Technology, Skill and the Wage Structure

Nancy Stokey

Discussion by Stephen J. Redding

Motivation

• Great paper

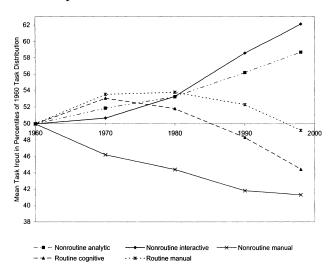
Motivation

- Great paper
- Rich yet tractable theoretical framework

Motivation

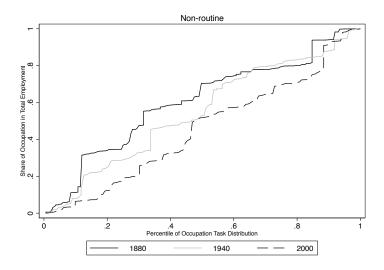
- Great paper
- Rich yet tractable theoretical framework
- Yields a sharp analytical characterization of the effects of task-specific changes in technology

Task-based Approach


- Task-based approach to the labor market versus canonical model of skilled/unskilled (Acemoglu and Autor 2011)
 - A task is a unit of work activity that produces output (goods and services)
 - A skill is a worker's endowment of capabilities for performing various tasks

Task-based Approach

- Task-based approach to the labor market versus canonical model of skilled/unskilled (Acemoglu and Autor 2011)
 - A task is a unit of work activity that produces output (goods and services)
 - A skill is a worker's endowment of capabilities for performing various tasks
- New technologies typically complement or substitute for particular tasks in a pattern that can be poorly summarized by aggregate measures of skills (college degree or equivalent)
 - Luddites: 19th-century English textile workers
 - Information and computing technology (ICT)


Autor, Levy and Murnane (2003)

Employment-weighted mean of DOT task percentiles across occupations

Michaels, Rauch and Redding (2016)

 Cumulative distributions of 1880, 1940 and 2000 employment across DOT occupation task percentiles

Model

Final good produced using tasks

$$y_F = \left(\sum_{j=1}^{J} \left(N\gamma_j\right) y_j^{\frac{
ho-1}{
ho}}\right)^{rac{
ho}{
ho-1}}$$

Tasks produced with skill h and technology x

$$y_j = \int \ell_j(h)\phi(h, x_j)dh$$
, all j

$$\phi(h,x_j) \equiv \left[\omega h^{\frac{\eta-1}{\eta}} + (1-\omega)x_j^{\frac{\eta-1}{\eta}}\right]^{\frac{\eta}{\eta-1}}, \qquad \eta,\omega \in (0,1).$$

- Production is log supermodular in technology and skill as in Costinot and Vogel (2010)
 - Additional CES structure on the productive technology
 - Discrete number of tasks

Theoretical Predictions

- Equilibrium exhibits Positive Assortative Matching (PAM) and can be characterized recursively
 - Skill thresholds $h_{\min} = b_0 < b_1 < \dots < b_{J-1} < b_J = h_{\max}$
 - Technology x_i employs workers in skill bin $j(b_{i-1}, b_i)$
- Suppose that technical change increases technology x_k by a small increment $\epsilon > 0$
 - Output increases and price falls for task k
 - Ripple effects that are dampened for more distant tasks
 - For $\rho = 1$, all skill thresholds shift upward (task downgrading for some workers)
 - For $\rho > 1$, thresholds at and above k^{th} shift upward, while those at and below $(k-1)^{\text{th}}$ can shift either way
 - For ρ < 1, thresholds at and below $(k-1)^{\text{th}}$ shift upward, while those at and above k^{th} can shift either way
 - Determine employment, output, price and wage effects
- Quantitative empirical evidence on these predictions?

Roy Model

- Related formulation in terms of a Roy model
 - Hsieh, Hurst, Klenow and Jones (2013), Burstein, Morales and Vogel (2016) and Michaels, Rauch and Redding (2016)
- Indirect utility depends on wage per effective unit of labor, idiosyncratic ability draw and cost of living

$$U_{so}(i) = \frac{w_{so}z_{so}(i)}{P}$$

Idiosyncratic ability draw from Fréchet distribution

$$F_{so}(z) = e^{-T_{so}z^{-\theta}}, \qquad \theta > 1$$

Probability a worker chooses sector s and occupation o

$$\pi_{so} = \frac{T_{so}w_{so}^{\theta}}{\sum_{r=1}^{S}\sum_{m=1}^{O_{s}}T_{rm}w_{rm}^{\theta}}$$

Existing Evidence

- Burstein, Morales and Vogel (2016) quantitative decomposition of changes in between-group inequality
 - Computerization and shifts in occupation demand account for roughly 80 percent of the rise in the skill premium
 - Computerization alone accounts for roughly 60 percent
- Hsieh, Hurst, Jones and Klenow (2013) use Roy model to quantify changes in misallocation across occupations
 - Around 15-20 percent of growth in aggregate output per worker explained by improved allocation of talent
- Connection between the model and evidence on between-firm changes in wage inequality
 - Helpman, Itskhoki, Muendler and Redding (2016)
 - Song, Price, Guvenen, Bloom and Wachter (2016)
 - Embed assignment model in Melitz firm heterogeneity framework (Sampson 2014)

Comments

- Great paper
- Flexible and tractable framework
- Sharp analytical results for the general equilibrium impact of technical change for a limited set of tasks
- Interesting to provide evidence on the quantitative magnitude of these effects in the data