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1 Introduction

Random search models have become one of the main workhorses of the applied literature on

individual wages, job assignment and mismatch between heterogeneous workers and jobs. A

standard assumption in these models is that agents are characterized by one-dimensional het-

erogeneity: for instance workers differ in ability and jobs in productivity.1 This restriction to

one-dimensional heterogeneity is at odds with the simple observation that typical data sets de-

scribe both workers and jobs in terms of many different productive attributes (e.g. cognitive

skills, manual skills, health, or psychometric scores for workers, and task-specific skill require-

ments for jobs).2

The aim of this paper is to analyze the assignment (or sorting) of workers into jobs when

both workers and jobs differ along several dimensions. Investigating multi-dimensional sorting

in the broad class of random search models used in the applied literature is important: as we

show in this paper, approximating workers’ and jobs’ true multi-dimensional characteristics by

one-dimensional summary indices when taking those models to the data may lead to sizeable

quantitative errors and misguided policy recommendations.

We develop a theoretical framework for the analysis of multi-dimensional sorting under ran-

dom search. Our environment is that of a standard random search model, except for workers

and jobs being endowed with vectors of productive attributes, x = (x1, · · · , xX) for workers

ant y = (y1, · · · , yY ) for jobs. Employed and unemployed workers receive job offers drawn at

random from an exogenous sampling distribution of job attributes. Utility is fully transfer-

able: workers and firms are joint surplus maximizers. The fact that agents base their decision

whether to accept a job on a scalar value (i.e. the match surplus that summarizes all underlying

multi-dimensional heterogeneity) is key to the tractability of our multi-dimensional problem.

In order to be able to describe and interpret the assignment patterns that arise in equilibrium,

we begin by offering notions of positive assortative matching (PAM) and negative assortative

matching (NAM) in this environment. Our proposed notion is based on first-order stochastic

dominance ordering of the marginal distributions of job attributes across workers with different

skills: if a worker with a higher endowment of some skill xk is matched to jobs with ‘better’ (in
1A recent exception is the applied paper by Lise and Postel-Vinay (2015), who focus on the accumulation

of skills along various dimensions within a model that can otherwise be seen as a special case of the theoretical
framework we develop here.

2Beyond search models, a growing applied literature takes explicit account of these multiple dimensions of
productive heterogeneity. Recent examples include Yamaguchi (2012), Sanders (2012), and Guvenen et al. (2015).
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the first-order stochastic dominance sense) attributes yj , then PAM occurs in dimension (xk, yj).

It is important to note that sorting is thus defined dimension by dimension, meaning that PAM

can arise in one particular dimension while NAM occurs in another.

Using this definition of sorting, we present three main sets of results. The first one is about

the sign of sorting : we provide conditions on the economy’s primitives under which positive

(or negative) sorting arises in equilibrium. For ease of exposition and clarity of interpreta-

tion, in much of our analysis we focus on a baseline setting that features bilinear technology,

two-dimensional heterogeneity on the job side, sequential auction wage setting, and in which

employment in any job is always preferable to unemployment (i.e. all possible matches generate

positive surplus) — all assumptions that we can and will relax. In this baseline case, we find that

matching in, say, dimension (x1, y1) is positive assortative if and only if the technology satisfies

a single crossing condition implying that the complementarity between worker skill x1 and job

attribute y1 dominates complementarity in the competing dimension (x1, y2). This condition is

distribution-free: it only involves restrictions on the production technology.

We extend the analysis to more general cases where (1) not all possible matches generate

positive surplus (implying that there is an active nonemployment-to-employment margin), (2)

heterogeneity on the job side is of dimension higher than two, and (3) the technology is monotone

in at least one job attribute but not necessarily bilinear. We provide characterizations of sorting

in these more general environments but, besides single-crossing of the technology, the conditions

for sorting involve complex interactions between the technology and sampling distribution of

jobs. We also show that these results do not hinge on the sequential auctions wage setting but

hold for several other commonly used wage setting protocols like Nash bargaining, sequential

auctions with worker bargaining power, and wage posting.

Our second set of results shows that our model predicts sorting on specialization rather than

absolute advantage. This arises naturally with multi-dimensional skills because workers with

different skill bundles do not rank jobs in the same way. As a consequence, uniformly more

skilled workers do not sort into jobs with uniformly higher skill requirements: rather, they sort

into jobs with a higher requirement for the skill in which they are relatively strong, but with a

lower requirement in the other skill.

Our third set of results are quantitative. We simulate data from a two-dimensional model

with bilinear technology that complies with our theory. We then fit a misspecified one-dimensional

model to those data and compare its predictions on complementarities in technology, sorting and
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mismatch to the true two-dimensional model. We find that the misspecified model can suggest

fallacious conclusions, especially when the true technology features complementarities between

worker and job attributes in some dimensions and substitutabilities in others. In such settings,

the one-dimensional model produces sign-varying estimates of the complementarities in produc-

tion as well as sorting patterns that bear little resemblance to the truth. As a consequence, the

one-dimensional model over-estimates mismatch (measured by the aggregate output difference

between frictional and frictionless first-best allocation) and suggests a first-best allocation that

is very far from the true first-best under multi-dimensional types. Implementing the (fallacious)

first-best allocation suggested by the misspecified one-dimensional model can cause sizeable

welfare losses.

From those results we draw four main conclusions. First, sorting arises in our model only

due to multi-dimensional heterogeneity. In a comparable one-dimensional model, where match

surplus σ(x, y) depends on scalar worker type x and job type y and is increasing in y, workers

all rank jobs in the same way, regardless of their own type x: their common strategy is to accept

any job with a higher y than their current one. This common strategy rules out sorting. In

contrast, in the multi-dimensional world where every worker is endowed with a skill bundle, what

matters is not just to match with a productive job in any dimension, but also to match with

a job requiring much of the skill in which the worker is relatively strong. Thus, workers with

different skill bundles accept and reject different types of jobs, which is why sorting arises.

Second, in all of the environments that we study, the central force toward sorting is an intu-

itive single-crossing condition on the technology, guaranteeing strong complementarities between

worker and job attributes. This holds true independent of whether the conditions for sorting

also involve restrictions on the sampling distribution or not.

Third, and contrary to well-known results on one-dimensional sorting both in frictionless

and/or frictional environments, the conditions for multi-dimensional sorting are generally not

distribution-free. In particular, when jobs have more than two characteristics, the conditions

for sorting involve interactions between technology and the sampling distribution of jobs.

Last, our results have important implications for applied work. In our simulation exercises,

we show that one can make substantial qualitative and quantitative errors by assuming that the

data is one-dimensional when it is in fact multi-dimensional.

While much is known about sorting and conditions under which it obtains under one-

dimensional heterogeneity with and without frictions, little is known about sorting on multi -
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dimensional types, especially in frictional environments:3 To the best of our knowledge, this

paper is the first to analyze multi -dimensional sorting under random search — an environment

of great importance for applied work. Perhaps most importantly, we show that accounting

for multi-dimensional heterogeneity is fundamental to the analysis of sorting: collapsing multi-

dimensional job and worker attributes to a single summary index when the true data is multi-

dimensional significantly distorts both the qualitative and quantitative conclusions about sorting

and mismatch.

The rest of the paper is organized as follows: Section 2 introduces our model. Section 3

provides a definition of sorting in the multi-dimensional space under random search. Section

4 contains our main results on the sign of sorting, which we first establish within our baseline

bilinear setting (4.1), then extend to more general cases (4.2). Section 5 investigates sorting

on absolute advantage vs specialization. Section 6 contains our simulation exercise. Section 7

places the contribution of this paper into the literature and Section 8 concludes.

2 The Model

2.1 The Environment.

Time is continuous. The economy is populated by infinitely lived, forward looking workers and

firms. There is a fixed unit mass of workers that are characterized by time-invariant skill bundles

x = (x1, · · · , xX) ∈ X ⊂ RX
+ (X denotes the number of skills in the workers’ skill bundle), drawn

from an exogenous distribution L(·), with density ℓ(·). Without loss, we normalize the lower

support of worker skills to 0 in every dimension. Firms can either be thought of as single

jobs (possibly vacant), or as collections of independent, perfectly substitutable jobs. Jobs are

characterized by a vector of productive attributes, or “skill requirements” y = (y1, · · · , yY ) ∈

Y =×Y
j=1[yj , yj ], where Y denotes the number of different job attributes and where y

j
∈ R+ and

yj ∈ R+ ∪ {+∞}.4 Job attributes are also time-invariant and are drawn from some distribution

Γ(·), with density γ(·). We assume that γ has strictly positive mass over its entire support,

Supp γ = Y.5

3For frictionless sorting under transferable utility, see Becker (1973), for frictionless sorting under non-
transferable utility, see Legros and Newman (2007), for sorting under random search and transferable utility,
see Shimer and Smith (2000) and under non-transferable utility Smith (2006). See Lindenlaub (2014) for a TU
framework of multi-dimensional sorting without frictions. We will discuss the related literature in detail below.

4The restriction to x and y having nonnegative elements is not strictly necessary for the analysis. It only
makes some of the economic interpretations more natural.

5The purpose of this assumption is to ensure that the support of γ is a lattice under the natural (component-
wise) partial order in Rn, which is a technical requirement for some of our proofs. In particular, this restriction
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We denote a generic skill from the worker’s skill bundle by xk where k ∈ {1, · · · , X} and a

generic skill requirement by yj where j ∈ {1, · · · , Y }. The output flow associated with a match

between a worker with skills x and a job with skill requirements y (a type-(x,y) match) is

f(x,y), where f : RX × RY −→ R.6 The income flow generated by a nonemployed worker is

denoted b(x).

Lindenlaub (2014) develops a multi-dimensional matching model that is static and friction-

less. In this paper, we examine the properties of a multi-dimensional dynamic model when the

labor market is affected by search frictions and workers search for jobs at random, both off and

on the job. Workers can be matched to a job or be unemployed. If matched, they lose their job

at rate δ, and sample alternate job offers with requirements drawn from the fixed sampling dis-

tribution Γ, at Poisson rate λ1. Unemployed workers sample job offers from the same sampling

distribution at rate λ0. There is no capacity constraint on the firm side (firms are happy to hire

any worker with whom they generate positive surplus) and matched jobs do not search for other

workers. As such, this set-up is really a (partial equilibrium) model of the labor market rather

than one of a symmetric, one-to-one matching market such as the marriage market.

2.2 Rent Sharing and Value Functions

Preferences are linear and firms and workers have equal time discounting rate ρ. Under those

assumptions, the total present discounted value of a match between a type-x worker and a type-

y firm is independent of the way in which it is shared, and only depends on match attributes

(x,y). We denote this value by P (x,y). We further denote the value of unemployment by

U(x), and the worker’s value of his current wage contract by W , where W ≥ U(x) (otherwise

the worker would quit into unemployment), and W ≤ P (x,y) (otherwise the firm would fire

the worker). Assuming that the employer’s value of a job vacancy is zero (which would arise

under free entry and exit of vacancies on the search market), the total surplus generated by a

type-(x,y) match is P (x,y)− U(x).

We assume in the main body of this paper that wage contracts are renegotiated sequentially

by mutual agreement, as in the sequential auction model of Postel-Vinay and Robin (2002).

This is (mostly) for simplicity of exposition, and we show in Appendix B that the vast majority

is needed for several results when Y ≥ 3, as will become clear in the proofs of Theorems 6 and 7.
6Note that we require that the production function be defined over the entire space RX ×RY , not just the set

X × Y of observed (x,y). This requirement is there to streamline some of the arguments in the proofs and can
be relaxed. Details are available upon request.
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of our results extend to other popular wage setting models, notably Nash bargaining (Mortensen

and Pissarides, 1994; Moscarini, 2001), wage/contract posting (Burdett and Mortensen, 1998;

Moscarini and Postel-Vinay, 2013), or sequential auctions with worker bargaining power (Cahuc,

Postel-Vinay and Robin, 2006).

In the sequential auction model, workers have the possibility of playing off their current

employer against any firm from which they receive an outside offer. If they do so, the current

and outside employers Bertrand-compete over the worker’s services. Consider a type-x worker

employed at a type-y firm and assume that the worker receives an outside offer from a firm

of type y′. Bertrand competition between the type-y and type-y′ employers implies that the

worker ends up in the match that has higher total value — that is, he stays in his initial job if

P (x,y) ≥ P (x,y′) and moves to the type-y′ job otherwise — with a new wage contract worth

W ′ = min {P (x,y), P (x,y′)}.

Under this rent-sharing protocol, the total value of a match between a type-x worker and a

type-y firm, P (x,y), solves:

ρP (x,y) = f(x,y) + δ [U(x)− P (x,y)] .

The annuity value of the match, ρP (x,y), equals the output flow f(x,y) plus the capital loss

[U(x)− P (x,y)] of the firm-worker pair if the job is destroyed (with flow probability δ).7

Match surplus P (x,y) − U(x) thus solves (ρ + δ) [P (x,y)− U(x)] = f(x,y) − ρU(x). In

what follows, we will mostly reason in terms of the match flow surplus:

σ(x,y) = f(x,y)− ρU(x).

As we just saw, a worker’s decision to accept or reject a job offer hinges on comparisons of

match surpluses: a type-x worker employed in a type-y job accepts an offer from a type-y′ job

if and only if P (x,y′)−U(x) > P (x,y)−U(x). This is equivalent to σ(x,y′) > σ(x,y), so that

mobility decisions are based on the comparison of flow surpluses.8

Finally note that, in the sequential auction case, the value of unemployment, U(x), is simply
7Note that, under the sequential auction model, the realization the “other” risk that the firm-worker pair faces,

namely the receipt of an outside job offer by the worker, generates zero capital gain for the match: either the
worker rejects the offer and stays the match, in which case the continuation value of the match is still P (x,y),
or the worker accepts the offer and leaves the match, in which case he receives P (x,y) while his initial employer
is left with a vacant job worth 0, so that the initial firm-worker pair’s continuation value is again P (x,y).

8Likewise, a type-x unemployed worker accepts any type-y offer such that σ(x,y) ≥ 0.
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given by ρU(x) = b(x), implying σ(x,y) = f(x,y)− b(x).

2.3 Steady-state Distribution of Skills and Skill Requirements.

Let h(x,y) denote the measure of type-(x,y) matches. This is determined in steady state by

the following flow-balance equation:

{
δ + λ1E

[
1
{
σ(x,y′) > σ(x,y)

}]}
h(x,y) = λ0γ(y)1 {σ(x,y) ≥ 0}u(x)

+ λ1γ(y)

∫
1
{
σ(x,y) > σ(x,y′)

}
h(x,y′)dy′, (1)

where u(x) is the measure of type-x unemployed workers in the economy. The l.h.s. of (1) is the

outflow from the stock of type-(x,y) matches, comprising matches that are destroyed (at rate

δ) and matches that are dissolved following receipt of a dominant outside offer by the worker.

The flow probability of this latter event is λ1E [1 {σ(x,y′) > σ(x,y)}], the product of the arrival

rate of offers λ1 and the probability of drawing a job type y′ that yields a higher flow surplus

with the worker than the current type-y job. The r.h.s. of (1) is the inflow into the stock of

type-(x,y) matches. It is made up of those of the u(x) unemployed type-x workers who draw

a type-y job (flow probability λ0γ(y)) and accept it if the associated flow surplus is positive

(1 {σ(x,y) ≥ 0}), plus those of the h(x,y′) type-x workers employed in any type-y′ job who

draw an offer from a type-y job (flow probability λ1γ(y)), which they accept if the flow surplus

with that job exceeds the one with their initial type-y′ job. The measure of type-x unemployed

workers solves a similar (and similarly interpreted) flow-balance equation:

λ0E [1 {σ(x,y) > 0)}]u(x) = δ

∫
h(x,y′)dy′. (2)

Finally note that, consistently with (1) and (2), the total measure of workers with skill bundle

x in the economy solves ℓ(x) = u(x) +
∫
h(x,y′)dy′.

The following important remarks can be made at this point: the acceptance rule of an

offer received by a worker in a type-(x,y) match hinges on the comparison of two scalar random

variables, σ(x,y′) and σ(x,y), despite the underlying multi-dimensional heterogeneity of workers

and firms. It is therefore convenient to introduce the conditional sampling distribution Fσ|x of

σ(x,y), given x. With this notation, the acceptance probability for an employed worker writes
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as E [1 {σ(x,y′) > σ(x,y)}] = F σ|x (σ(x,y)).9 The acceptance probability of an unemployed

worker is similar: E [1 {σ(x,y′) > 0)}] = F σ|x(0).

Substituting these elements into (1), we show in the Appendix that the matching distribution

h(x,y) has the following closed-form:

h(x,y)

ℓ(x)γ(y)
=

δλ01 {σ(x,y) ≥ 0}
δ + λ0F σ|x(0)

×
δ + λ1F σ|x(0)[

δ + λ1F σ|x (σ(x,y))
]2 .

This equation also implies that the equilibrium conditional distribution of job types y given

worker types x among employed workers is given by:

h (y|x) = δ1 {σ(x,y) ≥ 0}
F σ|x(0)

×
[
δ + λ1F σ|x(0)

]
γ(y)[

δ + λ1F σ|x (σ(x,y))
]2 =

G′
σ|x (σ(x,y))

F ′
σ|x (σ(x,y))

× γ(y), (3)

where for any s ∈ R:

Gσ|x(s) := 1−
δ + λ1F σ|x(0)

F σ|x(0)
×

F σ|x(s)

δ + λ1F σ|x(s)

is the steady-state cross-section distribution of flow surplus among employed workers of type x.

