A rank-based refinement of ordinal efficiency and a
new (but familiar) class of ordinal assignment

mechanisms

Clayton R. Featherstone*

This version: October 21, 2011

JOB MARKET PAPER

PRELIMINARY AND INCOMPLETE

Abstract

A feasible assignment is rank efficient if its distribution over agents’ ranks of
their allocations cannot be stochastically dominated by that of another feasible
assignment. Rank efficiency implies ordinal efficiency (and hence ex post effi-
ciency); however, the converse is not true, even if we are free to give different
weights to each agent when tabulating the rank distribution. A class of simple
linear programming mechanisms always yields rank efficient assignments and
can generate any rank efficient assignment. These mechanisms have been pre-
viously seen in the field and are currently used by Teach for America to assign
teachers. Using data from a match at Harvard Business School, Featherstone
and Roth (2011) empirically show that under truth-telling, rank efficient mech-
anisms can significantly outperform random serial dictatorship and the proba-
bilistic serial mechanism. Although rank efficiency and strategy-proofness are
theoretically incompatible, we show that rank efficient mechanisms can admit
truth-telling as an equilibrium in low information environments. Rank efficient
mechanisms are also strongly related to the competitive equilibrium mecha-
nisms of Hylland and Zeckhauser (1979) which we are able to leverage to show
that envy-freeness and rank efficiency are theoretically incompatible.
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1 Introduction

In an ordinal assignment problem, the goal is to design an effective mechanism that
maps agents’ submitted ordinal preferences into an assignment that matches each
agent with one object. Such mechanisms are widely used in settings as diverse as
school choice, housing allocation, machine scheduling, and military posting. To
gauge success, it is common practice to look to how many people were assigned
objects that they ranked highly. For instance, when school districts announce the
results of a choice-based student placement system, they report things like how many
students were assigned to one of their top three choices and how many were un-
matched (NYC Department of Education 2009, San Francisco Unified School District
2011). Motivated by this near ubiquitous phenomenon, we consider evaluating the
efficiency of ordinal assignment mechanisms by looking at the market-wide distribu-
tion of agents’ ranks for their allocations. Remaining agnostic about how to compare
different ranks, we call a feasible assignment rank efficient if its rank distribution
cannot be first-order stochastically dominated by that of another feasible assignment.

Prior to this paper, two efficiency concepts dominated the literature. Ex post
efficiency simply means that once a deterministic assignment is implemented, no
agents would agree to trade or would want to claim unassigned objects. Random
serial dictatorship (drawing an ordering from some fixed distribution and letting the
agents choose their objects in that order) is ex post efficient and strategy-proof (Zhou
1990, Abdulkadiroglu and Sénmez 1998). It is also commonplace in the field. It is not,
however, efficient from the interim perspective in which the mechanism has chosen
a lottery over assignments, but has yet to determine which of these assignments is
to be implemented. From such a perspective, it is convenient to think about agents
possessing a bundle of tradable probability shares in the different objects. Interim
inefficiency then means that there are mutually profitable opportunities for agents to
trade shares. The contribution of Bogomolnaia and Moulin (2001) was to identify this
problem and to suggest a refinement of ex post efficiency that deals with it, which
they called ordinal efficiency. They then introduced the probabilistic serial mechanism
and showed that it is always ordinally efficient. Finally, they proved that strategy-
proofness and ordinal efficiency are theoretically incompatible.® Unfortunately, while

ordinal efficiency is an appealing concept, the probabilistic serial mechanism is never

3 Actually, they prove that there is no mechanism that is strategy-proof, ordinal efficient, and
gives the same expected allocation to all agents who submit the same preference. The last condition
rules out serial dictatorships, which are ordinally efficient by virtue of making the definition vacuous:
agents can’t trade across states of the world when there is only one state.



seen in the field. This presents an institutional puzzle, since good mechanisms often
evolve on their own (Roth 1984, 1991, Abdulkadiroglu and Sénmez 2003b).

