (Stephens et al., 2016). Although the precise

impacts of these changing fuels on the cost of fires is the subject of continuing sci-
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entific investigation, the majority view is that the suppression of most fires has led

to an increase in the severity in the fires that do escape suppression (Kousky and

Olmstead, 2012).

Finally, a rapid increase in the number of homes at possible risk from wildland fires

has also contributed to the rising costs of wildland firefighting. Between 1990 and

2000, 8 million homes were added to the Wildland-Urban Interface, or WUI (Hammer

et al., 2009). Foresters and planners project that new homes will continue to be built

at a rapid pace in these high-risk areas. Gude et al. (2008) projects that huge areas

of the WUI that are currently totally undeveloped will be converted to residential

housing over the next two to three decades.

2.2 The Cost of Protecting Homes During Wildfires

Wildland firefighting efforts have multiple objectives, among them safeguarding hu-

man lives, protecting publicly-owned natural resources and endangered species, and

preventing damage to private property. The incidence and housing market impacts

of wildland firefighting depend on the share of expenditures that are devoted to pri-

vate property protection. What additional firefighting expenses result from locating

homes in the path of wildfires? Our paper builds on previous studies of firefighting

expenditures in both forestry and resource economics. Previous case studies and ex-

pert introspection indicate that the presence of homes greatly increases firefighting

costs, as it requires significantly more manpower and equipment (e.g., air support,

bulldozers) to stop a fire in place before it reaches homes, as opposed to letting the

fire burn out naturally at a road or ridge or other natural fire barrier (of Inspector

General Western Region, 2006). Forest Service personnel, report that, heuristically,

between 50 and 95 percent of federal firefighting costs is due to efforts to prevent

damage to homes (of Inspector General Western Region, 2006). Case studies of small

samples of fires have found econometric results in line with these estimates (Gebert

et al., 2007; Liang et al., 2008). Champ et al. (2009); Kousky and Olmstead (2012)

consider the relationship between wildfire risk and housing markets.

In this paper, we validate these case study findings for the entire Western United

States and extend the analysis to quantify the implicit subsidy to each homeowner.

As described above, the dataset we compile covers all 11 western states and combines
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administrative expenditure records gathered through public records requests to mul-

tiple federal and state agencies, and to the best of our knowledges serves as the most

comprehensive record of its kind by a wide margin. By matching this dataset to a

proprietary record of parcel-level homes deed and tax records for the universe of resi-

dences in our sample, we are further able to more accurately measure the locations of

individual homes with respect to the location of the fire.3 These more detailed data

allow us to precisely estimate the parcel-level benefits of this firefighting effort and to

document striking non-linearities in fire costs as a function of the number and prox-

imity of threatened homes. Finally, in contrast to the existing literature, which relies

on regression adjustment to account for possible confounding variables, our empirical

strategy identifies the causal impact of homes accounts carefully for both observed

and unobserved variation in home and fire locations.

To fix ideas, we next turn to a conceptual framework.

3 Conceptual Framework: Defensive Expenditures

and Housing Demand

This section develops an economic framework to guide our empirical analysis. We

adapt a simple spatial equilibrium model to demonstrate how subsidizing natural

hazard protection affects demand for housing across locations. This analysis clarifies

which costs are borne by households, and gives economic context for the parameters

that we measure in the following sections.

Our starting point is the well-known Rosen (1979)-Roback (1982) model. We add a

spatially differentiated natural hazard, and consider how location decisions respond

to a public guarantee of freely-provided protection. The principal alternative policy

we have in mind is a policy that would require homeowners to internalize the expected

costs of protecting their home – for example, an up-front fee at the time of construction

equal to the expected net present value of protection costs.

Rosen-Roback-type models are a standard conceptual tool in urban, labor, and en-

3Previous studies rely on publicly-available housing counts data at the Census Block level, which
is less precise in our sample of interest because in rural areas Census blocks are often many square
kilometers or larger.
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vironmental economics.4 This type of model has the advantages of simplicity and

transparency. At the same time, it sacrifices some realism and detail relative to

richer models. We believe the more straightforward approach best serves our primary

goal in this section, which is to illustrate how government spending on disaster re-

sponse affects household decisions. We state our assumptions clearly as we go, and

at the end of this section we discuss how relaxing assumptions in a more complicated

model might affect the model predictions.

3.1 Setup

There are N identical, perfectly mobile households that choose from I < N possible

locations. Population in location i is denoted by Ni. Each household supplies one unit

of labor inelastically. Labor productivity in each location is fixed, giving location-

specific wages wi. Amenities Ai(Ni) are decreasing in local population. This reflects

the amenity value of “open space” or “privacy”, in keeping with stylized facts about

development in the wildland-urban interface areas. Housing prices ri are determined

by the location-specific housing supply curve. We consider the form of the housing

supply function in more detail below. We make the common simplifying assumption

that there is a reservation location that offers an exogenous utility level ū (that is, a

location with perfectly elastic housing supply and uncongestible amenities).

We introduce a location-specific natural disaster probability φi. When a disaster

occurs, households may incur rebuilding costs. Defensive expenditures f made in

response to the disaster can reduce expected rebuilding costs, which we denote Hi(f).

Defensive expenditures (e.g., firefighting) are supplied by the central government. We

make the following assumptions about f and H(f), which are consistent with our data

and stylized facts about natural hazard response.

1. H ′i(f) < 0 and H ′′i (f) > 0

2. The benefits of defensive expenditures are non-rival within a location.

4Gyourko et al. (1999) and Kahn and Walsh (2015) review work related to the environment. A
related paper to ours is a theoretical paper by Kousky et al. (2006), which develops a model of
government protection and private investment primarily focused on flood risk. Albouy et al. (2016)
examines the amenity cost of temperature changes due to climate change using a similar framework.
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3. Within a location, homes are geographically homogeneous so that Hi(f) is con-

stant across homes.

Assumption 1 ensures that defensive expenditures reduce expected damages, and do

so with diminishing returns. Assumption 2 matches the facts of our empirical setting,

where firefighting efforts are focused on protecting entire communities. Assumption

3 abstracts away from local heterogeneity to focus the analysis on community-level

interactions.

In the event of a disaster, the government chooses the optimal level of defensive

expenditure given local population. This value f ∗(N) minimizes the sum of defen-

sive expenditures and total expected rebuilding costs, f + NiHi(f).5 The following

section considers how the financing of defensive expenditures affects the population

distribution and welfare.

3.2 Incidence and Moral Hazard

If households are required to reimburse the central government for their proportional

share of defensive expenditures after a disaster, household utility in place i in the

event of a disaster is, wi + Ai(Ni) − ri(Ni) − fi
Ni

−Hi(fi). In the no-disaster state of

the world, household utility is wi +Ai(Ni)− ri(Ni). Assuming risk-averse households

and perfectly competitive insurance markets, households will purchase full insurance

to cover their costs in the event of a disaster. Premiums in each place will equal

expected losses, πi = φi[
f∗i
Ni

+ Hi(f
∗
i )]. Holding population constant, disaster costs

are larger in areas with higher disaster risk. At the same time, per-capita expected

damages are decreasing in local population. These scale economies are due to the

non-rival nature of defensive expenditures.

We normalize the disaster risk in the reservation location to zero. The new spatial

equilibrium condition is,

Ū = wi + Ai(Ni) − ri(Ni) − πi(φi, Ni)

To understand how disaster costs affect location decisions, consider expected util-

5This result mimics the principle of “least cost plus net value change” in the natural resource
economics literature on fire suppression.
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ity relative to the reservation location. Let zi(Ni) and z0(N0) represent wages plus

amenities minus housing prices in location i and the reservation location. Equilibrium

requires that,

zi(Ni) − z0(N0) = πi(φi, Ni)

Populations are distributed such that the difference in wages, amenities, and home

prices between each risky location and the riskless location exactly offsets expected

disaster costs in the risky location. This equilibrium will depend on the relative

disaster risks across areas (φ), the slopes of the housing supply and amenity functions,

and the shape of the damages function, H(f).

