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Abstract

Over the last century, unemployment, vacancy, job-finding and job-loss rates as well

as the Beveridge curve have no trend. Yet, the last century has seen the development and

diffusion of many information technologies—such as telephones, fax machines, computers,

the Internet—which presumably have increased the efficiency of search in the labor market.

We explain this phenomenon using a textbook search-theoretic model of the labor market.

We show that there exists an equilibrium in which unemployment, vacancies, job-finding

and job-loss rates are constant while the search technology improves over time if and only

if firm-worker matches are heterogeneous in quality, the distribution of match qualities is

Pareto, and the quality of a match is observed before the start of the employment relation-

ship. Under these conditions, improvements in search lead to an increase in the rate at

which workers meet firms and to a proportional decline in the probability that the quality

of a firm-worker match is acceptable leading to a constant job-finding rate, unemployment,

etc... Interestingly, under the same conditions, unemployment, vacancies, job-finding and

job-loss rates are independent of the size of the labor market even in the presence of increas-

ing returns to scale in search. While declining search frictions do not lower unemployment,

they contribute to growth. The magnitude of the contribution depends on the thickness of

the tail of the Pareto distribution. We present a simple strategy to measure the decline in

search frictions and its contribution to growth. A rudimentary implementation of this strat-

egy suggests that the decline in search frictions has been substantial, it has been caused by

both improvements in the search technology and increasing returns to scale in the search

process, and it has had a non-negligible impact on growth.
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1 Introduction

The US Beveridge curve has been surprisingly stable ever since data on unemployment and

vacancies have begun being collected in the 1920s. As illustrated in Figure 1, the US Beveridge

curve has been stable during the five decades going from 1927 to 1976, it has shifted out during

the 1977-1986 decade, shifted back in during the 1987-1996 decade, and it has again shifted

out and back in during the ten years from 2007 to 2016. While much research has been devoted

to the cyclical, counter-clockwise shifts of the Beveridge curve (see, e.g. Kaplan and Menzio

2016, Gavazza, Mongey and Violante 2018 and Sniekers 2018), what we find truly remarkable

in this figure is the lack of any secular trend in the Beveridge curve. Indeed, in the aftermath of

the Great Recession, the Beveridge curve is exactly where it was in the early 1950s.

There also have been no secular shifts along the Beveridge curve. As illustrated in Figure 2,

the unemployment rate is quite volatile at the business cycle frequency, but it displays no clear

secular trend. The vacancy rate is also very volatile at the business cycle frequency, although in

the opposite direction, and does not feature any recognizable secular trend. As the unemploy-

ment and the vacancy rates have no trend, neither does the tightness of the labor market, which

is defined as the vacancy-to-unemployment ratio.

The standard theory of unemployment, vacancies, and the Beveridge curve has been devel-

oped by Diamond (1982), Mortensen (1982) and Pissarides (2000). The theory is based on the

view that unemployment and vacancies coexist because searching the labor market for a trading

partner is a time-consuming activity. The relationship between unemployment and vacancies

is downward sloping because the vacancy-to-unemployment ratio increases the speed at which

unemployed workers find jobs and, hence, lowers unemployment. Formally, the theory states

that the Beveridge curve is given by

ut =
δ t

δ t+At p(vt/ut)
, (1.1)

where ut and vt denote the unemployment and vacancy rates, δ t denotes the rate at which

employed workers become unemployed (henceforth, the EU rate), and At p(vt/ut) denotes the

rate at which unemployed workers become employed (henceforth, the UE rate), which is given

by the product between a parameter At that controls the efficiency of the search process and

an increasing function p(vt/ut) that controls the relationship between the tightness of the labor

market.

The secular stability of the Beveridge curve is puzzling from the perspective of search the-

ory. It suggests that either there has been no increase in the efficiency At of the search process

from 1929 to 2018 or that every increase At has been offset by an increase in the EU rate δ t . The

first possibility seems unlikely, as the period from 1929 to 2018 has witnessed the development
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Figure 1: Beveridge Curve US: 1926-2018

and diffusion of a great deal of information technology—the telephone, the fax machine, the

copying machine, the computer, the Internet—which must have had an impact on the ability of

firms to announce their job openings to the market, on the ability of workers to learn about and

apply to job openings and, ultimately, on the efficiency At of the search process. The second

possibility can be easily refuted by looking at the data. As illustrated in Figure 3, neither the

UE rate nor the EU rate display a clear upward secular trend.1

The aim of this paper is to explain why the unemployment rate, the UE rate, the EU rate,

the vacancy rate and the Beveridge curve have all been substantially stable in the face of vast

improvements in information technology. In a nutshell, our explanation is based on the observa-

tion that, while improvements in the information technology increase the rate at which workers

learn about vacancies, they also make workers and firms more selective about the quality of the

relationships that are willing to establish. According to our explanation, the Beveridge curve is

given by

ut =
δ t

δ t+At p(vt/ut)F(Rt)
, (1.2)

where F is the distribution of quality of a firm-worker match and Rt is the reservation quality,

i.e. an endogenous object that denotes the lowest quality such that a firm and a worker are

willing to start a labor relationship. Under some conditions on the shape of F , the growth in the

efficiency At of the search process is exactly offset by the endogenous decline in the probability

1A third possibility is that search frictions have nothing to do with unemployment, vacancies and the Beveridge

curve. We do not pursue this line of inquiry.
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Figure 2: Unemployment and Vacancy Rates US: 1926-2018

Figure 3: UE and EU Rates US: 1951-2008
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F(Rt) that the match is viable, thus leading to stationary unemployment and vacancy rates, UE

and EU rates, and labor market tightness.

In the first part of the paper, we develop our theory in the context of a growth version of

Mortensen and Pissarides (1994). As in Mortensen and Pissarides (1994), unemployed workers

and vacant firms look for each other in the labor market and the rate at which workers contact

firms is given by At p(vt/ut). In contrast to Mortensen and Pissarides (1994), matches are “in-

spection goods,” in the sense that—upon meeting—a firm and a worker observe the productivity

of their match and, based on this information, decide whether to start an employment relation-

ship or to keep on searching. The environment features growth in both the search technology

and the production technology, as the efficiency of the search process grows at a constant rate

gA and the component of productivity that is common to all matches grows at the rate gy.

We define a Balanced Growth Path (henceforth, BGP) as an equilibrium in which the unem-

ployment rate, the UE rate, the EU rate, the vacancy rate and the tightness of the labor market

are constant over time, while the cross-sectional distribution of workers across matches of dif-

ferent qualities grows at the endogenous, constant rate gz, in the sense that every quantile of the

distribution grows at the rate gz. We find that a BGP exists if and only if the distribution F of

the quality of a new matches is Pareto with some tail coefficient α > 1, and the worker’s income

from unemployment and the firm’s cost from posting a vacancy grow at the rate gy+gA/α . In a

BGP, unemployment, vacancies and the UE and EU rates are constant. The distribution of em-

ployed workers across matches of different qualities is a truncated Pareto that grows at the rate

gz = gA/α . The average productivity of labor, wages and output all grow at the rate gy+gA/α .

The intuition behind our findings is simple. Improvements in the search technology lead

to an increase in the rate at which unemployed workers meet vacant firms. Simultaneously,

improvements in the search technology make firms and workers choosier about the quality of

the matches that they are willing to form, as they make it easier to experiment with alternative

partners. When the distribution of match qualities is Pareto, the two effects exactly cancel out,

leading to a constant UE rate, EU rate and unemployment. The firm’s return to filling a vacancy

grows at the rate gA+gy/α because of improvements in the production and search technologies.

If the cost of a vacancy grows at the same rate—because, say, opening a vacancy requires the

use of labor—then the tightness of the labor market remains constant as well, and so does the

vacancy rate. Interestingly, while improvements in the search technology do not lead to any

decline in unemployment, they contribute to the growth rate of the economy with a strength that

increases with the thickness 1/α of the tail of the Pareto distribution of match qualities.

In the second part of the paper, we generalize the baseline model to allow workers to search

the labor market not only when they are unemployed, but also when they have a job (albeit with

different intensity). The generalization of the model is relevant, as we know that workers move
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often from one job directly to another and, thus, the workers’ opportunity cost of accepting a

job out of unemployment is not to give up entirely on search. The analysis of the general model

is much harder, but the necessary and sufficient conditions for the existence of a BGP turn out

to be the same as for the baseline model. Moreover, we show that, in any BGP of the on-the-job

search model, unemployment, vacancies and the UE and EU rates remain constant over time,

the distribution of employed workers across matches of different qualities is a truncated Fréchet

that grows at the rate gA/α , and the average productivity of labor, wages and output all grow at

the rate gy+gA/α .

In the third part of the paper, we further generalize the model to allow for growth in the

size of the labor force and for non-constant returns to the scale of the labor market in the search

process. We find that the conditions for the existence of a BGP are essentially the same as in the

baseline model. We also find that, in the BGP, unemployment, vacancies and the UE and EU

rates are constant. The distribution of employed workers across matches of different qualities

grows at the rate (gA+βgN)/α , where gN is the growth rate of the labor force and β is the para-

meter than controls the returns to scale in the search process—with β > 0 meaning increasing,

β = 0 constant, and β < 0 decreasing returns to scale. Finally, the average productivity of labor,

wages and output per capita all grow at the rate gy+(gA+βgN)/α . The findings are intuitive,

because non-constant returns to scale in the search process have the same type of effect on the

rate at which workers meet firms as improvements in the search technology. The findings are in-

teresting because they prove that—under the same condition which explain why unemployment

and vacancies are constant in the face of an ever improving search technology—the returns to

scale in the search process cannot be detected by looking at the relationship between unemploy-

ment rates (or UE rates) and the size of the labor market. Moreover, the ineffectiveness of this

identification strategy applies both the time-series and to the cross-section.

We conclude the paper with some observations on how to measure the contribution of declin-

ing search frictions to the growth rate of the economy and with some back-of-the-envelope cal-

culations. In a BGP, the growth rate of the number of applicants considered for each vacancy—

which is a measure of how selective firms and workers are—grows at the rate gA+βgN . In a

BGP, the log of the ratio of the number of applicants considered for each vacancy in two labor

markets is proportional to the log of the size of the two markets, and the constant of proportion-

ality is β . Finally, in a BGP, the distribution of wages for workers hired out of unemployment is

approximately a Pareto with a tail coefficient α . Thus, observations on applicants-per-vacancy

over time and across space and observations om the cross-section of wages for homogeneous

workers would be enough to identify the contribution gA/α of improvements in the search tech-

nology to economic growth, the extent β of returns to scale in the search process, as well as the

contribution βgN/α of these returns to scale to economic growth.
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As far as we know, there is no dataset that contains the secular evolution of applications-

per-vacancy. However, the Employment Opportunity Pilot Project reports applications-per-

vacancy for the US in 1981 (see Faberman and Menzio 2018) and several job sites, such as

CareerBuilder.com and SnagAJob.com report applications-per-vacancy for the US in the 2010s

(see Marinescu and Wolthoff 2016 and Faberman and Kudlyak 2016). Using these observa-

tions, we find that applications-per-vacancy grew between 1981 and 2011 by approximately

2% per year. Using applications-per-vacancy in different commuting zones of the US from Ca-

reerBuilder.com, we find that β = 0.52, which implies that applications-per-vacancy are 5.2%

higher for vacancies located in a commuting zone that is 10% larger. The measurement of the

growth rate of applications-per-vacancy implies that the contribution of declining search fric-

tions to economic growth is 1.1% per year if α = 2, 0.55% if α = 4, and 0.275% if α = 8.

These are large numbers, even when the tail of the Pareto distribution of match qualities is very

thin. The measurement of β—together with the fact that the US labor force has grown by 1.1%

per year from 1981 to 2011–implies that 3/4 of the contribution of declining search frictions to

economic growth is due to improvements in the search technology and 1/4 to increasing returns

to scale. Moreover, the measurement of β implies that the productivity of labor in a commuting

zone that is 10% larger is 2.5% higher if α = 2, 1.25% higher if α = 4 and 0.62% higher if

α = 8, just because of increasing returns in the search process.

The main contribution of the paper is to provide a theory to reconcile the search theory

of unemployment with the observation that, in the face of vast improvements in information

technology and, presumably, in the search technology, the unemployment rate, the UE rate, the

EU rate, the vacancy rate and the Beveridge curve have all substantially remained stable in the

US for nearly 100 years. The theory implies that, while improvements in the search technol-

ogy do not affect unemployment, they do contribute to the growth of the economy. Moreover,

some simple back-of-the-envelope calculations suggest that, indeed, the contribution of declin-

ing search frictions to economic growth is far from negligible.