3 Equilibrium Sorting

3.1 Measuring Sorting

Lindenlaub’s (2014) criterion for multi-dimensional assortative matching is that the Jacobian

matrix of the equilibrium matching be a P -matrix. This criterion captures the way in which

a worker’s job type y improves or deteriorates as one varies the worker’s skill bundle x when

matching is pure, i.e. when two workers with the same skill bundle are matched to the exact

same type of job. By contrast, in our frictional environment with random search the equilib-

rium assignment is generally not pure. A natural extension of this measure of sorting to our

environment is to consider changes in the quantiles of the conditional distribution of job types

as one varies worker type x. Formally, let Hj(y|x) denote the c.d.f. of the marginal distribution

of yj (the jth component of the vector of job attributes y) matched to employed workers with

9Throughout the paper, we use the upper bar to denote survivor functions: F (·) := 1− F (·) for any cdf F .
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skill bundle x. Using (3), we can express this as

Hj(y|x) =
∫

1 {yj ≤ y}h (y|x) dy =
δ
[
δ + λ1F σ|x(0)

]
F σ|x(0)

∫
1 {σ(x,y) ≥ 0} × 1 {yj ≤ y}[

δ + λ1F σ|x (σ(x,y))
]2 γ(y)dy.

(4)

To analyze sorting, we will be interested in the gradient of Hj(y|x), i.e.:

∇Hj(y|x) =
(
∂Hj(y|x)

∂x1
, · · · , ∂Hj(y|x)

∂xX

)⊤
(5)

for j ∈ {1, · · · , Y }. A situation of particular interest is when one of the components of this

gradient, ∂Hj(y|x)/∂xk, has a constant sign over the support of γ. If that sign is negative

[positive], then Hj(·|x) is increasing [decreasing] in xk in the sense of first-order stochastic

dominance (FOSD): a strong form of positive [negative] assortative matching then occurs in

dimension (xk, yj), as a worker with higher type-k skills is matched to a jobs with greater type-j

skill requirements (in the FOSD sense) than a worker with lower type-k skills. We will thus use

the following formal definition of sorting:

Definition 1 (Positive and Negative Assortative Matching). If ∂Hj(y|x)/∂xk is negative (pos-

itive), then matching is positive (negative) assortative in dimension (yj , xk).

We will use the acronyms PAM and NAM for positive and negative assortative matching.

Alternatively, we will also refer to PAM (or NAM) as positive (or negative) sorting. To avoid

duplication of some results, we focus on positive sorting throughout the paper, bearing in mind

that the results stated below can easily be adjusted to the case of negative sorting.

Finally, for future use, we define the joint distribution of job attribute j and match flow

surplus s, conditional on worker type x, in the population of employed workers, whose c.d.f. is:

Kj(y, s|x) =
∫

1 {yj ≤ y} × 1 {σ(x,y) ≤ s}h (y|x) dy

=
δ
[
δ + λ1F σ|x(0)

]
F σ|x(0)

∫
1 {0 ≤ σ(x,y) ≤ s} × 1 {yj ≤ y}[

δ + λ1F σ|x (σ(x,y))
]2 γ(y)dy (6)

which is the probability that a randomly chosen type-x employed worker is in a job whose jth

attribute is less than y and generates a flow surplus less than s. Note that Hj(y|x) and Gσ|x(s)

are the marginals of Kj(y, s|x), so that Kj(y,+∞|x) = Hj(y|x) and Kj(+∞, s|x) = Gσ|x(s).
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Further note that:

∂Kj(y, s|x)
∂s

= G′
σ|x(s)× PrΓ

{
y′j ≤ y|σ(x,y′) = s

}
,

where PrΓ{A} is used to denote the probability of A occurring following a random draw of a

job type y from the sampling distribution γ.

3.2 A Decomposition Result

We begin our analysis by showing how equilibrium sorting can be usefully decomposed into sort-

ing on the nonemployment-to-employment (NE) margin and on the employment-to-employment

(EE) margin.

Theorem 1. For any x ∈ X and y ∈ R:

∂Hj(y|x)
∂xk

= G′
σ|x(0)

{
PrΓ

{
y′j ≤ y|σ(x,y′) = 0

}
EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0, y′j ≤ y

]

−Hj(y|x)EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0

]}
︸ ︷︷ ︸

(1): NE margin

+

∫ +∞

0

2λ1F
′
σ|x(s)

δ + λ1F σ|x(s)
× ∂Kj(y, s|x)

∂s

×

{
EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s, y′j ≤ y

]
− EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s

]}
ds.︸ ︷︷ ︸

(2): EE margin

Theorem 1 offers a decomposition of the typical element of the gradient of Hj (y|x), which

we use to characterize sorting patterns (Definition 1).10 It highlights the fact that a marginal

increase in the worker’s skill xk affects the equilibrium distribution of job types to which this

worker is matched in two ways.

First, a marginal increase in skill xk affects the boundary of the set of profitable matches

for that worker, i.e. the set of job types y such that σ(x,y) ≥ 0. An increase in skill may

render some matches between unemployed workers and jobs profitable that were unprofitable

prior to this change. This is reflected in the first term of the expression above. This first effect
10Two important technical notes: first, here and in the rest of the paper, we use the notation EΓ to distinguish

expectations taken w.r.t. the sampling distribution Γ from expectations in the equilibrium distribution of matches,
which we simply denote by E. Second, it may be that the joint event

(
σ(x,y′) = s, y′

j ≤ y
)

on which some of the
expectations in Theorem 1 are conditioned have zero probability in γ. As explained in the proof of Theorem 1,
we set expectations conditional on zero-probability events to zero by convention.
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only works through selection on the NE margin: the first term in Theorem 1 is multiplied by

the density of marginally profitable matches for type-x workers, G′
σ|x(0). If the worker’s type

x is such that σ(x,y) > 0 for all job types y (i.e. if the worker accepts any job type when

unemployed), then there are no such marginal matches (G′
σ|x(0) = 0), and this selection on the

NE margin is shut down.

Second, a marginal increase in xk affects the sampling distribution of match surplus, Fσ|x(·)

for employed workers as well. More specifically, an increase in xk changes the terms of the

comparison between any two potential matches involving the worker: for any two job types

(y,y′), the difference σ(x,y′)−σ(x,y) varies with xk. This, in turn, changes the way employed

workers reallocate between jobs through on-the-job search. This effect, reflected in the second

term of the expression in Theorem 1, operates through selection on the EE margin.

4 The Sign of Sorting

While Theorem 1 affords a clear decomposition of sorting on the NE and EE margins, unfor-

tunately those two effects involve complex interactions between the technology σ(x,y) and the

sampling distribution of job types γ(y) and cannot easily be signed under general assumptions.

In order to make progress towards a characterization of the sign of sorting, we start the analy-

sis with a special case in which we can derive clean and (with one exception) distribution-free

conditions for positive sorting to occur in equilibrium. We then investigate generalizations.

4.1 The Case of Bilinear Technology in Two Dimensions

4.1.1 Assumptions

The following two additional assumptions simplify the decomposition in Theorem 1 considerably

and will afford distribution-free and intuitive sorting conditions.

Assumption 1. (a) The production function f(x,y) is bilinear in worker skills and job at-

tributes:

f(x,y) = (x+ a)⊤Qy =

X∑
i=1

Y∑
j=1

qij(xi + ai)yj

where Q = (qij) 1≤i≤X
1≤j≤Y

is a X × Y matrix and a = (a1, · · · , aX)⊤ ∈ RX
+ is a fixed vector;

11



(b) the nonemployment income function b(x) is linear in worker skills:

b(x) = (x+ a)⊤Qb =

X∑
i=1

Y∑
j=1

qij(xi + ai)bj

where b = (b1, · · · , bY )⊤ ∈ RY is a fixed vector;

(c) for all x ∈ X , there exists j ∈ {1, · · · , Y } such that qj(x) :=
∑X

i=1 qij(xi + ai) > 0; to fix

the notation, we will assume w.l.o.g. that qY (x) > 0.

Assumptions 1.a-b restrict the production technology in such a way that the flow surplus

function σ(x,y) is bilinear in (x,y). Indeed they imply that:

σ(x,y) = f(x,y)− b(x) = (x+ a)⊤Q(y − b) =

X∑
i=1

Y∑
j=1

qij(xi + ai)(yj − bj)

The X×Y technology matrix Q captures the complementarity structure between job and worker

characteristics relating to all types of tasks, (i, j) ∈ {1, · · · , X}×{1, · · · , Y }, and will be crucial

to our analysis of sorting. We interpret the vector b as the production technology workers have

access to when nonemployed. In turn, the vector a — or, more precisely, the vector a⊤Q —

is a technological parameter reflecting the “intrinsic returns” on job attributes y, in the sense

that a marginal increase dyj in any job attribute yj contributes a fixed amount
(∑X

i=1 aiqij

)
dyj

to job productivity regardless of the matched worker type. Alternatively, a can be interpreted

as the baseline productivity of workers, noting that a⊤Qy is the output of a type-y job filled

with the least skilled worker, x = 01×X . We will therefore refer to a as the baseline productivity

vector, which we assume to be nonnegative (Assumption 1.a). This ensures that the worker’s

total input into production, x + a, is nonnegative in all dimensions (remember that x ∈ RX
+ ).

While not strictly necessary for our analysis, this restriction ensures that our sorting results do

not change with the sign of x+ a. Finally, Assumption 1.c ensures that, for any level of worker

skills, there is at least one job attribute that impacts output positively.11 Note that we do not

impose increasing monotonicity of the production function in all of the job attributes. Nor do

we restrict the monotonicity of the production or flow surplus function σ(x,y) in worker skills x.

Next, we consider:

11Because all of the results stated below are “local” (in the sense that they hold in a neighborhood of a given
skill bundle x), the set of j’s such that qj(x) > 0 needs not be the same for all x. Yet, for notational convenience,
we relabel job attributes such that j = Y is always in that set.
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Assumption 2. Each job has Y = 2 attributes, i.e. y ∈ Y ⊂ R2
+.

The sorting results established in this subsection will rely on Assumptions 1 and 2. In the

next Subsection, we provide generalizations of our results on the sign of sorting to other surplus

functions and to higher dimensions of job heterogeneity. These generalizations, however, come

at the cost of more involved conditions for sorting.

We now investigate the sign of sorting along both the EE and the NE margin. If terms (1)

and (2) in Theorem 1 are negative, then PAM obtains on the NE and EE margin, respectively.

4.1.2 The EE Margin

The following statement is immediately implied by Theorem 1:

Corollary 1. If for all s ≥ 0 and y′ such that PrΓ {yj = y′|σ(x,y) = s} > 0,

y′ 7→ EΓ

[
∂σ(x,y)

∂xk
| σ(x,y) = s, yj = y′

]
is increasing [decreasing] (CMP)

then term (2) in Theorem 1 is negative [positive] for all y, i.e. positive [negative] assortative

matching occurs in the (yj , xk) dimension along the EE margin.

Corollary 1 implies in particular that, if the NE margin is shut down (i.e. if σ(x,y) > 0

for all y) and if condition (CMP) — our label for complementarity — holds, then the marginal

distribution of job attribute yj of employed workers of type x, Hj(·|x), is monotone with respect

to worker skill xk in the FOSD sense.

Condition (CMP) can be loosely interpreted as imposing a strong form of complementarity

(or substitutability, in the decreasing case) between job attribute j and worker skill k, as is typical

of models of sorting. Indeed, in the one-dimensional case (Y = 1), condition (CMP) collapses

to a restriction on the sign of ∂2σ/∂xk∂y = ∂2f/∂xk∂y, which is the familiar super- (or sub)

modularity condition on the production function encountered in one-dimensional frictionless

models. Beyond this simple intuitive interpretation, Condition (CMP) is not easy to work with

in the multi-dimensional case. Loosely speaking, it imposes that supermodularity hold along all

level curves of σ(x,y), which amounts to a complex restriction involving not only the technology,

but also the sampling distribution of job types. Yet Assumptions 1 and 2 simplify condition

(CMP) considerably and allow us to obtain the following result on the sign of EE-sorting.
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y1

y2

A

B

f(x′,y) ≡ f(x′,yA)

f(x′′,y) ≡ f(x′′,yA)

Nick Jude

Figure 1: Single Crossing Property

Theorem 2 (EE-Sorting, Y = 2, bilinear technology). Under Assumptions 1 and 2, PAM occurs

in the (y1, xk) dimension along the EE margin if and only if, for all y ∈ Y:

∂

∂xk

(
∂f(x,y)/∂y1
∂f(x,y)/∂y2

)
> 0 ⇔ ∂

∂xk

(
q1(x)

q2(x)

)
> 0 (SC-2d)

All proofs are in the Appendix. Condition (SC-2d) has a natural interpretation and is

well-known in matching problems. It is a single-crossing property of the production function

(also known as Spence-Mirrlees condition, in its differential form) that was shown to guarantee

positive sorting in several one-dimensional matching problems.12

The analysis of our multi -dimensional matching model with search frictions and transferable

utility further highlights the importance of single crossing as a driving force toward positive

sorting. Condition (SC-2d) states that the marginal rate of substitution between (y1, y2) is

increasing in worker skill xk. This implies that skill xk is a stronger complement to job attribute

y1 than to y2, which is why positive sorting occurs between between xk and y1.

To illustrate the single crossing condition in our setting and its implication graphically, we

consider two workers (Nick and Jude) with skill bundles x′ = (x′1, x
′
2) and x′′ = (x′′1, x

′′
2) such

that x′′1 > x′1 and x′′2 = x′2 (Jude has more of x1 but both have equal amounts x2). For each
12In an important paper, Legros and Newman (2007) show that a single crossing property is sufficient to

guarantee PAM in frictionless one-dimensional problems with non-transferable utility (NTU). Chade, Eeckhout
and Smith (2014) then demonstrate that several one-dimensional matching problems with transferable utility
both in environments with and without frictions can be recast as NTU, frictionless matching problems. After
finding the associated NTU problem, the Legros-Newman-condition can be applied and guarantees PAM.
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worker, we plot the locus of job attributes with which that worker produces the same output

as when matched to the job with attribute bundle A. The single-crossing condition (SC-2d)

implies that these isoquants cross only once (at point A). Moreover, because the marginal

rate of substitution is increasing in x1, the curve of the more skilled worker (Jude) is steeper.

Consider point A as a benchmark with no sorting (both workers are matched to the same job).

Condition (SC-2d) says the following: if the lower-skilled worker weakly prefers job B over job

A where B has lower y2 but higher y1, then the higher-skilled worker (who is more skilled in

dimension x1) strictly prefers job B, which is the case in the graph.

We end this first analysis of sorting on the EE margin with two important remarks. First, the

characterization of sorting patterns in Theorem 2 is independent of the sampling distribution. In

particular, the restriction to two-dimensional job heterogeneity (Y = 2) allows us to circumvent

condition (CMP). This independence result partially generalizes to nonlinear technologies under

two-dimensional job heterogeneity, but generally not to dimensions higher than two. Second,

Theorem 2 provides a necessary and sufficient condition for assortative matching. This, in turn,

does not generalize to nonlinear technologies or to more than two dimensions of job heterogeneity.

We discuss generalizations below in Subsection 4.2.

4.1.3 The NE Margin

While the conditions for sorting on the EE margin presented in Theorem 2 are distribution-free,

this is not the case for sorting along the NE margin, as established by the following Corollary

that also follows from Theorem 1.

Corollary 2. If condition (CMP) holds and if, in addition,

G′
σ|x(0)× EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0

]
×

{∫ +∞

0
G′

σ|x(s)
[
PrΓ

{
y′j ≤ y|σ(x,y′) = 0

}
− PrΓ

{
y′j ≤ y|σ(x,y′) = s

}]
ds

}
≤ 0 (7)

then term (1) in Theorem 1 is negative [positive] for all y, i.e. positive [negative] assortative

matching occurs in the (yj , xk) dimension along the NE margin.

Condition (7) (the expression under the integral in particular) clearly shows that sorting on

the NE margin involves the sampling distribution Γ. This is true even if we restrict our attention

to two-dimensional heterogeneity on the demand side. The next result establishes conditions

15



on the sampling distribution that, together with sufficient complementarities in production,

guarantee positive sorting along the NE margin.

Theorem 3 (NE-Sorting, Y = 2, bilinear technology). Under Assumptions 1 and 2 and under

the single-crossing condition (SC-2d) (Theorem 2), if:

1. q1(x) > 0 (i.e. f(x,y) is increasing in both y1 and y2)

2. the following condition holds along all level curves of f(x, ·) (i.e. at all y such that

f(x,y) = C for some fixed C ≥ 0):

q2(x)
∂2 ln γ

∂y2∂y1
− q1(x)

∂2 ln γ

∂y22
≥ 0 (NE-2d)

3. at the lower support of y (y = (y
1
, y

2
)): y

2
≥ b2 and y

1
< b1

then PAM occurs in the (y1, xk) dimension along the NE margin.

As mentioned earlier, sorting on the NE margin results from the impact of a marginal

increase in skill xk on the boundary of the set of profitable matches, i.e. the locus of y’s such

that σ(x,y) = 0. Figure 2 shows how this boundary shifts with xk under the assumptions of

Theorem 3, and helps visualize the role of each condition in that theorem.

Y

y2

y1

(b1, b2)

y
1

y
2

σ
(x
,y
)
=
0

(high
x ′k )

σ(x,y) =
0 (low

x
k )

A
B

C

D

Figure 2: Sorting along the NE margin

Figure 2 represents the (y1, y2) plane, where the origin is placed at b = (b1, b2). The shaded

area materializes Y, the support of γ: the (lower) boundaries of Y are the horizontal line at
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y2 = y
2

and the vertical line at y1 = y
1
, which are placed in accordance with Condition 3 in

Theorem 3. The oblique lines are zero level curves of σ(x, ·), which under this linear technology

(Assumption 1) are given by y2 = b2 − q1(x)
q2(x)

(y1 − b1). By Condition 1 in Theorem 3, such lines

are downward sloping and go through point y = b. The boundary of feasible matches for a given

skill bundle x is at the intersection between the zero level curve of σ(x, ·) and Y (the shaded

rectangle on the figure). Note that this boundary lies entirely in the region of Y where y1 < b1:

because it is assumed that y
2
≥ b2, it has to be the case that y1 < b1 for surplus to equal zero.