Now consider an alternative policy where the central government makes defensive

expenditures without reimbursement. The government continues to use the same

dispatch rule, providing the optimal level of defensive expenditures, f ∗(Ni), in the

event of a disaster. When the government provides natural disaster defense for free,

the expected disaster costs borne by households (and thus the household’s insurance

premium) include only expected rebuilding costs, ρiH(f ∗i (Ni)). The compensating

differential in terms of real wages and amenities is smaller. For budget balance, all

households regardless of location are assumed to pay a flat tax τ = 1
N

∑I
i=0 f

∗(Ni)

that just covers total defensive expenditures.

Figure 1 shows these two alternative policies for a single risky location. The horizontal

axis shows local population. The downward-sloping black line represents per-capita

wages and amenities. Housing prices are given by the housing supply curve labeled S,

which is elastic up to a point beyond which geography or regulation constrains further

development. When households pay for defensive expenditures, the per-capita benefit

of this location follows the solid gray curve, which reflects wages and amenities minus

expected rebuilding costs and per capita defensive expenditures. This line approaches

wi + A(Ni) as local population increases, reflecting economies of scale in defensive

expenditures.6 The equilibrium population under this policy is N̂ , the population

level that sets per-capita expected utility equal to ū.

When households do not reimburse the government for defensive expenditures, per-

capita private benefit shifts up to the dashed gray line, which includes expected

6The online appendix shows that per capita disaster-related costs decrease in population while
total disaster-related costs are increasing. The proof follows from the envelope theorem, since f∗(N)
is chosen optimally to minimize disaster-related costs.
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rebuilding costs but not expected defensive expenditures. Households no longer con-

sider the full costs of natural disasters in their location decisions. There is still a

compensating differential for risky areas, reflecting private insurance premiums equal

to expected rebuilding costs. However, defensive expenditures do not enter household

decisions. Under this policy, local population increases to N ′.

Per-capita welfare in every location is lower under the policy that provides defensive

expenditures without reimbursement. Household utility is ū in all locations when

reimbursement is required. When reimbursement is not required, household utility

in all locations is ū − τ , where τ represents the per-household cost of all defensive

expenditures across all locations.7

The incidence of the natural hazard also depends on the payment regime. The benefits

of defensive expenditures are entirely captured by homeowners in risky locations under

either policy. When households pay for defensive expenditures, the costs of natural

hazards are also fully borne by risky locations. When defensive expenditures are

centrally provided, residents in all locations, including the risk-less reservation city,

bear costs τ per household due to natural disasters in risky locations.8

The diagram illustrates two additional important points: The changes in population

due to moral hazard are larger in areas with relatively low population levels, since

at dense levels of population per-capita costs of protection are small. Additionally,

in areas where the population level is high enough to be on the inelastic portion of

the housing supply curve, the effects of public provision of defensive expenditures will

change housing prices but will have little effect on quantity.

7While total welfare under the second policy is unambiguously lower, it is worth emphasizing
that neither equilibrium maximizes total welfare. The spatial equilibrium equalizes per-capita util-
ity (average utility) across locations; while the welfare-maximizing population distribution would
equalize marginal utility (Glaeser, 1998; Bergstrom, 1986).

8In our simple spatial equilibrium setup, all households are equally well off by construction, so
that this redistributive effect of natural hazard spending does not affect relative utility (only total
welfare). Introducing preference heterogeneity or other moving restrictions into the model would
change this.
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4 Data

Our primary dataset combines wildfire suppression expenditures data with topograph-

ical and environmental conditions at the ignition point and parcel-level assessor data

for the universe of western U.S. homes. The unit of observation is a single fire in-

cident. For each incident, we construct measures of the proximity and number of

homes within range of the fire, as well as a set of covariates describing the surface,

environmental, and atmospheric conditions of the location in which the fire started.

We describe the construction of this dataset in detail in this section, and provide

additional details on the data cleaning process in the online appendix.

4.1 Fire suppression expenditures

We compile fire suppression cost data from five different sources, including four fed-

eral agencies and one state firefighting agency. The federal agencies we include are

the United States Forest Service, the National Parks Service, the Bureau of Land

Management, and the Bureau of Indian Affairs. The state agency is California’s De-

partment of Forestry and Fire Protection (CAL FIRE). We obtain these data either

through publicly available sources or through Freedom of Information Act (FOIA)

requests, and they represent by-incident spending for these agencies. Our geographi-

cal sampling frame is Western United States9, where wildfires are most frequent and

costly to suppress. We discuss each source of data in detail below, as well as the

process by which we harmonize these datasets.

4.1.1 Forest Service fire expenditures

The Forest Service (FS) accounts for the largest share of fire suppression expendi-

tures of any federal agency. We obtain historical by-incident suppression costs fires

managed by the USDA Forest Service from 1995 to 2014 from the National Intera-

gency Fire Management Integrated Database (NIFMID). These data are compiled by

the Kansas City Fire Access Software (KCFAST)10 and include data on suppression

9Specifically, our dataset includes only fires with ignition points in the states of Arizona, Califor-
nia, Colorado, Idaho, Montana, New Mexico, Nevada, Oregon, Utah, Washington, or Wyoming.

10Obtained here: https://fam.nwcg.gov/fam-web/kcfast/html/ocmenu.htm.
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expenditures and fire locations. The forest service is primarily responsible for fighting

fires that ignite in or near the boundaries of National Forest areas, displayed in dark

green in Figure 1. Suppression expenditures in these data are intended to represent

the cost of the suppression effort put forth by the Forest Service during a given wild-

fire incident. These costs reflect the deployment of personnel and equipment in the

service of the suppression effort, but exclude the cost of long-run preventative effort,

such as fuel thinning, that occurs separately of a particular suppression effort.

Over the course of our sampling frame, more than 150,000 wildfire incidents are logged

in this database. However, since the Forest Service only reports per-fire cost data for

fires above 300 acres, we limit this sample to the 2,563 fires in the 11 western states

with a size of 300 acres or larger (the smallest size for which suppression expenditures

are separately reported) with ignition date and location data available.

4.1.2 Department of Interior fire expenditures

Four separate agencies within the Department of Interior (DOI) are responsible for fire

suppression. They are the Bureau of Land Management (BLM), the Bureau of Indian

Affairs (BIA), the National Parks Service (NPS), and the U.S. Fish and Wildlife

Service (FWS). We obtain data for BLM, BIA,and NPS through FOIA requests.

BLM is responsible for fires which ignite on the 248 million acres of public lands they

manage,11 BIA is responsible for fires starting on the 55 million acres of Indian Lands,
12, and the NPS is responsible for fires igniting within its 417 park units across 84

million acres of land.13 At the time of this writing, we have not yet been able to

obtain firefighting suppression costs for FWS. For the remaining three agencies, the

DOI data are available from 2003-2016. To match the data available from the Forest

Service, we limit this sample to include only fires the affect more than 300 acres and

apply similar data quality restrictions as those described for the FS data. Our final

dataset includes 3,003 BLM fires, 418 BIA fires, and 240 NPS fires.

11BLM public land statistics: https://www.blm.gov/sites/blm.gov/files/

PublicLandStatistics2016.pdf.
12Map: https://www.nifc.gov/PIO_bb/Agencies/BIA/MapBIARegions.pdf
13NPS fact sheet: https://www.nps.gov/orgs/1965/upload/wildland-fire-fact-sheet.pdf.
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4.1.3 California fire expenditures

We also collect fire suppression cost data for California, which has the most frequent

and costly wildfires of any state in the West. Suppression cost data for California

come from a public records request to the California Department of Forestry and

Fire Protection (CAL FIRE). In order to combine these costs data with wildfire

location information, we merge three sets of administrative records. The first is a

complete listing of all reported wildland fire incidents in the CAL FIRE protection

area during 2007–2016, regardless of size. This dataset includes the ignition date,

acres burned, CAL FIRE geographic unit, and, for incidents after mid-2011, the

latitude and longitude of the ignition point. To supplement the location records for

these fires, we also obtain shapefile data for a subset of report CalFire incidents.14 The

third dataset is an administrative record of firefighting expenditures at the incident

level for 788 incidents during 2011–2016. According to CAL FIRE, these expenditure

data are carefully tracked because they are the basis of cross-agency reimbursements

for mutual aid expenditures – for example, reimbursements to California by the federal

government under the FEMA FMAG program, or by local governments to CAL FIRE

for firefighting assistance in incorporated areas.