From the methodological point of view, our paper belongs to the literature that seeks condi-

tions on fundamentals under which an economy experiencing growth in the production technol-

ogy features stationarity in some of its outcome (e.g., the labor share, the capital-output ratio,

the interest rate, etc. . . ). Key contributions in this literature include King, Plosser and Rebelo

(1988) and, more recently, Grossman et al. (2007). Most of this literature focuses on Walrasian

models. A few exceptions, which include Aghion and Howitt (1994) and Pissarides (2000), con-

sider search-theoretic models of the labor market. Yet, these exceptions focus on understanding

the interaction between the growth rate of the production technology and unemployment, rather

than the effects of declining search frictions.

From the technical point of view, our paper is closely related to recent contributions in
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growth theory such as Perla and Tonetti (2014), Lucas and Moll (2014), Benhabib, Perla and

Tonetti (2017) and Buera and Oberfield (2017). These papers focus on the diffusion of knowl-

edge across individuals with different human capital and on the economic growth that might

result from this process of diffusion. In these papers, as in ours, the key economic decision

involves a choice between production and search. In our paper, search is for a new partner for

the labor market. In these papers, search is for someone from whom to learn. Not surprisingly,

in all of these papers as in ours, Pareto distributions play a key role for the existence of a BGP.

Another paper that is technically similar to ours is Kortum (1997). This paper wants to ratio-

nalize why the growth rate of research output is constant in the face of an increasing fraction of

labor devoted to research and development. This question is analogous to the one asked in our

paper, namely why the unemployment rate is constant in the face of better and better informa-

tion technology. Interestingly, the answer proposed by Kortum (1997) is conceptually similar to

the one in our paper: while the rate of experimentation increases over time (where experimen-

tation is research input in Kortum 1997 and search for a match in our paper), the probability of

a successful experiments falls over time (where success is discovering a technology better than

the status-quo in Kortum 1997 and finding a viable match in our paper).

From the substantive point of view, our paper is related to the fundamental idea that lower

trading frictions allow agents to become more and more specialized. Kiyotaki and Wright

(1993) make this point in the context of a search theoretic model of the product market. They

show that the introduction of fiat money effectively reduces trading frictions and allows agents

to produce more specialized goods. Ellison and Ellison (2018) show that the reduction of trad-

ing frictions brought about by the Internet has led to better matching between products and

consumers and, in doing so, to an increase in consumer surplus. These papers make the same

fundamental point as ours, although they only examine a one-time rather than a continuous

decline in search frictions. Moreover, these papers focus on search frictions in the product

rather than in the labor market. To the best of our knowledge, ours is the first paper that ana-

lyzes the effect of declining search frictions in the labor market and tries to quantify its effect

on growth.

An immediate corollary of our theory about the independence of unemployment, vacancies

and UE and EU rates from the efficiency of the search technology in the time-series is that these

variables will also be independent from the size of the labor market in the cross-section, even

in the presence of increasing returns to scale in the search process. Thus, the same theory that

explains a time-series phenomenon also explains why, in the data, unemployment and the job-

finding rate are uncorrelated with the size of the labor market.2 Moreover, the same strategy that

2Clearly, another possibility is that unemployment is independent from the size of the labor market because the

returns to scale in the search process are constant. This possibility is at odds with our observation that applicants-

per-vacancy increase with the size of the market and with the observation of Petrongolo and Pissarides (2006) that
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can be used to identify the contribution of declining search frictions to productivity in the time-

series (i.e., measuring applicants-per-vacancy) can be used to identify the extent of returns to

scale in the search process and its contribution to the city-size wage premium. Our preliminary

implementation of this identification strategy suggests that, indeed, the search process features

strong increasing returns to scale and that these returns to scale contribute to a non-negligible

fraction of the city-size wage premium. The idea that an increase in how selective firms and

workers are may hide the extent of increasing returns to search is not entirely novel. Petrongolo

and Pissarides (2006) show—in the context of a partial equilibrium model—that changes in

the workers’ reservation wage partially offset the effect of market size on the job-finding rate.

Using survey data on self-reported reservation wages, they show that, in fact, reservation wages

are systematically higher in larger markets. Gautier and Teulings (2009) argue that increasing

returns to scale in search may be further offset by the endogenous composition of workers in

larger and smaller cities. Our theory is similar in spirit, but it ties together time-series and

cross-sectional facts. Moreover, our analysis is focused on finding the conditions under which

the increase in selectivity exactly neutralizes the effect of the decline in search frictions on the

job-finding rate, rather than simply dampening such effect.

2 Basic model

In this section, we study a very simple search-theoretic model of the labor market in the spirit

of Mortensen and Pissarides (1994) where both the production technology—as captured by

the component of productivity that is common to all firm-worker matches—and the search

technology—as captured by the efficiency of the matching function—improve over time at a

constant rate and firm-worker matches are inspection goods—in the sense that the component

of productivity that is idiosyncratic to a match is observed as soon as a firm and a worker meet.

We look for conditions under which there exists an equilibrium such that, even though search

frictions get smaller and smaller over time, the unemployment rate, the vacancy rate, and the

rate at which workers move in and out of unemployment all remain constant. We refer to this

as a Balanced Growth Path (henceforth, BGP) equilibrium. We show that a BGP exists if and

only if the distribution of idiosyncratic match productivities is Pareto and the cost of a vacancy

as well as the flow income of unemployment grow at the same rate as the economy. The growth

rate of the economy depends on the growth rate of the production technology, the growth rate

of the search technology and on the tail coefficient of the Pareto distribution of match qualities.

the workers’ reservation wage increases with the size of the market.
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2.1 Environment

The labor market is populated by a continuum of ex-ante identical workers with measure 1.

Each worker’s objective is to maximize the present value of his labor income discounted at

the rate r > 0, where labor income is given by a wage w if the worker is employed and by an

unemployment benefit bt if the worker is unemployed. The labor market is also populated by a

continuum of ex-ante identical firms with some positive measure. Each firm is infinitely lived

and operates a technology that turns the flow of labor input from a worker into a flow of ytz units

of output, where yt is the component of labor productivity that is common to all firm-worker

pairs at date t and z is a component of productivity that is specific to a particular firm-worker

pair. Each firm’s objective is to maximize the present value of its profit discounted at the rate r.

The labor market is subject to search frictions. In particular, workers need to spend time

searching the market to locate firms with vacant jobs. Firms need to spend resources to advertise

job vacancies and locate workers. We assume that workers can only search if unemployed. We

assume that firms have to pay a flow cost of kt units of output to keep a vacancy open. We denote

as ut the measure of unemployed workers at date t and with vt the measure of vacant jobs at

date t. The outcome of the search process is a flow AtM(ut ,vt) of bilateral meetings between

unemployed workers and vacant jobs, where At is a measure of the efficiency of the search

process at date t and M(u,v) is a constant returns to scale function.3 The outcome of the search

process implies that an unemployed worker meets a vacancy at the Poisson rate At p(θ t), where

θ t denotes the tightness vt/ut of the labor market and p(θ) = M(1,θ) is such that p(0) = 0,

p′(·) > 0, p′′(·) < 0 and p(∞)→ ∞. Similarly, the outcome of the search process implies that

a vacant job meets a worker at the Poisson rate Atq(θ t), where q(θ) = p(θ)/θ is such that

q(0)→ ∞, q′(·)< 0 and q(∞) = 0.

Upon meeting, a firm and a worker observe the idiosyncratic component z of their produc-

tivity. The idiosyncratic component z is drawn from a cumulative distribution function F , and

we denote as F∗ the survival probability 1−F . Based on the observation of z, the firm and the

worker decide whether to match or not. If they do, the worker becomes employed and starts pro-

ducing a flow of ytz units of output. If they do not, the worker remains unemployed and keeps

searching for some other job, and the firm returns to the labor market and keeps advertising its

vacancy to find some other worker. Once matched, a firm and a worker continue producing until

their relationship is dissolved.4

3We assume that search is random. The assumption is not important for establishing the conditions for the

existence of a BGP. Indeed, it is straightforward to show that the same conditions apply to a model with directed

search like Moen (1997) if workers search only when unemployed or like Menzio and Shi (2010, 2011) if workers

search off and on the job. We decided to use random search because of its popularity. However, directed search

would allow us to solve for the equilibrium dynamics outside of the BGP.
4We assume that an employment relationship is only broken up by choice. It would be straightforward to

generalize the model to allow the employment relationship to also break up for exogenous reasons.
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The terms of the employment contract between a firm and a worker are determined accord-

ing to the axiomatic Nash bargaining solution, where the worker’s threat point is the value of

being unemployed and the firm’s threat point is the value of a vacant job. The worker’s bar-

gaining power is γ and the firm’s bargaining power is 1− γ , with γ ∈ (0,1). We assume that the

contingencies of the employment contract are rich enough so that the sum of the value to the

worker and to the firm from being matched is maximized. The joint value of the firm-worker

match is clearly maximized if the employment contract can specify both a wage path and a time

when the relationship shall be dissolved. The joint value of the match is also maximized if the

employment contract can specify only a wage path, while the decision of dissolving the relation-

ship is left out of the contract and can be made unilaterally by either party. Indeed, the bargained

wage path will assign a positive fraction of the gains from trade to both the worker and the firm

and, hence, the two parties will separate only when the gains from trade are exhausted. Finally,

the joint value of the match is maximized even if, as in Mortensen and Pissarides (1994), an

employment contract can only specify the wage over the next dt units of time and it is then

renegotiated.

We assume that both production and search technologies improve over time. The aggregate

component of labor productivity grows at the rate gy, i.e. yt = y0egyt . The assumption is meant

to capture the idea that progress in the production technologies allows to generate more output

using the same amount of labor. The efficiency of the meeting function grows at the rate gA > 0,

i.e. At =A0egAt . The assumption is meant to capture the idea that progress in the communication

and information technology facilitates search and leads to more meetings between the same

number of unemployed workers and vacant firms. We also assume that the flow cost of a

vacancy grows at some constant rate gk and that the flow unemployment benefit grows at the

rate gb, i.e. kt = k0egkt and bt = b0egbt .

Our model is a version of Mortensen and Pissarides (1994) in which there is growth in the

production and search technologies and in which firm-worker matches are inspection goods—in

the sense that the component of productivity that is idiosyncratic to a match is observed before

the firm and the worker decided to form the match or not. In a model like ours where the search

technology improves over time, the rate at which unemployed workers meet vacancies is ever

growing. For the rate at which unemployed workers become employed to remain constant, there

needs to be some countervailing selection mechanism that can lead to a constant decline in the

probability that a meeting between a worker and a vacancy turns into a match. A natural way

to create endogenous selectivity is to assume that matches are heterogeneous. The assumption

captures the idea that workers and vacancies are heterogeneous and that such heterogeneity

affects the quality of a particular worker in a particular vacancy. If the quality of a firm-worker

pair was observed after the match was formed (i.e., if matches were experience goods), then
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the mechanism would be moot, as any time a worker would meet a vacancy he would become

employed, at least temporarily. Therefore, it is necessary to assume that the quality of a firm-

worker pair can be observed before the match is formed. In our model, we assume that the

quality is perfectly observed. However, the mechanism would still be operative if the firm and

the worker only observed a signal of quality (as in, e.g., Menzio and Shi 2011).

2.2 Definition of BGP

In order to formally define a BGP, we need to introduce some additional notation. We let

Ut denote the present value of labor income for a worker who is unemployed at date t. We let

Et(z|w,d) and Jt(z|w,d) denote the present value of labor income and the present value of profits

for a worker and a firm who, at date t, form a match of quality z and agree to an employment

contract in which the wage is wt+x at date t+ x and the break-up date is t+ d. We denote as

Vt(z|w,d) the joint value of the firm-worker match, which is defined as the sum of Et(z|w,d) and

Jt(z|w,d). We denote as St(z) the surplus of the firm-worker match, defined as the difference

between the maximized joint value of the match and the worker’s outside option. Finally, we

denote as ut the measure of workers who are unemployed at date t and Gt(z) the measure of

workers who are employed in a match of quality non-greater than z at date t.

Given an employment contract (w,d), the present value of income and the present value of

profits for a worker and a firm in a match of quality z at date t are, respectively, given by

Et(z|w,d) =
∫ d

0
e−rxwt+xdx+ e−rdUt+d, (2.1)

Jt(z|w,d) =
∫ d

0
e−rd(yt+xz−wt+x)dx. (2.2)

The above expressions are easy to understand. At date t+ x, the worker’s labor income is wt+x.

At date t + d, the match breaks up and the worker’s continuation present value of income is

Ut+d . Similarly, at date t+x, the firm’s profit is yt+xz−wt+x. At date t+d, the match breaks up

and the firm’s continuation present value of profits is zero. The joint value of the match between

the firm and the worker is given by

Vt(z|d) =
∫ d

0
e−rxyt+xzdx+ e−rdUt+d . (2.3)

Note that, since the wage transfers utility at the rate of 1 to 1 from the firm to the worker, the

joint value of the match depends only on the break up date d and not on the wage path. Clearly,

Vt(z|d) is well-defined for an arbitrary d only if the discount factor exceeds the growth rate of

the common component of productivity, i.e. r > gy.