As Bogomolnaia and Moulin (2001) presented an interim refinement of ex post
efficiency, this paper presents an ex ante refinement of ordinal efficiency. Before going
further, however, it makes sense to give some intuition for why such a refinement is
needed. Consider a five agent, five position example, where the circles and boxes

represent the deterministic assignments [z | and @
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Both of these assignments are ex post efficient, and in fact, they are also ordinally

Y Y Y Y

RIRISEIO)

Gt = W N =

efficient.* Even so, gives one agent her first choice and four agents their second
choice, while @ has four first choices and only one second choice. Rank efficiency
formalizes the intuition that, if we don’t have any reason to differentiate between one
agent getting his first choice or another, then @ is a better assignment.

Although this sort of interpersonal comparison may give pause to the theorist, it
is hard to imagine a policy-maker that wouldn’t prefer @ to[z]. Indeed, when faced
with an assignment whose rank distribution is worse than expected, policy-makers
often want to “correct” assignments by looking for non-Pareto-improving rearrange-
ments in which, by some definition, the good outweighs the bad. For instance, when

Teach for America®

assigns its teachers to schools in different regions of the country,
they start with a computerized match, and then spend a solid week manually looking
for trade cycles that help teachers who have been assigned to low ranked regions,
often at the expense of moving other teachers out of their top choice. After Harvard
Business School (HBS) used random serial dictatorship to assign first year MBAs to
overseas programs, administrators were concerned about the number of students who

were assigned to an unpopular country even though they had ranked it last. HBS

4In Section 5.3 we will show that, on the domain of deterministic assignments, ordinal efficiency
is equivalent to ex post efficiency.

5Teach for America is a nationwide non-profit that sends mostly new college graduates to teach in
at-risk public schools. The author is able to speak to Teach for America’s matching methods because
he and Al Roth are actively involved with helping the organization to streamline its assignment
process. See Section 5.4 for more.

6This paper discusses the HBS match in Section 6. Again, the author is able to speak to what



wanted to look for swaps where one MBA who somewhat liked the unpopular coun-
try, but wasn’t assigned there, could trade places with another MBA who strongly
disliked the unpopular country, but was assigned there. Only after being reminded
that this would undermine the promise of strategy-proofness made to the students
did administrators reluctantly accept the original assignment.”

Returning to the institutional puzzle mentioned earlier, one could interpret the
fact that the probabilistic serial mechanism is absent from the field as an indication
that institutional evolution has selected strategy-proofness over efficiency. The two
anecdotes of the previous paragraph indicate otherwise, and in fact, rank efficiency
can be characterized in terms of non-Pareto improving trade cycles. Consider scoring
a trade cycle by giving values to the ranks and looking at the change in rank-value of
all of its agents. For instance, if an agent in the cycle starts with his first choice and
ends up with his third choice, then he contributes v3 —v; < 0 points to the valuation
of the cycle. An assignment is rank efficient if and only if there is some vector v
such that all possible trade cycles yield a negative value. In other words, the sort of
“correction” processes mentioned in the previous paragraph are not hard to rationalize
as a search for rank efficiency. The characterization of the rank efficient mechanisms
is built on a similar principle. Consider scoring every assignment as follows: for every
agent (in expectation) that gets his 1% choice, the assignment gets v; points, for every
agent (in expectation) that gets his 2"¢ choice, the assignment gets v, points, and
so on. The mechanism that picks the feasible assignment with the highest score is
a rank efficient mechanism. Such a process is easily automated with a simple linear
program, and in fact, linear programming mechanisms, although not as prevalent as
random serial dictatorships, can be found in the field. Roth (1991) mentions that the
mechanisms used to match house-officers® to hospitals in Cambridge and London are
linear programs, and, since spring of 2011, Teach for America has also used a linear
program.’