4.1.4 Fire expenditures harmonization

To ensure consistent data quality, we harmonize the data across the five agencies from

which we source suppression expenditures. Specifically, we ensure that ignition date,

ignition location, responsible agency, cause of fire, area burned, and suppression cost

data are present for all incidents and that the costs reflect values in 2014 dollars. Our

final dataset includes 6,422 fires and account for 111 billion dollars of suppression

costs.

4.2 Fire covariates

Using the harmonized location data, we obtain elevation, slope, aspect, and fuel model

data for the ignition point of each fire from LANDFIRE (United States Department of

14Fire perimeters data here: http://frap.fire.ca.gov/data/

frapgisdata-sw-fireperimeters_download.
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Interior, 2013). The former three products are derived from the high-resolution Na-

tional Elevation Dataset15; elevation represents the land height above sea level and

is given in meters, slope represents the angle the land and is given in degrees, and

aspect represents the direction of the slope and is given in degrees as well. The fuel

model data are the 13 Anderson Fire Behavior Fuel Models (Anderson, 1982) and

describe the fire potential of surface fuel components (e.g., the type of foliage in the

area) on which the fire starts. We also obtain ignition-day weather (maximum and

minimum temperatures, precipitation, and measure of humidity) from the PRISM

daily weather dataset (Group, 2004).

4.3 Parcel data

The homes data include information on home locations, values, year built, and other

property characteristics for the universe of 17,700,000 single-family homes in the west-

ern United States. These data are curated by CoreLogic and represent a compilation

of tax assessor data from individual counties. We limit the sample to include only

homes in partially vegetated areas that would be threatened by wildland fires, based

on wildland-urban interface categories identified in Radeloff et al. (2005) (see ap-

pendix for details). Because the federal government controls so much land in the

West, and so much residential development is in wildland areas, these sample exclu-

sions are not that restrictive. Our analysis dataset includes 8,046,957 homes (about

47% of all single-family homes in the West). We use the US Forest Service Wildfire

Fire Hazard Potential ratings from (Dillon, 2015) to assess physical fire risk at the

parcel level.

5 The Cost of Saving Homes During Wildfires

5.1 Empirical Strategy

Even in the absence of any nearby private home development, some amount of re-

sources would likely be devoted to managing and suppressing a fire. Thus, the first

15NED: https://nationalmap.gov/PERS_Jan2002_NED_highlight_article.pdf
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step in our empirical analysis is to measure the share of firefighting expenditures that

are dedicated to protecting homes.

In order to isolate spending dedicated to protecting homes, we estimate the causal

effect of nearby homes on firefighting costs relative to a no-development counterfac-

tual. A number of observable and unobservable factors should be expected to affect

firefighting costs, including ecological characteristics, local weather trends, and the

typical response behavior of local fire managers. Our empirical strategy addresses

this identification challenge by taking advantage of randomness in ignition locations

within U.S. national forests. Each of the national forests in our dataset experienced

multiple large fires during our study period. We compare suppression costs for fires

within the same national forest that happened to start at different distances from

homes. Some fires start far away from private homes, for example deep inside the

national forest, while other fires start nearer to homes, because the ignition point is

closer to the national forest boundary or to a privately-owned “inholding”, or because

new homes have been built near the boundary. Figure 2 illustrates this variation for

four example national forests. In each panel, the area of the national forest is shown

in green. Fires are shown as x’s and are colored by the distance from the ignition

point to the nearest home. Fires that started more than 10 kilometers away from any

home are shown in dark blue. Black markers indicate homes.

We take advantage of this variation in ignition locations using a fixed-effects estima-

tion strategy. We model the effect of homes on fire suppression costs as,

ln(Costift) = βf(Homesit) +Xiftρ+ δf + ωst + ηift (1)

Costift is the suppression cost for fire i in national forest f in month-of-sample t. We

are primarily interested in how this cost depends on the potential threat posed by the

fire to private homes, Homesit. We begin in Section 5.2 by parameterizing Homesit

as the distance from the ignition point of the fire to the nearest home. In Section

5.3, we consider the total number of homes near the ignition point. In either case,

our preferred model approximates f() with a binned step function to allow a flexible

response of costs to threatened homes (although our estimates are robust to a variety

of functional forms).

The identifying assumption in this analysis is that unobserved determinants of fire
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cost, ηift, are independent of the distance to the nearest home, conditional on na-

tional forest fixed effects and our other controls. This panel data approach addresses

a number of omitted variables concerns. The national forest fixed effects δf control

for unobservable determinants of firefighting cost that are constant at the national

forest level. We also include time fixed effects ωst that control flexibly for unobserved

changes in firefighting costs over time. Our preferred specification includes state by

month-of-year fixed effects and state by year fixed effects. Intuitively, this identifica-

tion strategy amounts to comparing fires in the same national forest during the same

month of the year and the same year of the sample (e.g., Flathead National Forest in

September, 2003).

One potential remaining issue with this approach is that the locations of private homes

are not randomly assigned. Even within a given national forest, areas near homes may

differ systematically from areas far from homes in ways that affect firefighting cost. To

address this possibility, we include additional control variables Xift. These include the

slope of the terrain at the ignition site, the geographic aspect, the vegetation type

(fuel model), and weather conditions at the point of ignitions. We argue that the

combination of this selection on observables approach with the fixed effects strategy

described above provides the most credible causal identification strategy available in

this setting. To ensure that fire timing and location is truly random (i.e., not driven

by the presence of people), we also estimate a specification where we limit the sample

to fires caused by lightning.

Our identification assumptions would fail if there are unobservables which increase

firefighting costs disproportionately for fires near homes but are actually driven by the

distance between the fires and nearby homes. To the extent that there are remaining

unobservables of this nature, we argue that these differences likely bias our estimates

towards zero, meaning that our approach conservatively measures the effect of homes

on firefighting costs. Areas that are near homes are likely to lie in flatter regions

that are more easily accessible by road, both factors which would make firefighting

less costly rather than more. The online appendix includes a detailed examination of

covariate overlap and balance according to distance from homes.
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5.2 Proximity to homes

We begin by considering a version of Equation 1 where the threat to private homes,

Homesit, is proxied by the distance from the ignition point to the nearest home that

existed at the time of the fire. We calculate this variable by merging ignition point

data from the firefighting data to the geographic coordinates of all the homes in the

real estate dataset. If, in the absence of suppression effort, wildfires are more likely

to destroy homes that are close by, we might expect to find that firefighting effort is

higher for fires that start near areas of private development.

Figure 3 shows regression estimates. We consider the total cost of Forest Service

fires as a function of the distance from the fire’s ignition point to the nearest home.

The figure includes three different regression specifications. Each regression includes

national forest fixed effects, state by month-of-year fixed effects, and state by year

fixed effects. The solid black line shows the estimated marginal effect of distance

from a regression of log costs on a cubic polynomial of distance to homes. The

shaded gray area is the 95% confidence interval. The dashed black line shows a

linear spline in distance to homes, with knots placed every 10 kilometers. Finally,

the black dots report coefficients from a binned step function specification. These

coefficients correspond to indicator variables for 5-kilometer bins of distance to homes.

The omitted category is fires that start more than 50 kilometers from any home.

Regardless of the functional form that we choose, there is a clear, steep gradient in

firefighting costs with distance. The relationship is steep (noting that the y axis is in

logs), monotonic and close to linear. Relative to a fire that starts 45 kilometers from

any home, the log costs of a fire less than five kilometers from homes are higher by

about 3. Taken literally, these estimates imply that a fire that starts less than 5 km

from homes would cost 75% less if there were no homes within 25 km, and 93% less

if there were no homes within 40 km.16

Table 2 estimates alternative models. Column (1) matches the figure. Column (2)

adds additional controls for pre-determined fire characteristics. In general the signs

and magnitudes of the included covariates match expectation. Firefighting costs are

higher where the terrain slopes more steeply, reflecting difficulty of access. Costs

16These percentage changes are calculated using the binned specification. Halvorsen and Palmquist
(1980) and Kennedy (1981) show that the percentage effect of an indicator variable in a semi-log
regression can be approximated as eβ−0.5V (β) − 1, where β is the regression coefficient.
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also increase with wind speed on the ignition day, consistent with the importance of

wind in fire spread. Vapor pressure differential (VPD) is a measure of atmospheric

dryness, where higher values imply drier air; as expected, high VPD increases firefight-

ing costs.17 Costs are also higher for fires on south- or southwest-facing slopes, which

receive additional sun exposure and thus tend to have more readily combustible veg-

etation. While many of these covariates have meaningful effects on firefighting costs,

including them in the regression has little effect on our estimated distance gradient.