Those zero level curves are represented for two values x′k > xk of skill k, the higher-x′k (blue)

curve being steeper than the lower-xk (black) one, meaning that for a given y2, the more skilled

worker needs a higher y1 to generate non-negative surplus. The reason is as follows: by the

single crossing property (SC-2d), complementarities in production are stronger between xk and

y1 than between xk and y2. Thus, the jobs under consideration (with y1 < b1) are prone to

generate surplus losses in particular for those workers with higher skill x′k. Therefore, for a

given y2, workers with higher skill k need jobs with higher y1 to generate non-negative surplus,

which is clearly a force towards PAM. In the figure, this means that all job types between the

black and the blue line can be profitably matched with the low skilled (xk) worker, but produce

negative surplus with the high-skilled (x′k) worker, which is why all those jobs with relatively

low attribute y1 drop out of his equilibrium matching set.

However, this force alone (which relies on complementarities in production) is not enough to

ensure PAM on the NE margin. To see this, consider points A, B, C and D on the figure. By

increasing skill k from xk to x′k, the worker no longer breaks even with a job at A. Moreover,

jobs around B (with higher y1 but lower y2) are also made unprofitable while jobs around C with

lower y1 but higher y2 compared to A remain profitable. Therefore, if the sampling distribution

γ has most of its mass concentrated around points A, B and C then workers with higher x′k will

tend to be matched to jobs with lower y1 (since jobs around B with higher y1 have too little

of y2, leading to negative surplus) — a force towards NAM. To prevent this, one must assume

a sufficient degree of positive association between y1 and y2 in γ to ensure that more mass is

concentrated around points A and D. Notice that the potential distributional barrier to PAM

arising from a negative association of (y1, y2) becomes more severe the larger is the positive

impact of y2 on the surplus (i.e. the larger is q2(x), which makes the zero-surplus lines flatter).

Summing up, to ensure positive sorting along the NE margin, we not only have to assume

sufficient complementarities in production but also sufficient positive association of job attributes
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in the sampling distribution.

How likely is condition (NE-2d) to hold? Sufficient conditions on the sampling distribution

are that density γ be both log-supermodular and log-concave. This class of distributions is

quite broad. For instance, any bivariate distribution of independent random variables that

has log-concave marginals satisfies (NE-2d) (e.g. the uniform distribution with independent

random variables). Another bivariate distribution that is both log-supermodular (for positive

covariance) and log-concave is the bivariate normal distribution. In fact, if γ is a (truncated)

normal distribution with covariance Σ =
(

θ21 θ12
θ12 θ22

)
:

∂2 ln γ(y)

∂y1∂y2
=

θ12
θ21θ

2
2 − θ212

and
∂2 ln γ(y)

∂y22
= − θ21

θ21θ
2
2 − θ212

and condition (NE-2d) becomes equivalent to θ12q1(x) + θ21q2(x) ≥ 0, which is always true if

the covariance of (y1, y2) in γ is positive. Yet another example of a density that is both log-

supermodular and log-concave is the multivariate Gamma distribution (which is defined by a

linear combination of independent random variables that have standard gamma distribution).13

Cases involving log-convex distributions are more complex. For example, if γ is bivari-

ate Pareto

γ(y) =
α(α+ 1)

τ1τ2

 2∑
j=1

yj − 1

τj
+ 1

−α−2

, τj > 0, yj ≥ 1

then (NE-2d) holds iff τ1q1(x) ≤ τ2q2(x), which places an additional joint restriction on the

technology and support of x.

4.1.4 Taking Stock

Both theorems on the sign of sorting show that sorting under multi-dimensional job heterogeneity

is fundamentally different from a comparable model with one-dimensional heterogeneity. In such

a model, there is no sorting on the EE margin (Postel-Vinay and Robin, 2002): the strategy of

firms is to accept any worker that yields positive surplus while the strategy of workers is to accept

all jobs that yield a higher (flow) surplus than the current one. Under the assumption that the

flow surplus is increasing in y (the one-dimensional version of Assumption 1), this implies that

all workers tend to move into higher-y jobs over time, which rules out sorting. Moreover, when
13Log-supermodularity of the multivariate Gamma distribution is implied by Proposition 3.8 in Karlin and

Rinott (1980) and log-concavity of the Gamma distribution is implied by Theorem 4.26 in Shapiro, Dentcheva
and Ruszczynski (2009).
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the NE-margin operates, there is positive sorting in our multi-dimensional setting under the

specified conditions. But there would again be no sorting in the model with one-dimensional

heterogeneity since any match in which the job productivity is too low (y < b) would not form,

independent of the worker’s skill.

Why does sorting arise only in the multi-dimensional model? Compared to the one-dimensional

case, what matters here is not only to match with a productive job in any dimension. Instead

it is important to obtain a job that requires much of the skill in which the worker is particularly

strong. Thus, depending on their skill bundles, different workers may accept and reject different

types of jobs, which is why sorting arises. This trade-off of sorting across dimensions is absent

in a one-dimensional setting, which is why all workers share the same ranking of jobs and end

up in similar jobs over time.14

4.2 Generalizations

In this section we provide partial generalizations of the results on the sign of sorting presented

in Section 4.1. We relax Assumptions 1 and 2 in two ways: first, we generalize our results to the

case of a monotone technology with an unrestricted number of job attributes. We then state the

cases of monotone technology with two job attributes and of bilinear technology with unrestricted

number of job attributes as corollaries of the general theorem. Second, we investigate a specific

form of non-linear, non-monotone technology which we call ‘separable’, again for general Y -

dimensional heterogeneity of job attributes.

4.2.1 Monotone Technology in Y Dimensions

We begin with sufficient conditions for sorting on the EE margin, which was addressed, in the

case of Y = 2 and bilinear technology, by Theorem 2. The following theorem relaxes both

Assumptions 1 and 2, generalizing Theorem 2 to the case of a monotone technology for Y ≥ 2:

Theorem 4 (EE-Sorting, Y ≥ 2, monotone technology). If:

1. f(x,y) is three times differentiable in y

2. (a) f(x,y) is strictly increasing in yY (monotonicity)

(b) for all y ∈ Y, limyY →y
Y
f(x,y) < b(x) and limyY →yY f (x,y) = +∞

14See Lindenlaub (2014) for the sorting-trade off across dimensions in a frictionless environment with multi-
dimensional heterogeneity.
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(c) for all ℓ ∈ {1, · · · , Y − 1},

∂

∂xk

(
∂f(x,y)/∂yℓ
∂f(x,y)/∂yY

)
> 0 (SC-Yd)

3. if Y ≥ 3, then for all (i, j) ∈ {1, · · · , Y − 1}2, i ̸= j, and along all level curves of f(x, ·):

∂f

∂yY

[(
∂f

∂yY

)2 ∂2 ln γ

∂yi∂yj
+

∂f

∂yi

∂f

∂yj

∂2 ln γ

∂y2Y
− ∂f

∂yj

∂f

∂yY

∂2 ln γ

∂yi∂yY
− ∂f

∂yi

∂f

∂yY

∂2 ln γ

∂yj∂yY

]

− ∂ ln γ

∂yY

[(
∂f

∂yY

)2 ∂2f

∂yi∂yj
+

∂f

∂yi

∂f

∂yj

∂2f

∂y2Y
− ∂f

∂yj

∂f

∂yY

∂2f

∂yi∂yY
− ∂f

∂yi

∂f

∂yY

∂2f

∂yj∂yY

]

−
(

∂f

∂yY

)2 ∂3f

∂yi∂yj∂yY
+

∂f

∂yi

∂f

∂yY

∂3f

∂yj∂y2Y
+

∂f

∂yj

∂f

∂yY

∂3f

∂yi∂y2Y
− ∂f

∂yi

∂f

∂yj

∂3f

∂y3Y

+
∂f

∂yY

[
∂2f

∂yj∂yY

∂2f

∂yi∂yY
− ∂2f

∂y2Y

∂2f

∂yi∂yj

]
> 0 (EE-Yd)

then PAM occurs in all dimensions (yℓ, xk) other than ℓ = Y along the EE margin.

Conditions 2a (monotonicity) and 2b (yY is an “essential” input) are technical and ensure

that f(x,y) is invertible w.r.t. one of the y’s (which w.l.o.g. we take to be yY ). Conditions 2a

and 2b further ensure that the support of γ keeps a lattice structure under a change of variables

(see proof). Condition 2c is central to the theorem and generalizes the single-crossing condition

(SC-2d) from Theorem 2. It states that there exists a job attribute yY , satisfying Conditions 2a

and 2b, that is among those which are most substitutable to xk.

While we proved in Theorem 2 that for EE-sorting in the case of Y = 2, sufficient conditions

for sorting are distribution-free, our results from this section show that this is no longer the case

for Y > 2 (even if we assume bilinear surplus, see Corollary 4): Condition 3 — or, equivalently,

equation (EE-Yd) — restricts both the sampling distribution and its interaction with the pro-

duction function in a complicated way. In essence, equation (EE-Yd) places restrictions on the

way the job attributes are associated in the sampling distribution γ.

The reason for why the sampling distribution needs to be restricted in the case of Y > 2

can be explained in light of the sorting trade-off that is prevalent in multi-dimensional matching

problems: In our setting with multiple dimensions of heterogeneity and frictions, it is not feasible

that workers match positively to firms on all dimensions. Instead, they must match negatively in

at least one dimension. As a result, the agents need to choose in which dimension negative sorting

is most tolerable. Theorem 4 says that this choice depends on the relative complementarities
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in production. Because complementarities between skill k with all job attributes ℓ (ℓ ̸= Y )

are stronger than with attribute Y (Condition 2c), a worker with higher xk would ideally move

towards jobs with higher levels of yℓ for all ℓ ̸= Y (and possibly with lower level of yY ). Yet,

if the attributes yℓ are too strongly negatively associated (and/or there is a positive correlation

between yℓ and yY ), then such moves may not be feasible. The role of condition (EE-Yd) is to

prevent these distributional obstructions to positive sorting.

Theorem 4 is our most general result on EE-sorting and is useful because it nests several

special cases of interest. We show in the following corollaries that the sufficient conditions for

sorting simplify considerably for monotone surplus function with Y = 2 (Corollary 3) as well as

bilinear surplus function with Y > 2 (Corollary 4).

Corollary 3. (EE-Sorting, Y = 2, monotone technology) Under Assumption 2 (Y = 2), if

f(x,y) is twice continuously differentiable and quasi-concave in y, strictly increasing in y2 with

miny2∈R f (x, (y1, y2)) < b(x) for all y1 ∈
[
y
1
, y1

]
, and such that:

∂

∂xk

(
∂f(x,y)/∂y1
∂f(x,y)/∂y2

)
> 0

then PAM occurs in the (y1, xk) dimension along the EE margin.

If we consider only two job attributes, the sufficient conditions for EE-sorting from Theorem

4 become considerably simpler. First, Condition (EE-Yd) disappears altogether: the role of that

condition was to prevent the Y − 1 job attributes yℓ, ℓ ̸= Y , from being associated in Γ in a way

that countered the force toward PAM in Y − 1 dimensions arising from technology. This issue

of association between Y − 1 job attributes becomes moot when Y = 2. The reason is that if

complementarities are stronger along (y1, xk) than along (y2, xk), then sorting will be PAM in

(y1, xk) and NAM in (y2, xk). Hence, assuring a positive degree of association between y1, y2 in

the sampling distribution is not needed here to resolve the sorting trade-off.

Second, the generalized single crossing condition (SC-Yd) collapses to the condition that

already appeared in our result on bilinear technology with Y = 2 (Theorem 2). This result

again highlights that as long as we restrict our attention to two job attributes, we can specify

distribution-free conditions for EE-sorting.

Another useful special case on EE-sorting that emerges from Theorem 4 is the bilinear pro-

duction function (Assumption 1), which satisfies monotonicity (as, by Assumption 1, qY (x) > 0).

21



Corollary 4 (EE-Sorting, Y > 2, bilinear technology). Under Assumption 1, if:

1. yY = +∞, and, for all y ∈ Y, limyY →y
Y
f(x,y) < b(x)

2. for all ℓ ∈ {1, · · · , Y − 1},

∂

∂xk

(
∂f(x,y)/∂yℓ
∂f(x,y)/∂yY

)
> 0 ⇔ ∂

∂xk

(
qℓ(x)

qY (x)

)
> 0 (SC-Yd)

3. for all (i, j) ∈ {1, · · · , Y − 1}2, i ̸= j, and along all level curves of f(x, ·):

qY (x)
2 ∂

2 ln γ

∂yi∂yj
+qi(x)qj(x)

∂2 ln γ

∂y2Y
−qj(x)qY (x)

∂2 ln γ

∂yi∂yY
−qi(x)qY (x)

∂2 ln γ

∂yj∂yY
> 0 (EE-Yd’)

then PAM occurs in all dimensions (yℓ, xk) other than ℓ = Y along the EE margin.

Focusing on Y > 2 is innocuous, as the case Y = 2 is covered in Theorem 2. Condition 1

echoes Conditions 2a and 2b of Theorem 4 and is of the same technical nature. Condition 2

parallels the generalized single crossing condition from Theorem 4. In contrast to Theorem

2 that focuses on sorting under two-dimensional job heterogeneity, the case with general Y -

dimensional heterogeneity requires restrictions on the sampling distribution (Condition 3). For

instance, condition (EE-Yd’) is satisfied if log-supermodularity of γ in the job attribute under

consideration, y1, and any other job attribute, yj (j ̸= Y ), overall dominates any log-concavity

of the sampling distribution in yY and any log-supermodularity in pairs (y1, yY ) and (yj , yY )

(assuming qi(x) > 0 for all i). Like in Theorem 4, this condition limits distributional barriers

to PAM in dimension (xk, yℓ) for any ℓ ̸= Y .

Condition (EE-Yd’) is more demanding on the distributions than condition (NE-2d) since it

involves the relative strength of log-supermodularity in the various dimensions as well as subtle

interactions with the technology. Nevertheless we can show that the set of models satisfying this

condition is not empty. For instance, it can be satisfied by a (truncated) multivariate normal

distribution, for which (EE-Yd’) reads

qY (x)
2
Σ−1
ij +Σ−1

ji

2 |Σ|
+q1(x)qj(x)

−Σ−1
Y Y

|Σ|
−qj(x)qY (x)

Σ−1
iY +Σ−1

Y i

2 |Σ|
−qi(x)qY (x)

Σ−1
Y j +Σ−1

jY

2 |Σ|
≥ 0 (8)

where Σ−1
ij is element ij of the inverse of the covariance matrix and |Σ|, its determinant. Con-

dition (8) holds if, for instance, the technology is symmetric (qj(x) = qj′(x) for all j ̸= j′) and
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if the correlation between y1 and yℓ is sufficiently strong.15

We finally generalize Theorem 3 on NE-sorting to Y -dimensional heterogeneity of job at-

tributes. Similar to Corollary 4 on EE-sorting, in this more general setting sorting requires

complex restrictions on the sampling distribution Γ.

Theorem 5 (NE-Sorting, Y > 2, bilinear technology). Under Assumption 1 and Conditions

1-3 from Corollary 4, if:

1. qj(x) > 0 for all j ∈ {1, · · · , Y } (i.e. f(x,y) is increasing in all job attributes)

2. the following condition holds along all level curves of f(x, ·) and for all j = {1, ..., Y − 1}:

qY (x)
∂2 ln γ

∂yY ∂yj
− qj(x)

∂2 ln γ

∂y2Y
≥ 0 (NE-Yd)

3. denoting the lower support of y by y =
(
y
1
, · · · , y

Y

)
:

Y∑
j=1

[
qkj
qj(x)

−max
j′

{
qkj′

qj′(x)

}]
qj(x)

(
y
j
− bj

)
≤ 0

then PAM occurs in all dimensions (yℓ, xk) other than ℓ = Y along the NE margin.

Theorem 5 shows that signing the sorting patterns on the NE margin is even more involved

than signing EE sorting. It requires stronger assumptions on the sampling distribution Γ, similar

to the case of two-dimensional heterogeneity of job requirements. Condition (NE-Yd) parallels

Condition (NE-2d) in Theorem 3 for Y = 2. Condition (NE-Yd) (which again heavily relies

on the positive association between job attributes in the sampling distribution) has the same

interpretation as (NE-2d). It prevents distributional obstructions to PAM that could occur

despite sufficient complementarities in production.16 Lastly, Condition 3 restricts the lower

support of the sampling distribution and echoes Condition 3 from Theorem 3, extended to

Y -dimensional heterogeneity in job attributes.
15As an example, consider Y = 3. Then (8) holds for symmetric technology (note that in this case, condition

(SC-Yd) holds with equality) if τ12 is large relative to τ13 and τ23 (where τij = θij/θiθj = corrΓ(yi, yj)):

q(x)2

|Σ|

(
τ12 − τ13τ23

θ1θ2
− 1− τ12

θ23
− τ13 − τ12τ23

θ1θ3
− τ23 − τ12τ13

θ3θ2

)
≥ 0

16Note that there is a tension between (NE-Yd) and Condition (EE-Yd’) that is also assumed to hold. Impor-
tantly, both conditions can be satisfied simultaneously. For instance, in the case of the truncated normal with
positive correlation with X = Y = 3, both conditions will be satisfied if the technology is symmetric (note that
in this case, condition (SC-Yd) holds with equality) if τ12 is high, τ12 → 1 and τ13 and τ23 are low, τ13, τ23 → 0.
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4.2.2 Nonlinear Technology in Y Dimensions

Arguably the most substantive restriction placed by Theorem 4 on the production technology

is strict monotonicity of f w.r.t. at least one job attribute yJ . While it still covers a wide

range of applications, it excludes some important special cases, such as the popular “bliss point”

specification. An example (which goes back to, at least, Tinbergen, 1956) would be, in the case

X = Y , f(x,y) = a0 −
∑X

i=1 ai(xi − yi)
2, where the ai’s are strictly positive numbers. In this

example, each job has an “ideal” skill bundle given by y, and output is a decreasing function

of the distance between the worker’s skill bundle x and that ideal skill bundle. This and other

related specifications are covered in the following theorem:

Theorem 6. (EE-Sorting, Y ≥ 2, separable technology) If:

1. f(x,y) is continuously differentiable w.r.t. y

2. for a given k and for all ℓ ∈ {2, · · · , Y }, ∂2f(x,y)/∂xk∂yℓ = 0 (separability)

3. for all y ∈ RY
+, ∂2f(x,y)/∂xk∂y1 > 0

then, for k ∈ {1, · · · , X ′}, PAM occurs in the (y1, xk) dimension along the EE margin.

