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Abstract

We investigate the optimal choice of an auction deadline by a seller who commits

to this deadline prior to the arrival of any buyers. In our model buyers have evolving

outside options, and their bidding behaviors change over time. We find that if the

seller runs an optimal auction, then she should choose a longer deadline. However, if

the seller runs a second-price auction, then a shorter deadline could potentially help

her. Moreover, the seller can extract information about buyers’ outside options

by selling them contracts similar to European call options. Finally, the optimal

dynamic mechanism is equivalent to setting a longer deadline and running an auction

in the last day.
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1 Introduction

Economists used to model house selling as a bargaining problem between a seller and

a buyer. Recent literature (e.g. Mayer (1998), Albrecht et al. (2016), Arefeva (2016),

and Han and Strange (2014)) began to notice that over 30 % of house sales in the U.S.

involve multiple buyers, and they model house selling as an auction instead of bargaining.

However, housing auctions differ significantly from the traditional optimal auction models.

Housing auctions are dynamic; they often last for weeks. During the auction new buyers

might arrive, and existing buyers might lose interest if they find a great outside option

(i.e. another house appears on the market). Moreover the seller not only has to design the

auction rule, but also specifies the end date of the auction – the deadline for submitting

bids. In this paper we study the optimal deadline that a seller should set for auctioning

a house.

We study the optimal choice of an auction deadline using a two-period model. Prior

to the arrival of any buyers, the seller commits to a date to run an auction. Shorter

deadline means the seller runs an auction in period one, and longer deadline means the

seller runs an auction in period two. Buyers arrive in period one and draw their value

for the house, and their outside options for period one are normalized to zero. In period

two new outside options become available, and buyers update their value for the house,

which is equal to the value they draw minus their outside option. Thus if a buyer gets a

great outside option, his value for the house decreases. We assume that no new buyers

arrive in period two because we have implicitly modeled arrivals and departures through

the evolving outside options. In period one buyers only know the distribution of their

future outside options, and in period two they observe the actual realizations. Arrival is

equivalent to a buyer expecting a great outside option, but ends up with a disappointing

one. Departure is equivalent to the buyer finding a great outside option in period two

and is no longer interested in bidding for this house.

The seller decides which period she wants to run an auction. We consider two types

of auction formats: the optimal auction and the second-price auction. For each auction

format, the seller takes the auction rule as given and selects a date to the auction. The

seller’s optimal choice of an auction deadline boils down to the trade-off between arrivals

and departures. Running an auction in period one prevents bidders from searching for

outside options, which reduces departure. Running an auction in period two allows the

bidders to learn their outside options, and they might lose interest in this house if they

find great outside options. However running an auction in period two also has potential
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benefits: if a bidder gets a bad outside option, then his value for this house increases,

which is analogous to a high valued buyer arriving in period two. Intuitively, period one

prevents departures, but period two creates arrivals, and the seller needs to figure out

which effect dominates the other.

Our first result is that for the optimal auction the seller always runs the auction

in period two. In an optimal auction, the seller first calculates each bidder’s marginal

revenue, which is equal to the bidder’s value for the house minus his information rent.

The seller allocates the good to the bidder with the highest marginal revenue, and the

seller’s profit is equal to the maximum of the marginal revenues. The marginal revenues

change from period one to period two, and the seller compares the maximal marginal

revenue from each periods. The reason the seller always runs the auction is period two is

due to the convexity of the max function: in period two there is a shock to the buyers’

values, and the expected maximal marginal revenue is greater than the maximal of the

marginal revenue from period one. This convexity argument is a useful tool in auction

theory; for example, Bulow and Klemperer (1996) used this argument to show that a

second-price auction with N + 1 bidders generates more profit than an optimal auction

with N bidders.

We also analyze the optimal deadline for a second-price auction. For a second-price

auction with two bidders, we get the exact opposite result of the optimal auction case:

the seller always runs the auction in period one. The logic is that the seller’s revenue is

the minimum of the two bidders’ values, and since min is a concave function, the minimal

expected bid from the second period is smaller. Simon Board (2009) also discovered this

example in the context of revealing information in auctions. Note that for the optimal

auction convexity of the max function suggests a longer deadline, but for the second-

price auction with two bidders concavity of the min function implies a shorter deadline.

However this two-bidder result is a knife-edge case both in our setting and in Board

(2009). If there are more than two bidders, we find that the optimal deadline depends on

the departure rate. The seller runs the auction in period one if the departure rate is high

and in period two if the departure rate is low. For example, if the seller expects many

other houses will appear on the market tomorrow, then she wants to run the auction

today to lock in the existing bidders. The seller sets a shorter deadline if she expects

fierce competition in the future.

Although we set up a model for optimal deadline of running an auction, the main

driving force in our model is the information structure of the outside options, so we can

alternatively interpret our model in terms of information disclosure in auctions. A shorter
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deadline prevents bidders from acquiring information about their outside options, and a

longer deadline allows the bidders to learn this information. Consequently our results on

auction timing has natural analogs in the literature on revealing information in auctions.

For example, for optimal auctions Milgrom and Weber (1992) and Eso and Szentes (2007)

both argue for full information disclosure, which is analogous to a longer deadline in our

setting. However our approach differs from the Linkage Principle in Milgrom and Weber

(1982): in their model the increase in revenue is due to the decrease in information rent,

but in our model the information rent could increase under a longer deadline. In fact we

show in Example 3.3 that efficiency, information rent, and revenue could all increase. For

the second-price auction Board (2009) studies no information disclosure for two bidders

and full information disclosure for a sufficiently large number of bidders (under some

regularity conditions). Bergemann and Pesendorfer (2007) argue for partial information

disclosure in auctions, which could serve as a middle ground if we weaken the seller’s

commitment power in our model. We elaborate on the connections between our work and

the information disclosure models in Section 4.1.