This supports the logic of our empirical design, which is that while a number of fac-

tors likely affect firefighting costs, those factors do not appear to vary systematically

with distance from homes after accounting for national forest fixed effects.

The remaining columns show three robustness checks. Column (3) replaces the time

fixed effects with more granular week-of-sample by state fixed effects, which allow

for arbitrary shocks to firefighting costs in each week of the dataset in each state.

Designed to absorb any high-frequency local cost fluctuations that might be caused

by weather patterns or other factors, this alternative specification produces a similar

distance gradient. Because some state-week cells include only one fire, this model uses

about 700 fewer observations than our preferred specification. Column (4) restricts

the sample to fires started by lightning. Some types of human-caused fires are more

likely to occur near populated areas, introducing a potential identification concern if

fires due to arson or campfires or other causes vary systematically in their difficulty to

extinguish. The locations of lightning strikes are plausibly random and thus purged

of this potential bias. If anything, the estimated distance gradient is steeper when

this restriction is applied, though the estimates are not different in a statistical sense.

Column (5) restricts to fires occurring in timber areas, since developed areas are also

less likely to be heavily wooded than more remote areas. As before, the estimated

distance gradient steepens slightly under this restriction. This is consistent with our

expectation that any omitted variables that might persist after our empirical design

and control variables would bias our estimated effects downwards.

17VPD is the deficit between the observed vapor pressure and the vapor pressure at the current
temperature if the air were fully saturated with water. Meteorologists have shown VPD to be an
important measure of dryness and predictor of fire severity (Anderson, 1936; Seager et al., 2015).
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5.3 Total Number of Homes

The results in the previous section imply that the presence of nearby private homes

strongly affects firefighting costs. In this section we consider how this effect varies

with the density of development. To do this, we fix a radius around each fire and

estimate a version of Equation 1 that parameterizes Homesit as the total number of

homes within that radius. We use a 30 kilometer radius in our baseline specification.

The online appendix shows results for alternative radii.

Table 3 shows the effect of home density on fire costs. We report results from the

binned step function specification.18 The reference bin is fires with zero homes within

30 km, and the other bins evenly divide the remaining fires.19 We define bins by

quantiles instead of equal intervals for this table because of the long right tail of

the number of homes variable; however, our results are robust to the use of equal

intervals as well . Column (1) shows our baseline results. The presence of up to

114 homes increases log costs by 0.87. For up to 625 homes, the cost effect increases

to 1.41. Beyond that, costs increase very little with additional homes, even for fires

threatening thousands or tens or thousands of homes. Column (2) includes distance to

nearest home as a control, to account for the fact that fires occurring near more homes

also occur slightly closer to homes on average (as we show in the online appendix)

. To interpret the Column (2) estimates, consider the cost of a fire that ignites 11

kilometers from homes, the mean distance conditional on any homes within 30 km.

The bracketed numbers to the right of Column (2) show the cost of this fire relative

to a fire starting 30 kilometers from the nearest home. The estimates are similar to

Column (1), with a slight reduction in the marginal cost of homes at high levels of

density. This reinforces the sharp nonlinearity of the cost-density relationship.

Figure 4 shrinks the bins and focuses on the region over which costs are increasing.

18An alternative specification is a constant elasticity model (a log-log specification). The average
elasticity from a regression of log costs on log threatened homes is 0.14, with a t-statistic of 3.9.
This linear relationship in log-log space maps closely to the concave relationship that we measure in
log-linear space. We focus on log-linear models in the text because we are interested in the effects
of one additional home, as opposed to the effects of proportional increases in homes. The log-log
model also does not accommodate fires with zero nearby homes.

19To reconcile these results with the proximity results, note that the average of the coefficients in
the first five rows of Table 3 gives the average cost difference between fires with homes within 30 km,
and those without. This is conceptually similar to the sample-weighted average of the coefficients
for the 0-10 , 10-20 , and 20-30 km bins minus the sample-weighted average of the 30-40 and 40+
km bins in Table 2. Both exercises yield about 1.5.
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The sample in this figure includes fires with fewer than 2,500 homes within 30 km of

the ignition point. We plot predicted effects from three different regressions. Each

regression controls for national forest fixed effects, state by month of year fixed effects,

and state by year fixed effects. Across the three statistical models, costs increase

quickly in density and then level off. The binned specification expands each of the

bins from Table 3 into three separate bins, still based on quantiles of number of homes.

These fine bins show that costs increase rapidly in the first homes. The first non-zero

bin spans 1–19 nearby homes; the next two bins are 20–57 and 58–114. Even a small

number of nearby homes raises costs substantially, almost as much as thousands or

tens of thousands of homes.

5.4 Additional Results and Robustness Checks

In addition to the checks described above, we include a more detailed set of additional

results and robustness checks in the online appendix, which we describe here in brief.

The estimates of the impact of population density on firefighting cost are robust to the

same control variables and checks shown in Table 2, such as controlling for weather

or limiting to lighting-caused fires. Using the total transaction value of nearby homes

yields similar results to the number of homes. We also show that the implied marginal

effect of homes on fire costs depends intuitively on the radius within which we count

homes, where smaller radii imply larger per-home marginal effects, but that the strong

non-linear response of costs to number of homes exists for any reasonable choice of

radius.

Because our baseline estimates are not suitable to consider the impact of homes on

the frequency of fires in an area, we conduct a separate analysis to investigate how

this might impact our findings. As some wildland fires are ignited by humans, in-

creased human population may create more ignitions. On the other hand, new homes

could be accompanied by greater fire prevention efforts. We explore this relationship

using panel variation in new home construction near each of the national forests in

our federal sample. We find weak evidence of a small positive effect of new home

construction on the number of large fires each year in places that start from a low

level of development. Adding an additional 1,000 homes in a relatively undeveloped

area is associated with about a 3.5% increase in the number of fires each year, or
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about 0.06 additional fires per year. The finding that human presence increases fire

frequency is consistent with work by ecologists (Syphard et al., 2007; Massada et al.,

2012; Faivre et al., 2014). This implies that we slightly underestimate the additional

firefighting cost created by new homes.

Finally, in the appendix we also use state of California (CalFire) firefighting cost

data to validate some of our results from this section. Forest Service fires provide

useful natural variation, since these public lands include some areas that are very far

from homes. Fires fought by CalFire, on the other hand, almost all occur within 10

kilometers of homes. However, we are still able to use the CalFire data to confirm

that the marginal cost of additional homes within 30 km is very small beyond low

levels of development. Our CalFire density results are similar to our Forest Service

density results.

6 The Implicit Subsidy To Homeowners

The results in the previous section show that a large share of wildland firefighting

expenditures are dedicated to protecting private homes. In this section, we estimate

the incidence of this implicit subsidy to homeowners. For every individual home in the

western United States, we calculate an actuarial measure of the expected net present

value of the government’s cost of protecting the home during future wildfires.

6.1 Calculating Realized and Expected Protection Costs

In the first step of this calculation, we use the estimated model in Equation 1 to

predict the amount of firefighting expenditures on each historical fire that were due

to the presence of homes. To do this, we take the difference between the predicted

costs for each fire from that regression ( ˆcosti), and the predicted costs implied by

the estimated model for the fire if the nearest home had been located 40 km away

( ˜costi). This difference yields the expenditures due to homes on each fire, which we

call ∆i.