The key restriction imposed in Theorem 6 is Condition 2, which states that there are compo-

nents of the worker’s skill bundle that are only relevant to perform task 1, i.e. that are neither

complement nor substitute with any other task j ∈ {2, · · · , Y }. The sign of sorting on the EE

margin between task 1 and the skills that are only relevant to task 1 can then be determined: it

has the sign of ∂2f(x,y)/∂xk∂y1.17 Assumption 2 is easily satisfied, for instance, by production

functions that only feature within-complementarities of skills and job attributes but no com-

plementarities across tasks. For example, under the “bliss point” specification mentioned above

(f(x,y) = a0 −
∑X

i=1 ai(xi − yi)
2), Theorem 6 establishes that there will be positive within-skill

sorting along the EE margin (i.e. H1 (·|x) increases in x1 in the FOSD sense), but says nothing

about between-skill sorting (i.e. the monotonicity of Hℓ (·|x) w.r.t. x1 for ℓ ≥ 2).

Note that the case of separable technology is special: the characterization of sorting in

Theorem 6 is independent of the sampling distribution Γ irrespective of the dimensionality

of job heterogeneity. In particular, the restrictions on the sampling distribution (EE-Yd) in
17Note that, under separability Assumption 2 in Theorem 6, the sign of ∂2f/∂xk∂y1 is the same as the sign of

∂
∂xk

(
∂f/∂y1
∂f/∂yj′

)
, 1 ̸= j′. In that sense, the characterization of sorting in Theorem 6 parallels the characterization

provided by Theorems 2 and 4 under different assumptions on S.
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Theorem 4 are only needed if complementarities in (xk, y1) compete with complementarities

between xk and other dimensions yℓ, ℓ ̸= 1. Theorem 4 then guarantees PAM in all but one

dimensions while Theorem 6 for separable production functions only ensures sorting in a single

dimension (xk, y1).

5 Simultaneous Sorting in Multiple Dimensions

Theorems 4 and 5 and their corollaries show that sorting arises in our model under familiar

assumptions on complementarities in the production technology combined with assumptions on

the sampling distribution, where we focused on the effect of an increase in a single skill on the

matching distribution, keeping all other skills fixed. In this section we move away from the

ceteris paribus setting and investigate the effect of a simultaneous expansion of all skills.

5.1 Absolute Advantage vs. Specialization

Results in this section are established under Assumption 1, i.e. for a bilinear technology.18

Our first result is that there is no sorting on “absolute advantage”, in that if two workers with

skills x and x′ are such that the type-x′ worker produces twice as much output than the type x

worker in all jobs, both workers are matched to the same distribution of job types in equilibrium,

irrespective of the complementarities in production.

Theorem 7. Under Assumption 1, ∀j ∈ {1, · · · , Y }:

(x+ a)⊤∇Hj (y|x) = 0

i.e. the function (x+ a) 7→ Hj (y|x) is homogeneous of degree 0 in (x+ a) for all j.

Theorem 7 implies that a worker with skills x′ = −a+2(x+a) produces twice as much as a

worker with skills x, but is matched to the same distribution of jobs. One obvious consequence

of this result is that the mappings x 7→ Hj (·|x), j ∈ {1, · · · , Y } are not one-to-one: contrary

to the multi-dimensional matching model without frictions (Lindenlaub, 2014), in our frictional

environment sorting is not even pure as far as matching distributions are concerned: workers

with different skill bundles can be matched to the same distribution of jobs in equilibrium.
18Those results are straightforward to generalize to the case of a homogeneous technology, i.e. a technology

such that σ (−a+ t(x+ a),y) = tα · σ(x,y) for any positive scaling factor t (see the appendix).
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To further illustrate the implications of Theorem 7, we consider the case X = Y = 2, so that

x = (x1, x2), y = (y1, y2), and a = (a1, a2). To fix ideas, we consider an example where Q is

a positive matrix (so that x and y are complements both within and across skill dimensions),

detQ > 0 (so that within-dimension complementarities “dominate” between-dimension comple-

mentarities), γ(·) is a bivariate normal distribution truncated over Y with positive covariance,

and y
2
− b2 ≥ 0 > y

1
− b1. Under these assumptions, Theorems 2 and 3 imply PAM in the

(x1, y1) dimension,19 and the statement in Theorem 7 writes as:

∂H1(y|x)
∂x2

= −x1 + a1
x2 + a2

∂H1(y|x)
∂x1

. (9)

Theorem 7 thus implies is that sorting in the (y1, x2) dimension is negative, which again reflects

the sorting trade-off across dimensions typical of settings with multi-dimensional heterogeneity.

Theorem 7 addresses the case of a simultaneous expansion of all skills such that the sum

x + a is scaled up, i.e. it considers an expansion in the direction of x + a. Since a is only a

productivity parameter that affects all workers alike (see Assumption 1), there is no obvious

reason why workers’ skills should expand along this particular direction. We thus now consider

a generic marginal skill expansion by letting a worker increase his skills marginally from (x1, x2)

to (x1 +∆x1, x2 +∆x2). The resulting change in H1(y|x) is:

∆H1(y|x) = (x1 + a1)
∂H1(y|x)

∂x1

[
∆x1

x1 + a1
− ∆x2

x2 + a2

]
(10)

Equation (10) has three implications: First, it confirms our earlier finding that ∆H1(y|x) = 0 if

∆x1
x1+a1

= ∆x2
x2+a2

(i.e. no change in sorting if the worker improves his skills in the direction of x+a).

Second, (10) shows more generally that a marginal (but not necessarily proportional) im-

provement in both skills will cause the worker to match with jobs with (stochastically) higher

y1 attributes iff. ∆x1
x1+a1

> ∆x2
x2+a2

. This can be interpreted as follows. A worker’s contribution to

production consists of two different inputs: his individual skills x, plus the baseline productivity

a. The condition ∆x1
x1+a1

> ∆x2
x2+a2

states that his total input is increased proportionately more in

dimension 1 than in dimension 2. As a result, the simultaneous improvement in both skills will
19Condition (SC-2d) from Theorem 2 writes as (x2+a2) detQ > 0, which is true in our example because detQ

is positive by assumption, and so is x2 + a2 by normalization to zero of the lower support of x and Assumption
1.d. Therefore, the example has PAM on the EE margin. Next, because x + a is a positive vector and Q a
positive matrix, qk(x) > 0 for k = 1, 2 and f(x,y) is therefore increasing in both y1 and y2. The truncated
normal with positive covariance satisfies Condition (NE-2d), as shown in Subsection 4.1, and Condition 3 from
Theorem 3 is satisfied by assumption. PAM therefore also occurs on the NE margin in this example.
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cause the worker to sort into jobs with stochastically higher y1 (but with lower y2).

A third implication of (10) is based on a proportional increase in both skills: ∆x1
x1

= ∆x2
x2

.

It is easy to see that ∆H1(y|x) < 0 iff. x1/x2 > a1/a2. In other words, scaling up all skills

leads to a stochastically better distribution of job matches in the dimension where the worker is

specialized relative to the baseline productivity vector a. By contrast, scaling up all skills leads

to a deterioration of the distribution of job matches in the second dimension, i.e. ∆H2(y|x) > 0.

Scaling up all of a worker’s skills simultaneously thus has a non-uniform effect on the worker’s

distribution of job matches across dimensions, which depends on the worker’s specialization.

Our interpretation is that this multi-dimensional model does not feature any hierarchical sorting

based on absolute advantage but instead features sorting based on specialization.

The content of these results is quite different when a worker’s skill is one-dimensional. Con-

sider Theorem 7 for the one-dimensional case. X = 1 — i.e., x and a are scalars x and a,

Q is a 1 × Y row vector so that ỹ = Q(y − b) is a scalar, and the flow surplus function

σ(x,y) = (x + a)ỹ. In this case, Theorem 7 echoes a known result: there cannot be sorting,

in the sense that ∂Hj(y|x)/∂x = 0 for all x, y and j ∈ {1, · · · , Y }. In other words, x and y

are independent in the population of job-worker matches (Postel-Vinay and Robin, 2002). Note

that, contrary to our multi-dimensional setting, the no-sorting result under one-dimensional

heterogeneity holds even if we only scale up x without changing a.

Our results have important implications for empirical measures of sorting on absolute versus

comparative advantage. In their setting with scalar heterogeneity, Hagedorn, Law and Manovskii

(2014) propose a test based on monotonicity of output in firm attribute y: if fy > 0, then

the interpretation is that sorting is based on absolute advantage. In turn, if output is not

increasing in firm type then sorting is based on comparative advantage. Our results in this

section show that this test may be problematic. First, if we assume scalar heterogeneity, there

is no sorting in our model (on absolute or comparative advantage) despite fy > 0. Second,

and most importantly, in multi-dimensional settings sorting on comparative advantage (or on

specialization) naturally arises, especially if the output is increasing in each firm attribute (see

Assumption 1, and Theorem 3, point 1). Multi-dimensional heterogeneity thus breaks the link

between the monotonicity of technology in firm attributes and hierarchical sorting that is based

on absolute advantage.
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5.2 The Strength of Sorting

As the preceding analysis made clear, changes in worker skill along any dimension will in general

affect the assignment, i.e. ∂Hj(y|x)/∂xk is in general nonzero for any given skill k. The following

theorem implies that the way individual conditional distributions of job attributes Hj(y|x) (and

thus the conditional expectations) co-vary follows a pattern, which is driven by the technology Q:

Theorem 8. Under Assumption 1, if σ(x,y) > 0 for all y ∈ Y (NE margin is shut down), then:

(x+ a)⊤Q
∂E (y|x)
∂x⊤ = 01×X .

In general, the way in which the distribution of job types a worker is matched to varies

with that worker’s skills depends upon both the production technology Q and the sampling

distribution Γ in a seemingly complex manner. Yet, if we shut down the NE margin and focus

on the EE margin, Theorem 8 shows that the mean of that matching distribution changes with

worker skills in a way that is entirely determined by technology. As such, Theorem 8 permits a

direct assessment of the strength of sorting on the EE margin, both within and between tasks.

E(y2|x)

E(y1|x)

Q⊤(x′ + a)

E(y|x = x′)
Nick

Q⊤(x′′ + a)

E(y|x = x′′)

Jude

Figure 3: Sorting in two dimensions

To see those patterns more clearly, we consider again the two-dimensional case (X = Y = 2).

Figure 3 shows the locus of the pair (E(y1|x),E(y2|x)) when one of the components of x (say x1)

varies. Theorem 8 implies that the normal vector to this locus is Q⊤(x+a) at all points. In other
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words, the slope of the locus of E(y|x) is entirely determined by the technology, independently of

the distributions of x and y. Moreover, to fix ideas, Figure 3 was drawn under the assumptions

laid out in the previous subsection, as per which Q is a positive matrix. In this case, f(x,y)

is non-decreasing in all components of y (all components of Q⊤(x + a) are nonnegative), and

the slope of the E(y|x) locus is negative. We consider again our two workers (Nick and Jude)

with skill bundles x′ = (x′1, x
′
2) and x′′ = (x′′1, x

′′
2) such that x′′1 > x′1 and x′′2 = x′2. If there

is PAM within skill x1 and job attribute y1, then Theorem 2 implies ∂E(y1|x)/∂x1 > 0, and

the worker with higher type-1 skills (Jude) will be matched on average to a job with higher

type-1 requirements than Nick, as shown on Figure 3. What Theorem 8 further implies is that

the average job to which Jude is matched will have lower requirements in type-2 skills than

Nick’s average job. That is, positive sorting within dimensions implies negative sorting between

dimensions. Theorem 8 also says by how much the type-1 (type-2) attribute of Jude’s job will

be higher (lower) than that of Nick’s job, which solely depends on the components of Q⊤(x+a).

Theorem 8 and this example again highlight one of the major differences between one and

multi-dimensional sorting. When workers and jobs differ in more than one dimension, there is

a sorting trade-off between the various dimensions: increased sorting in one dimension comes

along with reduced sorting in another dimension. Compared to Nick, Jude is matched to a job

that requires more of his relatively strong skill, x1, but this comes at the cost of a worse job

match regarding his relatively weak skill, x2.

6 Numerical Application

Having shown that the equilibrium sorting patterns under multi-dimensional heterogeneity are

theoretically different and more complex than those occurring under scalar heterogeneity, we

now investigate the quantitative importance of those differences from the following practical

angle. We simulate an economy based on our multi-dimensional model, which we consider to be

the true data generating process for the purpose of this exercise. We then fit a (misspecified)

one-dimensional model to these data and assess the “errors” arising from the one-dimensional

approximation by comparing the predictions of these two models about sorting patterns, comple-

mentarities in the surplus function and mismatch. We begin with a discussion of identification

and estimation of the misspecified one-dimensional model.
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6.1 Estimation of a Misspecified 1D Model

6.1.1 The model

The one-dimensional heterogeneity model that we consider in this section is essentially the

multidimensional model presented in the previous section in which we set the dimensionality of

heterogeneity to X = Y = 1. The only other departure from our multidimensional model is

that we do not impose any functional form restriction on the flow surplus function σ(x, y), other

than the following identifying assumptions:

Assumption 3. The flow surplus function σ(x, y) has the following properties:

1. x → maxy∈Y σ(x, y) is well-defined and strictly increasing in x

2. y → maxx∈X σ(x, y) is well-defined and strictly increasing in y

As we show below (and as has been established in the literature for more sophisticated

versions of the same model), this model is non-parametrically identified up to strictly increas-

ing transforms of x and y. We therefore normalize worker and firm productive attributes by

specifying the model in terms of the ranks of said attributes:

Assumption 4.

1. x is uniformly distributed over X = [0, 1] in the population of workers

2. y is uniformly distributed over Y = [0, 1] in the population of firms

6.1.2 Identification and Estimation

The simulated sample on which we estimate the misspecified 1D model is a panel of N workers,

indexed i ∈ {1, · · · , N}, sorting themselves into M firms, j ∈ {1, · · · ,M}. Time is discretized

for the purposes of simulation, and workers are followed over T periods, t ∈ {1, · · · , T}. A

typical observation is described as a vector {Jit, σi,Jit,t}, where Jit ∈ {1, · · · ,M} is the identity

of the worker’s employer at date t (we further normalize Jit = 0 if worker i is unemployed at

date t so that Jit also indicates the worker’s employment status), and σi,Jit,t is the flow surplus

achieved in the match between worker i and firm Jit (missing when Jit = 0).20

20The assumption that the flow surplus is observed in the data is obviously a shortcut. What is typically
observed in practice are wages, not match output or surplus. However, in the context of the family of search
models considered in this paper, it has been shown elsewhere in the literature that the flow output from a match
between a worker i and a firm j is identified from the maximum wage earned in firm j by workers with the same
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The steps below establish identification of the 1D model based on this sample. The identifi-

cation proof is a constructive one, and therefore also provides a practical estimation protocol.

Worker types. The maximum attainable surplus for a type-x worker is maxy∈Y σ(x, y) in this

model which, by Assumption 4, is a strictly increasing function of x. Any worker i’s type xi can

thus be estimated as:

x̂i = QW (max {σi,Jit,t : t = 1, · · · , T})

where QW (·) is the quantile function in the population of workers.

Firm types and surplus. The flow surplus σi,Jit,t generated by the match between worker i

and firm Jit is equal to σ (xi, yJit). Flow surplus is thus observed for any viable match involving

any firm j in the sample, i.e. for matches between firm j and any type-x worker such that

σ(x, yj) ≥ 0:

σ̂(x, yj) = mean {σi,Jit,t : x̂i = x, Jit = j, t = 1, · · · , T} .

Knowledge of σ(x, yj) then allows estimation of any firm j’s type, yj :

ŷj = QF

(
max

{
σ̂(x, yj) : x ∈ [0, 1]

})

where QF (·) is the quantile function in the population of firms.

At this stage we have estimates (x̂i, ŷj) of the types of every worker and firm in the sample,

as well as estimates ̂σ(xi, yj) of the surplus of every viable match. Together those allow non-

parametric estimation of the technology σ(·) over the set of viable (x, y) matches, as well as the

construction of the equilibrium conditional distribution of employer types y amongst employed

workers of any given type x, which in turn permits the analysis of equilibrium sorting patterns.