The employment contract (w,d) signed by the firm and the worker upon meeting is such that

the break-up date d maximizes the joint value of the match. The break-up date d∗ maximizes
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the joint value of the match only if

yt+d∗z+Ůt+d∗ ≤ rUt+d∗ , and d∗ ≥ 0, (2.4)

where the two inequalities hold with complementary slackness. The necessary condition for

optimality (2.4) has a simple interpretation. The marginal benefit of delaying the break-up of

the match is given by the flow of output yt+d∗z plus the time derivative of the worker’s present

value of income in unemployment. The marginal cost of delaying the break-up of the match is

given by the annuitized sum of the present values that the worker and the firm can attain by being

single, which is rUt+d∗ . Condition (2.4) then states that either d∗ = 0 and the marginal cost of

delaying the break-up exceeds the marginal benefit, or d∗ > 0 and the marginal cost of delaying

the break-up equals the marginal benefit. The necessary condition in (2.4) is also sufficient

if the marginal cost of delaying the break-up (the term on the right-hand side) increases more

rapidly than the marginal benefit (the term on the left-hand side). This must be true in any BGP,

as otherwise the reservation quality Rt which we define below would decline and, hence, the

UE rate would increase over time.

We define the reservation quality Rt as

Rt =
1

yt

(
rUt−Ůt

)
. (2.5)

Since the optimality condition (2.4) is both necessary and sufficient, it follows from the defini-

tion of Rt that: (i) for all z ≤ Rt , the optimal break-up time d∗ is equal to 0 and the joint value

of the match is Vt(z|d∗) =Ut ; (ii) for all z> Rt , the optimal break-up time d∗ is strictly positive

and Vt(z|d∗) >Ut . These observations imply that, upon meeting, a firm and a worker form a

match and start producing if and only if they observe a match quality z > Rt . Otherwise, the

firm and the worker keep searching.

Conditional on observing a match quality z> Rt , the employment (w,d) signed by the firm

and the worker is such that the Nash product (Et(z|w,d∗)−Ut)
γJt(z|w,d∗)1−γ is maximized.

Since the wage transfers utility at the rate of 1 to 1 from the firm to the worker, the wage path

that maximizes the Nash product is such that the worker captures a fraction γ of the surplus of

the match, while the firm captures a fraction 1− γ of it. That is,

Et(z|w∗,d∗) =Ut+ γSt(z),

Jt(z|w∗,d∗) = (1− γ)St(z),
(2.6)

where the surplus is defined as

St(z) =Vt(z|d∗)−Ut . (2.7)

12



The present value of income for an unemployed worker satisfies

rUt = bt+At p(θ)γ
∫

Rt

St(ẑ)dF(ẑ)+Ůt . (2.8)

The left-hand side of (2.8) is the annuitized present value of income for an unemployed worker.

The right-hand side is the sum of three terms. The first term is the flow of income to a worker

when he is unemployed. The second term is the annuitized value of searching to an unemployed

worker, which is given by the rate at which a worker meets a firm times the expected increase

in the lifetime income of a worker upon meeting a firm. In light of (2.6), the expected increase

in the lifetime income of a worker upon meeting a firm is equal to a fraction γ of the surplus if

z > Rt and zero otherwise. The last term in (2.8) is the time derivative of the worker’s present

value of income in the state of unemployment. Clearly, Ut is well-defined only if the discount

rate is greater than the growth rate of the unemployment income, i.e. r > gb.

From the definition of St(z) in (2.7) and the expressions for Vt(z|d∗) and Ut in (2.3) and

(2.8), it follows that the surplus of a firm-worker match of quality z> Rt satisfies

rSt(z) = ytz−bt−At p(θ)γ
∫

Rt

St(ẑ)dF(ẑ)+ S̊t(z). (2.9)

The left-hand side of (2.9) is the annuitized surplus of a firm-worker match. The right-hand side

is the sum of three terms. The first term is the difference between the flow income produced by

the firm-worker match and the flow of income of an unemployed worker. The second term is

the annuitized value of searching to an unemployed worker. The last term is the time derivative

of the surplus of the match.

The tightness of the labor market satisfies

kt = Atq(θ)(1− γ)
∫

Rt

St(ẑ)dF(ẑ) (2.10)

The left-hand side of (2.10) is the cost to the firm of maintaining a vacancy at date t. The right-

hand side is the rate at which the firm meets a worker times the expected present value of profits

to the firm conditional on meeting a worker. In light of (2.6), the expected present value of

profits to the firm upon meeting a worker is equal to a fraction 1− γ of the surplus if z> Rt and

zero otherwise. Equilibrium condition (2.10) then states that the tightness of the labor market

equates the cost and the benefit to the firm from keeping a vacancy open at date t and that such

tightness is constant over time.

The rate at which unemployed workers become employed (UE rate), the rate at which em-

ployed workers become unemployed (EU rate) and the measure of unemployed workers are

13



stationary if and only if

At p(θ)(1−F(Rt)) = hUE , (2.11)

G′t(Rt)R̊t = hEU , (2.12)

uhUE = (1−u)hEU . (2.13)

The expression on the left-hand side of (2.11) is the UE rate at date t, which is given by the rate

at which an unemployed worker meets a firm at time t times the probability that the quality z

of the firm-worker match is above the reservation threshold Rt . Condition (2.11) requires the

UE rate to be constant at some level hUE . The expression on the left-hand side of (2.12) is the

EU rate at date t, which is given by product between the density of the date-t distribution Gt(z)

of employed workers across different match qualities evaluated at the reservation threshold Rt

and the time-derivative of Rt . Condition (2.12) requires the EU rate to be constant at some level

hEU . Finally, condition (2.13) states that the measure u of unemployed workers is constant over

time if and only if the flow of workers out of unemployment (the left-hand side of (2.13)) equals

the flow of workers into unemployment (the right-hand side of (2.13)).

In contrast to the measure u of unemployed workers, the distribution Gt(z) of employed

workers across matches of different quality z cannot be constant over time in a BGP. Indeed, in

any BGP, Rt must increases over time to keep the UE rate constant and Rt is the lower bound

on the support of the distribution Gt . Instead, in a BGP, Gt grows at a constant rate, in the sense

that every quantile of the distribution grows at the same, constant rate gz. Formally, in a BGP

zt(x) = z0(x)e
gzt for all x ∈ [0,1] and t ≥ 0, where zt(x) denotes the x quantile of Gt .

The condition zt(x) = z0(x)e
gzt is satisfied if and only if

(1−u)
[
Gt(zt(x)e

gzdt)−Gt(zt(x))
]
+uAt p(θ)

[
F(zt(x)e

gzdt)−F(Rte
gzdt)

]
dt

= (1−u)
[
Gt(Rte

gzdt)−Gt(Rt)
]
.

(2.14)

The left-hand side of (2.14) is the flow of workers into matches of a quality z that is below the x

quantile, which is given by the sum of two terms. The first term is the measure of workers who,

at date t, are employed in a match of quality z just above the x quantile and who fall below the x

quantile in the next dt units of time. The second term is the measure of workers who, at date t,

are unemployed and find a job of quality z below the x quantile in the next dt units of time. The

right-hand side of (2.14) is the flow of workers out of matches of a quality z that is below the x

quantile, which is given by the measure of workers who, at date t, are employed in a match of

quality z just above the reservation level Rt and who, over the next dt units of time, move into

unemployment. Dividing both sides of (2.14) by dt and taking the limit for dt→ 0, we obtain

(1−u)G′t(zt(x))zt(x)gz+uAt p(θ) [F(zt(x))−F(Rt)] = (1−u)G′t(Rt)Rtgz. (2.15)
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We are now in the position to formally define a BGP.

Definition 1: A BGP is a tuple {Rt ,Ut ,St ,θ ,hUE ,hEU ,u,Gt} such that for all t ≥ 0: (i) Rt , Ut

and St satisfy (2.5), (2.8) and (2.9); (ii) θ satisfies (2.10); (iii) hUE , hEU and u satisfy (2.11),

(2.12) and (2.13); (iv) Gt satisfies (2.15).

2.3 Necessary conditions for a BGP

In this subsection, we derive some restrictions on the fundamentals of the model that are nec-

essary for the existence of a BGP. First, we derive a necessary condition on the distribution of

match qualities F . To this aim, note that the stationarity condition (2.11) for the UE rate implies

that the time-derivative of At p(θ)(1−F(Rt)) must be equal to zero, i.e.

Å(t)[1−F(Rt)]−AtF
′(Rt)R̊t = 0, ∀t ≥ 0. (2.16)

The efficiency At of the matching function grows at the constant rate gA. The reservation quality

Rt grows at the constant rate gz, because it is the quantile zero of the distribution Gt of employed

workers across matches of different qualities. In light of these observations, we can write (2.16)

as
F ′(Rt)Rt

1−F(Rt)
=

gA

gz

, ∀Rt ≥ R0. (2.17)

The expression in (2.17) is a differential equation for F . The solution to this differential equa-

tion5 that satisfies the boundary condition F(∞) = 1 is

F(z) = 1−
(

z`

z

)α

, (2.18)

where α = gA/gz and z` is an arbitrary lower bound non-greater than R0. Therefore, a BGP may

only exist if the distribution F of match qualities has the shape given by (2.18), which is a Pareto

with coefficient α . We will assume that the lower bound z` of the distribution F is smaller than

b0/y0, which guarantees that z` < R0 since R0 > b0/y0. Moreover, in any BGP, the growth rate

gz of the distribution of employed workers across matches of different qualities must be equal

to the ratio between the growth rate gA of the matching function efficiency and the coefficient

α of the Pareto distribution F .

Next, we derive necessary conditions on the growth rate gk of the firm’s vacancy cost and on

the growth rate gb of the worker’s unemployment income. To this aim, note that the reservation

quality Rt must satisfy the equilibrium condition (2.5). Using the equilibrium condition (2.10)

for the tightness θ of the labor market and the equilibrium condition (2.8) for the value of

5Formally, (2.17) is a differential equation for F(z) for all z≥ R0. Since the shape of the distribution F below

R0 is immaterial, as it does not affect any decisions, we can assume without loss in generality that (2.17) holds for

all z.
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unemployment Ut , we can rewrite (2.5) as

Rt =
bt

yt

+
γ

1− γ

θkt

yt

, ∀t ≥ 0. (2.19)

In the above expression, the reservation quality Rt grows at the rate gz, the worker’s income

from unemployment bt grows at the rate gb, the firm’s vacancy cost kt grows at the rate gk,

and the common component of productivity yt grows at the rate gy. From these observations, it

follows that the time-derivative of (2.19) is

gz = (gb−gy)+(gk−gb)
γk0θ

(1− γ)b0e(gb−gk)t+ γk0θ
, ∀t ≥ 0. (2.20)

Condition (2.20) holds only if gk = gb and gb = gy+ gz = gy+ gA/α . Therefore, a BGP may

only exist if the growth rate gb of the worker’s unemployment income and the growth rate gk

of the firm’s vacancy cost are equal to the sum between the growth rate gy of the common

component of productivity and the growth rate gA/α of the efficiency of the matching function

divided by the coefficient α of the Pareto distribution F .

We summarize our findings in the following proposition.

Proposition 1 (Necessary conditions for a BGP). Consider arbitrary growth rates gy > 0 and

gA > 0 for the production and the search technologies.

(i) A BGP may exist only if: (a) the match quality distribution F is a Pareto with coefficient

α; (b) the growth rates for the worker’s unemployment income and for the firm’s vacancy

cost, gb and gk, are both equal to gy+ gA/α; (c) the discount rate r is greater than

gy+gA/α .

(ii) In any BGP, the growth rate gz for the distribution of employed workers across matches

equals gA/α .

A couple of comments about Proposition 1 are in order. First, let us give some intuition for

why a BGP can only exist if the distribution F of match qualities is Pareto. The rate at which

an unemployed worker meets a firm grows at the rate gA. Therefore, for the rate at which an

unemployed worker to become employed to be constant, the probability that a meeting turns

into a match must decline at the rate gA. The probability that a meeting turns into a match is the

probability that the match quality exceeds the reservation Rt , which grows at the rate gz. The

only distribution function with the property that the measure of realizations above a cutoff that

grows at the rate gz falls at the rate gA is a Pareto distribution with coefficient α = gA/gz.

Second, let us discuss the conditions on gb and gk that are necessary for the existence of a

BGP. The tightness of the labor market equates the cost kt of opening a vacancy to the benefit,
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which is proportional to the rate Atq(θ) at which a firm meets a worker and to the expected

surplus of a meeting. In turn, the surplus of a meeting is proportional to the difference between

the reservation quality Rtyt and the unemployment income bt . These observations imply that

the tightness of the labor market can be constant over time only if the cost of a vacancy grows

at the same rate as the unemployment income. The common growth rate must be the growth

rate of Rtyt , which is gy+ gz. At first blush, there seems to be no reason why the cost of a

vacancy and the unemployment benefit would grow at precisely the rate gy+ gz. However, as

we shall see in Section 2.4, gy+gz is also the growth rate of average labor productivity, wages

and aggregate output. Hence, if the benefit bt is proportional to wages, it would grow at the rate

gy+ gz. Similarly, if opening a vacancy requires labor, kt would also grow at the rate gy+ gz.