For each fire i, we allocate ∆i over homes within a fixed radius of the ignition point

that were potentially threatened by the fire. Our definition of potentially threatened
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homes includes homes located within 40 kilometers of the ignition point in areas

with wildland vegetation. Our classification of wildand vegetation categories follows

Radeloff et al. (2005) and is described in detail in the appendix. Within the set of

homes potentially threatened by each fire, we assign a larger share of ∆i to homes

closer to the ignition point. We use two approaches to this weighting, an inverse-

distance weighting (IDW) algorithm and an empirical estimate based on the results

in section 5.1. For the IDW algorithm, houses within 40km are assigned a weight of
1
d
, weights are normalized to one within each fire, and home protection expenditures

by fire are divided using the normalized weights. Our second and preferred approach

is identical except that the weights assigned to each fire-parcel combination are the

estimated coefficients from Equation 1 for distance between the ignition point and

the parcel location, normalized to sum to one for each fire. This exercise divides

∆i across j potentially threatened homes, yielding costs δij for each home, where∑J
j=1 δij = ∆i.

The next step of this calculation sums up the total costs associated with each home

during 1995–2014. For each home j, we add up that home’s costs for each fire during

the study period, ρj =
∑I

i=1 δij. We call this quantity the realized protection cost for

home j because it represents the amount of firefighting expenditure associated with

the home during the study period.

Our estimate of interest is not past expenditures, but expected future expenditures

for each in the dataset. The observed history of firefighting costs is 20 years or less,

which in many regions may not be a long enough period to accurately describe the

underlying fire risk. To estimate expected firefighting costs, we group regions with

similar ecological and fire risk characteristics together into actuarial groups, much

like a private insurer would be expected to do when calculating risk. We calculate

expected cost for homes in each group as,

E
h,d,s

[ρj]

This calculation takes expectations over bins of wildfire hazard h, housing density

d, and geographic region g. Wildfire hazard is defined at the parcel level using the

spatially-explicit wildfire hazard potential scores provided by Dillon (2015), which

are a physical measure of wildfire risk taking into account ecological and geological
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factors. The appendix includes more information on this physical risk measure as

well as a map of wildfire hazard potential. Housing density (population per square

meter) comes from the Gridded Population of the World dataset (GPWv4), which

reports population density within 1 km grid cells (Doxsey-Whitfield et al., 2015).

We define geographic regions based on the boundaries of the seven Geographic Area

Coordinating Centers (GACCs) that coordinate regional firefighting operations in

the West. To reflect the ongoing nature of the firefighting guarantee, we calculate

the net present value of the expected annual costs for each group of homes. We

call this quantity the expected parcel protection cost. It represents the present value

of the expected government expenditures for fire protection associated with each

home.

6.2 Exploring Expected Protection Costs

Figure 5 shows the distribution of expected parcel protection costs. These costs were

calculated using 210 actuarial groups of homes created by crossing six bins of physical

fire risk, five bins of housing density, and the seven wildland firefighting regions. The

sample of homes in this figure includes all 8 million homes in the western U.S. located

near areas of wildland vegetation (about 47% of homes). The black line shows the

cumulative distribution function of the expected present value of firefighting costs.

The dashed gray line shows firefighting costs divided by the transaction value of the

property. Most western homes have expected protection costs of a few hundred dollars

or less, while the highest-risk homes have costs that are much larger. Five percent

of homes have expected protection costs exceeding $5,600, or about 4.4% of home

value. These homes belong to 34 separate actuarial groups throughout the West.

One percent of homes have expected protection costs exceeding $13,900, or about

10.3% of home value. These homes belong to 11 actuarial groups.

Figure 6 shows the broad geographic distribution of expected protection costs. This

map shows the average expected protection cost for homes in each 20 kilometer hexag-

onal cell. The color scale corresponds to increasing costs. The scale is top-coded, so

that the darkest red corresponds to homes with expected protection costs of $15,000

or more. Gray areas represent unpopulated regions and populated regions with no

wildland vegetation (e.g., cities). Average expected protection costs are highest in
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Northern California, central Oregon and Washington, and Idaho and western Mon-

tana.

Figure 7 explores this variation in expected protection costs in more detail. The four

panels in the figure show how protection costs vary along four different margins. Panel

A shows that protection costs are increasing in our physical measure of underlying

fire risk. On average, expected protection costs for homes in the highest category of

fire risk are about six times higher than for the lowest category. This relationship is

intuitive, but it is also a reassuring validity test on our calculations. Panel B shows

that expected parcel protection costs are strongly decreasing in housing density. This

somewhat more surprising result is likely due to the nonlinear relationship between

firefighting costs and housing density that we documented in Section 5.3. Increases in

density are strongly associated with decreasing per-home costs, with expected costs

in the lowest decile of density higher than the highest decile by a factor of ten or

more.

Panels C and D consider the distributional effects of firefighting expenditures. A

frequently-repeated claim about wildfire suppression in the United States is that it

primarily benefits the rich (see, for example, “A Case for Letting Malibu Burn”

(Davis, 1995)). The opposite appears to be true. Panel C shows that homes in low-

income areas receive substantially more benefit from government firefighting efforts

on average, compared to homes in high-income areas. This likely reflects the fact that

the areas with the highest per-home expected protection costs are low-density rural

and semi-rural areas. Wildfire protection costs are lowest in cities, where incomes are

higher. Panel D considers an alternative measure of wealth, which is the transaction

value of the home. For most American homeowners, the asset value of the home is a

strong predictor of overall wealth. Again, the highest protection costs on average are

associated with low-value homes. The relationship between average expected cost and

home value is U-shaped, with increasing costs for high-value homes. This may reflect

greater government efforts to protect high-value homes during wildfires, or high-value

second homes located in areas where permanent residents have low incomes (“tourist

towns”).

Significant local variation in wildfire risk and development density in the West means

that expected protection costs vary substantially over small distances. Figures 8A

and 8B illustrate this local variation for two areas in California. These maps show the
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net present value of per-home expected protection costs, averaged at the Census block

level for plotting. Figure 8A shows Shasta and Tehama counties in Northern Califor-

nia. This part of California experiences frequent wildfires every summer. Expected

protection costs are several hundred dollars per home or less in the more densely-

developed areas of Redding and Anderson. Outside of these urban areas, protection

costs increase quickly. In some of the more remote Census blocks that border national

forest lands or other public wildlands, costs reach $15,000 or more per home. These

areas have a high underlying physical risk of fire, meaning that homes built here are

likely to repeatedly require costly firefighting efforts to avoid destruction. In addition,

these areas include fewer total homes, raising the per-home cost of firefighting. Figure

8B shows San Diego County in Southern California. Again, fire protection costs per

home are low in the densely developed areas of San Diego, and increase in the high

fire-risk, low-housing-density areas that border federal- and state-owned lands in the

eastern part of the County.

7 Conclusion

The federal government spends billions of dollars each year to protect private homes

from wildfires. We find that efforts to protect private homes account for about two-

thirds of this spending. Interestingly, expenditures vary only slightly with the total

number or value of homes threatened, conditional on any homes being threatened.

This means development density is an important predictor of per-home protection

costs.

Fire suppression spending represents a remarkably large transfer of federal revenues

to a small number of landowners in high-cost places. In our highest-risk group, the

expected NPV of the implicit subsidy is over 10 percent of total property value.

This spending will continue to increase as climate change worsens the fire problem.

Meanwhile, in the absence of policies to make homeowners internalize fire costs, the

rate of new home construction in high-risk places is likely to continue unabated,

implying substantial under-adaptation to this particular impact of climate change.