Thus far, rank efficiency has been described as a positive concept; however, it can

also be motivated as a normative concept. If the v vector mentioned in the previous

happened behind the scenes because he and Al Roth are actively involved with the design of the
match.

"Indeed, strategy-proofness is largely about making it safe for agents to reveal that they some-
what like objects that most other agents strongly dislike.

8Roughly speaking, house-officers are a U.K. analog to medical residents in the American market
(Roth 1984).

90ne might object that the author and Roth suggested this mechanism; however, in Section 5.4,
we argue that Teach for America adopted a linear programming assignment method, not because it
was something new, but because it duplicated the non-automated process of the past in much less
time.



paragraph is interpreted as an assumption about the cardinal preferences of the agents
and about how utility should be compared across agents, then the linear programming
mechanisms we described coincide with maximizing expected utility from behind the
veil of ignorance. In this sense, rank efficiency is an ex ante refinement of ordinal
efficiency.

Institutional evolution seems to have framed the conflict between strategy-proofness
and efficiency as a decision between random serial dictatorship and linear program-
ming. As a market designer, how does one choose which mechanism is the right one?
Do rank efficient mechanisms ever make sense, or are they “mistakes” made by unin-
formed policy-makers? Two exercises inform these concerns. First, in low information
environments, a la Roth and Rothblum (1999), we show that rank efficient mecha-
nisms admit a truth-telling equilibrium. This result lines up well with conversations
we had with Teach for America about the wedge between strategy-proofness and ef-
ficiency. When asked why they weren’t worried about manipulation, their response
was that teachers only applied once, were geographically separated, and knew little
about what regions are popular and how the mechanism is run. The second exercise
that informs whether it makes sense to consider rank efficient mechanisms uses em-
pirical data from the HBS match. Under truth-telling, the rank efficient mechanism
can yield more than a 15% improvement in the number of MBAs who can be assigned
to a first or second choice country (out of 11) when compared to the assignment given
by random serial dictatorship (Featherstone and Roth 2011). Although these gains
might be undermined by strategic preference manipulation, the exercise shows that
in a worst-case scenario, the costs of strategy-proofness can be quite large. Together,
these exercises indicate that in certain environments, it would be a mistake to not at
least consider using a rank efficient mechanism.

Finally, the paper considers a class of ordinal mechanisms based on Hylland and
Zeckhauser (1979). These mechanisms assume cardinal preferences to rationalize the

t1% money, and then

submitted ordinal preferences, give each agent a budget of fia
calculate a competitive equilibrium assignment. Such mechanisms always yield ordi-
nally efficient assignments, and in fact, they yield a refinement of ordinal efficiency
that generalizes rank efficiency by allowing different agents to be weighted differently
when the rank distribution is tabulated. Hence there is a mapping between general-

ized rank efficient mechanisms'! and competitive equilibrium mechanisms. Perhaps

10That is, the money only exists within the mechanism and is not intrinsically valued by the
agents. Its only worth is to purchased probability shares within the mechanism.

11 As we just discussed, the rank efficient mechanism gives an assignment v, points for assigining
any agent his k" choice. The generalized rank efficient mechanism weights agents according to some



surprisingly, a competitive equilibrium where all agents have the same budget does
not correspond to an assignment supported by the rank efficient mechanism that
places equal weights on each agent. In this sense, procedural fairness means different
things under the two types of mechanisms. Equal budgets in a competitive equilib-
rium mechanism corresponds to justice based on envy-freeness,(Varian 1974, Dworkin
1981) while equal agent weights in a rank efficient mechanism corresponds to justice
based on a version of the Rawlsian veil of ignorance (Harsanyi 1975).'2