Moreover, the conditions r > gy and r > gb > gy, which are needed to guarantee that Vt and Ut

are well-defined

Finally, let us discuss the condition r > gy+ gA/α . As noted in the previous subsection,

r> gy is necessary to guarantee that Vt is well-defined, and r> gb is necessary to guarantee that

Ut is well-defined. Since gb = gy+gA/α and gb > gy, these necessary conditions are equivalent

to r > gy+gA/α . This condition is very intuitive, as it requires that the discount rate is greater

than the growth rate of the economy.

2.4 Existence and uniqueness of a BGP

Let us assume that the distribution F of match qualities is Pareto with coefficient α , the growth

rate gb of the unemployment income bt is gy+gA/α , and the growth rate gk of the vacancy cost

kt is also gy+ gA/α . Let us also assume that the discount rate r is greater than gy+ gA/α. In

light of Proposition 1, a BGP cannot exist if these assumptions about the fundamentals do not

hold. Given these assumptions, we use the equilibrium conditions to construct a candidate BGP.

The surplus St(z) for a match of quality z>Rt is given by equilibrium condition (2.9), which

can be written as

St(z) =
∫ d∗

0
e−rxyt+x(z−Rt+x)dx. (2.21)

The above expression makes use of the equilibrium condition (2.5) for the reservation quality

Rt and of the fact that the surplus of the match is 0 at date t+ d∗, with d∗ given by z = Rt+d∗ .

Intuitively, the surplus of a match of quality z is the present discounted value of the difference

between the flow of output generated by the match of quality z and the flow of output generated

in a match of quality Rt+x. Using the fact that yt+x = yte
gyx and Rt+x = Rte

gzx we can solve the

integral in (2.21) and obtain

St(z) = yt

 z

r−gy

1−
(

Rt

z

) r−gy
gz

− Rt

r−gy−gz

1−
(

Rt

z

) r−gy−gz
gz

 . (2.22)
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The expected surplus of a match between a firm and a worker at date t, which we shall

denote as Se
t , is given by

Se
t = α

∫
Rt

St(z)

(
z`

z

)α
1

z
dz, (2.23)

where the above expression makes use of the fact that the distribution F is Pareto with coefficient

α and the surplus St(z) of a match of quality z is zero for all z< Rt . After replacing St(z) with

the right-hand side of (2.22) and solving the integral, we find that, as long as α > 1, the expected

surplus of a match exists and is equal to

Se
t =ΦytR

−(α−1)
t , (2.24)

where Φ is strictly positive constant that depends only on parameters.6 If the condition α > 1 is

violated, the expected surplus of a match in (2.24) is not well-defined. The condition α > 1 is

intuitive, as it is equivalent to the condition for the Pareto distribution F to have a finite expected

value.

The reservation quality Rt is given by the equilibrium condition (2.5). Using the equilibrium

condition (2.8) for Ut and of the solution for Se
t in (2.24), we can rewrite (2.5) as

Rt =
bt

yt

+At p(θ)γΦR
−(α−1)
t . (2.25)

When evaluated at date t = 0, condition (2.25) holds if and only if the reservation quality R0 is

R0 =
b0

y0

+A0 p(θ)γΦR
−(α−1)
0 . (2.26)

When evaluated at date t > 0, condition (2.25) holds if and only if it holds at t = 0 and the

left-hand side grows at the same rate as the right-hand side. The growth rate of the left-hand

side is gz. The growth rate of the first term on the right-hand side is gb−gy, which is equal to

gA/α . The growth rate of the second term is gA− (α − 1)gz. These growth rates are equal if

and only if gz is equal to gA/α .

The tightness θ of the labor market is given by the equilibrium condition (2.10). Using the

solution for Se
t in (2.26), we can rewrite (2.10) as

kt = Atq(θ)(1− γ)ΦytR
−(α−1)
t . (2.27)

6Formally, Φ is defined as

Φ= αzα
`

{[
1

r−gy−gz

− 1

r−gy

]
gz

r+(α−1)gz−gy

+
1

(α−1)(r−gy)
− 1

α(r−gy−gA/α)

}
.

It is a matter of simple algebra to show that Φ is strictly positive as long as r > gy+ gz, which is the case as we

assumed that r > gy+gz and, in any BGP, gz = gA/α .
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When evaluated at date t = 0, (2.27) holds if and only if the market tightness θ is such that

k0 = A0q(θ)(1− γ)Φy0R
−(α−1)
0 . (2.28)

When evaluated at t > 0, (2.27) holds if and only if it holds at date t = 0 and the growth rate gk of

the vacancy cost kt , which is the growth rate of the left-hand side, is equal to gA+gy−(α−1)gz,

which is the growth rate of the right-hand side. This is the case as gk = gy+ gA/α and gz =

gA/α .

The distribution Gt(zegzt) = G0(z) of employed workers across matches of different qual-

ities must satisfy the inflow-outflow condition (2.15). Since stationarity condition (2.13) for

unemployment implies that the flow of workers into unemployment (1−u)G′t(Rt)Rtgz is equal

to the flow out uAt p(θ)[1−F(Rt)], we can rewrite (2.15) as

(1−u)
[
G′t(zegzt)zegztgz

]
= uAt p(θ)

(
z`

zegzt

)α

. (2.29)

We first use the expression in (2.29) to recover the initial distribution G0 of employed work-

ers across matches of different qualities. To this aim, note that (2.29) at t = 0 is a differential

equation for G0. The solution to the differential equation that satisfies the boundary condition

G0(∞) = 1 is

G0(z) = 1− uA0 p(θ)

(1−u)gA

(
z`

z

)α

. (2.30)

As G0(R0) must be equal to zero, (2.30) implies that the unemployment rate u must be

u=
gA

gA+uA0 p(θ)(z`/z)α
. (2.31)

Using (2.31), we can rewrite (2.30) as

G0(z) = 1−
(

R0

z

)α

. (2.32)

That is, the initial distribution G0 of employed workers across matches of different qualities is

the sampling distribution F truncated at the reservation quality R0.

We then need to verify that the balanced growth distribution Gt(zegzt) = G0(z) satisfies

(2.29) for all t ≥ 0. This is the case if and only if G0 is given by (2.30) and the left-hand side

of (2.29) grows at the same rate as the right-hand side of (2.29). The left-hand side of (2.29)

grows at the rate of zero, as zt(x) grows at the rate gz and G′t(zt(x)) grows at the rate −gz. The

right-hand side grows at the rate 0 as well, since gA−gzα = 0.

Finally, we need to solve for the UE and EU rates. The conditions (2.11) and (2.12) for the
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UE and EU rates at date t = 0 can be written as

hUE = A0 p(θ)

(
z`

R0

)α

, (2.33)

hEU = G′0(R0)R0gz = αgz = gA. (2.34)

The above value for hUE satisfies condition (2.11) for all t ≥ 0, as At grows at the rate gA and

(z`/Rt)
α grows at the rate −αgz =−gA. The above value for hEU satisfies condition (2.12) for

all t ≥ 0, as G′t(Rt) grows at the rate −gz and Rt grows at the rate gz.

We are now in the position to establish the uniqueness and existence of a BGP. The values

of R0 and θ must solve the system of two equations given by (2.26) and (2.28). The solution of

(2.26) with respect to R0 exists and is unique for all values of θ ≥ 0, and we denote it as ψ1(θ).

It is straightforward to verify that ψ1(0) = b0/y0, ψ ′1(θ)> 0 and ψ1(∞)→ ∞. The solution of

(2.28) with respect to R0 also exists and is unique for all values of θ ≥ 0, and we shall denote

it as ψ2(θ). It is straightforward to verify that ψ2(0)→ ∞, ψ ′2(θ)< 0, ψ2(∞) = 0. From these

observations, it follows immediately that there is a unique pair (R0,θ) with R0 > 0 and θ > 0

that solves the equations (2.26) and (2.28).

Given (R0,θ)we can use the previous analysis to construct all the other equilibrium objects.

Let Rt = R0egzt , with gz = gA/α . Let St(z) be given by (2.22). Let G0(z) be given by (2.30)

and Gt(zegzt) = G0(z). Moreover, let u, hUE and hEU be given by (2.31), (2.33) and (2.34). By

construction R0 satisfies the equilibrium condition (2.5) for t ≥ 0. By construction, θ satisfies

the equilibrium condition (2.10) for all t ≥ 0. The equilibrium conditions (2.11)-(2.13) for the

UE, EU and unemployment rates hold for all t ≥ 0. The distribution Gt satisfies the inflow-

outflow condition (2.15) at all dates t ≥ 0. Therefore, the above objects constitute a BGP. There

can exist no other BGP because there is a unique solution (R0,θ) to (2.26) and (2.28).

We have established the following result.

Proposition 2 (Existence and Uniqueness of BGP) Consider arbitrary growth rates gy > 0 and

gA > 0 for the production technology and the search technology. If and only if r > gy− (α −
1)gA/α , F is a Pareto distribution with coefficient α > 1, the growth rates of unemployment

income and vacancy costs are gb = gk = gy+ gA/α , and the discount rate is r > gy+ gA/α ,

there exists a BGP. If the BGP exists, it is unique and such that:

(i) the unemployment rate u, the labor market tightness θ , the UE and EU rates are constant;

(ii) the initial distribution G0 of employed workers is Pareto truncated on the left at R0;

(iii) the reservation quality Rt and the distribution Gt grow at the rate gA/α;

(iv) labor productivity and aggregate output grow at the rate gy+gA/α .
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Proposition 2 proves that a BGP exists if and only if the distribution of quality of new

matches is Pareto with some coefficient α , and the worker’s income from unemployment and

the firm’s cost from opening a vacancy grow at the same rate as the economy. In the BGP, the

unemployment rate, the UE rate, the EU rate, the tightness of the labor market and the vacancies

are all constant over time, even though the search technology constantly improves. The growth

rate of the economy, as measured by the growth rate of labor productivity or aggregate output,

is gy+gA/α , i.e. the sum of the growth rate in the production technology and the growth rate

in the search technology scaled by the tail coefficient of the Pareto distribution of the quality of

new matches.

The intuition behind Proposition 2 is simple. Improvements in the search technology have

two countervailing effects on the UE rate. On the one hand, improvements in the search technol-

ogy increase the rate at which unemployed workers meet vacancies. Specifically, the meeting

rate grows at the rate gA. On the other hand, improvements in the search technology make

workers and firms more selective with respect to the quality of the matches that are created,

as workers can more easily explore alternative options. In particular, the expected surplus of a

meeting grows at the rate gy− (α−1)gA, and the reservation quality of a match, which is pro-

portional to the product of the meeting rate and the expected surplus, grows at the rate gA/α .

Therefore, the probability that a meeting has an acceptable quality falls at the rate gA. The

two effects engendered by improvements in the search technology exactly cancel out and the

UE rate remains constant. The EU rate is constant because the reservation quality grows at a

constant rate. And if both the UE and EU rates are constant, so is unemployment.

The tightness of the labor market remains constant over time, as the cost and benefit of open-

ing a vacancy grow at the same rate. The benefit of opening a vacancy, which is proportional to

the product between the rate at which a vacancy meets an unemployed worker and the expected

surplus of a match, grows at the rate gy+ gA/α . The cost grows, by assumption, at the same

rate. Thus, improvements in the search technology have no effect on the tightness of the labor

market either. And, since both unemployment and tightness are constant, so are vacancies.

Even though improvements in the search technology do not have any effect on unemploy-

ment, vacancies, UE and EU rates, they do affect the economy as they allow firms and workers

to become more and more selective. Consider, for instance, the average productivity of new

matches, which is given by

1

1−F(Rt)

∫
Rt

ytzF ′(z)dz=
α

α−1
ytRt . (2.35)

The growth rate of the productivity of new matches is the sum of the growth rate gy of the

production technology and the growth rate gA of the search technology divided by the coefficient

α of the Pareto distribution of new matches. Clearly, as old matches are drawn from the same
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Pareto distribution F and survive only if z≥ Rt , the average productivity of all matches is equal

to the average productivity of new matches and, hence, grows at the rate gy+gA/α .