For policymakers interested in addressing this incentive conflict, our empirical analysis

provides a road map for calculating the optimal “fire protection fee” for new housing

construction in currently undeveloped areas. More broadly, our results emphasize the

25



importance of considering incidence and moral hazard effects of public expenditures

on climate change adaptation, including for flooding, sea level rise, drought, and other

impacts.
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Figure 1: Defensive Expenditures and the Housing Market
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Figure 2: Example National Forest Units

Each panel shows a single national forest area in green. The X’s represent individual wildfires, col-
ored according to the distance to the nearest home. Black dots indicate private homes. Clockwise
from upper left, the forests are Shasta Trinity National Forest (California), Los Padres National
Forest (California), Okanogan-Wenatchee National Forest (Washington), and Flathead National
Forest (Montana).
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Figure 3: The Effect of Homes on Firefighting Costs
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This figure reports results of three separate regressions of log firefighting cost on distance from the
ignition point to the nearest home. The step function plots coefficients from a regression of log costs
on indicators for 5 km distance bins. The linear spline is piecewise linear regression with knots every
10 km. The gray shaded area around the cubic polynomial is the 95% confidence interval for that
model. Standard errors are clustered by national forest. Each regression includes national forest
fixed effects, state by month-of-year fixed effects, and state by year fixed effects.
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Figure 4: Non-linear effects of the number of nearby homes
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Notes: The sample for this figure includes 1,503 fires that had fewer than 2,500 homes
within 30 kilometers of the ignition point. The lines show three separate regressions.
The step function plots coefficients from a regression of log suppression cost on indicator
bins for nine equal-observation groups plus a separate bin for fires near zero homes. The
linear spline is a piecewise linear regression with knots at the 33rd and 66th percentiles
of nearby homes. The gray shaded area around the cubic polynomial is the 95%
confidence interval for that model. Standard errors are clustered by national forest.
Each regression includes national forest fixed effects, state by month of year fixed
effects, and state by year fixed effects. Predicted costs for each model are normalized
to zero at the sample average number of nearby homes.
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Figure 5: Distribution of Expected Parcel Protection Costs for 8 Million Western
Homes

This figure describes the distribution of expected future firefighting costs for 8,046,957 homes in
the western United States. These costs are calculated using 210 actuarial groups of similar-risk
homes. Actuarial groups were created by crossing six categories of landscape fire risk, five categories
of housing density, and seven wildland firefighting dispatch regions (GACC regions). The black
line shows the cumulative distribution function for net present value firefighting costs, using a 5%
discount rate. The dashed gray line shows the cumulative distribution function of firefighting costs
divided by transaction value of the home, and corresponds to the second horizontal axis labels.

33



Figure 6: Expected Protection Cost by Region

Notes: This figure shows the net present value of the expected future cost of protecting a home
during wildfires, averaged across 20 km hex cells. The sample includes 8 million homes near
wildland vegetation areas (47% of all western homes), and includes fire suppression costs from all
agencies in our sample. See section 6 for a detailed description of the construction of this measure.
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Figure 7: Expected Parcel Protection Cost by Fire Risk, Housing Density, and Wealth

(a) Wildfire Hazard Potential
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(b) Housing Density
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(c) Income
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Each panel shows the variation in the net present value of expected protection costs along a single margin of
interest. The black line in each panel shows average expected protection costs. The gray density shows the
distribution of homes. Panel (a): The six categories correspond to wildfire hazard potential risk categories in
Dillon (2015). Panel (b): Costs are plotted according to deciles of pixel-level population density for the study
area from the Gridded Population of the World database Columbia University CIESIN, 2017. Panel (c): Each
home is assigned the median annual income for its Census block group from the 2015 American Community
Survey.
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Figure 8A: Local variation in Expected Cost

This map shows expected protection costs averaged by Census block for Shasta and Tehama
counties in Northern California. The color scale indicates the average expected NPV of a home’s
protection cost, and is top-coded at $15,000. Crosshatched areas are public lands. White areas
have no wildland vegetation (e.g., urban areas) or no homes. The online appendix includes example
maps for additional areas throughout the West.



Figure 8B: Local variation in Expected Cost, Continued

This map shows expected protection costs averaged by Census block for San Diego County, Cal-
ifornia. The color scale indicates the average expected NPV of a home’s protection cost, and is
top-coded at $15,000. Crosshatched areas are public lands. White areas have no wildland vegeta-
tion (e.g., urban areas) or no homes. The online appendix includes example maps for additional
areas throughout the West.
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Table 1: Descriptive statistics

Panel A: Pooled fire characteristics
Mean P10 P50 P90

Area burned 7,977 376 1,408 16,613
Aspect 137 -1 126 305
Elevation 1,503 656 1,507 2,328
Fire cost 1,511,356 4,500 124,279 3,069,388
Nearest home distance 13 1 9 32
Parcels in 10km 764 0 0 1,230
Parcels in 20km 3,340 0 96 7,391
Parcels within 5km 168 0 0 125
Value in 10km 181,714 0 0 168,827
Value in 20km 800,259 0 11,044 1,264,275
Value in 5km 42,957 0 0 18,026
Precipitation 0 0 0 1
Slope 11 1 9 28
Temperature 21 13 21 27
Vapor Pressure Deficit 21 11 21 32

Panel B: Fire characteristics by agency
USFS BLM BIA NPS CAL FIRE

Number of fires 2,563 3,003 418 240 198
Area burned 7,966 7,904 5,982 10,565 10,306
Fire cost 2,930,690 222,295 728,850 456,903 5,619,710

This table report descriptive statistics for the 6,422 fires with area greater or equal to 300 acres
in our sample. P10, P50, and P90 indicate the 10th, 50th (median), and 90th percentile of values.
Aspect is given in degrees, elevation is in meters above sea level, fire cost is in 2014 US $, nearest
home distance is in kilometers, parcels is the number of parcels within the given distance, value
is the total parcel value (land and improvements), precipitation is in mm, slope is in degrees,
temperatures is in Celsius, and Vapor Pressure Deficit is in millibars.
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Table 2: The Effect of Proximity to Homes on Firefighting Costs

(1) (2) (3) (4) (5)

Distance to Homes (km)

10–20 -0.24 -0.31** -0.25 -0.32 -0.42
(0.15) (0.14) (0.24) (0.20) (0.27)

20–30 -0.92*** -0.99*** -0.92*** -1.04*** -1.41***
(0.25) (0.26) (0.32) (0.34) (0.28)

30–40 -1.54*** -1.60*** -1.36*** -1.57*** -1.86***
(0.43) (0.44) (0.40) (0.48) (0.43)

40+ -1.94*** -1.96*** -1.74*** -2.00*** -2.35***
(0.36) (0.41) (0.28) (0.41) (0.35)

Additional Controls

Terrain Slope 0.007** 0.006 0.008* 0.006
(0.003) (0.005) (0.004) (0.005)

Wind (mph) 0.026 0.004 0.014 0.009
(0.018) (0.034) (0.027) (0.039)

Vapor Pressure Differential 0.021* 0.012 0.010 0.021
(0.011) (0.016) (0.014) (0.020)

South/southwest-facing 0.24* 0.32 0.30 0.10
(0.14) (0.22) (0.20) (0.28)

Fuel Model FE X X X

National Forest FE X X X X X
Year by State FE X X X X
Month-of-Year by State FE X X X X
Week-of-Sample by State FE X
Lightning fires only X
Timber Fuels only X

N 2,069 2,069 1,365 1,437 1,018

This table reports the results of five separate OLS regressions. The sample includes western U.S.
fires managed by the Forest Service during 1995-2014. In each regression the dependent variable is
the natural log of suppression cost. The table rows report coefficients and standard errors on dummy
variables corresponding to distance to the nearest home. The omitted category is 0–10 kilometers.
Terrain slope is the linear slope of the ground surface. Wind speed is average speed on the day of
ignition at the reference weather station listed in NIFMID. Vapor pressure deficit is for the ignition
location and day, from PRISM, and measured in hectopascals (millibars). Fuel model fixed effects
include four categories corresponding to NFDRS fuel codes for brush, grass, slash, and timber. Forest
unit fixed effects include the 88 national forests in the Western U.S. Standard errors are clustered at
the national forest level. 39



Table 3: Firefighting Costs by Number of Nearby Homes

[Column 2
(1) (2) implied effect]

Number of homes

1-114 0.87*** 0.39 [0.93]
(0.28) (0.25)

115-625 1.41*** 0.80** [1.34]
(0.34) (0.31)

626-2,498 1.59*** 0.88** [1.41]
(0.41) (0.36)

2,499-8,523 1.71*** 0.91*** [1.44]
(0.34) (0.31)

8,524+ 1.76*** 0.91** [1.45]
(0.40) (0.35)

distance -0.0439**
(0.0168)

distance2 0.0003
(0.0002)

Fires 2,069 2,069

This table reports the results of two separate regressions. The sample
includes western U.S. fires managed by the Forest Service during 1995-
2014 larger than 300 acres. In each regression the dependent variable is
the natural log of suppression cost. We report coefficients and standard
errors on dummy variables corresponding to equal-observation bins of
number of homes within 30 km. The omitted category is fires with zero
homes within 30 km. “Distance” is the distance from the ignition point
to the nearest home, in kilometers. The bracketed numbers to the right of
the Column (2) estimates show the implied difference in log costs between
a fire 11 km from the given number of homes and a fire with the nearest
home 30 km away (for comparison with Column (1)). Both regressions
include national forest fixed effects, state by month of year fixed effects,
and state by year fixed effects. Standard errors are clustered at the
national forest level.
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ONLINE APPENDIX