The rest of the paper is essentially organized into three parts. In the first part
(Sections 2-5), we start by introducing the model, ex post efficiency and ordinal effi-
ciency, and then demonstrate that rank efficiency is a refinement of both. Then, we go
on to characterize rank efficient mechanisms, interpret what they are doing, and argue
that they are used in the field by telling the story of how Teach for America assigns
its teachers. In the second part (Sections 6-7) we show that rank efficient mechanisms
are worth thinking about by demonstrating two things. First, by looking at data from
the HBS overseas match, we show that under truth-telling, rank efficient mechanisms
could yield big efficiency gains. Then, we show that, although strategy-proofness and
rank efficiency are theoretically incompatible, rank efficient mechanisms can admit a
truth-telling equilibrium in low information environments. In the third part (Sections
8-9) we generalize rank efficiency and show that the generalization is closely related
to the competitive equilibrium mechanisms of Hylland and Zeckhauser (1979). Lever-
aging this result, we then interpret the theoretical incompatibility of rank efficiency
and envy-freeness as a wedge between two important concepts of justice. Finally,
we conclude by discussing how the rank efficient mechanisms should enter into the

discussion about the costs of strategy-proofness.

2 The model

Consider assigning each agent a from set A to exactly one object o from set O.
Further, let there be g, copies of each object. Sometimes the set of objects will
include a special “null” object, (), that denotes an agent’s outside option. We model

) as a good that is never scarce, that is, ¢y = |A|. When agents have no outside

vector (a),: the value of assigning an agent a to his k" choice is worth ay - vy,.

12Note that we are maximizing expected utility from behind the veil. If we were to follow Rawls
(1972), then we would maximize a maximin objective which would lead to a concept of justice that
more closely resembles that of Dworkin.



option,'® we don’t include the null object in . Whether there is a null object or
not, we will require that there are enough objects that every agent can be feasibly
matched, that is >, ¢o > |A[.M

A deterministic assignment is a function that maps agents to objects feasibly,
that is, each agent is only mapped to one object, and no more than ¢, agents are
assigned to any given o € . We can represent such an assignment as an |A| x |O)|
matrix z where z,, € {0,1}, > 24 = 1, and > %4 < ¢, for all @ € A and
o € O. To be clear, z,, = 1 means that agent a is assigned to object 0; x,, = 0
means that agent a is not. A random assignment is a lottery over deterministic
assignments, which can be represented as the corresponding convex combination over
deterministic assignment matrices. As such, random assignment matrices will have
a similar structure to deterministic assignment matrices, except z,, € [0,1]. By
the extension of the Birkhoff-von Neumann theorem (Birkhoff 1946) put forth in
Budish et al. (2011), we can assert that any such matrix represents some lottery over
deterministic assignments.!®> We call this a lottery representation of the random
assignment matrix, and the deterministic assignments the representation’s support.
For the rest of the paper, we will frequently use the freedom afforded to us by the
Budish et al. theorem to focus on matrix representations.

Moving to the individual agent, we refer to the a® row of a random assignment
x, To, as agent a’s allocation. Each agent a is endowed with an ordinal prefer-
ence -, over O; note that indifferences are allowed. As the framework of this pa-
per is laid out, however, we will often have occasion to express agents’ preferences
in terms of rank functions. An agent a’s rank function, r,(-), is a mapping from
O to {1,...,|O0| +1}.16 When preferences are strict, there are several equivalent

ways to define the standard rank function: r,(0) = |{0’ € Ol0' 7, 0}|, or r,(0) =

13The obvious example is military postings. Perhaps a more subtle example is public school
assignment. In San Francisco, students are not required to rank all schools, but if they cannot be
assigned to a school they ranked, they are generally given an administrative assignment. In this
sort, of situation, failing to rank all schools is equivalent to the student saying to the school district,
“beyond what I ranked, you can fill out the rest of my rank-order list for me.”

More generally, if some agents are not allowed to match to certain objects, we just need that
there exists some feasible deterministic assignment from agents to objects. If we consider a bipartite
network where links represent feasible allocations, then a necessary and sufficient condition for the
existence of such an assignment is that the network meets the condition of Hall’s Theorem (Hall
1935), that is, for any subset of the agents, the cardinality of the union of the sets of objects to
which they could feasible match must be greater than or equal to the cardinality of the subset of
agents in consideration.