In Section 4 we discuss two extensions of our model. First we study the optimal

dynamic mechanism. Our baseline model assumes that the seller commits to a specific

date to run an auction, but in general the seller could use any dynamic mechanism. For

example, she could set a high reserve price in period one, and if the house doesn’t sell,

she lowers her reserve price in period two. Or she could charge bidders a participation fee

in each period, as a screening for serious bidders. The seller could also ask bidders to pay

a deposit in period one and then let them search for outside options. It turns out that

these tactics are not helpful, because the buyers would strategically respond to the seller’s

schemes. We show that the optimal dynamic mechanism is to do nothing in period one

and run an optimal auction in period two. We also discuss an extension where the outside

options are the buyers’ private information. In this case the seller cannot calculate the

marginal revenue from each bidder in period two, so she cannot run an optimal auction

as before. However the seller can achieve the same profit as the optimal auction using the

handicap auction introduced by Eso and Szentes (2007). The handicap auction first asks

bidders to purchase from a menu of contracts similar to European call options and then

screens the bidders based on the contracts they purchased.

Our paper is related to the literature on comparison of the selling mechanisms for

houses. Quan (2002) and Chow Hafalir Yavas (2015) show that the optimal auction

mechanism produces higher expected revenue than the sequential search by examining
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the model with private values1. In this paper we show that the optimal auction with a

longer deadline is a dynamic optimal mechanism for selling the property in the model

with private as well as correlated values. Mayer (1995) argues that the auction produces

lower prices relative to the negotiated sales because the negotiated sale allows to wait

for a buyer with a high value. We show that the seller can optimally wait to auction

the property which delivers higher price as compared to a quick auction sale as in Mayer

(1995). Merlo, Ortalo-Magné, Rust (2014) consider the home seller’s problem, and show

that the seller should set initial list price and over time adjust this price until the house is

sold or withdrawn from the market. In this paper we add the strategic behavior of buyers

and show that the dynamic optimal mechanism for the selling the house is to set a long

deadline for auctioning a house.

Our work contributes to the study of designing deadlines. Empirical literature find

ambiguous results on the effect of auction duration on revenue. Tanaka (2014) reports

that a study by Redfin Realtors shows that houses that have deadlines not only sell faster,

but also sell at higher prices. Similarly Larsen et al. (2016) find that for auto auctions

the good auctioneers sell faster and generate more revenue. On the other hand, Einav et

al. (2015) study online auctions on Ebay, and they find no difference in revenue between

a one-day auction and a one-week auction. A large literature in bargaining studies the

“eleventh hour” deadline effect (e.g. Fuch and Skrzypacz (2010, 2013)), and a large

literature on optimal pricing studies the optimal selling strategy before a deadline (e.g.

Board and Skrzypacz (2015), Lazear (1986), Riley and Zeckhauser (1983)). However the

literature on bargaining and optimal pricing usually take deadlines as exogenous instead

of the seller’s design. A recent paper by Chaves and Ichihashi (2016) also investigates the

optimal timing of auctions, but they focus on the accumulation of bidders instead of a

pre-determined deadline.

2 The Model

We consider a two-period model of housing selling. A risk-neutral seller has two periods

to sell her house. In the first period N potential buyers arrive, and in the second period

no new buyers arrive. Assume N ≥ 2 for the purpose of studying auctions, but most of

our results still hold for a single buyer (seller just chooses a posted price). After buyers

arrive in the first period, they independently draw their value vi ∼ Fi[vi, vi]; note that the

1Chow Hafalir Yavas (2015) argue that the revenue is higher in the auction of a homogenous properties
during the hot markets, and when it attracts buyers with high values.
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value distributions could be asymmetric. We focus on private-value auctions and abstract

away from the common-value component. As in standard auction models, we assume that

Fi has full support, and that vi − 1−Fi(vi)
fi(vi)

is non-decreasing.

In the first period buyers have no outside option; outside options are normalized to

zero for all buyers. In the second period the outside option for bidder i is a random

variable with mean λi. In the first period buyers only know that the expected value of

their future outside option is equal to λi. Then in the second period buyers observe their

actual outside option λ̂i = λi + εi, where εi has mean 0. Assume that εi is common

knowledge in the second period. Moreover assume that E[εi|v1, . . . , vN ] = 0 for all v, but

the ε’s could be correlated with each other, as long as their expected values conditional

on v is equal to 0. We interpret this change in outside option as follows: buyers know

that in the next period other houses might appear on the market, but they do not know

exactly how good these houses are.

Though we assume that no new buyers arrive in the second period, we could interpret

arrivals and departures through the change in buyers’ outside options. Indeed in the first

period buyer i’s value for the house is equal to vi− λi, but in the second period his value

becomes vi − λi − εi. Arrival means the buyer expects a high outside option (λi is large),

but ends up with a terrible outside option in the second period (εi is negative). Departure

means a buyer gets a great outside option in the second period (ε is positive and large)

and therefore is no longer interested in bidding for this house.

The seller commits to a period to run an auction. She either runs an auction in period

1 or period 2. We interpret period 1 as a shorter deadline and period 2 as a longer deadline.