3 Search on the job

In this section, we extend the analysis of the necessary and sufficient conditions for the existence

of a BGP to a version of the model in which workers search the labor market not only when

they are unemployed but also when they already have a job. The extension is relevant for the

purpose of empirical realism, as it is well-known that the rate at which workers transit from

one employer directly to another is around 2% per month in the US, which is nearly as large

as the rate at which workers transit from employment to unemployment (see, e.g., Menzio and

Shi 2011). More importantly, the extension is a fundamental robustness check for our theory

of the lack of transmission on unemployment and vacancies of advancements in the search

technology. In fact, the option of searching on the job affects how picky an unemployed worker

is when deciding to accept or reject a job of a given quality. And, as it is clear from the previous

section, the dynamics of the reservation quality are the key behind our theory of the long-run

stability of the unemployment rate. Similarly, the presence of employed workers in the pool of

searchers affects a firm’s return from opening a vacancy. And, as it is clear from the previous

section, the dynamics of the return from opening a vacancy are critical to establish the long-run

stability of the vacancy rate. Reassuringly, we find that-even though the analysis of the model

with search off and on the job is a good deal harder-the conditions for the existence of a BGP

remain essentially the same as in Proposition 2. We conclude the section by illustrating a simple

strategy to identify, empirically, the contribution to aggregate growth of improvements in the

search technology.

3.1 Environment

We modify the environment of Section 2 to allow workers to search both off and on the job. In

particular, we assume that unemployed workers search the labor market with an intensity of 1,

and employed workers search the labor market with an intensity of ρ ∈ [0,1]. The outcome of

the search process is a flow AtM(st ,vt) of bilateral meetings between workers and vacancies,

where st = ut+ρ(1−ut) is the search activity of the workers and vt are the vacancies opened by

firms. The outcome of the search process implies that an unemployed worker meets a vacancy at

the rate At p(θ t), where θ t = vt/st denotes the tightness of the labor market and p(θ) =M(1,θ).

Similarly, an employed worker meets a vacancy at the rate ρAt p(θ t). A vacancy meets a worker

at the rate Atq(θ t), where q(θ) = p(θ)/θ .

When a firm and a worker meet, they observe the quality ẑ of their match, which is drawn
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from the distribution F . Based on this information, the firm and the worker decide whether

to match or not. If they decide not to match, the worker remains in his old employment po-

sition (either unemployment or employment in a match of quality z) and the firm’s vacancy

remains unfilled. If they decide to match, the firm and the worker bargain over the terms of an

employment contract and start producing together. We assume that the contingencies of the em-

ployment contract are rich enough so as to maximize the joint value of the match. We assume

that the gains from trade are allocated according to the Axiomatic Nash bargaining solution,

where the threat point of the firm is the value of an unfilled vacancy, the threat point of an un-

employed worker is the value of unemployment, and the threat point of an employed worker

is the joint value of the match with his old employer. The assumption that the threat point of

an employed worker is the joint value of the match with his old employer is the same as in

Postel-Vinay and Robin (2002) or in Bagger et al. (2014). The assumption captures the idea

that the old employer is aware of and responds to the worker’s outside offers.

3.2 Definition of BGP

The joint value of a firm-worker match of quality z is given by

Vt(z) =max
d≥0

∫ d

0
e−rxµ t+x

[
yt+xz+At+x p(θ)ργ

∫
z(St+x(ẑ)−St+x(z))dF(ẑ)

]
dx

+e−rdµ t+dUt+d ,

(3.1)

where µ t+x denotes the probability that the match is still active at date t+ x and is equal to

µ t+x = e
∫ x

0 −At+s p(θ)ρ(1−F(z))ds. (3.2)

Let us explain the above expressions in some detail. The rate at which the firm-worker match is

dissolved at any date t+ s is At+s p(θ)(1−F(z)), which is the rate at which the worker contacts

another firm and the quality of their match is greater than z. Conditional on the firm-worker

match surviving to date t + x, the joint income at date t + x is given by yt+xz. Moreover, at

date t + x, the worker contacts a new firm at the rate At+x p(θ). If the quality ẑ of the match

between the worker and the new firm is smaller than z, the match between the worker and

the new firm continues. Otherwise, the worker moves to the new firm and captures a fraction

γ of the gains from trade, gains from trade which are given by Vt+x(ẑ)−Vt+x(z) = St+x(ẑ)−
St+x(z). Conditional on the firm-worker match surviving to date t+ d, the match is dissolved

and the continuation joint value to the worker and the firm is the worker’s lifetime income from

unemployment Ut+d .

The break-up date d∗ maximizes the joint value of the firm-worker match if and only if it
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satisfies the following condition

yt+dz+At+d p(θ)ργ

∫
Rt

(St(ẑ)−St(z))dF(ẑ)≤ rUt+d−Ůt+d , and d ≥ 0, (3.3)

where the two inequalities hold with complementary slackness. The condition in (3.3) is the

analogue of condition (2.4). In fact, the left-hand side of (3.3) is the marginal benefit from

delaying the break-up of the match. The right-hand side of (3.3) is the marginal cost of delaying

the break-up of the match.

The reservation quality Rt is defined as

ytRt+At p(θ)ργ

∫
Rt

(St(ẑ)−St(z))dF(ẑ) = rUt−Ůt . (3.4)

Given the above definition and the optimality condition (3.3) for the break-up date, it follows

that, when a firm and an unemployed worker meet, they form a match if and only if they observe

a quality z> Rt . Similarly, when a firm and a worker are in a match, they keep the match alive

if and only if z> Rt .

The present value of income for an unemployed worker is such that

rUt = bt+At p(θ)γ
∫

Rt

St(ẑ)dF(ẑ)+Ůt . (3.5)

The annuitized present value of income of an unemployed worker is the sum of three terms. The

first is the worker’s income bt in unemployment. The second is the rate at which an unemployed

worker meets a firm times a fraction γ of the gains from trade Vt(ẑ)−Ut = St(ẑ) if the quality ẑ

of the match is greater than Rt . The last term is the time derivative of Ut .

From (3.1) and (3.5), it follows that the surplus St(z) of a firm-worker match of quality

z> Rt is such that

rSt(z) = ytz−bt+At p(θ)ργ

∫
z
(St(ẑ)−St(z))dF(ẑ)−At p(θ)γ

∫
z
St(ẑ)dF(ẑ)+ S̊t(z). (3.6)

The annuitized surplus of the match is given by three terms. The first one is the difference in

the income created by the firm-worker match and the income of an unemployed worker. The

second term is the difference between the option value of search for the firm-worker match and

the option value of search for an unemployed worker. The last term is the time derivative of the

surplus.

The tightness θ of the labor market is such that

kt = Atq(θ)
u

u+ρ(1−u)
(1− γ)

∫
Rt

St(ẑ)dF(ẑ)

Atq(θ)
ρ(1−u)

u+ρ(1−u)
(1− γ)

∫
Rt

[∫
z
(St(ẑ)−St(z))dF(ẑ)

]
dGt(z).

(3.7)

24



The left-hand side is the cost to the firm of maintaining a vacancy. The right hand side is the

benefit to the firm of maintaining a vacancy. This benefit is given by the sum of two terms.

The first term is the product of the rate at which the vacancy contacts a worker, the probability

that the contacted worker is unemployed, and a fraction 1− γ of the expected gains from trade

between the firm and the worker, which are equal to St(ẑ) is the quality of the match between

the firm and the worker is ẑ> Rt and zero otherwise. The second term is the product of the rate

at which the firm contacts a worker, the probability that the worker is employed, and a fraction

1− γ of the expected gains from trade, which are equal to St(ẑ)− St(z) if the quality of the

match between the firm and the worker is ẑ > z, where z denotes the quality of the worker’s

current match.

The stationarity condition for the UE, EU and unemployment rates are (2.11), (2.12) and

(2.13), the same conditions as in the version of the model without search on the job. The

condition that guarantees that the cross-sectional distribution Gt of employed workers across

matches of different quality “grows” at the constant rate gz—in the sense that every quantile x

of the distribution Gt grows at the rate gz—is

(1−u)G′t(zt(x))zt(x)gz+uAt p(θ) [F(zt(x))−F(Rt)]

= (1−u)G′t(Rt)Rtgz+(1−u)ρAt p(θ)[1−F(zt(x))]Gt(zt(x)).
(3.8)

The left-hand side is the flow of workers who are not among those employed in matches with

a quality below the x quantile at date t and become employed in such matches over the next

instant. The right-hand side is the flow of workers who are among those employed in matches

with a quality below the x quantile at date t and leave such matches over the next instant. The

only difference between (3.8) and its analogue (2.15) is the second term on the right-hand side

which represents workers who are employed in a match below the x quantile and, through search

on the job, move to a match above the x quantile.

The above observations motivate the following definition of a BGP.

Definition 2: A BGP is a tuple {Rt ,St ,Ut ,θ ,hUE ,hEU ,u,Gt} such that for all t ≥ 0: (i) Rt , Ut

and St satisfy (3.4), (3.5) and (3.6); (ii) θ satisfies (3.7); (iii) hUE , hEU and u satisfy (2.11),

(2.12) and (2.13); (iv) Gt satisfies (3.8).

3.3 Existence of a BGP

The version of the model in which workers only search off the job is a special case of the

version of the model in which workers may search off and on the job. Therefore, the conditions

on fundamentals that are necessary for the existence of a BGP in the version of the model with

off-the-job search, listed in Proposition 1, are also necessary for the existence of a BGP in the

more general model. That is, a BGP exists only if the distribution F of match qualities is Pareto
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with coefficient α , the growth rate gb of the worker’s unemployment income and the growth

rate gk of the firm’s vacancy cost are equal to gy+gA/α , and the discount rate r is greater than

gy+gA/α . Moreover, in any BGP, the “growth rate” gz of the cross-sectional distribution Gt of

employed workers across different matches must be equal to gA/α .

Given the above assumptions, we can now construct a candidate BGP. The reservation qual-

ity Rt satisfies condition (3.4). Using the equilibrium condition (3.5) to replace rUt−Ůt , we can

rewrite (3.4) as
ytRt+At p(θ)ργ

∫
Rt
(St(ẑ)−St(Rt))dF(ẑ)

= bt+At p(θ)γ
∫

Rt
St(ẑ)dF(ẑ).

(3.9)

The surplus St(z) satisfies the equilibrium condition (3.6). Using (3.9), we can rewrite (3.6) as

rSt(z) = yt(z−Rt)−At p(θ)ργ

[
St(z)(1−F(z))+

∫ z

Rt

St(ẑ)dF(ẑ)

]
+ S̊t(z). (3.10)

Intuitively, (3.10) says that the annuitized surplus of a firm-worker match is the difference be-

tween the flow income it generates and the flow income generated by a match of quality Rt plus

the difference between the option value of on-the-job search for the firm-worker match and the

option value of on-the-job search for a match of quality Rt .

We guess that the surplus function St that solves the Bellman Equation (3.10) is such that

St(zegzt) = S0(z)e
(gy+gz)t , ∀z≥ R0, ∀t ≥ 0, (3.11)

where S0(z) is given by

rS0(z) = y0(z−R0)+S0(z)

[
gy+gz−A0 p(θ)ργ

(
z`

z

)α]
−A0 p(θ)ργα

∫ z
R0

S0(ẑ)

(
z`

ẑ

)α
1

ẑ
dẑ−S′0(z)zgz.

(3.12)

In words, we guess that, when evaluated at a match quality that grows at the constant rate gz,

the surplus function St grows at the constant rate gy+gz.

To verify that the guess is correct, we need to check that the proposed solution does satisfy

the Bellman Equation (3.10) for all z and all t. Consider the Bellman Equation (3.10) for

St(zegzt). Plugging the proposed solution St(zegzt) = S0(z)e
(gy+gz)t into the equation and using

the fact that F is a Pareto with coefficient α gives

rS0(z)e
(gy+gz)t = yt(zegzt−Rt)−At p(θ)ργS0(z)e

(gy+gz)t

(
z`

zegzt

)α

−At p(θ)ργα

∫ zegzt

Rt

St(ẑ)

(
z`

ẑ

)α

1
ẑ
dẑ+ S̊t(zegzt).

(3.13)
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Notice that St(zegzt) = S0(z)e
(gy+gz)t implies

S̊t(zegzt) = lim
dt→0

1

dt
[St+dt(zegzt)−St(zegzt)]

= lim
dt→0

1

dt

[
S0(z)e

(gy+gz)(t+dt)−S0(z)e
(gy+gz)t

]
/dt

− lim
dt→0

1

dt

[
S0(z)e

(gy+gz)(t+dt)−S0(ze−gzdt)e(gy+gz)(t+dt)
]
/dt

= (gy+gz)S0(z)e
(gy+gz)t− zgzS

′
0(z)e

(gy+gz)t .