15This lottery need not be unique. Generally, we don’t have to worry about this, as all such
lotteries induce the same lottery over objects for each agent, but sometimes this subtlety is important.
See Remark 1.

6We include |O| + 1 for technical reasons that will become clear in the next paragraph.



[{o' € O|0' =, o}| + 1, or even 7,(0) = |{[0'] € O/ ~4 |0’ 54 0}].17 With indifference,
however, these definitions are no longer equivalent. Consider =—,= a >= b ~ ¢ > d.
The ranks of (a, b, ¢, d) under these definitions are, respectively, (1, 3,3,4), (1,2,2,4),
and (1,2,2,3). Another ambiguity in how to think of the rank function concerns the
null object, . One could of course treat () just like any other object; however, policy-
makers often report the number of unassigned agents as a separate category that is,
in some sense, worse than any other rank. When considering individually ratio-
nal assignments, that is assignments where no agent is ever assigned to something
less preferred than (), we can model this by setting 7,(0) = |O| and for all o <, 0,
rqo(0) = |O| + 1. In Section 7, we will see that the specifics of the mapping from 7,
to 74(+) (which we call the ranking scheme) can affect incentives for truth-telling,
but for now, the theory can be built around any of these definitions. We will only
require that o' =, 0 < 1,(0') < 1,(0), 0' ~4 0 1,(0") = 1r4(0).

Finally, define an ordinal assignment mechanism to be a mapping from sub-
mitted preferences to random assignments. In this paper, we focus on ordinal mech-

anisms because their simplicity and prevalence in the field.

3 From ex post to interim

We can think of the efficiency of assignments from several perspectives. Ex post
efficiency makes sure that there are no Pareto improving rearrangements once a de-
terministic assignment is implemented. Interim efficiency takes a step back and en-
sures there are no Pareto improving rearrangements of object probability shares at
the point where we have a random assignment, but have yet to choose which deter-
ministic assignment in its support is to be realized. When cardinal preferences are
known, both of these concepts are well defined and easy to implement.

With ordinal mechanisms, however, interim efficiency is a tricky concept, since
we don’t have enough information to determine agents’ complete preferences over
lotteries. The great innovation of Bogomolnaia and Moulin (2001) was to realize
that there are some interim rearrangements that would be profitable regardless of the
cardinal preferences that rationalize the reported ordinal preferences. If an assignment
weakly improves the allocations of all agents in the first-order stochastic dominance
sense (strictly for one agent), then regardless of the cardinal preferences, we have a

Pareto improvement. Ordinal efficiency ensures that these sorts of improvements are

170/ ~, is the set of indifference classes of O with respect to ~,; hence, |{[0'] € O/ ~, |0’ 74 0}
is the number of indifference classes whose objects are weakly preferred to o.



taken advantage of.

For the rest of this section, we will briefly go over ex post and interim efficiency in
the ordinal setting, with a view toward showing that rank efficiency, the topic of the
present paper, dovetails nicely with previous literature. In Section 5, we will show that
rank efficiency is a natural ex ante refinement of ordinal efficiency. Before proceeding,
however, we briefly address indifferences. As mentioned in the previous section, rank
efficient mechanisms will be capable of dealing with indifferences. This is also true
of the ex post and ordinally efficient mechanisms we are about to introduce, but for
the sake of simplicity and familiarity, we will introduce them in the context of strict
preferences. References for the reader interested in understanding how indifferences
can be incorporated are given, and new results concerning indifferences are relegated

to the Appendix.