Running the auction in period 1 is equivalent to treating buyers’ values as vi−λi, whereas

a period 2 auction treats buyers’ values as vi − λi − εi. For example, suppose the seller

chooses a period to run a (static) optimal auction. If she runs the auction in period 1,

she treats buyer i’s marginal revenue as

MR1i(vi) = vi − λi −
1− Fi(vi)
fi(vi)

,

and if she runs the auction in period 2, she treats buyer i’ marginal revenue as

MR2i(vi, εi) = vi − (λi + εi)−
1− Fi(vi)
fi(vi)

= MR1i(vi)− εi.

In an optimal auction the seller allocates the good to the bidder with the highest marginal

revenue, so allocation could be different in period 1 and period 2. The bidder with the
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highest marginal revenue in period 1 might have a low marginal revenue in period 2 if εi

is positive and large.

In Section 3 we analyze the seller’s optimal timing for two auction formats: the optimal

auction and the second-price auction. In both cases the allocation is different in the two

periods. The trade-off between these two periods is between “arrivals” and “departures”:

running the auction in period 1 prevents buyers from searching for outside options, but if

a buyer gets a bad outside option in period 2 (i.e. εi is negative), he would bid more on

the house. We show that for the optimal auction the seller always chooses period 2, but

for the second-price auction the seller might choose period 1.

We make two qualifications about our model. First we assume that the seller commits

to one period to run an auction. In general the seller could be using any dynamic mech-

anism. For example, the seller could set a high reserve price in period 1, and lower the

reserve price in period 2 if the house didn’t sell. We show in Section 4.2 that in fact the

optimal dynamic mechanism is to run an optimal auction in period 2. We also assume

that ε is common knowledge; that is, the seller can observe the buyers’ outside options.

One might object to this assumption because a buyer’s outside option depends on his

taste, which could be private information. We show in Section 4.3 that the seller can

achieve the same profit even if she cannot observe ε.

3 Optimal Timing

In this section we assume the seller commits to a period to run an auction. We discuss

the optimal timing for two auction formats: the optimal auction and the second-price

auction. For each auction format, we compare the seller’s revenue from running the

auction in period 1 versus running the auction in period 2. We also discuss the change in

efficiency and information rent over the two periods.

3.1 Optimal auction

In an optimal auction the seller first calculates the marginal revenue of each bidder, which

is equal to the bidder’s value minus his information rent. If the marginal revenue of every

bidder is negative, then the seller retains the good. Otherwise she allocates the good

to the bidder with the highest marginal revenue. More precisely, in period 1 bidder i’s
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marginal revenue is equal to

MR1i(vi) = vi − λi −
1− Fi(vi)
fi(vi)

,

and in period 2 bidder i’ marginal revenue is equal to

MR2i(vi, εi) = vi − (λi + εi)−
1− Fi(vi)
fi(vi)

= MR1i(vi)− εi.

If the seller runs an optimal auction in period 1, she allocates the good to the bidder with

for whom MR1i(vi) is the highest (if it is positive). If the seller runs an optimal auction

in period 2, then she allocates the good to the bidder for whom MR2i(vi, εi) is the highest

(conditional on the MR being positive). For either period the seller’s revenue is equal to

the expected maximum of the marginal revenue and zero.

Our first result is that the seller should always wait until period 2 to run the auction.

Theorem 3.1. If the seller runs an optimal auction, she should wait until period 2.

Proof. The seller’s revenue in the first period is equal to

R1 = Ev max{MR11(v1), . . . ,MR1N(vN), 0},

and the seller’s revenue in the second period is equal to

R2 = EεEv max{MR21(v1, ε1), . . . ,MR2N(vN , εN), 0}

= EεEv max{MR11(v1)− ε1, . . . ,MR1N(vN)− εN , 0}.

Since E[ε|v] = 0 and max is convex, Jensen’s inequality implies that R2 ≥ R1. Hence the

seller runs the auction in the second period.

Remark. Bulow and Klemperer (1996) used the same convexity argument to show that a

second-price auction with N + 1 bidders generates more profit than an optimal auction

with N bidders.

In Theorem 3.1 the seller is not committed to sell the good. Now suppose that the

seller commits to selling the good; for example, she is moving to a new city and must sell

her house. The convexity argument for waiting remains valid.

Proposition 3.2. If the seller runs an optimal auction, but is committed to sell the good,

then she should still wait until period 2.
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Proof. The seller’s revenue in the first period is now equal to

R1 = Ev max{MR11(v1), . . . ,MR1N(vN)},

(note we dropped the 0 from the max), and the seller’s revenue in the second period

becomes

R2 = EεEv max{MR21(v1, ε1), . . . ,MR2N(vN , εN)}

= EεEv max{MR11(v1)− ε1, . . . ,MR1N(vN)− εN}.

Since E[ε|v] = 0 and max is convex, we again obtain that REV2 ≥ REV1. Hence the

seller runs the auction in the second period.

We could interpret waiting as revealing information in auctions. Waiting until period

2 allows bidder i to acquire information about his outside option and thus learn his

“true value” vi − λ̂i. Running an auction in period 1, on the other hand, prevents the

bidders from learning their outside options. Hence Theorem 3.1 and Proposition 3.2 are

analogous to full information disclosure. We discuss the connection of our model to the

relevant literature on information disclosure in Section 4.1.

We have thus far demonstrated that revenue increases if the seller waits until period 2

to run an optimal auction. Could we obtain similar results for efficiency and information

rent? Unfortunately we cannot derive an analog of Theorem 3.1 because the (marginal)

efficiency and information rent are neither convex nor concave (see Section A in the ap-

pendix). Information disclosure models (e.g. Milgrom and Weber (1982)) often suggest

that revenue increases because information rent decreases. In our model, however, infor-

mation rent could increase in period 2, in which case efficiency increases even more. We

next illustrate this point through an example.