(3.14)

Further, from St(zegzt) = S0(z)e
(gy+gz)t , Rt = R0egzt and making the change of variable x̂ =

ẑe−gzt , we obtain∫ zegzt

Rt

St(ẑ)

(
z`

ẑ

)α
1

ẑ
dẑ=

∫ z

R0

S0(x̂)e
(gy+gz)t

(
z`

x̂

)α 1

x̂
e−αgztdx̂. (3.15)

From (3.14)-(3.15), yt = y0egyt , At = A0egAt , Rt = R0egzt and gz = gA/α , it follows that the

Bellman Equation (3.13) can be written as

rS0(z)e
(gy+gz)t

= e(gy+gz)t

{
y0(z−R0)−A0 p(θ)ργS0(z)

(
z`

z

)α

−A0 p(θ)ργα

∫ z

R0

S0(x̂)
(

z`

x̂

)α 1

x̂
dx̂+(gy+gz)S0(z)− zgzS

′
0(z)

} (3.16)

The above equation is satisfies given our guess for S0 in (3.12). Therefore, we have verified that

the surplus function given by (3.12) and St(zegzt) = S0(z)e
(gy+gz)t is indeed the solution to the

Bellman Equation (3.10).

To solve for the surplus function S0(z), we differentiate (3.12) with respect to z and obtain

rS′0(z) = y0+S′0(z)

[
gy−A0 p(θ)ργ

(
z`

z

)α]
− zgzS

′′
0(z). (3.17)

The equation above is a differential equation for the derivative of the surplus function S0(z)

with respect to z. The solution to the differential equation which satisfies the smooth-pasting

condition S′0(R0) = 0 is

S′0(z) =
y0

gz

∫ z

R0

1

s
e
− 1

gz
[σ

α
(F(z)−F(s))+(r−gy) log( z

s
)]

ds, (3.18)

where σ = A0 p(θ)ργ . Then, using the fact that S0(z) = S0(R0)+
∫ z

R0
S′0(x)dx and S0(R0) = 0,

we find that the surplus function S0(z) is

S0(z) =
y0

gz

∫ z

R0

[∫ x

R0

1

s
e
− 1

gz
[σ

α
(F(x)−F(s))+(r−gy) log( z

s
)]

ds

]
dx. (3.19)
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The expected gains from trade between a firm and an unemployed worker, which we denote

as Se
u,t , are given by

Se
u,t = α

∫
Rt

St(ẑ)

(
z`

ẑ

)α
1

ẑ
dẑ

= αe(gy−(α−1)gz)t
∫

R0

S0(x̂)
(

z`

x̂

)α 1

x̂
dx̂

= e(gy−(α−1)gz)tSe
u,0.

(3.20)

Similarly, the expected gains from trade between a firm and worker employed in a job of quality

zegzt , which we denote as Se
e,t(zegzt) are given by

Se
e,t(zegzt) = α

∫
zegzt

(St(ẑ)−St(zegzt))

(
z`

ẑ

)α
1

ẑ
dẑ

= αe(gy−(α−1)gz)t
∫

z
(S0(x̂)−S0(z))

(
z`

x̂

)α 1

x̂
dx̂

= e(gy−(α−1)gz)tSe
e,0(z).

(3.21)

Finally, the expected gains from trade between a firm and an employed worker are given by∫
Rt

Se
e,t(z)G

′
t(z)dz= e(gy−(α−1)gz)t

∫
R0

Se
e,0(x)G

′
0(x)dx. (3.22)

The expressions in (3.20) and (3.21) are obtained by making use of the fact that St(zegzt) =

S0(z)e
(gy+gz)t and Rt = R0egzt , and then by changing the variable of integration from ẑ to

x̂ = ẑe−gzt . The expression in (3.22) is obtained by making use of the fact that Se
e,t(zegzt) =

e(gy−(α−1)gz)tSe
e,0(z) and G′t(zegzt) =G′0(z)e

−gzt , which follows from Gt(zegzt) =G0(z), and then

by changing the variable of integration from z to x= ze−gzt . It is easy but tedious to verify that

the integrals in (3.20)-(3.22) are finite if and only if α > 1.

The reservation quality Rt is given by the equilibrium condition (3.9). Using the fact that

Se
e,t(Rt) = Se

u,t and that Se
u,t is given by (3.20), condition (3.9) can be written as

Rt =
bt

yt

+
At

yt

p(θ)(1−ρ)γe(gy−(α−1)gz)tSe
u,0. (3.23)

When evaluated at date t = 0, (3.23) holds if and only if the reservation quality R0 is given by

R0 =
b0

y0

+
A0

y0

p(θ)(1−ρ)γSe
u,0. (3.24)

When evaluated at date t ≥ 0, (3.23) holds if and only if the growth rate of the left-hand side is

equal to the growth rate of each of the two terms on the right-hand side of (3.23). The growth

rate of the left-hand side is gz, the growth rate of the reservation quality. The growth rate of the

first term on the right-hand side is gA/α and the growth rate of the second term is gA−(α−1)gz.
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Clearly, these growth rates are equal if and only if the growth rate gz of the reservation quality

is equal to gA/α .

The tightness of the labor market θ is given by the equilibrium condition (3.7). Using (3.20)

and (3.22), condition (3.7) can be written as

kt = Atq(θ)(1− γ)e(gy−(α−1)gz)t

×
{

u

u+ρ(1−u)
Se

u,0+
ρ(1−u)

u+ρ(1−u)

∫
R0

Se
e,0(x)G

′
0(x)dx

}
(3.25)

When evaluated at date t = 0, (3.25) holds if and only if θ satisfies

k0 = A0q(θ)(1− γ)

×
{

u

u+ρ(1−u)
Se

u,0+
ρ(1−u)

u+ρ(1−u)

∫
R0

Se
e,0(x)G

′
0(x)dx

}
. (3.26)

When evaluated at t ≥ 0, (3.25) holds if and only if the growth rate of the left-hand side, which

is gk, equals the growth rate of the right-hand side, which is gy− (α − 1)gz+ gA. Since gk =

gy+gA/α and gz = gA/α , the growth rates of the left and right-hand sides are the same.

The distribution Gt(zegzt) = G0(z) of employed workers across matches of different quali-

ties must satisfy the inflow-outflow condition (3.8). Since the stationarity condition (2.13) for

unemployment implies that the flow of workers into unemployment (1−u)G′t(Rt)Rtgz is equal

to the flow out uAt p(θ)(1−F(Rt)), we can rewrite (3.8) as

(1−u)G′t(zegzt)zegztgz

= uAt p(θ)

(
z`

zegzt

)α

+(1−u)At p(θ)ρ

(
z`

zegzt

)α

Gt(zegzt).
(3.27)

We first use the expression in (3.27) to recover the initial distribution G0 of employed work-

ers across matches of different qualities. To this aim, note that (3.27) at t = 0 is a differential

equation for G0. The solution to the differential equation that satisfies the boundary condition

G0(∞) = 1 is

G0(z) =

(
1+

u

ρ(1−u)

)
exp(−A0 p(θ)ρ(1−F(z))/gA)−

u

ρ(1−u)
. (3.28)

Since G0(R0) must be equal to 0, (3.28) implies that the unemployment rate u must be

u=
ρ exp(−A0 p(θ)ρ(1−F(R0))/gA)

1− (1−ρ)exp(−A0 p(θ)ρ(1−F(R0))/gA)
. (3.29)

Using (3.29), we can rewrite (3.28) as

G0(z) =
exp(−A0 p(θ)ρ(1−F(z))/gA)− exp(−A0 p(θ)ρ(1−F(R0))/gA)

1− exp(−A0 p(θ)ρ(1−F(R0))/gA)
. (3.30)
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That is, the initial distribution G0 of employed workers across matches of different qualities is

a Fréchet distribution truncated at the reservation quality R0.

We then need to verify that the balanced growth distribution Gt(zegzt) = G0(z) satisfies

(3.27) for all t ≥ 0. This is the case if and only if G0 is given by (3.30) and the left-hand side of

(3.27) grows at the same rate as the right-hand side of (3.27). The left-hand side grows at the

rate of 0, as G′t(zegzt) = G′0(z)e
−gzt . The first term on the right-hand side grows at the rate of 0,

as At = A0egAt and gz = gA/α . The second term on the right-hand side grows at the rate of 0 as

well, as Gt(zegzt) = G0(z). Therefore, as long as G0 is given by (3.30), (3.27) holds for t = 0

and, consequently, for all t ≥ 0.

Finally, we need to solve for the UE and EU rates. The conditions (2.11) and (2.12) for the

UE and EU rates at date t = 0 can be written as

hUE = A0 p(θ)

(
z`

R0

)α

, (3.31)

hEU = G′0(R0)R0gz

= A0 p(θ)
(

z`
R0

)α exp(−A0 p(θ)ρ(1−F(R0))/gA)

1− exp(−A0 p(θ)ρ(1−F(R0))/gA)

(3.32)

The above value for hUE satisfies condition (2.11) for all t ≥ 0, as At grows at the rate gA and

(z`/Rt)
α grows at the rate −αgz =−gA. The above value for hEU satisfies condition (2.12) for

all t ≥ 0, as G′t(Rt) grows at the rate −gz and Rt grows at the rate gz.

We are now in the position to prove the existence of a BGP. Any BGP must be such that R0

and θ satisfy the date t = 0 conditions (3.24) and (3.26). Given an R0 and θ that satisfy (3.24)

and (3.26), we construct all the other equilibrium objects. In particular, the reservation quality

Rt is given by R0egZt with gz = gA/α . The surplus function St(zegzt) is given by S0(z)e
(gy+gz)t ,

where S0(z) is as in (3.19). The unemployment rate u, the UE rate hUE and the EU rate hEU

are given by (3.29), (??) and (3.32). The distribution Gt(zegzt) of employed workers is given

by G0(z), where G0(z) is as in (3.30). Clearly, these objects are the only ones satisfying the

conditions for a BGP. As in Section 2, it is easy to show that there exists at least one solution

(R0,θ) to the conditions (3.24) and (3.26). However, we are not able to establish its uniqueness.

We summarize our findings in the following proposition.

Proposition 3 (Existence of BGP with On-the-Job Search) Consider arbitrary growth rates

gy > 0 and gA > 0 for the production technology and the search technology. If and only if F

is a Pareto distribution with coefficient α > 1, the growth rates of unemployment income and

vacancy costs are gb = gk = gy+ gA/α , and the discount rate is r > gy+ gA/α , there exists a

BGP. In any BGP:

(i) the unemployment rate u, the labor market tightness θ , the UE and EU rates are constant;
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(ii) the initial distribution G0 of employed workers is Fréchet truncated on the left at R0;

(iii) the reservation quality Rt and the distribution Gt grow at the rate gA/α;

(iv) labor productivity and aggregate output grow at the rate gy+gA/α .

3.4 Properties of the BGP and identification

A BGP for the model in which workers search off and on the job exists under essentially the

same conditions as for the simpler model of Section 2. In a BGP, the unemployment rate, the

UE rate, the EU rate, the EE rate, the tightness of the labor market and vacancies are all constant

in the face of an ever improving efficiency of the search technology.

It is worthwhile to briefly discuss the intuition behind the independence of unemployment

and the other workers’ transition rates and the efficiency of the search technology. The rate

at which unemployed workers meet firms grows at the rate gA, the growth rate of the search

technology. The expected surplus of a match between a firm and an unemployed worker grows

at the rate gy− (α − 1)gz = gy− (α − 1)gA/α , where gy is the growth rate of the production

technology and α is the coefficient of the Pareto distribution for the quality of a new match. The

reservation quality, which is proportional to the product of the meeting rate and the expected

surplus divided by the common component of productivity, increases at the rate gA/α . Since

the quality of new matches is drawn from a Pareto with coefficient α , the probability that a

meeting between a firm and a worker turns into a match grows at the rate −gA and the UE rate

remains constant over time. Note that the growth rate of the reservation quality is the same as in

the model without on-the-job search. The option of searching on the job lowers the reservation

quality but it does not affect its growth rate, because the on-the-job search option ρ only lowers

the constant of proportionality on the expected surplus in the reservation quality equation.

Once workers move from unemployment into employment, they keep on searching. On the

one hand, the rate at which newly employed workers meet vacancies increases over time at the

rate gA. On the other hand, the distribution of match qualities for newly employed workers

increases at the rate gA/α because of the increase in the reservation quality. Since the quality of

new matches is drawn from a Pareto with coefficient α , the rate at which employed workers find

better jobs is constant over time. The overall result of the process through which workers move

from unemployment into employment and from lower to higher quality jobs is a cross-sectional

distribution with a stable shape (a truncated Fréchet) and a constant growth rate of gA/α . Since

the distribution grows at the same rate as the reservation quality, the EU rate is constant over

time. In turn, since the UE and EU rates are constant, so is unemployment.

Now, consider the labor market from the perspective of firms. The benefit of opening a

vacancy grows at a constant rate, given by the sum of the growth rate gA of the search technology
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and the growth rate (α − 1)gA/α of the expected value to the firm from a meeting a worker.

The sum of these two growth rates is the overall growth rate of the economy. Assuming that

the cost of opening a vacancy also grows at the same rate as the economy, the tightness of the

labor market remains constant over time. In turn, as the measure of searching workers and

the tightness of the labor market are constant, so is the number of vacancies. Note that the

growth rate of the expected value to the firm from meeting a worker is the same as in the model

without on-the-job search. Intuitively, the option of searching on the job implies that the firm

will meet both unemployed and employed workers. The employment status of whom the firm

meets affects the expected value of the meeting to the firm, as unemployed workers are more

likely to match with the firm and, if they do, they capture a smaller share of the surplus than

employed workers. However, the composition of workers is stationary over time, and it does

not affect the growth rate of the firm’s expected benefit from a meeting.