3.1 Ex post efficiency

Ex post efficiency means the random assignment can be represented by a lottery
such that, regardless of which deterministic assignment is realized, there won’t be a

rearrangement of the objects that all agents weakly prefer (strictly for one). Formally,

Definition 1. A feasible deterministic assignment z is said to ex post dominate
another deterministic assignment z if z, 7=, z, for all a € A, and there is some a where
the preference is strict. A feasible deterministic assignment is ex post efficient if it
is not ex post dominated. A random assignment x is ex post efficient if the support
of some lottery representation of the assignment consists entirely of ex post efficient

deterministic assignments.

Remark 1. It is possible for an ex post efficient assignment to have a lottery rep-
resentation whose support is not entirely ex post efficient. See Abdulkadiroglu and

Sénmez (2003a) for an example.

Remark 2. The definition of ex post efficiency for random assignments can be equiv-
alently expressed in terms of a state-by-state domination concept. See the Section A

in the Appendix for more.
Now we move on to characterize the class of ex post efficient mechanisms, the

random serial dictatorships.

Definition 2. Serial dictatorship maps the reported strict preferences of the

agents, (>,), and a permutation 7 of (1,...,|A|) to a deterministic assignment ac-



cording to to the recursion relations Oy = O, Loy = WX, Ok_1, and O, =

Or_1 \:vaw(k). Denote the assignment that results from these recursions as SD[>; 7].'®

Definition 3. Random serial dictatorship maps the reported strict preferences
of the agents, (>,), and a distribution over permutations of (1,...,[A|), p(7), to the
random assignment that results from a lottery that picks SD[>; ] with probability
p(m). Denote the resulting random assignment as RSD[>;p].

Proposition 1. x is ex post efficient relative to strict preferences = < 3 a distribu-

tion over permutations p such that x = RSD[>; p|

Proof. Bogomolnaia and Moulin (2001) show that a deterministic assignment x is ex
post efficient < 37 such that o = SD[~; 7).

(<) RSD[>;p| is a lottery over ex post efficient assignments, by construction.

(=) The lottery representation of x whose support is ex post efficient gives us the

distribution over orderings required. O]

Remark 3. Random serial dictatorships with indifferences have been discussed in the
literature (Svensson 1994, 1999, Bogomolnaia, Deb and Ehlers 2005), albeit from
more theoretical perspective. See Section B in the Appendix for more about how
indifferences can be practically incorporated into random serial dictatorship.

So the random serial dictatorships always yield ex post efficient assignments, and
any ex post efficient assignment can be supported by some random serial dictatorship.

Random serial dictatorship is also strategy-proof.

Proposition 2 (Bogomolnaia and Moulin 2001). If the distribution over orderings
1s fized before agents submit their preferences, then random serial dictatorship is

strategy-proof.

Strategy-proofness and ex post efficiency are strong reasons to expect the random

serial dictatorships to evolve naturally, and indeed, they are ubiquitous.

3.2 Ordinal efficiency

To understand why we might need a refinement of ex post efficiency, it helps to look
at a situation in which ex post efficiency is too permissive. Consider the following

example, adapted from Che and Kojima (2010).

8For deterministic assignments, we will sometimes abuse notation and let z, denote both the

a'™ row of 2 and the object that x, represents.

10



A a =
Ay: a =
By : >
By: b =

b
a

a

Y Y Y

—

Cc

C

C

There is only one copy of objects a and b, while there are two copies of object c.

Random serial dictatorship relative to the uniform distribution over all orderings

yields the random assignment!®

a
Ay: 5/12
Ay i 5/12
By: 1/12
By: 1/12

b
1/12
1/12
5/12
5/12

1/2
1/2
1/2
1/2

which, by construction, must be ex post efficient.
beneficial trade: A; and A, can trade their shares in b for the shares of a held by B;

and Bs.
a
Ay 1)/2
Ay: 1/2
B;: 0
By: 0

b

0

0
1/2
1/2

C

1/2
1/2
1/2
1/2

However, there is a mutually

Clearly, all agents prefer this random assignment, since they have traded probability

shares of a less preferred object for shares in a more preferred object. The contribution

of Bogomolnaia and Moulin (2001) was to demonstrate this problem and to suggest

a natural ordinal extension of interim efficiency which remedies it.