Example 3.3. We give an example in which efficiency, information rent, and revenue all

increase in the second period. Suppose all bidders draw their value from U [0, 1] and

λi = λ for all i. In the second period each bidder’s outside option is either 0 or 1, with

probability λ of getting 1. In other words with probability λ a bidder finds a great outside

option and leaves the market.

In period 1 the optimal auction is a second-price auction with reserve price 1+λ
2

.
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Efficiency, information rent, and revenue are as follows:

E1(λ) = Nλ+N

∫ 1

1+λ
2

vN−1(v − λ)dv = (N − 1)λ+
N

N + 1

(
1− (1 + λ)N+1

2N+1

)
+ λ

(1 + λ)N

2N

I1(λ) = Nλ+N

∫ 1

1+λ
2

vN−1(1− v)dv = Nλ+
1

N + 1
− (1 + λ)N

2N
+
N(1 + λ)N+1

(N + 1)2N+1

R1(λ) = E1(λ)− I1(λ) =
N − 1

N + 1
− λ+

(1 + λ)N+1

(N + 1)2N

In period 2 some bidders leave the auction. The probability that exactly n bidders remain

is equal to
(
N
n

)
λN−n(1− λ)n. For these remaining n bidders, each one has outside option

0, so in the second period the efficiency, information rent, and revenue are as follows:

E2(λ) =
N∑
n=0

(
N

n

)
λN−n(1− λ)n ·

[
N − n+

n

n+ 1
(1− 1

2n+1
)

]

I2(λ) =
N∑
n=0

(
N

n

)
λN−n(1− λ)n ·

[
N − n+

(
1

n+ 1
− 1

2n
+

n

(n+ 1)2n+1

)]

R2(λ) =
N∑
n=0

(
N

n

)
λN−n(1− λ)n ·

[
n− 1

n+ 1
+

1

(n+ 1)2n

]

We now compare the efficiency, information rent, and revenue between the two periods.

To simplify calculation, we note that the optimal auction in period 1 is equivalent to the

following auction: bidders have values in [−λ, 1− λ] and outside option 0, and the seller

runs a second-price auction with reserve price 1−λ
2

. We can rewrite efficiency, information

rent, and revenue as below:

E1(λ) =
N∑
n=0

(
N

n

)
λN−n(1− λ)n ·

[
N − n+ (1− λ) · n

n+ 1
(1− 1

2n+1
)

]

I1(λ) =
N∑
n=0

(
N

n

)
λN−n(1− λ)n ·

[
N − n+ (1− λ) ·

(
1

n+ 1
− 1

2n
+

n

(n+ 1)2n+1

)]

R1(λ) =
N∑
n=0

(
N

n

)
λN−n(1− λ)n ·

[
(1− λ) ·

(
n− 1

n+ 1
+

1

(n+ 1)2n

)]

Now it’s easy to see that E1(λ) < E2(λ), I1(λ) < I2(λ), and R1(λ) < R2(λ). Indeed

for each quantity the coefficients of the summands are the same, and the only differences

are the expression in the brackets. In period 2 the (1−λ) term in the bracket becomes 1.
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Therefore efficiency, information rent, and revenue all increase from the first period to the

second period. Since revenue is equal to efficiency minus the information rent, we deduce

that efficiency increases by an amount larger than the increase in information rent.

We end this section with a note on waiting cost. We have so far ignore waiting cost or

discounting in order to present Theorem 3.1 in the most clean manner. In reality however

the seller has to incur a large waiting cost; she has to pay a fee to her realtor and endure

psychological stress. Suppose the seller has to incur a cost of c if she waits until period 2.

Then in Example 3.3 she would sell in period 1 if R1(λ)− (R2(λ)− c) ≥ 0. This scenario

happens if λ is close to 0 or close to 1. The curve R1(λ) − (R2(λ) − c) is u-shaped as

shown below:

λ

R1(λ)−R2(λ) + c

0 1

If c = 0, then Theorem 3.1 implies that the blue curve is always below the x-axis, and the

seller always waits until period 2. If c > 0, then the blue curve would be above the x-axis

when λ is close to 0 or 1. If λ is close to 0, then buyers have a low exit rate, and they

shade their bids very slightly in period 1. If λ is close to 1, many buyers will leave the

auction (i.e. other houses will appear); the seller will face high competition tomorrow, so

she sells today.

3.2 Second-price auction

An optimal auction requires the seller to know the bidders’ outside options λ̂ and calculate

the information rent for each bidder. In reality these information may not be readily

available to the seller, so a more realistic approach would be a detail-free mechanism like

the second-price auction.

In this section we assume the seller chooses a period to run a second-price auction

(with no reserve price). In contrast to Theorem 3.1 in a second-price auction the seller

might want to run in the auction in the first period. We first consider a simple example

with two bidders, adopted from Simon Board’s paper [5], in which the auction always

takes place in period 1. Then we analyze an second-price auction with N bidders, in

which the seller runs the auction in period 1 if she faces high competition in period 2.
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Our first observation is that if there are two bidders, then we get the exact opposite

result of Theorem 3.1: the seller always runs a second-price auction in period 1. Simon

Board (2009) also discovered this example in the context of revealing information in

second-price auctions.

Proposition 3.4. (From Board (2009)) In a second-price auction with two bidders, seller

should always run the auction in period 1.

Proof. The expected profit from first period is equal to

REV1 = Ev min{v1 − λ1, v2 − λ2},

and the expected profit from second period is equal to

REV2 = EεEv min{v1 − λ1 − ε1, v2 − λ2 − ε2}.