The growth rate of the search technology contribute to the overall growth of the economy.

In fact, note that the average productivity of labor is given by∫
Rt

ytzG′t(z)dz= e(gy+gA/α)t
∫

R0

y0G′0(z)dz. (3.33)

The above expression shows that the growth rate of the average productivity of labor is the

sum of the growth rate gy of the production technology and the ratio between the growth rate

gA of the search technology and the coefficient α of the Pareto distribution for the quality of

new matches. Since employment is constant over time, the growth rate of aggregate output is

also given by gy+ gA/α . Intuitively, improvements in the search technology contribute to the

growth rate of the economy because they allow firms and workers to become more selective and

create higher-quality matches. The magnitude of the contribution of improvements in the search

technology on the growth rate of the economy depends on the shape of the Pareto distribution

of the quality of new matches. In particular, the thicker is tail if the distribution (i.e. the lower

is α), the larger is the contribution of improvements in the search technology. Intuitively, the

thicker is the tail of the Pareto distribution the higher the rate of return on improvements in

search. Note that the growth rate of the economy is the same as in the model without on-the-

job search. Intuitively, this is the case because the option of searching on the job improves

the distribution of workers across matches of different quality, but not the rate at which the

distribution grows.

Naturally, it would be interesting to measure the contribution gA/α of improvements in the

search technology to the growth rate of the economy. To this aim, note that the growth rate gA

of the search technology can be measured by looking at how more selective firms become over
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time. The number of workers considered by a firm per unit of time is given by

Atq(θ) = A0q(θ)egAt . (1)

The rate at which the firm fills its vacancy is given by

Atq(θ)

{
u

u+ρ(1−u)
[1−F(R0)]+

ρ(1−u)

u+ρ(1−u)

∫
R0
[1−F(z)]G′0(z)dz

}
= A0q(θ)

{
u

u+ρ(1−u)
[1−F(R0)]+

ρ(1−u)

u+ρ(1−u)

∫
R0
[1−F(z)]G′0(z)dz

} (3.35)

The average number of workers considered for each vacancy is the product between the number

of workers considered in each unit of time, (1), and the average duration of the vacancy, which

is the inverse of (3.35). That is, the average number of workers considered for each vacancy is

egAt

{
u

u+ρ(1−u)
[1−F(R0)]+

ρ(1−u)

u+ρ(1−u)

∫
R0

[1−F(z)]G′0(z)dz

}−1

. (3.36)

The above expression implies that the average number of workers considered for each vacancy

grows at the rate gA. Intuitively, the average number of workers applying to a vacancy per unit

of time grows at the rate gA because of declining search frictions. The average duration of a

vacancy remains constant over time, because the decline in search frictions is exactly offset by

the increase in selectivity. Hence, the average number of workers considered for each vacancy

grows at the rate gA.

Next, note that the coefficient α of the Pareto distribution of qualities for new matches

can be measured using the cross-section of wages. To see why this is the case, it is useful to

start by considering the version of the model in which workers can only search off the job. In

this version of the model, the distribution Gt of employed workers across matches of different

quality is Pareto with coefficient α and, if the wage is linear in the quality of the match, α can

be recovered as the tail coefficient of the cross-sectional distribution of wages. Suppose, for

instance, that the wage wt(z) for a worker in a match of quality z at date t is given by

wt(z) = γytz+(1− γ)ytRt . (3.37)

The wage (3.37) is consistent with the fact that the equilibrium contract assigns to the worker a

fraction γ of the surplus of the match. Given the wage (3.37), the cross-sectional distribution of

wages Lt(w) is given by

Lt(w) = Gt

(
1

γ

w

yt

− 1− γ

γ
Rt

)
= 1−

(
γytRt

w− (1− γ)ytRt

)α

. (3.38)

The cross-sectional wage distribution Lt(w) is not Pareto. However, the right tail of the wage
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distribution Lt(w) is well approximated by a Pareto distribution with coefficient α , as

lim
w→∞

d log[1−Lt(w)]

d logw
=−α . (3.39)

In the version of the model in which workers search both off and on the job, the mapping

between the cross-sectional wage distribution and the coefficient α is more complicated. First,

the distribution Gt of employed workers across matches of different quality is not Pareto with

coefficient α , but Fréchet. Second, the fraction of the surplus of a match captured by a worker

is not always γ , as it depends on the worker’s outside option when he was hired. Workers hired

out of unemployment capture a fraction γ of the surplus. Workers hired out of matches of a

slightly lower quality capture almost all of the surplus. Nevertheless, the tail coefficient of the

cross-sectional distribution of wages for workers hired directly out of unemployment is still

α . In fact, the distribution of match qualities for workers hired out of unemployment is Pareto

with coefficient α and the fraction of the surplus accruing to these workers is γ . Moreover, for

z→ ∞, the wage γytz assigns a fraction γ of the surplus to the workers, as the option value of

searching on the job is approximately 0 and the reservation quality Rt is negligible relative to

z. Hence, the tail coefficient of the cross-sectional wage distribution of workers hired out of

unemployment is α .

We summarize the above insights in the following proposition.

Proposition 4 (Search Technology and Growth) The contribution of the growth rate of the

search technology to the growth rate of the economy is the ratio between the growth rate of

applications per vacancy and the tail coefficient of the wage distribution for workers hired out

of unemployment.

4 Population growth

In this section, we extend the analysis of necessary and sufficient conditions for a BGP to a

version of the model in which the labor force grows over time rather than being constant, and the

search process displays arbitrary returns to scale, rather than constant returns to scale. We find

that the same conditions under which unemployment, UE, EU rates, tightness and vacancies are

constant in the face of technological improvements in the search technology also guarantee that

these variables remain constant in the face of growth in the labor force and non-constant returns

to scale in the search process. This finding is intuitive, as both technological improvements and

return to scale have the same effect of changing the rate at which workers and firms meet. The

finding is important, as it means that returns to scale in search cannot be detected by regressing

unemployment (or other variables, such as the UE rate) on the size of the labor force either
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in the time-series or in the cross-section. We conclude by developing a strategy to identify,

empirically, the returns to scale in the search process and their contribution to the growth of the

economy.

4.1 Environment and definition of BGP

We modify the environment of Section 2 to allow for population growth and for arbitrary returns

to scales in the search technology. At date t, the labor market is populated by a continuum of

workers with measure Nt , where Nt = N0egNt and gN ≥ 0 is the constant growth rate of the

workforce. The flow gNNt of workers entering the market at date t are unemployed. At date t,

the labor market is also populated by a continuum of firms with some positive measure.

Workers and firms search the labor market for trading opportunities. As in Section 2, we

assume that workers search the market only when unemployed. The measure of unemployed

workers at date t is given by Ntut , where ut is the unemployment rate. Firms search the market

by posting vacancies at the flow cost kt . The measure of vacancies at date t is given by Ntvt ,

where vt is the measure of vacancies per worker. The outcome of the search process is a flow

AtN
1+β

t M(ut ,vt) of bilateral meetings between unemployed workers and vacancies, where At =

A0egAt is the efficiency of the search technology, β is a parameter that captures the scale effects

in the search technology, and M(u,v) is a constant returns to scale function. If β = 0, the flow

of meetings AtN
1+β

t M(ut ,vt) is linear in Nt and, hence, the search process has constant returns

to scale. If β > 0, the flow of meetings is more than linear in Nt and, hence, the search process

has increasing returns to scale. And, if β < 0, the flow of meetings is less than linear in Nt and,

hence, the search process has decreasing returns to scale. The outcome of the search process

implies that an unemployed worker meets a vacancy at the rate Ât p(θ), where θ = vt/ut is the

tightness of the labor market, p(θ) =M(1,θ), and Ât = AtN
β

t . Similarly, a vacancy meets an

unemployed worker at the rate Âtq(θ), where q(θ) = p(θ)/θ .

The remainder of the environment is the same as in Section 2. Namely, upon meeting, a

firm and a worker observe the idiosyncratic component z of productivity of their match, where

z is drawn from the distribution F . After observing z, the firm and the worker decide whether

to form a match or not. If they decide to match, the firm and the worker bargain over the terms

of an employment contract. The outcome of the bargain maximizes the Nash product of the

gains from trade accruing to the worker and those accruing to the firm, where the exponent on

the worker’s gains from trade is γ and the exponent on the firm’s gains from trade is 1− γ . The

contingencies of the contract are rich enough to guarantee that the joint value of the match is

maximized.
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4.2 Definition of a BGP

The definition of a BGP is almost the same as in Section 2, except that At needs to be replaced

with Ât = AtN
β

t in all the equilibrium conditions, and the stationarity conditions for the unem-

ployment rate u and for the distribution Gt of employed workers across matches of different

qualities need to be amended to take into account the growth of the population.

Formally, the reservation quality Rt , the surplus of a match St(z), and the tightness of the

labor market θ satisfy the equilibrium conditions

Rt =
bt

yt

+
Ât

yt

p(θ)γ
∫

Rt

St(ẑ)dF(ẑ), (4.1)

rSt(z) = yt(z−Rt)+ S̊t(z), (4.2)

kt = Âtq(θ)(1− γ)
∫

Rt

St(ẑ)dF(ẑ). (4.3)

The equilibrium conditions above are the same as (2.5), (2.9) and (2.10), except that Ât replaces

At .

The UE rate, the EU rate and the unemployment rate u satisfy the stationarity conditions

Ât p(θ)[1−F(Rt)] = hUE , (4.4)

G′t(Rt)R̊t = hEU , (4.5)

(1−u)hEU +(1−u)gN = uhUE . (4.6)

The stationarity conditions (4.4)-(4.5) for the UE and EU rates are the same as (2.11)-(2.12) with

Ât replacing At . The stationarity condition (4.6) for the unemployment rate is different. The un-

employment rate is stationary when the flow of workers from unemployment into employment,

uhUE , is equal to the flow of workers from employment into unemployment, (1− u)hEU , plus

the flow gN of new workers into the labor market multiplied by the difference 1− u in the

unemployment rate of new and old workers.

The condition guaranteeing that the distribution Gt grows at a constant rate gz—in the sense

that Gt(zt(x)) = G0(z0(x)) where zt(x) = z0(x)e
gzt and z0(x) is the x quantile of G0—is

(1−u)G′t(zt(x))zt(x)gz+uÂt p(θ)[F(zt(x))−F(Rt)]

= (1−u)G′t(Rt(x))Rt(x)gz+(1−u)Gt(zt(x))gN .
(4.7)

The inflow-outflow condition (4.7) is different than (2.15) because of the last term on the right-

hand side. The left-hand side is the flow of workers into the group of those employed in a

match of quality below the x quantile, and it is given by the sum of the flow of employed

workers whose match-quality z falls below the x quantile and the flow of unemployed worker

who enter a match with quality below the x quantile. The first term on the right-hand side is the

36



flow of workers employed in a match with quality below the x quantile. The second term is the

flow gN of workers entering the labor market times the difference between the fraction of the

old workers who are employed at a match below the x quantile, i.e. (1− u)Gt(zt(x)), and the

fraction of new workers who are employed at a match below the x quantile, i.e. 0.

The above observations lead to the following definition of a BGP.

Definition 3: A BGP is a tuple {Rt ,St ,θ ,hUE ,hEU ,u,Gt} such that for all t ≥ 0: (i) Rt , St and

θ satisfy (4.1)-(4.3); (ii) hUE , hEU and u satisfy (4.4)-(4.6); (iii) Gt satisfies (4.7).

4.3 Existence and properties of BGP

Following exactly the same steps as in Section 2, it is easy to prove that a BGP exists if and only

if the distribution F of qualities of new matches is Pareto with coefficient α , the worker’s flow

income from being unemployed and the firm’s flow cost from maintaining a vacancy both grow

at the rate gy+(gA+βgN)/α , where gA+βgN > 0 is the growth rate of Ât , and the discount

factor r is greater than gy+(gA+βgN)/α . The restriction gA+βgN > 0 is required to guarantee

that the reservation quality increases over time.

Formally, we can establish the following proposition.

Proposition 5 (Existence and Uniqueness of BGP) Consider arbitrary growth rates gy, gA and

gN for the production technology, the search technology and population, with gy > 0 and gA+

βgN > 0. If and only if F is a Pareto distribution with coefficient α > 1, the growth rates of

unemployment income and vacancy costs are gb = gk = gy+(gA+βgN)/α , and the discount

rate is r > gy+(gA+βgN)/α , there exists a BGP. If the BGP exists, it is unique and such that:

(i) the unemployment rate u, the labor market tightness θ , the UE and EU rates are constant;

(ii) the initial distribution G0 of employed workers is a Pareto truncated on the left at R0;

(iii) the reservation quality Rt and the distribution Gt grow at the rate (gA+βgN)/α;

(iv) labor productivity and aggregate output grow at the rate gy+(gA+βgN)/α .