Definition 4. A random assignment = ordinally dominates another assignment x

19T see this, note that only the first two agents in the ordering get a or b; hence, every agent gets
c half the time. For an agent a not to get his preferred object, he must be second in the ordering
(1/4 of the time) and, conditional on that, the first agent in the ordering must take a’s first choice

(1/3 of the time). (1/4) x (1/3) = 1/12.

11



if for all agents a, T, weakly stochastically dominates =, with respect to =, that is

0740

with strictness for at least one agent-object pair. An assignment is called ordinally

efficient if there is no other assignment that ordinally dominates it.

The first thing to notice is that ordinal efficiency is a refinement of ex post effi-

ciency.

Claim 1 (Bogomolnaia and Moulin 2001). z is ordinally efficient = z is ex post

efficient, but x is ex post efficient % z is ordinally efficient.

Proof. The leading example of this section shows the (%) part. For the (=) part,
note that if x is a lottery whose support includes an ex post inefficient assignment,
then replacing that assignment with its dominator would stochastically improve all

agents from the interim perspective. O

Ordinally efficiency also removes the subtlety of ex post efficiency mentioned in
Remark 1; all lottery representations of ordinally efficient assignments have an ordi-

nally efficient support.

Claim 2 (Abdulkadiroglu and Sénmez 2003a). x is ordinally efficient = the support

of any lottery representation of x must be entirely ex post efficient.

Proof. The same proof from the previous claim works. Note that the converse, how-

ever, is not true; see Abdulkadiroglu and Sénmez (2003a) for a counterexample. [

To produce ordinally efficient assignments, we look to the set of simultaneous
eating mechanisms. Since they are somewhat complicated to explain precisely, and
are not the focus of the present paper, we will limit ourselves to a rough description.?”
Essentially, over the “time” interval [0, 1], each agent takes object shares from his
most preferred remaining object at a pre-defined rate (given by his “eating speed”
function®!). If the object an agent is eating is exhausted, then he continues to eat
at his next most preferred remaining object. The algorithm terminates when “time”
gets to 1. Note that each agent is doing this simultanecously. By the Birkhoff-von

Neumann theorem mentioned earlier, we can calculated a lottery over deterministic

20For a more precise definition of this class of mechanisms, see Bogomolnaia and Moulin (2001).
21This function integrates over time to one so that an agent will consume a total of one share of
probability on the interval ¢ € [0, 1].

12



assignments that provides all agents with the lottery over objects that they consumed.
It turns out that the simultaneous eating mechanisms are related to ordinally efficient
assignments in the same way that random serial dictatorships are related to ex post

assignments.

Proposition 3. x is ordinally efficient relative to strict preferences = < x can be

generated by some simultaneous eating mechanism

Remark 4. This theorem can be extended to a class of mechanisms that deal with
indifferences (Katta and Sethuraman 2006); again, we assume strict preferences for

expositional ease.

A commonly referenced simultaneous eating mechanism is the one in which all
agents have identical eating speed functions, known as the probabilistic serial
mechanism. For intuition, note that probabilistic serial would produce the ordinally
efficient outcome we mentioned in the leading example of this section. Simultaneous
eating mechanisms are not generically strategy-proof, that is, some agents can im-
prove their allocation by deviating from truthful preference revelation. Finally, note
that while the random serial dictatorships are quite common in the field, simultaneous
eating mechanisms are not. This presents an institutional puzzle: if ordinal efficiency
is theoretically appealing, then why don’t we see ordinally efficient mechanisms??? As
we will show in the next section, the rank efficient mechanisms are ordinally efficient,
which provide a potential resolution.