Since min is concave, Jensen’s Inequality implies that REV1 ≥ REV2, so the seller should

run the auction in the first period.

At first glance Proposition 3.4 seems to contradict Proposition 3.2. Indeed, if the

value distributions are symmetric, and the seller is committed to selling the good, then

the optimal auction from Proposition 3.2 becomes a second-price auction. To highlight

this apparent contradiction, consider the symmetric case when F1 = F2. Then the optimal

auction is a second-price auction, and the Revenue Equivalence Theorem implies that

Ev min{v1 − λ1, v2 − λ2} = Ev max{MR11(v1),MR12(v2)}.

Hence in period 1 the revenue from Proposition 3.4 and Proposition 3.2 are exactly the

same. Why should the seller run a second-price auction in period 1, but wait until period

2 to run an optimal auction? The difference occurs in period 2. The period 2 auctions

in Proposition 3.2 are different from a second-price auction. In period 2, outside options

make bidders’ distributions asymmetric; even if all Fi are identical, the εi are different.

Under asymmetric distributions, in a second-price auction the seller may not allocate

the good to the bidder with the highest marginal revenue. As a result a second-price

auction yields less profit than an optimal auction in period 2, and the seller wants to run

a second-price auction in period 1.

We now consider the case with more than two bidders. Then the seller might run the

auction in either period 1 or period 2, depending on the distribution of buyers’ outside
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options. Similar to the intuition for an optimal auction with waiting cost, if the seller

expects many buyers to find great outside option in period 2, then she will run the auction

in period 1. Moreover information rent could increase in the second period. We illustrate

these facts through an example.

Example 3.5. We illustrate how the seller’s optimal timing depends on the buyers’ depar-

ture rate. Suppose all buyers draw their value from U [0, 1]. All buyers have an expected

future outside option equal to λi = λ for all i. Moreover in the second period outside

options are either 0 or 1. Unlike in Example 3.3, we now assume that buyers’ outside op-

tions are correlated. In particular, exactly a fraction λ of the buyers (selected at random)

find an outside option equal 1, so in the second period λN buyers leave the auction. The

remaining (1−λ)N buyers have outside option 0. In this example λ represents the buyers’

departure rate: large λ corresponds to a high departure rate, and low λ corresponds to a

low departure rate.

In the first period the efficiency, information rent, and revenue are as follows:

E1(λ) = N

∫ 1

λ

vN−1(v − λ)dv =
N

N + 1
+

λN+1

N + 1
− λ

I1(λ) = N

∫ 1

λ

vN−1(1− v)dv =
1

N + 1
− λN +

N

N + 1
λN+1

R1(λ) = E1(λ)− I1(λ) =
N − 1

N + 1
(1− λN+1)− λ+ λN

In the second period the efficiency, information rent, and revenue become

E2(λ) =
(1− λ)N

(1− λ)N + 1

I2(λ) =
1

(1− λ)N + 1

R2(λ) =
(1− λ)N − 1

(1− λ)N + 1

We can easily check that E1(λ)−E2(λ) ≤ 0 and I1(λ)− I2(λ) ≤ 0 for all λ ∈ [0, 1], which

means efficiency and information rent both increase in the second period. For the change

in revenue we have R1(λ)−R2(λ) is convex in λ. Moreover we know that R1(0)−R2(0) = 0

and R1(1)−R2(1) > 0, so there exists a λ∗ such that R1(λ)−R2(λ) < 0 for all λ < λ∗, and

R1(λ) − R2(λ) > 0 for all λ > λ∗. Therefore revenue increases for small values of λ, but

decreases for large values of λ. Figure 1 illustrates the change in efficiency, information

rent, and revenue.

13



λ

R1(λ)−R2(λ)

E1(λ)− E2(λ)

I1(λ)− I2(λ)

0 1λ∗

Figure 1: Changes in efficiency, information rent, and revenue

Figure 1 shows that both efficiency and information rent increase in the second period.

On the other hand revenue could either increase or decrease. If λ < λ∗, then revenue

increases, so the seller waits until period 2. If λ > λ∗, then revenue decreases, and the

seller runs the auction in period 1. Intuitively, if the departure rate is high, the seller is

facing a lot of competition in the future. Many houses will appear on the market, and

existing bidders will leave, so the seller prefers to run the auction sooner. Hence when λ

is close 1, the departure rate is high, and the seller should run the auction in period 1;

otherwise she should wait until period 2.

4 Discussion

4.1 Information disclosure

We set up our model in terms of optimal timing: period 1 is a shorter deadline, and period

2 is a longer deadline. However our model concerns little about the time structure and

focuses more on the information structure. Between the two periods, the only change is

the bidders’ outside options, so we can reinterpret our model as an information disclosure

problem. The seller decides whether to allow the bidders to acquire more information

about their outside options. A shorter deadline corresponds to no information disclosure,

and a longer deadline corresponds to full information disclosure.

We can reformulate our results in Section 3 in the language of information disclosure.

Theorem 3.1 and Proposition 3.2 state that in an optimal auction the seller should fully

reveal all the information, while Proposition 3.4 says that in a second-price auction with

two bidders the seller should reveal no information. Example 3.5 on the other hand

suggests that in general a seller might reveal no information in a second-price auction if

14



the signals have a large variance.

We now discuss how our results connects to the relevant literature on revealing infor-

mation in auctions.

4.1.1 Milgrom and Weber (1982)

Milgrom and Weber (1982) is one of the seminal papers on revealing information in auc-

tions. They proposed a Linkage Principle, which says the auctioneer should always reveal

all her information to the bidders. Our setting differs from the Linkage Principle in two

ways. First outside options make distributions asymmetric, and second the allocation

changes from the first period to the second period. Moreover in Milgrom and Weber

(1982), revealing information decreases the information rent, but in our case the informa-

tion rent could go up (and efficiency goes up even more).