Sampling distribution and offer arrival rates. A type-x worker exiting unemployment

draws her/his employer type from the following conditional density:

γx (y | xi = x, ei,t−1 = 0, eit = 1) =
γ(y)

γ {y′ : σ(x, y′) ≥ 0}
.

type as i, while unemployment income is identified from the wages earned by workers hired from unemployment
— see for example Lamadon et al. (2015) for details. Because these particular identification issues are peripheral
to the question addressed in this section (namely the distinction between one- vs multidimensional heterogeneity),
we bypass them by assuming that flow surplus is directly observed.
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Moreover, the job finding rate of any unemployed worker of type x is λ0γ {y′ : σ(x, y′) ≥ 0}.

Combining those two properties, one obtains the following estimator of λ0γ(yj) for any employer

j in the sample:

λ̂0γ(yj) = Pr {Jit = j | x̂i = x, ei,t−1 = 0, eit = 1} × ĴF (xi)

where ĴF (xi) is the empirical unemployment exit rate of type-xi workers. Note that the above

estimator is valid for any worker type in the sample. This, together with the constraint that

γ(·) must integrate to 1, affords estimates of the sampling distribution γ(·) and the unemployed

offer arrival rate λ0.

Finally, the probability of an employer change occurring for a type-x in a type-y firm is

λ1γ {y′ : σ(x, y′) > σ(x, y)} = λ1Γ(y) for all x ∈ [0, 1]. Therefore:

λ̂1Γ(yj) = Pr {Jit ̸= Ji,t−1 | x̂i = x, Ji,t−1 = j, ei,t−1 = eit = 1}

so that:

λ̂1 = mean

[
Pr {Jit ̸= Ji,t−1 | x̂i = x, Ji,t−1 = j, ei,t−1 = eit = 1}

1− Γ̂(yj)

]
.

6.2 Simulation Exercises

6.2.1 Parameterization and Basic Estimation Results

All of the examples shown below are based on simulations of 100,000 workers with two dimen-

sions of skills and (monthly) parameter values of λ0 = 0.3, λ1 = 0.1, and δ = 0.025.21 The

population density of skills ℓ(x) is constructed such that x follows a normal distribution with

mean (0, 0) and correlation corrℓ(x1, x2) = −0.5, truncated over [0, 1]2. The sampling density

of job attributes γ(y) is constructed similarly, with y following a normal with mean (1, 1) and

correlation corrΓ(y1, y2) = 0.33, truncated over [1, 2]2.

We consider three different examples of the bilinear technology (parameters Q, a and b),

shown in Table 1. All three parameterizations have a = (1, 1)⊤ and b = (0, 0)⊤. Therefore,

under all three parameterizations, unemployed workers accept all job offers and there is no sort-

ing on the NE margin. The three different Q matrices are designed to feature different patterns

of complementarities that, according to Theorem 2, produce certain sorting patterns. Specifi-
21All samples are simulated for 480 months (40 years), after a 100-year burn-in period to reach steady-state.
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Specification: 1 2 3

Q

(
1 1
1 1

) (
4.5 2
1.5 4

) (
4.5 −2
−1.5 4

)

a (1, 1)⊤

b (0, 0)⊤

Table 1: Examples of Technologies

cally, Example 1 is the case of no sorting, within or between occupations. Both example 2 and

3 have positive sorting within occupation, and negative between occupations but differ in the

complementarity structure. While the technology in Example 2 features skill-job attribute com-

plementarities both within and between dimensions, in Example 3, there are complementarities

within but substitutabilities between dimensions. The predicted sorting patterns are confirmed

in the middle column of Table 2, which shows regressions of yj on both xi (for (i, j) ∈ {1, 2}2)

in the cross-section of employed workers, for each example.22
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Figure 4: True and Estimated Worker Types

ŷ(y)

y2

1 1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9 2

y
1

1

1.1

1.2

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

(a) Example 1
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Figure 5: True and Estimated Firm Types

22Note that this is not a test of FOSD of the matching distributions in worker skills but FOSD implies the
monotonicity of the conditional means that we report here.
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Figure 6: Estimated Surplus Function

We next fit a misspecified model with one-dimensional heterogeneity to the simulated data

produced from our three examples, following the procedure explicated in Subsection 6.1.1. Fig-

ures 4 and 5 show show contour plots of the estimated scalar attributes of the estimated scalar

attributes x̂ and ŷ as functions of the underlying true (vector) attributes x and y, and Figure

6 plots the estimated flow surplus function σ (x̂, ŷ). Panel (a) on each figure relates to Example

1, the case with no ‘real’ sorting in the two-dimensional world. Figure 4(a) suggests that the

“iso-x̂” curves (the contour lines on the graph) roughly coincide with lines of slope −1 in the

(x1, x2) plane, as was intuitively expected. Figure 5(a) suggests the same pattern for firm at-

tributes, albeit with slightly more noise. Figure 6(a) shows that the estimated surplus function

increases in x̂ and ŷ, which occurs by construction, but does so in a way that suggests strong

complementarity between x̂ and ŷ. In turn, Panels (b) and (c) on Figures 4-6 plot these results

for Examples 2 and 3 from Table 1 that feature varying complementarities across dimensions. It

is no longer true in those two examples that the “iso-type” curves coincide with lines of slope −1

in the (x1, x2) and (y1, y2) planes. For instance, in Example 2, the “iso-x̂” curves are steeper than

in Example 1. This means that in the estimation the 1D model is putting more weight on skill

x1 than skill x2, possibly due to the relatively stronger complementarities within dimension 1

compared to dimension 2, featured by the technology matrix Q in Example 2. A similar pattern

arises in Example 3, here more pronounced for the estimates of firm types (Figure 5, panel c).

We aim to compare the true 2D model to the estimated misspecified 1D model with focus on

three issues: complementarities in the surplus function, sorting and mismatch. In each exercise,

we compare the three examples of technology specified above.
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6.2.2 Exercise 1: Estimating Complementarities in 1D

We first estimate the cross-partial derivative of the estimated surplus function from the 1D

misspecified model, ∂2σ (x̂, ŷ) /∂x̂∂ŷ, for all three model specifications (see Figure 7).23 Two

patterns stand out: first, while in the true 2D model complementarities are constant over the

support, the estimated complementarities from the misspecified 1D model vary widely across the

domain of the surplus function. Second, while the estimated complementarities are varying in

magnitude but are always positive for Examples 1 and 2, this is no longer the case for Example

3. Here the cross-partial derivative of the estimated surplus function changes its sign as x̂ and ŷ

vary (the zero-level contour lines are highlighted in red on Figure 7, panel c). It is striking (but

also quite intuitive) that the true 2D technology from Example 3, which features both super

and submodular parts, generates sign-varying cross-partials in the estimated 1D model, whereas

Examples 1 and 2 with purely positive complementarities in production result in only positive

estimates of cross-partials in 1D.
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Figure 7: 1D Estimated Complementarities

6.2.3 Exercise 2: Estimating Sorting in 1D

We now analyze sorting in the the misspecified 1D model and try to understand the link between

the estimated complementarities from Exercise 1 and the resulting sorting patterns.

We first examine the one-dimensional model’s predictions in terms of sorting between the

estimated (scalar) job and worker attributes, denoted ŷ and x̂. To this end, we simply regress ŷ

on x̂ in a cross section of job-worker matches, as we did in each dimension of heterogeneity for

the correctly specified (two-dimensional) model. The results are in the bottom panel of Table 2.
23This estimate of ∂2σ (x̂, ŷ) /∂x̂∂ŷ must be considered with caution, though. It was constructed based on a

smooth approximation of the estimated surplus function using third-order Chebyshev polynomials. As such, it
is only indicative of the “true” cross-partial. Yet, both panels (c) and (d) suggest very clearly that x̂ and ŷ are
strong complements towards the edges of the domain of (x̂, ŷ).
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Those results suggest that relying on the (misspecified) one-dimensional model for inference on

sorting patterns is strongly misleading. In Example 1, in which there is truly no sorting in any

pair of dimensions (xk, yj), the one-dimensional model predicts positive sorting: the coefficient

of the regression of ŷ on x̂ is positive, sizeable, and statistically significant. This suggests that

the estimated positive complementarities in Example 1 (see Exercise 1) are then picked up by

sorting estimates that are positive as well.

Similar results hold for Example 2, where the one-dimensional model produces positive assor-

tative matching, seemingly picking up the estimated complementarities of the surplus function

that are positive throughout the entire domain.

Only in Example 3, where the true 2D model features in fact the most sizeable (and statisti-

cally significant) positive sorting within heterogeneity dimensions, the 1D model fails to predict

PAM: the sorting coefficient is of negligible size and not statistically significant. This reflects

the sign-varying cross-partial estimates of the surplus function that dampen equilibrium sorting

compared to technologies with pure complementarities.

These results suggest the following: First, 1D sorting estimates are relatively small (both

Examples 2 and 3 feature sorting of different signs within and between skills, something that a

one-dimensional model is bound to miss since it can only produce some average). Second, the

1D sorting estimates can be completely misleading in the sense that they suggest positive and

statistically significant sorting in cases where sorting in the true 2D data is absent. Last, our

results from Exercises 1 and 2 suggest a tight link between the 1D estimates of complementarities

in the surplus function and those of sorting: estimated positive cross-partials produce significant

positive sorting whereas cross-partials of varying signs result in weak or even no sorting.

6.2.4 Exercise 3: Mismatch

In this third exercise, we focus on mismatch and have two objectives. The first is to compare

measures of mismatch, constructed as the gap between actual and optimal average flow surplus,

from the misspecified 1D versus the true 2D model. Second, we aim to understand how big the

welfare loss/gain would be if we implemented the optimal allocation suggested by the misspecified

1D model into the true world where both worker and job types are 2D. The results are reported

in Table 3.

Note that in this entire exercise we take a short or medium-run perspective where the distri-

bution of active jobs is fixed. The exercise is then how to redistribute workers across given jobs
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Specification: True 2D model Misspecified 1D model

1
E(y1|x) = 1.70 −0.001

[−0.010,0.008]
x1 −0.005

[−0.013,0.004]
x2

E(y2|x) = 1.68 −0.001
[−0.008,0.009]

x1 +0.002
[−0.006,0.011]

x2
E(ŷ|x̂) = 0.68 +0.010

[0.002,0.018]
x̂

2
E(y1|x) = 1.69 +0.028

[0.019,0.037]
x1 −0.031

[−0.040,−0.023]
x2

E(y2|x) = 1.69 −0.028
[−0.037,−0.020]

x1 +0.029
[0.020,0.037]

x2
E(ŷ|x̂) = 0.68 +0.010

[0.002,0.020]
x̂

3
E(y1|x) = 1.73 +0.088

[0.079,0.096]
x1 −0.099

[−0.108,−0.091]
x2

E(y2|x) = 1.65 −0.130
[−0.138,−0.121]

x1 +0.131
[0.122,0.140]

x2
E(ŷ|x̂) = 0.67 +0.002

[−0.006,0.011]
x̂

Table 2: Sorting Patterns

in an optimal way if there are no search frictions (i.e. if λ0 → 0 and λ1 → 0).

For the 2D model in the top part of the table, the rows display in that order: average

actual surplus, E[σ(x,y)], average optimal surplus, E[σ∗(x,y)], average surplus when imple-

menting the 1D optimal allocation, E[σ∗
1D(x,y)], the percentage output loss from mismatch

E[σ(x,y)]−E[σ∗(x,y)]
E[σ∗(x,y)] , the percentage surplus gain/loss from implementing the optimal 1D alloca-

tion relative to the actual 2D surplus E[σ∗
1D(x,y)]−E[σ(x,y)]

E[σ(x,y)] , and the percentage surplus loss from

implementing the optimal 1D allocation relative to the optimal 2D surplus E[σ∗
1D(x,y)]−E[σ∗(x,y)]

E[σ∗(x,y)] .

For the 1D model in the lower part of the Table 3, we use analogous notation.

Four features stand out: First, the surplus loss from mismatch can be sizable in both models,

roughly ranging between 9-11%. Taking the surplus loss as a measure of mismatch, the 1D model

overestimates mismatch in two out of three specifications relative to the 2D model. Second, the

results indicate that welfare losses from implementing an erroneous optimal allocation (here

given by the 1D frictionless allocation) in the 2D economy can be substantial. The economy

loses between 7.8% and 10.5% of surplus when implementing the optimal 1D allocation instead

of the optimal 2D allocation. Third, implementing the 1D frictionless (i.e. optimal) allocation

generates basically no welfare gains when compared to the actual 2D allocation with frictions.

Last, and importantly, the comparison across model specifications suggests that surplus losses

from implementing the optimal 1D allocation tend to become larger in environments where the

true production function features not only asymmetries in the technology matrix Q (Example

2) but especially where it contains both super- and sub-modular elements (Example 3). In such

settings, the 1D model produces estimates of cross-partials of the surplus function as well as
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sorting patterns that are particularly off compared to the truth, giving rise to a significantly

distorted first best allocation compared to the true first best under multidimensional types.

Specification: 1 2 3

True 2D model

E[σ(x,y)] 9.20 27.59 11.58
E[σ∗(x,y)] 10.11 30.45 13.04
E[σ∗

1D(x,y)] 9.33 27.95 11.67
Surplus Loss from Mismatch -0.09 -0.09 -0.11
Surplus Gain from 1D Optimal Allocation rel. to 2D Allocation 0.01 0.01 0.01
Surplus Loss from 1D Optimal Allocation rel. to 2D Optimum -0.08 -0.08 -0.11

Misspecified 1D model

E[σ(x̂, ŷ)] 9.06 27.52 11.44
E[σ∗(x̂, ŷ)] 10.13 30.49 12.84
Surplus Loss from Mismatch -0.11 -0.10 -0.11

Table 3: Expected Surplus and Mismatch

6.2.5 Exercise 4: Sorting on Specialization

In Section 5, we have shown that the multi-dimensional model predicts sorting based on special-

ization rather than on absolute advantage and, moreover, that sorting depended on the balance

between a worker’s different skills relative to the baseline productivity vector a. In the extreme

case where a1 = a2, there is no re-sorting of “generalist” workers (with x1 = x2) at all in re-

sponse to a uniform improvement of their skills, whereas “specialist” workers (with x1 ̸= x2)

will respond to such a uniform improvement by sorting into jobs with higher attributes in the

skill dimension they are relatively strong in, e.g. dimension 1 if x1 > x2. We will show that

the one-dimensional model fails to generate these patterns: first, it picks up one-dimensional

sorting patterns in line with sorting on absolute advantage. Second, due to scalar heterogeneity

it cannot distinguish between specialists and generalists.

For this exercise, we fix a = (0.1, 0.1) and focus on the technology Q from Example 2 (neither

choice is crucial). We focus on the way the mean job types a worker is matched to in equilibrium

change as we scale up workers’ skills. We compute these conditional means from the simulated

data and report some examples in Table 4. Specifically, for a worker with skill bundle x and

estimated one-dimensional skill index x̂, we report E(y|tx) and E(ŷ|tx̂) as the scaling factor t

takes on values t = 1, 1.2, 1.3. Table 4 shows results for two workers: a “generalist” worker with
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Generalist: x = (0.3, 0.3) Specialist: x = (0.1, 0.5)

t = 1 1.2 1.3 1 1.2 1.3

E(y1|tx) = 1.6860 1.6864 1.6866 1.7090 1.7140 1.7165

E(y2|tx) = 1.6843 1.6837 1.6833 1.6621 1.6570 1.6545

E(ŷ|tx̂) = 0.6741 0.6743 0.6744 0.6741 0.6743 0.6744

The corresponding estimated 1D skill types are x̂ = 0.21 and x̂ = 0.23, respectively.

Table 4: Sorting on Comparative versus Absolute Advantage

x = (0.3, 0.3) and a “specialist” worker with x = (0.5, 0.1). Those two workers look very similar

under the lens of the 1D model, with x̂ = 0.21 and x̂ = 0.23, respectively.

As the multi-dimensional model predicts, for a generalist there is no significant change in

sorting on either dimension when scaling up the skill vector. Yet for the specialist, who in this

example has comparative strength in skill 1 (as x1 > x2), a homothetic increase in all skills cause

a discernible increase in mean job attribute in the dimension where he is stronger (y1), but to

a decrease in mean job attribute in the other dimension (y2): as predicted by our theoretical

model, sorting is based on comparative advantage. Scaling up all skills does not lead to better

job attributes across the board, which would be the case if sorting were based on absolute

advantage.

The misspecified one-dimensional model misses those differences completely. The two workers

in this example look almost the same to the one-dimensional model, so that the predicted path of

E(ŷ|tx̂) as t increases it the same for both workers. Moreover, the one-dimensional model fails to

pick up any sorting in this case, reflecting the tension between the underlying true improvement

in y1 and deterioration in y2.

6.3 Taking Stock

Our various exercises highlight the parts of the estimation and its implications that differ consid-

erably between the true multi-dimensional model and the misspecified one-dimensional model.

The one-dimensional model collapses the multiple dimensions into a single index, making it

difficult to correctly estimate the cross-partial derivative of the surplus function and leading

to sorting patterns that differ substantially from the true multi-dimensional ones. As a conse-

quence, the one-dimensional model tends to over-estimate mismatch and generates substantial

welfare losses when the one-dimensional optimal matching is implemented as opposed to the

39



True Misspecified 1D model
Value 1 2 3

λ0 0.3 0.2998 0.2998 0.2998
λ1 0.1 0.0967 0.1020 0.1018

Table 5: Estimated transition parameters

optimal two-dimensional allocation. Our exercises further suggest that the mistakes of the

one-dimensional approximation become more severe when the cross-partials of the true sur-

plus function are sign-varying. We conclude that multi-dimensional heterogeneity is crucial for

estimating complementarities, sorting and mismatch.