In the BGP, the unemployment rate, the UE rate, the EU rate and the tightness of the labor

market are all constant even though the size of labor market is continuously growing and the

search process may display non-constant returns to scale. The necessary and sufficient condi-

tions for the existence of a BGP when the size of the labor market grows and the returns to

scale in the search process are non-constant are exactly the same conditions that are necessary

and sufficient for the existence of a BGP when there are improvements in the search technol-

ogy. That is, the distribution of qualities of new matches must be Pareto and vacancy costs and

unemployment income must grow at the same rate as the economy.
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The above finding is intuitive. The same mechanism that offsets the improvements in the

search technology and keeps the unemployment, UE and EU rates constant over time also off-

sets the returns to scale in the search process, as both improvements in the search technology

and returns to scale increase the rate at which workers and firms meet each other. The finding is

important. It implies that if the conditions for the existence of a BGP hold—which we take to

be the case given the stationarity of unemployment, UE, EU rates in the face of the enormous

progress in information technology that has taken place during the last century—then one can-

not measure the returns to scale to the search process by looking at how unemployment, UE and

EU rates vary with the size of the workforce.

Is it there some way, then, to measure the returns to scale in the search process? And is there

some way to separately measure the contribution of improvements in the search technology and

the contribution of returns to scale in the search process to the growth rate of the economy?

The answer to these questions is positive. To see why this is the case, first note that the average

productivity of labor is given by∫
Rt

ytzG′t(z)dz= e(gy+gA/α+βgN/α)t
∫

R0

y0zG′0(z)dz. (4.8)

The above expression shows that the growth rate of the average productivity of labor is the

sum of three terms. The first term is the growth rate gy of the production technology. The

second term is the growth rate gA of the search technology divided by the tail coefficient α of

the Pareto distribution F for the quality of new matches. This term captures the contribution of

improvements in the search technology to the growth of the average productivity of labor. The

third term is the growth rate gN of the workforce multiplied by β/α , the ratio of the return to

scale coefficient of the search process and the tail coefficient of the distribution F . This term

captures the contribution of returns to scale to the growth of the average productivity of labor.

Next, note that the average number of workers considered by a firm before filling its vacancy

is given by

Âtq(θ)

Âtq(θ)[1−F(Rt)]
=

e(gA+βgN)t

1−F(R0)
. (4.9)

The numerator on the left-hand side of (4.9) is the measure of workers considered by a firm

for its vacancy in each unit of time. The denominator on the left-hand side of (4.9) is the rate

at which a firm fills its vacancy. The number of workers considered by a firm for its vacancy

in each unit of time divided by the rate at which a firm fills its vacancy gives us the average

number of workers considered by a firm before filling its vacancy. The growth rate of the

average number of workers considered for a vacancy is gA+βgN .

Third, consider two separate labor markets at the same point in time. The two labor markets

are identical, except that the size of the workforce is different, N1,t and N2,t . The vacancy costs,
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k1,t and k2,t , and unemployment income, b1,t and b2,t , are different but have the same constant

of proportionality to the average labor productivity, i.e. k1,t/k2,t and b1,t/b2,t are both equal

to (N1,t/N2,t)
β/α . These assumptions are consistent with our interpretation that the opening

a vacancy is a labor cost, and that the unemployment income is proportional to the average

productivity and, hence, to the average wage in the market.

Under the conditions for a BGP, the two markets have the same unemployment rate, UE rate,

EU rate, tightness and vacancies. Therefore, the returns to scale in the search process cannot

be identified by examining the difference between these variables in markets 1 and 2. However,

the returns to scale can be recovered by looking at the average number of applicants per each

vacancy in market 1 relative to market 2, which is given by

AtN
β

1,tq(θ)

AtN
β

1,tq(θ)[1−F(R1,t)]
·

AtN
β

2,tq(θ)[1−F(R2,t)]

AtN
β

2,tq(θ)
=

1−F(R2,t)

1−F(R1,t)
=

(
N1,t

N2,t

)β

, (4.10)

where the last step makes use of the fact that R1,t/R2,t = (N1,t/N2,t)
β/α . The above expression

implies that the difference in the log of applicants per vacancy is proportional to the difference

in the log of the market size, where the constant of proportionality is the coefficient β on the

return to scale in the search process.

Finally, the coefficient α of the Pareto distribution of qualities of new matches can be re-

covered from the cross-sectional distribution of wages. In particular, α is the tail coefficient of

the cross-sectional distribution of wages for workers hired out of unemployment. Note that all

of the measurements described above are valid not only for the model without search on the job

described in this section, but also for a version of the model with on-the-job search.

We thus have the following identification strategy.

Proposition 6 (Identification of returns to scale in search technology).

(i) The coefficient β on the return to scale in the matching process can be measured as the

coefficient in a regression of the log of applications-per-vacancies on the log of the size

of the market.

(ii) The coefficient α of the Pareto distribution of qualities of new matches can be measured

as the tail coefficient of the cross-section of wages for workers hired out of unemployment;

(iii) The contribution gNβ/α of returns to scale in search to the growth of the economy can

be measured as the growth rate of population times β/α .

(iv) The contribution gA/α of improvements in the search technology to the growth of the

economy can be measured as the growth rate of applications-per-vacancy divided by α

net of gNβ/α .
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5 Back-of-the-envelope calculations

We conclude the paper by trying to implement the identification strategy outlined in Proposition

6 to measure the contribution of improvements in the search technology and of returns to scale

in the matching process to the growth rate of labor productivity. The identification strategy

requires time-series and cross-sectional data on applications per vacancy, cross-sectional data

on the wages of identical workers, and time-series for the average labor productivity and the

size of the labor force.

As far as we know, there is no time-series for the average number of applicants per vacancy

spanning more than a couple of years. However, Faberman and Menzio (2018) have a measure

of applicants per vacancy in the US for the early 1980s, while Marinescu and Wolthoff (2016)

and Faberman and Kudlyak (2016) have a measure of applicants per vacancy in the US for

the early 2010s. The data used by Marinescu and Wolthoff (2016) also contains a detailed

break-down of vacancies and their applications in different areas of the US. Measuring the

wage distribution for identical workers is a task that we do not attempt, and instead we carry

out our identification exercise for different values of the coefficient α of the Pareto distribution

F . Given all the limitations of the analysis, it is fair to think of it as a back-of-the-envelope

calculation. Yet, we believe that our findings clearly indicate that declining search frictions

have has a sizeable contribution to the growth of productivity.

Faberman and Menzio (2018) analyze data from the Employment Occupation Pilot Project

(EOPP), which is a survey of US firms that was carried out in 1980 and 1982 and contains

information about characteristics of job openings (e.g., occupation, industry, location, etc. . . )

and recruitment outcomes (e.g., number of applications per vacancy, number of interviews per

vacancy, vacancy duration, wage paid to the hired worker, etc. . . ). Faberman and Menzio (2018)

find that the average number of applications per vacancy is 10.4 per week and that the average

duration of a vacancy is 16.2 days. These figures suggest that the number of applications per

vacancy is 24.

Marinescu and Wolthoff (2016) analyze proprietary data from CareerBuilder.com, which

is the largest online job board in the US, visited contains over 1 million jobs at each point in

time and is visited by approximately 11 million unique job seekers during each month. For the

sake of tractability, Marinescu and Wolthoff (2016) restrict attention to vacancies posted in the

Chicago and Washington DC Designated Market Areas between January and March 2011. The

data contains detailed information about job and firm characteristics (e.g., job title, occupation,

name of the firm, industry, etc. . . ) and outcomes (including applications per vacancy). They

find that the average number of applications per vacancy is 59. Faberman and Kudlyak (2016)

use proprietary data from SnagAJob.com, which is an online job search engine that focuses on

hourly-paid job. They find that the average number of applications per vacancy is 31.
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The data reported in Faberman and Menzio (2018), Marinescu and Wolthoff (2016) and

Faberman and Kudlyak (2016) suggest that, from 1982 to 2011, the number of applications per

vacancy has grown from 24 to somewhere between 31 and 59. Taking the average of 45, this

is equivalent to an average growth rate of 2.2% per annum. Equation (4.9) implies that the

growth rate of applications per vacancy is the sum of the growth rate in the search technology,

i.e. gA, and the return to scale in the search process caused by the increase in the size of the

labor market, i.e. gNβ . Equation (4.8) implies that the contribution of the decline in search

frictions, due to either technological progress or returns to scale, to the growth of the economy

is given by the growth rate of applications per vacancies divided by the coefficient α of the

Pareto distribution F . As mentioned above, measuring α is not easy, as it requires measuring

the distribution of wages out of unemployment for workers that are inherently identical. This

measurement exercise is outside the scope of our paper. However, α is unlikely to be very

large. In fact, Postel-Vinay and Robin (2002) document—using a model that is similar to ours

and allows for workers’ heterogeneity that is unobserved by the econometrician—that search

frictions account for almost half of the wage inequality among workers in the same occupation.

For the sake of the argument, suppose that α was equal to 2. Then, declining search frictions

would generate a growth in average labor productivity of 1.1 percentage points per annum. If α

was equal to 4, declining search frictions would generate a growth in average labor productivity

of 0.55 percentage point per annum. Even if α was equal to 8, declining search frictions would

still generate a non-negligible growth in average labor productivity of 0.28 percentage points

per year.

The proprietary data from CareerBuilder.com contains information of the number of appli-

cations per vacancy across the US and can be used to measure the returns to scale in the search

process. Ioana Marinescu kindly agreed to run for us a regression of applications per vacancy

on market size. In particular, she ran for us a regression of the log of applications per vacancy

on the log of the population in the commuting zone of the vacancy. She finds that the regression

coefficient on the log of the population size is 0.52. In light of (4.10), 0.52 is an estimate of

the return to scale coefficient β in the search process. She finds a similar regression coefficient

when she also controls for occupation. The regression implies that vacancies in a commuting

zone that is 10% larger receive on average 5.2% more applications. Similarly, vacancies in a

commuting zone of 10 million people would receive approximately 3 times more applications

than vacancies in a commuting zone of 1 million people.

The estimate of β allows us to decompose the contribution of declining search frictions to

the growth rate of the average productivity of labor. From 1982 to 2011, the US labor force went

from 108 million to 152 million people, which is an average growth rate of 1.1% per annum.

Since β = 0.52, this means that, of the annual growth rate of 2.2% in applications per vacancy,
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0.6% percent is caused by increasing returns in the search process and the remaining 1.4% is

caused by improvements in the search technology. In other words, approximately 1/4 of the

growth in applications per vacancy is due to increasing returns to scale in search, and 3/4 is

due to improvements in the search technology. In turn, this implies that 1/4 of the productivity

growth generated by declining search frictions is due to increasing returns in the search process

and 3/4 is due to improvements in the search technology.

The estimate of β has also interesting implications for understanding geographic differences

in average labor productivity. For instance, the estimate of β implies that, in a commuting zone

that is 10% larger, the average productivity of labor and, hence, wages would be 2.5% higher

if α = 2, 1.25% higher if α = 4 and 0.62% higher if α = 8 just because of increasing returns

in the process by which firms and workers find each other. Similarly, in a commuting zone of

10 million people, relative to a commuting zone of 1 million people, average labor productivity

and wages would be 50% higher if α = 2, 25% higher if α = 4 and 12.5% higher if α = 8.

Therefore, increasing returns to scale in the search process can explain a sizeable fraction of the

productivity and wage differential across small and large cities. Yet, increasing returns to scale

in the search process do not generate any differences in unemployment, UE and EU rates across

small and large cities and, hence, cannot be detected by regressing the unemployment rate on

the size of the city.

It is indeed well-documented that wages are systematically higher in larger cities but the

unemployment rate is not systematically lower (see, e.g., Petrongolo and Pissarides 2006). The

standard explanation for these two facts is that the search process features constant returns to

scale—explaining why unemployment is independent of city size—and that, for some reason,

workers are more productive in large cities than in small cities—explaining why wages are

higher in larger cities. This standard explanation however is at odds with our findings on the

number of applicants per vacancy across commuting areas of different size. Our explanation

for these facts about geography is a simple corollary of the explanation for why unemployment,

UE, EU rates, tightness and vacancies are constant over time in the face of enormous improve-

ments in information technology. That is, if the distribution of qualities of new matches is

Pareto, unemployment does not depend on improvements in the search technology and it does

not depend on returns to scale in the search process because time-series and cross-sectional

differences in the extent of search frictions are offset by differences in how selective firms and

workers are with respect to which matches to form. Moreover, our explanation is consistent with

(and, in fact, it is quantitatively disciplined by) the observation that applications per vacancy are

systematically larger in larger commuting areas.
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