Consider a simple example. Suppose there are two bidders. In period 1, the high

bidder submits 100, and the low bidder submits 50. Milgrom and Weber (1982) would

say that in period 2, the high bidder might submit 80 and the low bidder 70. Waiting

until period 2 brings the bids closer and thereby raises the second price. In our setting,

however, in period 2 the high bidder might find a great outside option and bid lower than

the low bidder, so the allocation could change.

4.1.2 Board (2009)

Board (2009) studies revealing information in second-price auctions. He showed that

for two bidders the seller reveals no information (same as Proposition 3.4), but for a

sufficiently large number of bidders the seller should always reveal information (under

some regularity conditions). We also find that the two-bidder case presents a knife-edge

result in which the seller always runs the auction in period 1. In general the seller waits

until period 2 unless λ is sufficiently high, which means the outside options have a large

variance.

The result of “never waits” for two bidders stands in contrasts with the result of

“always waits” for the optimal auction (even if there are two bidders). Although for sym-

metric bidders the optimal auction is equivalent to a second-price auction, in period 2

the bidders get different outside options and therefore become asymmetric. As aforemen-

tioned in Section 3.2 this asymmetry in period 2 differentiates the “never waits” result

for second-price auction with two bidders with the “always waits” result for the optimal

auction.

15



4.1.3 Bergemann and Pesendorfer (2007); Eso and Szentes (2007)

In Bergemann and Pesendorfer (2007) the bidders cannot observe their own values, and

the seller reveals signals for bidders to learn their value. They showed that the optimal

signal structure is a partition of [vi, vi] for each bidder i, and bidder i can observe which

interval of the partition his value falls in, but cannot observe his exact value. In particular,

if there is only one bidder, the seller reveals no information: the partition is just the whole

interval. In our language, Bergemann and Pesendorfer (2007) suggest that if there is only

one bidder, the seller would use a posted price v−λ in period 1. In contrast Theorem 3.1

says the seller waits until period 2 and proposes max{v − λ− ε, 0} instead of v − λ.

Eso and Szentes (2007) study a situation similar to our setting. The bidders first draw

their raw value vi, but their actual value also depends on another parameter ε, which the

seller could choose to release. In their model revealing ε is the optimal strategy for the

seller. In our setting the outside option ε is common knowledge, whereas in their setting

the signal ε is unobservable to the seller. In the case when outside options are the bidders’

private information, the seller could run a handicap auction proposed by Eso and Szentes

(2007), which we will further discuss in Section 4.3.

We now present an example with one bidder to highlight the connections between

Theorem 3.1, Bergemann and Pesendorfer (2007), and Eso and Szentes (2007).

Example 4.1. There is one bidder. His value v is drawn from U [−1, 1]. In period 1 neither

the seller nor the buyer knows v. In period 2 both the seller and the buyer observe v.

There is no outside option in either periods. (This set-up is equivalent to saying the buyer

has value 0 and an outside option from U [−1, 1].) What’s the maximal profit the seller

can extract?

Theorem 3.1 states the seller should do nothing in period 1 and post a price v in

period 2. Indeed, in period 1, the seller can only post price 0, so her expected profit is 0.

In period 2 the seller posts price v and earns an expected profit of
∫ 1

0
1
2
v · dv = 1

4
.

Bergemann and Pesendorfer (2007) would say the seller gets 0. The seller immediately

sells in period 1, so the best she can do is to post a price equal to the expected value of

v, which is 0.

Eso and Szentes (2007) would propose the following mechanism. In period 1 the seller

sells a European call option at price 1
4
, and in period 2 the buyer can purchase the object

at a strike price 0. The bidder is willing to buy this call option because his expected payoff

in period 2 is equal to
∫ 1

0
1
2
v · dv = 1

4
. In period 1 he is willing to pay up to 1

4
for this call

option with strike price 0. Notice the price in period 2 is still 0, but unlike in Bergemann
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and Pesendorfer (2007), the seller now takes advantage of the bidder’s uncertainty in

period 1. Notice that for Eso and Szentes (2007) the seller achieve the same profit as

Theorem 3.1, but their mechanism does not require the seller to know buyers’ values in

period 2. In Section 4.3 we show how their mechanism works for multiple bidders.

4.2 Optimal dynamic mechanism

Theorem 3.1 assumes the seller chooses a specific period to run an auction. More generally,

the seller could use any dynamic mechanism. For example, she could set a high reserve

price in period 1, and if no one submits a bid, she lowers the reserve price to period 2. It

turns out that such a tactic is not helpful, because the bidders would strategically wait.

The optimal dynamic mechanism is to do nothing in period 1 and run an optimal auction

in period 2.

We define a dynamic mechanism as follows. There are N bidders. In period 1, bidder

i privately observes his value vi and chooses whether to report vi. If he does not report

his value in period 1, then he must report his value in period 2.

As before, outside option λ̂i is realized in period 2. In period 1 bidder i only knows that

that λ̂i has mean λi, and in period 2 he observes λ̂i = λi+εi and reports εi. The individual

rationality (IR) constraint must be satisfied for both periods. The IR constraints imply

that the mechanism must guarantee bidder i at least λi in period 1 (if he makes a report)

and at least λi + εi in period 2.

The seller can allocate the good and make transfers in both period 1 and period 2.