It is important to note, however, that there are other parts of the estimation on which the

one-dimensional (misspecified) model performs well. Table 5 shows, the values of λ0 and λ1

as estimated from the one-dimensional model (along with their true values, for comparison).24

Clearly, the one-dimensional model gets the transition parameters right. This is unsurprising,

as the estimators of λ0 and λ1 presented in Section 6.1.2 primarily exploit job transition data,

which are independent of any assumption on the dimensionality of job or worker heterogeneity.

Note that this result relies on our specific stepwise estimation protocol, which estimates λ0 and

λ1 separately from the rest of the model. Application of a (more efficient) one-step method,

such as indirect inference, would probably result in the misspecification of the dimensionality of

x and y “polluting” the estimates of the transition parameters.

7 The Literature

Our work relates to a vast literature on partial equilibrium models with search frictions and

random search as well as to the literature on conditions for sorting in a variety of environments.

Random Search Models. Our environment closely resembles that of a standard (partial

equilibrium) search model with random search on and off the job (e.g. Postel-Vinay and Robin,

2002). The only departure from the standard model is that we introduce multi-dimensional

heterogeneity of jobs and workers. This simple change drastically alters the model’s predictions

on sorting. While in both settings, the strategy of firms is to accept any worker that yields a
24The job loss rate δ is not estimated in this exercise: it is set to its true value when performing estimation.

This is just to save time and space: a straightforward and consistent estimator of δ is the empirical job loss rate,
which is independent of any assumption on the dimensionality of job or worker heterogeneity.
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positive surplus, workers’ incentives to sort differ across models. In the one-dimensional model,

if the technology is monotone in job type, all worker types share a common ranking of firms and

want be employed in the most productive firm. This implies that all workers tend to gradually

select into more productive jobs over time in the exact same way, ruling out sorting (Postel-Vinay

and Robin, 2002).25 This result is independent of the complementarities in production.

This contrasts starkly with our multi-dimensional setting, in which what matters to a worker

is to obtain a job requiring much of the specific skill in which he is particularly strong. This

causes different workers to rank jobs differently, which is why sorting arises. This trade-off

across skill dimensions is absent by design from the one-dimensional model. It is important to

note that our model’s predictions on sorting differ from the standard model only because we

introduce multi-dimensional heterogeneity.

Conditions for Sorting. Becker (1973) established the first results on sorting in frictionless

environments with TU: matching is positive assortative if the match payoff function is super-

modular, highlighting the crucial role of complementarities for sorting.26 Legros and Newman

(2007) subsequently extended this sorting framework to the case of imperfectly TU (where utility

cannot be transferred at a constant rate) and showed that PAM obtains if the Pareto frontier

exhibits generalized increasing differences, which is essentially a single-crossing property that

nests the TU case when utility is linear.

More recently, the literature has moved on to environments affected by search frictions, or

to frictionless environment where agents are characterized by multi-dimensional heterogeneity.

Lindenlaub (2014) develops a framework for the analysis of multi-dimensional sorting in

the TU, frictionless context.27 Since workers and firms match on bundles of attributes, the one-

dimensional Beckerian notion of PAM, given by strict monotonicity of the (real-valued) matching

function, needs to be modified. Assuming that types are continuously distributed, she defines

PAM as the Jacobian matrix of the matching function being a P-matrix which, like in the one-

dimensional case, reflects a pure matching with positive sign on the ‘natural’ sorting dimensions.
25Moreover, in the one-dimensional model there cannot be sorting on the NE margin either since any job with

y < b yields a negative surplus independent of worker type.
26Becker also shows that in the case of strict NTU, the monotonicity of payoffs in partners’ types is sufficient for

sorting. Legros and Newman (2010) show that a necessary and sufficient condition for sorting in this environment
is that preferences exhibit co-ranking.

27Note that there is an entire mathematical literature concerned with assignment problems under (possibly)
multi-dimensional heterogeneity in frictionless TU settings (see Villani, 2009 for an extensive review on optimal
transport), which is however not concerned with sorting. Also note that contrary to optimal transport problems,
our problem is strictly speaking not an assignment problem since firms face no capacity constraint.
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PAM occurs in equilibrium if the production function exhibits complementarities in types within

these natural dimensions (and no complementarities across the natural dimensions).28

There has also been growing interest in sorting in frictional environments, not least because

of their empirical relevance. In settings with search frictions and directed search, the definition

of sorting essentially remains the same as in the frictionless case. The reason is that under strong

enough complementarities, the directed-search equilibrium is characterized by pure assignments,

generating perfect segmentation of types just as in the frictionless cases.29

However, when agents face a random search technology, matching is generically not pure:

instead, each worker type matches with a distribution of job types in equilibrium. Shimer and

Smith (2000) were the first to analyze sorting in this context under TU. They did so in a dynamic,

one-to-one (i.e. both sides face a capacity constraint) equilibrium matching model where agents

randomly search for partners. Surplus is split by Nash-bargaining and there is no on-the-match

search. Shimer and Smith define positive sorting by the requirement that the boundaries of

matching sets be (weakly) increasing in types. They show that the occurrence of PAM again

hinges on complementarity of match output in types, although the complementarities needed

for PAM to occur are stronger in this environment than in the frictionless case.30

To our knowledge, ours is the first analysis combining random search and multi-dimensional

heterogeneity — two features that are critical to empirical applications. Our definition of positive

sorting is based on dimension-by-dimension first-order stochastic ordering of matching distribu-

tions.31 This definition is not equivalent to the Shimer-Smith definition: strict PAM can occur

according to our FOSD-based criterion even when the matching sets of workers are invariant to

their types (which is the case, for example, when the NE margin is shut down and all workers

accept to match with any job). In that sense, FOSD is weaker than the Shimer-Smith criterion

of sorting: in fact, increasing matching sets implies FOSD.

We establish conditions on the economy’s primitives under which sorting obtains in this envi-

ronment. In line with the existing literature, we find that complementarity between worker and

job attributes are crucial to generate PAM. In our framework, those complementarity require-
28Formally, if the matrix of cross-partials is a diagonal dominant P-matrix then sorting in equilibrium is PAM.

This condition is distribution-free. Note that the natural sorting dimensions have to be identified ex-ante.
29See Eeckhout and Kircher (2010) for sorting under directed search with one-dimensional heterogeneity and

Lindenlaub (2014) for an extension to multi-dimensional heterogeneity.
30Their conditions require supermodularity of match output f(x, y) (fxy > 0, where x and y are types), log-

supermodularity of its marginal product ((ln fx)xy > 0) and of its cross-partial ((ln fxy)xy > 0). For conditions
for sorting under random search and NTU, see e.g. Burdett and Coles (1997).

31Note that first-order stochastic dominance has been used to characterize sorting in frictional settings with
one-dimensional heterogeneity (e.g. Chade, 2006).
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ments take the form of an intuitive single-crossing condition on the technology. Our restriction

on the technology (single-crossing) most closely resembles the condition in Lindenlaub (2014)

who also studies multi-dimensional sorting and needs to discipline complementarities in compet-

ing dimensions. But our conditions are quite distinct from those needed under one-dimensional

heterogeneity and random search (Shimer and Smith, 2000): In contrast to this literature on

sorting in one dimension, we find that the conditions for PAM in multiple dimensions under

random search are not distribution-free: they involve not only sufficient complementarities in

types but also restrictions on the sampling distribution.

8 Conclusion

This paper analyzes sorting in a standard market environment characterized by search frictions

and random search, but where both workers and jobs have multi-dimensional characteristics.

We first offer a definition for multi-dimensional positive (and negative) assortative matching in

this frictional environment that is based on first-order stochastic dominance of the matching dis-

tribution of a more skilled worker compared to a less skilled worker. We then provide conditions

on the primitives of this economy (technology and distributions) under which positive sorting

obtains in equilibrium, where we distinguish sorting on the nonemployment-to-employment and

the employment-to-employment margin. In all the environments we consider, the central re-

striction on the primitives for PAM to obtain is a single-crossing condition of the technology

that guarantees sufficient complementarities between skills and productivities. But, contrary

to well-known results on one-dimensional sorting, our conditions for multi-dimensional sorting

are generally not distribution-free. Negative correlation between different job attributes in the

sampling distribution can become a barrier to PAM in a certain worker-job dimension if the

worker’s skills are complement to various job characteristics.

Our theory has important implications for applied work: We show in a series of simulation

exercises that approximating workers’ and jobs’ true multi-dimensional characteristics by one-

dimensional summary indices in empirical applications may lead to quantitatively and even

qualitatively mistaken conclusions regarding the sign and extent of sorting and mismatch, as

well as to misguided policy recommendations.
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APPENDIX

A Proofs and Derivations

A.1 Derivation of h(x,y)

Substituting the definition of Fσ|x (Fσ|x(s) = E [1 {σ(x,y′) > s}]) into (1), we see that h(x,y) can be

written as h(x,y) = χ (x, σ(x,y)) γ(y), where the function χ solves:

[
δ + λ1Fσ|x(s)

]
χ(x, s)F ′

σ|x(s) = λ0F
′
σ|x(s)1 {s ≥ 0}u(x) + λ1F

′
σ|x(s)

∫ s

0

χ(x, s′)dFσ|x (s
′) .

This ODE solves as:

[
δ + λ1Fσ|x(s)

] ∫ s

0

χ(x, s′) dFσ|x (s
′) = λ01 {s ≥ 0}u(x)

[
Fσ|x(s)− Fσ|x(0)

]
.

In other words, by differentiation:

h(x,y) = λ01 {σ(x,y) ≥ 0}u(x)
δ + λ1Fσ|x(0)[

δ + λ1Fσ|x (σ(x,y))
]2 γ(y).

Finally, remembering from the flow-balance equations that λ0Fσ|x(0)u(x) = δ (ℓ(x)− u(x)) and substi-

tuting yields the expression of h(x,y) in the main body of the paper.

A.2 Proof of Theorem 1

Recalling equation (4):

Hj(y|x) =
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

∫
1 {σ(x,y′) ≥ 0} × 1

{
y′j ≤ y

}[
δ + λ1Fσ|x (σ(x,y′))

]2 γ(y′)dy′

and differentiating yields:

∂Hj(y|x)
∂xk

= −
δ ∂
∂xk

Fσ|x(0)

Fσ|x(0)
[
δ + λ1Fσ|x(0)

]Hj(y|x)︸ ︷︷ ︸
(1)

+
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

×
∫ ∂σ(x,y′)

∂xk
× 1 {σ(x,y′) = 0} × 1

{
y′j ≤ y

}[
δ + λ1Fσ|x (σ(x,y′))

]2 γ(y′)dy′

︸ ︷︷ ︸
(2)

−
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

×
∫

2λ11 {σ(x,y′) ≥ 0} × 1
{
y′j ≤ y

}[
δ + λ1Fσ|x (σ(x,y′))

]3 × d

dxk

[
1− Fσ|x (σ(x,y

′))
]
γ(y′)dy′

︸ ︷︷ ︸
(3)

.

We examine those three terms in turn.
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First, the definition 1− Fσ|x(s) =
∫
1 {σ(x,y′) ≥ s} γ(y′)dy′ implies:

∂

∂xj

[
1− Fσ|x(s)

]
=

∫
1 {σ(x,y′) = s} ∂σ(x,y′)

∂xj
γ(y′)dy′

= EΓ

[
∂σ(x,y′)

∂xj
| σ(x,y′) = s

]
× F ′

σ|x(s). (11)

Replacing into term (1) yields:

(1) = −
δF ′

σ|x(0)

Fσ|x(0)
[
δ + λ1Fσ|x(0)

] × EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0

]
×Hj(y|x).

Next, term (2) can be rewritten as:

(2) =
δ

Fσ|x(0)
[
δ + λ1Fσ|x(0)

] ×
∫

∂σ(x,y′)

∂xk
× 1 {σ(x,y′) = 0} × 1

{
y′j ≤ y

}
γ(y′)dy′

=
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

×
∫

1 {σ(x,y′) = 0} × 1
{
y′j ≤ y

}[
δ + λ1Fσ|x(0)

]2 γ(y′)dy′ × EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0, y′j ≤ y

]
=

∂Kj(y, 0|x)
∂s

× EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0, y′j ≤ y

]
.

Now on to term (3). Again from (11), we have that:

d

dxk

[
1− Fσ|x (σ(x,y

′))
]
= F ′

σ|x (σ(x,y
′))×

{
EΓ

[
∂σ(x,y′′)

∂xk
| σ(x,y′′) = σ(x,y′)

]
− ∂σx,y′)

∂xk

}
.

Substituting into term (3):

(3) =
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

×
∫ 2λ11 {σ(x,y′) ≥ 0} × 1

{
y′j ≤ y

}
× F ′

σ|x (σ(x,y
′))[

δ + λ1Fσ|x (σ(x,y′))
]3

×
{
∂σ(x,y′)

∂xk
− EΓ

[
∂σ(x,y′′)

∂xk
| σ(x,y′′) = σ(x,y′)

]}
γ(y′)dy′

which can be recast as:32

(3) =
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

×
∫ +∞

0

2λ1F
′
σ|x(s)[

δ + λ1F σ|x(s)
] ×

∫
1 {σ(x,y′) = s} × 1

{
y′j ≤ y

}[
δ + λ1Fσ|x(s)

]2 γ(y′)dy′

×

{
EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s, y′j ≤ y

]
− EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s

]}
ds

32A technical note: strictly speaking, the correct integration bounds in the following formula are

s ∈

[
max

{
0, min

y′∈Y,y′
j≤y

σ(x,y′)

}
, max
y′∈Y,y′

j≤y
σ(x,y′)

]
.

rather than [0,+∞). To avoid cluttering the formula with these unwieldy integration bounds, we write it as
an integral over all s ≥ 0. As a consequence, it may be that the joint event

(
σ(x,y′) = s, y′

j ≤ y
)

on which
some of the expectations are conditioned has zero probability for some values of (s, y). Yet in those cases,∫
1 {σ(x,y′) = s} × 1

{
y′
j ≤ y

}
γ(y′)dy′ = 0. The formula thus remains correct with [0,+∞) as integration

bounds if adopt the convention that any expectation conditioned on a zero probability event is equal to zero.

47



=

∫ +∞

0

2λ1F
′
σ|x(s)[

δ + λ1Fσ|x(s)
] × ∂Kj(y, s|x)

∂s

×

{
EΓ

[
∂σ(x,y)

∂xk
| σ(x,y′) = s, y′j ≤ y

]
− EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s

]}
ds.

Combining terms (1), (2) and (3) and substituting the definitions of G′
σ|x(0) and ∂Kj(y, 0|x)/∂s proves

the theorem. □

A.3 EE-Sorting: Proofs of Theorems 2 and 4 and Corollaries 3 and 4

To avoid duplication, we first prove the most general result, Theorem 4, then return to the proofs of the

special cases (bilinear surplus and/or Y = 2).

A.3.1 Proof of Theorem 4 (Monotone Technology, Y ≥ 2)

Let y−Y = (y1, · · · , yY−1) denote the (Y − 1)-dimensional vector formed of all components of y except

yY . Note that Y−Y ∈×Y−1

j=1

[
y
j
, yj

]
.

Fix any x ∈ X and any s ≥ 0, and consider the equation

σ (x, (y−Y , yY )) = s ⇔ f (x, (y−Y , yY )) = b(x) + s (12)

Then strict monotonicity of yY 7→ f (x, (y−Y , yY )) (Assumption 2a) guarantees that at most one value

of yY ∈
[
y
Y
, yY

]
solves (12). In turn, assumption 2b ensures that there always exists a unique yY ∈[

y
Y
, yY

]
that solves (12). The equation σ(x,y) = s is therefore equivalent to yY = R(s,y−Y ), where

R(s, ·) is a well-defined function over×Y−1

j=1

[
y
j
, yj

]
.33 Application of the Implicit Function Theorem

further implies that R(·) is differentiable over its domain, with, for all j ∈ {1, · · · , Y − 1}:

∂R(S,y−Y )

∂yj
= − ∂f/∂yj

∂f/∂yY
(x, (y−Y , R(s,y−Y ))) (13)

and:
∂R(s,y−Y )

∂s
=

1

∂f/∂yY
(x, (y−Y , R(s,y−Y ))) (14)

We next notice that, for j ∈ {1, · · · , Y − 1}:

d

dyj

(
∂σ (x, (y−Y , R(s,y−Y )))

∂xk

)
=

∂2f

∂xk∂yj
− ∂f/∂yj

∂f/∂yY
× ∂2f

∂xk∂yY
(15)

where (13) was used and where the arguments of f (x, (y−Y , R(s,y−Y ))) were omitted in the r.h.s.

to reduce notational clutter. Condition (SC-Yd) in the theorem then implies, together with (13) that

∂σ (x, (y−Y , R(s,y−Y ))) /∂xk is increasing in all elements of y−Y ∈×Y−1

j=1

[
y
j
, yj

]
.

33The dependence of R(·) on x, which is fixed for this proof, is omitted.
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Our objective is to exhibit conditions under which condition (CMP) in Corollary 1 holds. Fixing

ℓ ̸= Y , notice that (CMP) can be expressed as

EΓ

[
∂σ(x,y)

∂xk
| σ(x,y) = s, yℓ = y

]
= Eµs,x

(
∂σ (x, (y−Y , R(s,y−Y )))

∂xk
| yℓ = y

)
.

where µs,x(y−Y ) is the joint sampling density of y−Y conditional on x and on σ(x,y) = s:

µs,x(y−Y ) =
γ (y−Y , R(s,y−Y )) ∂R(s,y−Y )/∂s∫

γ
(
y′
−Y , R(s,y′

−Y )
)
∂R(s,y′

−Y )/∂s dy
′
−Y

with ∂R(s,y−Y )/∂s given in (14). We will now derive conditions under which

y 7→ Eµs,x

(
∂σ (x, (y−Y , R(s,y−Y )))

∂xk
| yℓ = y

)
(16)

is increasing in y and proceed in two steps.