1 Additional Results and Robustness Checks

Appendix Figure 1: Western Wildfires, 1995–2004
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Appendix Figure 2: Covariate Overlap by Distance from Ignition Point to Nearest Home
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This figure shows covariate distributions for the US Forest Service fires analyzed in Tables 2 and 3. Panels (b),
(c), and (d) report weather on the day of ignition. Wind speed is average wind speed from the reference weather
station reported in NIFMID. Temperature and vapor pressure differential are mean daily values from PRISM.
Terrain slope is the slope percentage, where 100 corresponds to a slope of 1 (i.e, a 45-degree line). ”Timber”
fuel models are National Fire Danger Rating System fuel models E, G, H, P, R, and U.
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Appendix Figure 3: Additional National Forest Examples

Each panel shows a single national forest area in green. The X’s represent individual wildfires, col-
ored according to the distance to the nearest home. Black dots indicate private homes. Clockwise
from upper left, the forests are Bitterrroot National Forest (Montana), Kootenai National Forest
(Montana), Salmon-Challis National Forest (Idaho), and Plumas National Forest (California).
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Appendix Figure 4A: Local variation in Expected Cost, Additional Examples

This map shows expected protection costs averaged by Census block for the Boise, Idaho area.
The color scale indicates the average expected NPV of a home’s protection cost, and is top-coded
at $15,000.
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Appendix Figure 4B: Local variation in Expected Cost, Additional Examples

This map shows expected protection costs averaged by Census block for the Tucson, Arizona area.
The color scale indicates the average expected NPV of a home’s protection cost, and is top-coded
at $15,000.
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Appendix Figure 4C: Local variation in Expected Cost, Additional Examples

This map shows expected protection costs averaged by Census block for the Santa Barbara, Cali-
fornia area. The color scale indicates the average expected NPV of a home’s protection cost, and
is top-coded at $15,000.
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1.1 Effect of Home Density on Fire Costs: Robustness checks

Appendix Table 1 shows additional robustness checks for the effects of the number
of nearby homes on fire costs. Columns (1) through (5) show the same checks that
we show in Table 2 for the effect of the nearest home on fire costs. Our results are
robust to these various tests. The estimated effects of the other fire characteristics are
also very similar to those in Table 2, as expected. Column (6) shows an additional
specification that measures the stock of nearby homes by total transaction value,
instead of number of homes. Results are similar.
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Appendix Table 1: The Effect of Number or Value of Homes, Robustness Checks

Number Value

(1) (2) (3) (4) (5) (6)

Quintile Bins

1 0.87*** 0.87*** 0.65** 0.89*** 0.93*** 0.86***
(0.28) (0.30) (0.31) (0.31) (0.28) (0.31)

2 1.41*** 1.39*** 1.34*** 1.37*** 1.29*** 1.34***
(0.34) (0.36) (0.38) (0.36) (0.38) (0.38)

3 1.59*** 1.53*** 1.19*** 1.29*** 1.38*** 1.55***
(0.41) (0.44) (0.32) (0.44) (0.42) (0.44)

4 1.71*** 1.68*** 1.50*** 1.50*** 1.92*** 1.71***
(0.34) (0.36) (0.32) (0.39) (0.38) (0.36)

5 1.76*** 1.79*** 1.31*** 1.62*** 1.69** 1.93***
(0.40) (0.40) (0.46) (0.49) (0.64) (0.40)

Additional Controls

Terrain Slope 0.008*** 0.006 0.009** 0.007 0.008***
(0.003) (0.004) (0.004) (0.005) (0.003)

Wind (mph) 0.026 0.008 0.015 0.008 0.026
(0.019) (0.035) (0.028) (0.039) (0.019)

Vapor Pressure Differential 0.021* 0.013 0.010 0.023 0.021*
(0.011) (0.016) (0.014) (0.021) (0.011)

South/southwest-facing 0.252* 0.340 0.312 0.115 0.251*
(0.136) (0.224) (0.197) (0.275) (0.135)

Fuel Model FE X X X X

National Forest FE X X X X X X
Month-of-Year by State FE X X X X X
Year by State FE X X X X X
Week-of-Sample by State FE X
Lightning fires only X
Timber Fuels only X

N 2,069 2,069 1,365 1,437 1,018 2,069

Columns (1) through (5) reproduces Table 2 from the main text, using bins of the number of homes within
30 kilometers as the variables of interest. The bins are equal observation bins for fires with at least 1 nearby
home (see Table 3 for bin ranges). The omitted category is fires with zero nearby homes. Column (6) shows
an alternative specification that measures the stock of homes within 30 km by total transaction value. Again,
bins are equal observation bins for fires with at least 1 nearby home, and the excluded category is fires with zero
nearby homes. A8
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Appendix Table 2 shows the effects of the number of nearby homes on fire costs using
alternative radii around the ignition point to count the number of homes. Each table
row shows coefficients for five equal-observation bins corresponding to the distribu-
tion of number of homes, conditional on any homes within the radius. The omitted
category in each regression is fires with zero homes within the radius. For all three
radii, there is a clear pattern of quick increases across the first two bins, and then
roughly constant costs at higher numbers of homes. Note that direct comparisons
of these coefficients across bins are difficult, since the comparison group of fires with
zero threatened homes is systematically different across columns (e.g., in the 40 km
column, all fires with zero homes are very remote by construction). Several other
effects also presumably occur simultaneously as we widen the radius: since further-
away homes have less effect on costs, these measures attenuate somewhat; however,
because calculating density over a wider area reduces noise in our assessment of the
number of threatened homes, there is another factor making these measurements more
precise. Finally, note that the actual bin endpoints vary across models. The choice of
radius is ultimately a somewhat arbitrary decision. Importantly, however, the obvious
non-linear pattern of costs by number of homes exists for any radius.
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Appendix Table 2: Costs by Number of Homes: Alternative Radii

20 km 30 km 40 km

Number Log Number Log Number Log
Bin of homes Cost of homes Cost of homes Cost

0 0 0.00 0 0.00 0 0.00

1 1 0.65** 1 0.84*** 1 0.86***
(0.26) (0.28) (0.14)

2 36 1.11*** 115 1.35*** 300 1.74***
(0.29) (0.33) (0.31)

3 185 1.20*** 626 1.55*** 1,336 1.67***
(0.34) (0.39) (0.24)

4 859 1.05*** 2,499 1.68*** 4,983 1.85***
(0.29) (0.33) (0.24)

5 3,257 1.32*** 8,524 1.69*** 15,529 1.66***
(0.31) (0.38) (0.34)

Fires with Homes 1,806 2,082 2,233
Fires Without Homes 528 252 101

This table reproduces Table 3 from the main text using alternative radii. Each table row shows
coefficients for five equal-observation bins corresponding to the distribution of number of homes,
conditional on any homes within the radius. The omitted category in each regression is fires with
zero homes within the radius. For all three radii, there is a clear pattern of quick increases across
the first two bins, and then roughly constant costs at higher numbers of homes. Note that direct
comparisons of these coefficients across bins are difficult, since the comparison group of fires with
zero threatened homes is systematically different across columns (e.g., in the 40 km column, all
fires with zero homes are very remote by construction). Several other effects also presumably
occur simultaneously as we widen the radius: since further-away homes have less effect on costs,
these measures attenuate somewhat; however, because calculating density over a wider area reduces
noise in our assessment of the number of threatened homes, there is another factor making these
measurements more precise. Finally, note that the actual bin endpoints vary across models. The
choice of radius is ultimately a somewhat arbitrary decision. Importantly, however, the obvious
non-linear pattern of costs by number of homes exists for any radius.
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1.2 Effect of Homes on the Number of Fires

To evaluate whether the addition of new homes causes a larger number of fires (in
addition to larger expenses on each fire that occurs), we take advantage of panel
variation in home construction near each of the national forests in our dataset. We
construct a year-by-national forest panel including 67 national forests and 20 years of
fire experience. Because new homes are most likely to affect the number of ignitions
in places with relatively low levels of development, we exclude national forests that
had more than 150,000 homes within 30 kilometers of the national forest boundary
in 1995 (this excludes the 20% of most densely-populated national forests).