Suppose bidders i1, . . . , ik report their values in period 1. A mechanism consists of the

following four functions for each bidder i:

• X1i(vi1 , . . . , vik): allocation in period 1 based on reported values

• T1i(vi1 , . . . , vik): transfer in period 1 based on reported values

• X2i(v1, . . . , vN ; ε1, . . . , εN): allocation in period 2

• T2i(v1, . . . , vN ; ε1, . . . , εN): transfer in period 2.

The mechanism must satisfy IR and IC whenever the bidders make a report. In particular,

if a bidder makes a report in period 1, then his IC constraint must take into account of

his period 1 payoff as well as his expected payoff in period 2.

Theorem 4.2. The optimal dynamic mechanism is to make no allocation in period 1 and

run an optimal auction in period 2.
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We defer the proof to the appendix. Here is the intuition. In equilibrium all bidders

report their value in period 1; otherwise we can assume they report in period 1, but the

seller ignored this information. We can also assume that the seller makes transfers at the

end of period 2 because both the seller and the bidders are risk-neutral. Buyers announce

their types in period 1, and all transfers are made in period 2, so the only dynamic nature

of this problem is that the seller could potentially allocate the good in period 1. We

basically have to prove that the seller always allocates the good in period 2. If there

is only one bidder, then Eso and Szentes (2015) imply that the dynamic nature of this

problem is irrelevant. In our setting their “irrelevance result” extends to multiple bidders.

The seller allocates the good and makes transfers all in period 2.

4.3 Seller cannot observe ε.

So far we have assumed that the seller can observe the bidders’ outside options: ε is

common knowledge in period 2. In reality outside options could be the bidders’ private

information, so the second period auction generates less profit than our model predicts,

and therefore waiting may not be optimal as Theorem 3.1 suggests.

In this section we show that even if the seller doesn’t know ε, she can achieve the same

profit as the optimal auction in Theorem 3.1, as long as (1 − Fi)/fi is decreasing for all

i. The seller can use a handicap auction introduced by Eso and Szentes (2007).

If there is only one bidder, the handicap auction is equivalent to a European call

auction. For an intuitive explanation of how this European call auction could extract all

the surplus, see Example 4.1. In general the handicap auction goes in three steps:

1. In period 1, bidder i reports vi and pays ci(vi).

2. In period 2, the seller runs an second-price auction with no research price.

3. Winner of the period 2 auction pays an additional premium equal to 1−Fi(vi)
fi(vi)

.

In period 1 the seller has to design a payment rule ci. In the case of one bidder, ci is the

price of the call option. In period 2 the allocation is the same as before; the mechanism

allocates the good to the highest marginal revenue bidder as in Theorem 3.1). Indeed, in

period 2 bidder i’s value is vi − λ̂i, but he has to pay an additional premium of 1−Fi(vi)
fi(vi)

in case he wins. As a result bidder i’s adjusted value is vi − λ̂i − 1−Fi(vi)
fi(vi)

, which is equal

to his marginal revenue. He will not bid more than his marginal revenue. If he wins the

auction, his payoff is equal to vi − λ̂i − 1−Fi(vi)
fi(vi)

minus the second highest bid. If he loses
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the auction, he gets 0. Therefore the handicap auction allocates the good to the bidder

with the highest marginal revenue.

We are left to solve for an incentive compatible ci and check the bidders have the same

payoffs as before:

πi(vi) = max
v′i

Eλ̂Ev−i max{vi − λ̂i −
1− Fi(v′i)
fi(v′i)

− 2nd-price, 0} − ci(v′i).

The 2nd-price does not depend on vi or v′i, so the single crossing condition is equivalent

to (1− Fi)/fi is decreasing. Envelope Theorem implies that

πi(vi) = Eλ̂Ev−i
∫ vi

0

1

(
x− λ̂i −

1− Fi(x)

fi(x)
− 2nd-price ≥ 0

)
dx,

which is the same as in the optimal auction in period 2. Indeed, in the optimal auction,

bidder i’s payoff is also given by the integral envelope formula above. Hence the seller

can achieve the same profit even if she doesn’t now the outside options.

Note: we have

ci(vi) = Eλ̂Ev−i max{vi − λ̂i −
1− Fi(vi)
fi(vi)

− 2nd-price, 0}−

Eλ̂Ev−i
∫ vi

0

1

(
x− λ̂i −

1− Fi(x)

fi(x)
− 2nd-price ≥ 0

)
dx,

where 2nd-price is equal to max{v−i − λ̂−i − 1−F−i(v−i)
f−i(v−i)

, 0}. These calculations follow

from Proposition 2 in Eso and Szentes (2007). Essentially the seller uses ci to screen the

buyers’ valuations in period 1. Since in period 1 the buyers do not know λ̂, they cannot

extract any information rent from λ̂. Therefore the seller can achieve the same profit as

in Theorem 3.1 even if she cannot observe the buyer’s outside options.

5 Conclusion

We analyzed the optimal choice of an auction deadline through a two-period model.

We found that for the optimal auctions the seller always sets a longer deadline, but for

the second-price auction the seller might choose a shorter deadline if she expects high

departure rate (i.e. a fierce competition) in the future. Moreover we showed that we

can without loss of generality assume the seller commits a date to run the auction; the

optimal dynamic mechanism is to set a longer deadline and run the optimal auction in
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the last period. Our results have many analogs in the literature on information disclosure

in auctions, which suggests there is potentially a connection between optimal timing and

optimal information structure.
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A Efficiency and Information Rent

In Theorem 3.1 we used a convexity argument to prove that revenue increases in the

second period. Can we apply the same argument to study efficiency and information

rent? Unfortunately the answer is no. The highest marginal revenue is a convex function,

but same property fails for efficiency and information rent. They are neither convex nor

concave, so we can’t conclude either increase or decrease.