First, we show that the support of µs,x is a lattice. The equation σ(x,y) = s has one unique solution

yY = R(s,y−Y ) ∈
[
y
Y
, yY

]
for all y−Y ∈×Y−1

j=1

[
y
j
, yj

]
. Thus, for any two points (y′

−Y ,y
′′
−Y ) ∈(

×Y−1

j=1

[
y
j
, yj

])2

, R(s,y′
−Y ∧y′′

−Y ) and R(s,y′
−Y ∨y′′

−Y ) both exist and are both elements of
[
y
Y
, yY

]
,

since both y′
−Y ∧ y′′

−Y and y′
−Y ∨ y′′

−Y are elements of×Y−1

j=1

[
y
j
, yj

]
. This establishes that

(
y′
−Y ∧ y′′

−Y , R(s,y′
−Y ∧ y′′

−Y )
)
∈

Y×
j=1

[
y
j
, yj

]
(
y′
−Y ∨ y′′

−Y , R(s,y′
−Y ∨ y′′

−Y )
)
∈

Y×
j=1

[
y
j
, yj

]
,

so that Suppµs,x is a lattice, implying that µs,x

(
y′
−Y ∧ y′′

−Y

)
and µs,x

(
y′
−Y ∨ y′′

−Y

)
are strictly positive.

Second, given increasing monotonicity of ∂σ (x, (y−Y , R(s,y−Y ))) /∂xk in all elements of y−Y ∈

×Y−1

j=1

[
y
j
, yj

]
and given that Suppµs,x is a lattice (both established above), a sufficient condition for

(16) to be an increasing function of y is that the density µs,x be such that (the proof is a simple adaptation

of Theorem 4.1 in Karlin and Rinott, 1980):

∀(i, j) ∈ {1, · · · , Y − 1}2 : i ̸= j,
∂2 lnµs,x

∂yi∂yj
≥ 0
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which translates into condition (EE-Yd):

∂f

∂yY

[(
∂f

∂yY

)2
∂2 ln γ

∂yi∂yj
+

∂f

∂yi

∂f

∂yj

∂2 ln γ

∂y2Y
− ∂f

∂yj

∂f

∂yY

∂2 ln γ

∂yi∂yY
− ∂f

∂yi

∂f

∂yY

∂2 ln γ

∂yj∂yY

]

− ∂ ln γ

∂yY

[(
∂f

∂yY

)2
∂2f

∂yi∂yj
+

∂f

∂yi

∂f

∂yj

∂2f

∂y2Y
− ∂f

∂yj

∂f

∂yY

∂2f

∂yi∂yY
− ∂f

∂yi

∂f

∂yY

∂2f

∂yj∂yY

]

−
(

∂f

∂yY

)2
∂3f

∂yi∂yj∂yY
− ∂f

∂yi

∂f

∂yj

∂3f

∂y3Y
+

∂f

∂yi

∂f

∂yY

∂3f

∂yj∂y2Y
+

∂f

∂yj

∂f

∂yY

∂3f

∂yi∂y2Y

+
∂f

∂yY

[
∂2f

∂yj∂yY

∂2f

∂yi∂yY
− ∂2f

∂y2Y

∂2f

∂yi∂yj

]
≥ 0.

A.3.2 Proof of Corollary 3 (Monotone Technology, Y = 2)

When Y = 2, equation (12) writes as f (x, (y1, y2)) = b(x)+s. Strict monotonicity of y2 7→ f (x, (y1, y2))

still guarantees that at most one value of y2 ∈
[
y
2
, y2

]
solves (12). Moreover, the set of y1 such that

(12) has one solution is an interval (possibly empty). To see this, suppose there exist two distinct

values y′1 < y′′1 such that (12) has a solution. Denote these solutions by y′2 and y′′2 , respectively. Con-

sider a number t ∈ (0, 1) and define y1(t) = ty′1 + (1 − t)y′′1 . Quasi-concavity of f(x, ·) implies that

f (x, (y1(t), ty
′
2 + (1− t)y′′2 )) ≥ b(x) + s. Moreover, by assumption, miny2∈R f (x, (y1(t), y2)) < b(x) ≤

b(x)+ s. By continuity, (12) has a solution R (s, y1(t)) ≤ ty′2 +(1− t)y′′2 when y1 = y1(t). Note that this

solution can be smaller than y
2
: in this case, γ (y1(t), R (s, y1(t))) = 0.

Denote the interval of values of y1 for which (12) has one solution by I1(s). Application of the

Implicit Function Theorem (as in the proof of Theorem 4 above) then implies that equation (15) holds

for all y ∈ I1(s):
d

dy1

(
∂σ (x, (y,R(s, y)))

∂xk

)
=

∂2f

∂xk∂y1
− ∂f/∂y1

∂f/∂y2
× ∂2f

∂xk∂y2

which is positive by the single-crossing condition in Corollary 3.

Consider s ≥ 0 and two values (y′, y′′) ∈
[
y
1
, y1

]2
such that PrΓ{y1 = y′|σ(x,y) = s} > 0 and

PrΓ{y1 = y′′|σ(x,y) = s} > 0, which implies in particular that y′ and y′′ are both in I1(s). Assume

w.l.o.g. that y′′ > y′. Then, by the results derived above:

EΓ

[
∂σ(x,y)

∂xk
| σ(x,y) = s, y1 = y′′

]
− EΓ

[
∂σ(x,y)

∂xk
| σ(x,y) = s, y1 = y′

]
=

∂σ (x, (y′′, R(s, y′′)))

∂xk
− ∂σ (x, (y′, R(s, y′)))

∂xk
> 0.

This proves that Condition (CMP) holds for monotone production functions and Y = 2, i.e. there is

PAM along (y1, xk). □

Note in passing that Condition (EE-Yd) from Theorem 4 becomes irrelevant in the two-dimensional

case Y = 2, which obviates the need to impose conditions on the behavior of f over the support of γ: Con-

dition 2b in Theorem 4 is replaced by the twofold requirement of quasi-concavity and miny2∈R f(x,y) <
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b(x).

A.3.3 Proof of Corollary 4 (Bilinear Technology, Y ≥ 2)

Theorem 4 also nests the case of a bilinear technology from Corollary 4. The bilinear technology is C3

(Condition 1 from Theorem 4). The condition qY (x) > 0 (imposed in Assumption 1) ensures that f(x,y)

is strictly increasing in yY (Condition 2a from Theorem 4). Moreover, with bilinear technology, we can

explicitly solve the equation σ(x,y) = s, thus circumventing the need to appeal to the Implicit Function

Theorem. Together, the requirements that yY = +∞ and limyY →y
Y
f(x,y) < b(x) parallel Condition

2b from Theorem 4 and ensure that suppµs,x is a lattice so that we can apply Theorem 4.1 in Karlin

and Rinott (1980) to derive conditions under which (16) is increasing in y. Next, Condition 2 in the

corollary is the generalized single crossing condition (which echoes Condition 2c in Theorem 4). Finally,

Condition (EE-Yd’) in point 3 of the corollary is a rewrite of Condition (EE-Yd) in Theorem 4 in the

case of a bilinear production function: bilinearity implies that the last three lines in (EE-Yd) vanish (as

all the partial derivatives of order greater than one are zero in this case) and that the derivatives of the

flow surplus (or of the production) function can be expressed explicitly. □

A.3.4 Proof of Theorem 2 (Bilinear Technology, Y = 2)

Sufficiency. Sufficiency follows immediately from Theorem 4 and Corollary 4, where Assumption 3

from Corollary 4 vanishes for Y = 2. Thus, in the case of a bilinear technology with Y = 2, the sufficient

condition for sorting (single-crossing) is distribution-free and guarantees that condition (CMP) holds.

Necessity. Assumption 1 (bilinear technology) implies ∂σ(x,y)/∂xk =
∑2

j=1 qkj(yj−bj). Assumption

1 further implies that, for any s ≥ 0:

σ(x,y) = s ⇔ y2 − b2 =
s

q2(x)
− q1(x)

q2(x)
(y1 − b1).

Taken together, those implications yield the following expression for (CMP) in Corollary 1:

EΓ

[
∂σ(x,y)

∂xk
| σ(x,y) = s, y1 = y

]
=

qk2
q2(x)

s+
qk1q2(x)− qk2q1(x)

q2(x)
(y − b1).

Again defining µs,x(y1) = γ
(
y1, b2 +

s
q2(x)

− q1(x)
q2(x)

(y1 − b1)
)
/
∫
γ
(
y′1, b2 +

s
q2(x)

− qj(x)
q2(x)

(y′1 − b1)
)
dy′1,

we have that:

EΓ

[
∂σ(x,y)

∂xk
| σ(x,y) = s, y1 ≤ y

]
=

qk2
q2(x)

s+
qk1q2(x)− qk2q1(x)

q2(x)
Eµs,x [y1 − b1|y1 ≤ y]
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and term (2) in Theorem 1 is equal to:

−qk1q2(x)− qk2q1(x)

q2(x)

∫ +∞

0

2λ1F
′
σ|x(s)

δ + λ1Fσ|x(s)

∂Kj(y, s|x)
∂s

(
Eµs,x(y1 − b1)− Eµs,x [y1 − b1|y1 ≤ y]

)
ds.

Both q2(x) (by assumption) and the difference in expectations (by construction) are positive. Condition

(SC-2d), which is equivalent in the case at hand to qk1q2(x) − qk2q1(x) > 0, is therefore necessary and

sufficient for term (2) in Theorem 1 to be negative. No condition on the sampling density γ is required.

□

A.4 NE-Sorting: Proof of Corollary 2 and Theorems 3 and 5

A.4.1 Proof of Corollary 2

The first term in Theorem 1 (which, as explained in the main text, reflects sorting along the NE margin)

can be re-expressed as follows:

[
PrΓ

{
y′j ≤ y|σ(x,y′) = 0

}
×
{
EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0, y′j ≤ y

]
− EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0

]}

+ EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0

]
×

[
PrΓ

{
y′j ≤ y|σ(x,y′) = 0

}
−Hj(y|x)

]]
×G′

σ|x(0) (17)

The first term in curly brackets is negative under Condition (CMP). We now focus on the second term

of (17). Noticing that

G′
σ|x(0)×

[
PrΓ

{
y′j ≤ y|σ(x,y′) = 0

}
−Hℓ(y|x)

]
= G′

σ|x(0)×
∫ +∞

0

G′
σ|x(s)

[
PrΓ

{
y′j ≤ y|σ(x,y′) = 0

}
− PrΓ

{
y′j ≤ y|σ(x,y′) = s

}]
ds

and multiplying by EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0

]
yields the condition in the Corollary. □

A.4.2 Proof of Theorem 5 (Bilinear Technology, Y ≥ 2)

To avoid duplication, we first prove the more general Theorem 5, which covers Y = 2 as a special case.

We have to sign the first term in Theorem 1 (which, as explained in the main text, reflects sorting along

the NE margin) which is spelled out in (17). By the same arguments as were used in the proofs of

Theorems 2 and 4, the first term in curly brackets in (17) is negative under Condition (EE-Yd’). We

thus focus on the second term of (17).

First, we need to find conditions under which PrΓ {y′ℓ ≤ y|σ(x,y′) = s} is decreasing in s for any
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fixed ℓ ∈ {1, · · · , Y − 1}. In particular, we want to derive conditions under which, for any sH > sL ≥ 0,

∫ y

y
ℓ

∫
γ
(
y′ℓ,y

′
−(ℓ,Y ),

sH
qY (x) + bY −

∑Y−1
j=1

qj(x)
qY (x) (y

′
j − bj)

)
dy′

−(ℓ,Y )dy
′
ℓ∫ yℓ

y
ℓ

∫
γ
(
y′ℓ,y

′
−(ℓ,Y ),

sH
qY (x) + bY −

∑Y−1
j=1

qj(x)
qY (x) (y

′
j − bj)

)
dy′

−(ℓ,Y )dy
′
ℓ

≤

∫ y

y
ℓ

∫
γ
(
y′ℓ,y

′
−(ℓ,Y ),

sL
qY (x) + bY −

∑Y−1
j=1

qj(x)
qY (x) (y

′
j − bj)

)
dy′

−(ℓ,Y )dy
′
ℓ∫ yℓ

y
ℓ

∫
γ
(
y′ℓ,y

′
−(ℓ,Y ),

sL
qY (x) + bY −

∑Y−1
j=1

qj(x)
qY (x) (y

′
j − bj)

)
dy′

−(ℓ,Y )dy
′
ℓ

where y′
−(ℓ,Y ) =

(
y′1, · · · , y′ℓ−1, y

′
ℓ+1, · · · , y′Y−1

)
. Defining

g(y, s) =

∫ y

y
ℓ

∫
γ

y′ℓ,y
′
−(ℓ,Y ),

s

qY (x)
+ bY −

Y−1∑
j=1

qj(x)

qY (x)
(y′j − bj)

 dy′
−(ℓ,Y )dy

′
ℓ

and rearranging the previous inequality gives g (yℓ, sL) g(y, sH) ≤ g(y, sL)g (yℓ, sL). Since y ≤ yℓ, this

inequality holds if g is log-supermodular in (y, s). To show when this is the case, define the joint

distribution of y−Y and s (conditional on x) as

µx(y−Y , s) = γ

y−Y,
s

qY (x)
+ bY −

Y−1∑
j=1

qj(x)

qY (x)
(yj − bj)


and rewrite g(y, s) =

∫
1{y′ℓ < y}µx

(
y′
−Y , s

)
dy−Y

′. Note that

1. the support of µx(y−Y , s) is a lattice;34

2. the joint distribution µx(y−Y , s) is log-supermodular in (y−Y , s) if it is log-supermodular in all

pairs of arguments. This is the case if:

∀j = {1, ..., Y − 1} : qY (x)
∂2 ln γ

∂yY ∂yj
− qj(x)

∂2 ln γ

∂y2Y
≥ 0 (18)

∀(i, j) ∈ {1, · · · , Y − 1}2, i ̸= j :

qY (x)
2 ∂

2 ln γ

∂yi∂yj
+ qi(x)qj(x)

∂2 ln γ

∂y2Y
− qj(x)qY (x)

∂2 ln γ

∂yi∂yY
− qi(x)qY (x)

∂2 ln γ

∂yj∂yY
≥ 0 (19)

3. the indicator function, 1{y′ℓ < y}, is log-supermodular in (y, y′ℓ).

Therefore, the product 1{y′ℓ < y}µx(y
′
−Y , s) is log-supermodular in (y,y′

−Y , s) since the product of log-

supermodular functions is log-supermodular). This implies in turn that g(·) is log-supermodular in (y, S)

34This follows from the proof of Theorem 4 with one extra step to deal with the joint distribution of (y−Y , s)
(instead of the conditional distribution of y−Y given s). Note that we have proven that yY = R(s,y−Y ) ∈[
y
Y
, yY

]
for any s ≥ 0. Hence, for two points s ≥ 0 and s′ ≥ 0, s ∧ s′ ≥ 0 and s ∨ s′ ≥ 0 and

(
y−Y ∧ y′

−Y , R(s ∧ s′,y−Y ∧ y′
−Y )

)
∈

Y×
j=1

[
y
j
, yj

]
and

(
y−Y ∨ y′

−Y , R(s ∨ s′,y−Y ∨ y′
−Y )

)
∈

Y×
j=1

[
y
j
, yj

]
.

Hence the support of µx is a lattice and µx (y−Y ∧ y′
−Y , s ∧ s′) and µx (y−Y ∨ y′

−Y , s ∨ s′) are strictly positive.
This is why we can take lnµx in the next step.
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since log-supermodularity is preserved under integration.

We have thus proven that if (18) (stated as condition (NE-Yd) in Theorem 5) and (19) (stated as

condition (EE-Yd’) in Corollary 4) hold, then PrΓ {y′ℓ ≤ y|σ(x,y′) = s} is decreasing in s.

Second, we will provide a condition guaranteeing that EΓ [∂σ(x,y)/∂xk | σ(x,y) = 0] ≤ 0. First note

that σ(x,y) = 0 is equivalent to yY = bY − 1
qY (x)

∑Y−1
j=1 qj(x)(yj − bj). Thus:

σ(x,y) = 0 =⇒ ∂σ(x,y)

∂xk
=

Y−1∑
j=1

qkjqY (x)− qkY qj(x)

qY (x)
(yj − bj).

Therefore, a sufficient condition for EΓ [∂σ(x,y)/∂xk | σ(x,y) = 0] ≤ 0 is that the value of the linear

program

max
y

Y−1∑
j=1

qkjqY (x)− qkY qj(x)

qY (x)
(yj − bj)

subject to:
1

qY (x)

Y−1∑
j=1

qj(x)(yj − bj) ≤ bY − y
Y

y
j
≤ yj j = 1, · · · , Y − 1

be nonpositive. This is a sufficient condition which ensures that ∂σ(x,y)/∂xk ≤ 0 over the entire set of

y’s such that σ(x,y) = 0. Although strong, this condition is the minimal ‘distribution-free’ one. This

program can be rewritten in standard form as:

Y−1∑
j=1

qkjqY (x)− qkY qj(x)

qY (x)

(
y
j
− bj

)
+max

Y

Y−1∑
j=1

qkjqY (x)− qkY qj(x)

qY (x)
Yj (20)

subject to:
Y−1∑
j=1

qj(x)Yj ≤ −σ
(
x,y

)
0 ≤ Yj j = 1, · · · , Y − 1

where Yj = yj−y
j
. The first thing to note about program (20) is that if there exists a j ∈ {1, · · · , Y −1}

such that qj(x) < 0, then (20) is clearly unbounded: in that case, one can set Yj → +∞ whenever

qj(x) < 0 and Yj′ = 0 when qj′(x) ≥ 0, which satisfies the constraints and gives (20) an infinite value.