We implement a variety of panel regression specifications. Our preferred statistical
approach is a Poisson regression, since the number of fires in each national forest-
year is a count variable with many zeros and a small number of other values.20 The
key identification challenge in this setting is to separate the effect of new home con-
struction from other time-varying determinants of fire probability. Because homes
are durable, the number of homes near each national forest increases monotonically
across the sample. We adopt a variety of time trends and year fixed effects specifica-
tions to control as flexibly as possible for potential secular trends in the number of
forests in each national forest caused by factors like climate change or annual drought
cycles. Our results in this section should be interpreted with caution, since they rest
on the somewhat strong assumption that, conditional on these controls, the trend in
new home construction near each national forest is uncorrelated with other trends in
fire occurrence.

Appendix Table 3 shows the results. All of these regressions include national forest
fixed effects which remove the effect of time-invariant determinants of fire risk, such as
local topography. Across specifications, new home development has a small positive
effect on the number of fires each year. In Column (1), the estimated coefficient in the
Poisson regression is 0.028. This implies that adding 1,000 new homes increases the
annual number of fires in this national forest by 2.8%.21 The average number of fires
in each national forest-year is 1.7, so this implies that an additional 1,000 homes lead
to 0.05 additional fires per year. Columns (2)–(5) include alternative polynomial time
trends and find similar results. Column (6) instead includes year fixed effects, which
allows for arbitrary annual trends at the West-wide level. Column (7) shows the
same fixed effects specification in an OLS regression, for comparison to the Poisson
results.

20We address the typical limitation of classic count regression, the restriction that the mean equal
the variance for the estimated effects, by using a cluster-robust variance estimator which eliminates
this problem.

21Expected changes in counts are calculated as expβ − 1, where β is the Poisson regression coeffi-
cient.
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Appendix Table 3: The Effect of Homes on the Number of Fires

(1) (2) (3) (4) (5) (6) (7)

Poisson Poisson Poisson Poisson Poisson Poisson OLS

Thousands of Homes 0.028*** 0.035*** 0.029*** 0.037*** 0.033*** 0.030*** 0.021*
(0.005) (0.007) (0.008) (0.008) (0.007) (0.008) (0.011)

National Forest FE X X X X X X X
Linear Time Trend X
Quadratic Time Trend X
Regional Linear Trends X
Regional Quadratic Trends X
Year Fixed Effects X X

N 1,060 1,060 1,060 1,060 1,060 1,060 1,060

This table reports the results of seven separate regressions. In each regression the dependent variable is the
number of fires larger than 300 acres in each national forest-year. Columns (1)-(6) show results for several
Poisson regression specifications, and Column (7) shows an OLS specification for comparison. The variable of
interest is the number homes within 30 kilometers of the national forest boundary, in thousands. The table reports
regression coefficients and standard errors, which are calculated using a cluster robust variance estimator at the
national forest level. For the Poisson specifications, the coefficients can be converted to expected percentage
changes in the number of large fires using calculation eβ − 1. See text for details. The mean number of fires
in each national forest-year is 1.7. “Regional Linear Trends” and “Regional Quadratic Trends” indicate that
the regression includes separate polynomial time trends for each of the five forest service regions included in the
sample area.
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2 Construction of the Dataset

2.1 Fires data

The initial dataset includes 2,613 fires larger than 300 acres during 1995–2014. We
restrict to fires managed by the US Forest Service. For every fire, we calculate the dis-
tance from the ignition point to the nearest home, using the homes dataset described
below.

2.2 Homes data

2.2.1 Sample restrictions

The initial dataset includes nearly 17,701,699 million single-family homes in the 11
western states.22 We restrict the sample to include 8,117,482 homes at risk from wild-
land fires due to the presence of wildland vegetation, based on geographic classifica-
tions in Radeloff et al. (2005). The vegetation categories we include are high density
interface, high density intermix, medium density interface, medium density intermix,
low density interface, low density intermix, very low density vegetated, and uninhab-
ited vegetated. We exclude homes in areas without wildland vegetation, including
high density no vegetation, medium density no vegetation, low density no vegetation,
very low density no vegetation, and uninhabited no vegetation. We further restrict
the sample to the 6,452,290 homes that are less than 40km from a national forest
boundary.

2.2.2 Assigning fire costs to homes

We calculate the expenditures on each fire that were due to the presence of homes,
using the statistical model in Section 5.1. First, we construct an estimate of the
residual fire cost due to the presence of any single-family homes near the point of
ignition to avoid capturing firefighting costs that would have been occurred regardless
of nearby habitation. We use the estimate of the proportional increase in firefighting
costs due to the nearest home given by our results in section 5.1 minus one divided
by that estimate. Mathematically, if rd is the ratio of costs estimated for a fire with
nearest parcel at distance d over the cost for a fire with d > 40km (the distance above
which firefighting costs no longer decrease), then our estimate of the residual fire cost
is C = Fire cost × rd−1

rd
, which is by construction between zero and the total cost of

22Arizona, California, Colorado, Idaho, Montana, New Mexico, Nevada, Oregon, Utah, Washing-
ton, Wyoming.
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the fire. For example way, if the ignition point of a fire is between 12 and 16km from
the nearest home, then the estimated coefficient from Equation 1 is 5.3, meaning that
the relative cost is 5.3 times larger than a fire with the nearest home more than 40
km away. To obtain the residual fire cost C we multiply the total cost times the ratio
5.3−1
5.3

≈ 0.81 to get the residual cost. Using this method, we assign around 72% of
total firefighting costs to the single-family homes in our dataset.

We then divide those residual fire costs, or home protection expenditures, over all
homes in our sample that are within 40 km of the ignition point. In assigning these
costs to homes, we place more weight on homes located near the ignition point. To
do so we make use of two approaches, an inverse-distance weighting (IDW) algorithm
and an empirical estimate based on the results in section 5.1. For the IDW algorithm,
houses within 40km are assigned a weight of 1

d
, weights are normalized to one within

each fire, and home protection expenditures by fire are divided using the normalized
weights. Our second and preferred approach is identical except that the weights
assigned to each fire-parcel combination are the estimated coefficients from Equation
1 for distance between the igition point and the parcel location, normalized to sum
to one for each fire.

2.3 Additional Data

We assign both a categorical and a continuous measure of wildfire hazard potential
to nearly every parcel23 in our dataset using data from Dillon (2015).

Data on the area and number of housing units in each Census Block come from 2010
Census TIGER/Line data files. To smooth idiosyncratic variation in housing density
due to small block areas, we aggregate this information to the Census tract level and
then calculate the number of housing units per square meter. There are 15,599 Census
tracts in the 11 western states. We merge this housing density data to the homes
dataset using Census geographies included in the homes dataset. We successfully
merge 99.7% of homes to tract-level housing density. For the 0.3% of homes that we
fail to match at the tract level, we use county-level average housing density.

23156 parcels lie outside the boundaries given by the spatial data in Dillon (2015).
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ONLINE APPENDIX

3 Model Appendix

3.1 Optimal Level of Defensive Expenditures

Conditional on a disaster occurring, the optimal level of defensive expenditures min-
imizes the sum of total expected damages and defensive expenditures:

f ∗(N) = arg min
f

[f +NH(f)]

Taking first order conditions and solving yields that −H ′(f ∗) = 1
N

. By Assumption
1 from the main text, −H ′(f) is decreasing in f . By implication, f ∗ is increasing in
N .

3.2 Per-Household Disaster Costs are Decreasing in Popula-
tion

Each household’s proportional share of expected disaster costs is πi = φi[
f∗(Ni)
Ni

+
Hi(f

∗(Ni))]. Note that f ∗(Ni) is chosen optimally to minimize total disaster costs
in the location conditional on a disaster, which are equal to Ni

φi
∗ πi. Thus, f ∗(Ni)

also minimizes per-household disaster costs. The envelope theorem implies that the
total derivative of πi(N, f

∗(N)) with respect to N is equal to the partial derivative

of πi(N, f
∗(N)) with respect to N , which is −f∗(N)

N2 . This is negative.
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