Consider a simple example with only two bidders. Figure 2 illustrates the marginal

efficiency (ME), marginal information rent (MI), and the marginal revenue (MR) for an

optimal auction. The horizontal axis is the first bidder’s outside option λ̂1, and the vertical

axis the second bidder’s outside option λ̂2. We fix (v1, v2) and calculate the ME, MI, and

MR for each (λ̂1, λ̂2). The solid lines partition the first quadrant into three regions: bidder

1 gets the good; bidder 2 gets the good, and neither gets the good. We see that MR is

convex, but ME and MI are neither convex nor concave. As a result we cannot obtain

the analogs of Theorem 3.1 for efficiency and information rent.

λ̂1

λ̂2

v2 − 1−F2(v2)
f2(v2)

v1 − 1−F1(v1)
f1(v1)

ME = 0
MI = 0
MR = 0

ME = v2 − λ̂2
MI = 1−F2(v2)

f2(v2)

MR = v2 − λ̂2 − 1−F2(v2)
f2(v2)

ME = v1 − λ̂1
MI = 1−F1(v1)

f1(v1)

MR = v1 − λ̂1
−1−F1(v1)

f1(v1)

v1 − 1−F1(v1)
f1(v1)

− v2 + 1−F2(v2)
f2(v2)

Figure 2: Optimal auction: (marginal) efficiency, information rent, and revenue
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B Proof of Theorem 4.2

In equilibrium, all bidders report their values in period 1. Suppose bidder i reports in

period 2. In equilibrium she must report her true value in period 2 for all realizations of

ε, so we can assume she reports in period 1, but the seller didn’t use that information in

period 1.

Now we can simplify the mechanism as follows. Let v = (v1, . . . , vN) and ε =

(ε1, . . . , εN). A mechanism consists of four functions for each bidder i:

X1i(v), T1i(v), X2i(v, ε), T2i(v, ε).

Since there is only one object, the allocation rule must satisfy

N∑
i=1

X1i(v) +
N∑
i=1

X2i(v, ε) ≤ 1 ∀ε. (B.1)

Let P1i(vi) =
∫
v−i

X1i(vi, v−i) · dv−i denote bidder i’s chance of winning the object in

period 1. Let T1i(vi) =
∫
v−i

T1i(vi, v−i) · dv−i denote bidder i’s expected transfer in period

1. Let P2i(vi, ε) =
∫
v−i

X2i(vi, v−i; ε) · dv−i denote bidder i’s chance of winning the object

in period 2. Let T2i(vi, ε) =
∫
v−i

T2i(v2, v−i; ε) · dv−i denote bidder i’s expected transfer in

period 2.

The incentive constraint is as follows:

S(vi) = max
v′i

[P1i(v
′
i)·vi−T1i(v′i)]+Eε[P2i(v

′
i, ε)·vi−T2i(v′i, ε)+(1−P1i(v

′
i)−P2i(v

′
i, ε))·(λi+εi)].

IR must hold for each period:

P1i(vi) · vi − T1i(vi) ≥ λi

P2i(vi, ε) · vi − T2i(vi, ε) ≥ λi + εi ∀ε.

The envelope formula implies that

Si(vi) = Si(vi) +

∫ v

vi

P1i(x) · dx+ Eε
∫ v

vi

P2i(x, ε) · dx

= λi +

∫ v

vi

P1i(x) · dx+ Eε
∫ v

vi

P2i(x, ε) · dx.
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The seller’s profit from type vi is equal to

πi(vi) = T1i(vi) + EεT2i(vi, ε)

= P1i(vi) · (vi − λi) + Eε[P2i(vi, ε) · (vi − λi − εi)]− (Si(vi)− λi)

= P1i(vi) · (vi − λi) + Eε[P2i(vi, ε) · (vi − λi − εi)]−
∫ v

vi

P1i(x) · dx− Eε
∫ v

vi

P2i(x, ε) · dx

=

[
P1i(vi) · (vi − λi)−

∫ v

vi

P1i(x) · dx

]
+ Eε

[
P2i(vi, ε) · (vi − λi − εi)−

∫ v

vi

P2i(x, ε) · dx

]
.

Hence the seller’s expected profit from bidder i is equal to∫ vi

vi

πi(vi) · dvi =

∫ vi

vi

[MR1i(vi) · P1i(vi) + EεMR2i(vi, εi) · P2i(vi, ε)] · dvi.

For each v the seller chooses P1i(vi) and P2i(vi, ε) to maximize

N∑
i=1

MR1i(vi) · P1i(vi) + Eε
N∑
i=1

MR2i(vi, εi) · P2i(vi, ε).

From (B.1) we know that for any ε we have

N∑
i=1

P1i(vi) + P2i(vi, ε) ≤ 1.

If maxiMR1i(vi) ≤ 0 for all i, then the seller should not allocate the object in period 1.

If maxiMR1i(vi) > 0 for some i, then without less of generality assume bidder 1 has the

highest MR, and let P1 denote P11(v1). Then in period 2, the seller should allocate the

object to the highest MR (if it’s positive) with probability 1−P1. The seller’s total profit

is equal to

P1·max{MR11(v1), . . . ,MR1N(vN), 0}+(1−P1)·Eε max{MR21(v1, ε1), . . . ,MR2N(vN , εN), 0}.

By Theorem 3.1 we know that the seller should set P1 = 0. The seller allocates the object

to the highest MR in period 2 (if it’s positive). Therefore the optimal mechanism is to do

nothing in period 1 and run an optimal auction in period 2.
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