We thus assume that qj(x) ≥ 0 for all j ∈ {1, · · · , Y − 1}.

The dual of (20) is simply:

Y−1∑
j=1

qkjqY (x)− qkY qj(x)

qY (x)

(
y
j
− bj

)
+min

Z

⟨
−Zσ

(
x,y

)⟩
(21)

subject to: qj(x)Z ≥ qkjqY (x)− qkY qj(x)

qY (x)
, j = 1, · · · , Y − 1

Z ≥ 0
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Assuming that σ
(
x,y

)
< 0, the solution to the latter program is then to set:

Z = max
j′

{
qkj′

qj′(x)

}
− qkY

qY (x)

and the value of the linear program (20) (which equals that of its dual) is:

Y−1∑
j=1

qkjqY (x)− qkY qj(x)

qY (x)

(
y
j
− bj

)
−

Y∑
j=1

[
max
j′

{
qkj′

qj′(x)

}
− qkY

qY (x)

]
qj(x)

(
y
j
− bj

)

=
Y∑

j=1

[
qkj
qj(x)

−max
j′

{
qkj′

qj′(x)

}]
qj(x)

(
y
j
− bj

)
. (22)

The requirement that this be negative yields the condition in the theorem. □

A.4.3 Proof of Theorem 3 (Bilinear Technology, Y = 2)

In the special case of Y = 2, treated in Theorem 3, the first line in (17) is negative under the assumed

condition (SC-2d) from Theorem 2. Moreover, the second line is nonpositive if (18) holds for j = 1 and

Y = 2 (as stated by Assumption 2 in Theorem 3; note that condition (19) vanishes entirely for Y = 2),

and if condition (22) is negative for Y = 2 which collapses to y
2
≥ b2 (Assumption 3 in Theorem 3). □

A.5 Sorting on Absolute Advantage vs Specialization: Proof of Theorem 7

From Theorem 1 applied in the case of a bilinear production function:

(x+ a)⊤∇Hj(y|x) =
X∑

k=1

(xk + ak)
∂Hj(y|x)

∂xk

= EΓ

[
(x+ a)⊤∇xσ(x,y) | σ(x,y) = 0, yj ≤ y

] ∂Kj(y, 0|x)
∂s

− EΓ

[
(x+ a)⊤∇xσ(x,y) | σ(x,y) = 0

]
Hj(y|x)G′

σ|x(0)

+

∫ +∞

0

2λ1F
′
σ|x(s)

δ + λ1Fσ|x(s)
× ∂Kj(y, s|x)

∂s

×

{
EΓ

[
(x+ a)⊤∇xσ(x,y) | σ(x,y) = s, yj ≤ y

]
− EΓ

[
(x+ a)⊤∇xσ(x,y) | σ(x,y) = s

]}
ds.
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But then linearity in (x+ a) of the flow surplus function σ(·) implies that (x+ a)⊤∇xσ(x,y) = σ(x,y).

Substitution into the latter equation yields:

(x+ a)⊤∇Hj(y|x)

= EΓ [σ(x,y) | σ(x,y) = 0, yj ≤ y]
∂Kj(y, 0|x)

∂s
− EΓ [σ(x,y) | σ(x,y) = 0]Hj(y|x)G′

σ|x(0)

+

∫ +∞

0

2λ1F
′
σ|x(s)

δ + λ1Fσ|x(s)
× ∂Kj(y, s|x)

∂s

×

{
EΓ [σ(x,y) | σ(x,y) = s, yj ≤ y]− EΓ [σ(x,y) | σ(x,y) = s]

}
ds,

all terms of which are equal to zero. □

Note that the proof above is virtually unchanged if, instead of assuming that σ(·) is linear in (x+a),

one only assumes that it is homogeneous in (x+ a). In that case, (x+ a)⊤∇xσ(x,y) = ασ(x,y), where

α is the degree of homogeneity (a constant), and the proof goes through as above.

A.6 Strength of Sorting: Proof of Theorem 8.

We first note that similar steps as were taken in the proof of Theorem 1 can be used to establish the

following result about the way in which the marginal density of the jth job attribute in the population

of firm-worker matches responds to a change in the kth worker attribute:

∂H ′
j(y|x)
∂xk

= G′
σ|x(0)

{
EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0, y′j = y

]
PrΓ

{
y′j = y|σ(x,y) = 0

}
− EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = 0

]
H ′

j(y|x)

}

+

∫ +∞

0

2λ1F
′
σ|x(s)

δ + λ1Fσ|x(s)
× ∂2Kj(y, s|x)

∂y∂s

×

{
EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s, y′j = y

]
− EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s

]}
ds.

Assuming, as is done in the theorem, that the NE margin is shut down (σ(x,y) > 0 for all y), implies

that the first two terms in the equation above are both equal to zero. Next consider:

(x+ a)⊤Q∂xk
E(y|x) =

X∑
i=1

Y∑
j=1

(xi + ai)qij

∫ yj

y
j

yj
∂H ′

j(yj |x)
∂xk

dyj

for all k ∈ {1, · · · , X}, where ∂xk
E(y|x) = (∂E(y1|x)/∂xk, · · · , ∂E(yY |x)/∂xk)

⊤. Using the expression

for ∂H ′
j(yj |x)/∂xk derived above, the definition of the bilinear flow surplus function from Assumption
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1, and the definition of Kj(y, s|x) from equation (6), we have that

(x+ a)⊤Q∂xk
E(y|x) =

X∑
i=1

Y∑
j=1

(xi + ai)qij

∫ yj

y
j

yj

∫ +∞

0

2λ1F
′
σ|x(s)

δ + λ1Fσ|x(s)
× ∂2Kj(yj , s|x)

∂y∂s

×

{
EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s, y′j = yj

]
− EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s

]}
dsdyj

=
X∑
i=1

Y∑
j=1

(xi + ai)qij
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

×
∫ +∞

0

2λ1F
′
σ|x(s)[

δ + λ1Fσ|x(s)
]3

×
∫ yj

y
j

{∫
1 {σ(x,y′) = s}1

{
y′j = yj

}
y′j

∂σ(x,y′)

∂xk
γ(y′)dy′

−
∫

1 {σ(x,y′) = s}1
{
y′j = yj

}
y′jγ(y

′)dy′ × EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s

]}
dyjds

=
X∑
i=1

Y∑
j=1

(xi + ai)qij
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

×
∫ +∞

0

2λ1F
′
σ|x(s)[

δ + λ1Fσ|x(s)
]3

×

{∫
1 {σ(x,y′) = s} y′j

∂σ(x,y′)

∂xk
γ(y′)dy′

−
∫

1 {σ(x,y′) = s} y′jγ(y′)dy′ × EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s

]}
ds

=
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

×
∫ +∞

0

2λ1F
′
σ|x(s)[

δ + λ1Fσ|x(s)
]3

×

{∫
1 {σ(x,y′) = s}

X∑
i=1

Y∑
j=1

(xi + ai)qijy
′
j

∂σ(x,y′)

∂xk
γ(y′)dy′

−
∫

1 {σ(x,y′) = s}
X∑
i=1

Y∑
j=1

(xi + ai)qijy
′
jγ(y

′)dy′ × EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s

]}
ds

=
δ
[
δ + λ1Fσ|x(0)

]
Fσ|x(0)

×
∫ +∞

0

2λ1F
′
σ|x(s)[

δ + λ1Fσ|x(s)
]3 ×

(
s+ (x+ a)⊤Qb

)
×

{∫
1 {σ(x,y′) = s} ∂σ(x,y′)

∂xk
γ(y′)dy′

−
∫

1 {σ(x,y′) = s} γ(y′)dy′ × EΓ

[
∂σ(x,y′)

∂xk
| σ(x,y′) = s

]}
ds = 0,

as the term in curly brackets inside the integral is equal to zero. □

A.7 Proof of Theorem 6

Under the separability assumption 2 in the Theorem, f(x,y) = f1(x, y1)+f2(x−k,y) where x−k includes

all components of x but xk. Hence:

∂σ(x,y)

∂xk
=

∂f1(x, y1)

∂xk
− ∂b(x)

∂xk
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which only depends on the first job attribute y1. Then:

EΓ

[
∂σ(x,y)

∂xk
| σ(x,y) = s, y1 = y

]
=

∂f1(x, y)

∂xk
− ∂b(x)

∂xk

which is increasing in y under Assumption 3. Condition (CMP) thus holds, hence the result. □

B Alternative Wage Setting Protocols

In this appendix, we explore generalizations of our results to wage setting protocols other than the pure

Sequential Auction model of Postel-Vinay and Robin (2002).

For notational brevity, we first denote the surplus of a match as S(x,y) = P (x,y) − U(x). Under

any wage setting rule, so long as workers and firms have linear preferences over wages, the surplus and

unemployment value functions are defined by:

(ρ+ δ)S(x,y) = f(x,y)− ρU(x) + λ1

∫
m(x,y,y′) [Ωm(x,y,y′)− S(x,y)] γ(y′)dy′ (23)

ρU(x) = b(x) + λ0

∫
m(x,0Y ,y

′)Ωm(x,0Y ,y
′)γ(y′)dy′ (24)

where Ωm(x,y,y′) is the surplus (over the value of unemployed search) achieved by the worker if s/he

moves from employer y to employer y′ and m(x,y,y′) is the worker’s mobility decision: m(x,y,y′) = 1

if the worker chooses to move from y to y′ and 0 otherwise.

We now consider three alternative wage setting models: sequential auction with worker bargaining

power (Cahuc et al., 2006), fixed-share surplus-splitting (Mortensen and Pissarides, 1994; Moscarini,

2001), and wage posting (Burdett and Mortensen, 1998). In each case, we refer the reader to the

relevant reference for details about the wage setting model at hand.

B.1 Sequential Auctions with Worker Bargaining Power (Cahuc et al., 2006)

In this case, Ωm(x,y,y′) = S(x,y)+β [S(x,y′)− S(x,y)] and the mobility decision rule is m(x,y,y′) =

1 {S(x,y′) > S(x,y)}. Thus:

ρU(x) = b(x) + λ0β

∫
1 {S(x,y′) ≥ 0}S(x,y′)γ(y′)dy′ (25)

= b(x) + λ0β

∫ +∞

0

SdFS|x(S) = b(x) + λ0β

∫ +∞

0

FS|x(S)dS

where FS|x(S) =
∫
1 {S(x,y′) ≤ S} γ(y′)dy′ is the sampling cdf of match surplus faced by a type-x

worker, and where the last equality above obtains from integration by parts. Following similar steps:

(ρ+ δ)S(x,y) = f(x,y)− ρU(x) + λ1β

∫ +∞

S(x,y)

FS|x(S)dS
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Substituting (25) into the latter equation:

(ρ+ δ)S(x,y) = f(x,y)−
[
b(x) + (λ0 − λ1)β

∫ +∞

0

FS|x(S)dS

]
− λ1β

∫ S(x,y)

0

FS|x(S)dS

Letting b̃(x) = b(x) + (λ0 − λ1)β
∫ +∞
0

FS|x(S)dS and σ(x,y) = f(x,y)− b̃(x), we thus have:

(ρ+ δ)S(x,y) = σ(x,y)− λ1β

∫ S(x,y)

0

FS|x(S)dS (26)

As is clear from (26), S(x,y) only depends on y through σ(x,y) (and in a differentiable way). With a

slight abuse of notation, we can thus define dS/dσ which, from (26), is given by:

dS(x,y)

dσ(x,y)
=

1

ρ+ δ + λ1βFS|x (S(x,y))
> 0.

This proves that, for any y1 ̸= y2, S(x,y2) > S(x,y1) ⇐⇒ σ(x,y2) > σ(x,y1). Moreover, it is

also clear from (26) that S(x,y) = 0 ⇐⇒ σ(x,y) = 0. Hence, the job acceptance rule is equivalent

to m(x,y,y′) = 1 {σ(x,y′) > σ(x,y)} for employed workers and m(x,0Y ,y
′) = 1 {σ(x,y′) > 0} for

unemployed workers: the acceptance rule is the same as in the pure sequential auction case seen in the

main text, up to the redefinition of σ(x,y) from f(x,y)− b(x) to f(x,y)− b̃(x).

Crucially, this redefinition of σ preserves monotonicity and linearity of σ w.r.t. y, as well as super-

modularity w.r.t. (x,y). Therefore, any result relying on those properties alone will continue to hold in

this modified model. We take stock of what those are in the last paragraph of this appendix.

B.2 Fixed-share Surplus-splitting (Moscarini, 2001)

In this case, Ωm(x,y,y′) = βS(x,y′). But also, the worker’s value in the incumbent match is βS(x,y),

implying that the mobility decision rule is again m(x,y,y′) = 1 {S(x,y′) > S(x,y)}. We thus still have

ρU(x) = b(x) + λ0β
∫ +∞
0

FS|x(S)dS, and now:

(ρ+ δ)S(x,y) = f(x,y)− ρU(x) + λ1

∫
1 {S(x,y′) > S(x,y)} [βS(x,y′)− S(x,y)] γ(y′)dy′

= f(x,y)− ρU(x) + λ1

∫ +∞

S(x,y)

[βS − S(x,y)] dFS|x(S)

⇐⇒
[
ρ+ δ+λ1(1− β)FS|x (S(x,y))

]
S(x,y) = f(x,y)− ρU(x) + λ1β

∫ +∞

S(x,y)

FS|x(S)dS

Substituting U(x):

[
ρ+ δ + λ1(1− β)FS|x (S(x,y))

]
S(x,y) = σ(x,y)− λ1β

∫ S(x,y)

0

FS|x(S)dS (27)
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where b̃(x) = b(x)+(λ0−λ1)β
∫ +∞
0

FS|x(S)dS and σ(x,y) = f(x,y)− b̃(x) are defined as before. Then,

using a similar argument as in the Cahuc et al. (2006) case:

(
ρ+ δ + λ1FS|x (S(x,y))− λ1(1− β)S(x,y)F ′

S|x (S(x,y))
)
dS(x,y) = dσ(x,y)

Thus, a sufficient condition for S(x,y) to be in a one-to-one increasing relationship with σ(x,y) is that

the hazard rate of FS|x be small enough:

SF ′
S|x(S)

FS|x(S)
≤ ρ+ δ + λ1

λ1(1− β)
⇐⇒

S
∫
1 {S(x,y′) = S} γ(y′)dy′∫
1 {S(x,y′) ≥ S} γ(y′)dy′ ≤ ρ+ δ + λ1

λ1(1− β)
. (28)

This is an unwieldy condition on γ, but still a condition on the primitives. Note that the reason we need

this condition is that, under this particular rent-sharing rule, a share 1−β of the surplus from the initial

match is lost to a third party (the new employer) when the worker changes jobs. More precisely, when

the worker changes jobs, the initial firm-worker collective “gains” β [S(x,y′)− S(x,y)] (a share β of the

rent supplement brought about by the new match, although all of these gains accrue to the workers), and

“loses” (1 − β)S(x,y) to the new employer. Thus, if there is a high concentration of potential matches

with equal surplus (if F ′
S|x (S(x,y)) is large), the initial match stands to lose a lot and gain very little

in case the worker accepts an outside offer. As a result, the surplus may be higher in a slightly less

productive match but with fewer similar potential matches available in the economy. Condition (28)

prevents that from happening.

B.3 Wage Posting (Burdett and Mortensen, 1998)

Assuming that firms post wages and are allowed to make offers contingent on worker type x, the model

becomes one of segmented wage-posting markets (one market for each x), where workers are homogeneous

within each market and firms in market x are heterogeneous with (scalar) productivity f(x,y). We then

know from Burdett and Mortensen (1998) — or indeed from standard monotone comparative statics —

that firms with higher f(x,y) will post higher wages for type-x workers (and thus offer higher values to

those workers).

Adjusting the notation from Burdett and Mortensen (1998), posted wages are given by:

w(x,y) = f(x,y)−
[
δ + λ1F f |x (f(x,y))

]2 {∫ f(x,y)

b̃(x)

dt[
δ + λ1F f |x(t)

]2 + C(x)

}

where Ff |x(·) is the sampling distribution of match productivity conditional on x, b̃(x) is the lowest

productivity amongst viable matches on the market for type-x workers, and C(x) is the profit of the

least productive match employing a type-x worker.35 Again defining σ(x,y) = f(x,y) − b̃(x), it is

35Calling the reservation wage of a type-x unemployed worker R(x) (see Burdett and Mortensen, 1998 for a
derivation), we have that b̃(x) = max {R(x);miny′∈Y f(x,y′)}. Then, the integration constant C(x) is zero if
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straightforward to check that w(x,y) is a strictly increasing function of σ(x,y), so that employed workers

move up the σ(x,y)-ladder. Moreover, by construction, unemployed workers accept offers iff. σ(x,y) ≥ 0.

B.4 Taking Stock

In all the cases reviewed above, worker mobility is governed by comparisons of σ(x,y) = f(x,y)− b̃(x),

where b̃(x) is a (potentially very complex) function of x only. So any theorem that only uses monotonicity

of σ in y, linearity of σ in y, or supermodularity σ in (x,y) goes through. What fails to go through,

though, is any property that relies on the linearity of σ in x: even assuming linearity in x of f and b, the

function b̃(x) is generically nonlinear. What this means in terms of the results in this paper is that the

only properties that are specific to the pure sequential auction model are Theorems 7 and 8. All of the

conditions ensuring PAM in equilibrium are preserved under any of the three alternative wage setting

models covered in this appendix.

b̃(x) = R(x) and some positive function of x otherwise.
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