Our discussion in this section has introduced an example where there is a wedge
between efficiency and strategy-proofness. Empirically, we might wonder what sort
of efficiency gain the market designer purchases by forgoing strategy-proofness. This

line of analysis is pursued further in Section 6.

4 Rank efficiency and the rank-value mechanisms

Intuitively, ordinal efficiency can sometimes be too permissive. Consider the following

example where the boxes and circles represent potential deterministic assignments

and @

22Gerial dictatorships (one fixed dictatorship ordering) are ordinally efficient, but vacuously so,
as all ex post deterministic assignments are also ordinally efficient (see Section 5.3). More precisely
then, the puzzle is why we don’t ordinally efficient mechanisms that satisfy equal treatment of equals,
that is, mechanisms that give the same allocation to all agents who submit the same preference.

13
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Both are ordinally efficient (and hence ex post efficient) deterministic assignments;?
however, in some sense, @ seems better, as it gives three more agents their first
choice and three fewer their second choice when compared to [z]. Interpersonal utility
comparisons are, of course, tricky business, but given that we only have information
about the agent’s ordinal preferences, it is hard to imagine a policy-maker remaining

agnostic about whether @ is better than [z].

4.1 Rank efficiency

Consider the cumulative frequency distribution of ranks received by the agents in a

market. Formally, define the rank distribution of assignment x to be

NP (k) =D a0} Tao

acA o€

NZ(k) is the expected number of agents who get their k' choice or better under

assignment .

Definition 5. A random assignment z is rank-dominated by a feasible assignment
Z if the rank distribution of Z first-order stochastically dominates that of x, that is,
N?%(k) > N*(k) for all k (strict for some k). A feasible random assignment is called

rank efficient if it is not rank-dominated by any other feasible assignment.

Although it is not immediately clear, rank efficiency is a refinement of ordinal effi-

ciency. Formally,

Proposition 4. x is rank efficient = x is ordinally efficient, but x is ordinally

efficient # x is rank efficient.

Proof. The leading example of this section showed the (#) part . For the (=) part,

note that weakly first-order stochastically improving all agents (strict for one) will

23In fact, on the domain of deterministic assignments, ordinal efficiency is equivalent to ex post
efficiency. See Claim 9.

14



necessarily lead to a first-order stochastic improvement in the rank distribution, since

the global rank distribution is a sum over the agents’ personal rank distributions. [

Also note that, in a similar way to ordinally efficient assignments, any lottery dis-

tribution of a rank efficient assignment must have a completely rank-efficient support.

Claim 3. The support of any lottery representation of any rank efficient random

allocation must consist entirely of rank efficient deterministic allocations.?*

Proof. Say that the support of some lottery representation of an rank efficient assign-
ment contained a rank dominated deterministic assignment. Then that assignment
is rank dominated by the compound lottery that, in the support, replaces that rank

dominated deterministic assignment with its dominator, a contradiction. O]

Schematically, thus far we have shown that

ex post = ordinal = rank
efficiency + efficiency + efficiency

that is, rank efficiency is a refinement of ordinally efficiency, just as ordinal efficiency
is a refinement of ex post efficiency. But why this particular refinement? In short,
there is a good deal of evidence that policy-makers gauge their success by the rank
distribution. For instance, school districts with ordinal choice mechanisms almost al-
ways report the distribution of ranks received as a measure of the quality of the match
(NYC Department of Education 2009, San Francisco Unified School District 2011).
This lends credence to rank efficiency as a positive concept that is at least implicitly
considered in the field. In Section 5, we will further support this interpretation by
showing that we see rank efficient mechanisms in the field. We will also give some
support for rank efficiency as a normative concept, as it can be interpreted as a social
welfare function, modulo a few assumptions.

First though, we return to a simplification of this section’s leading example in
order to concretely show how random serial dictatorship and probabilistic serial can
fail to produce rank efficient assignments. Redefine[x]and @ relative to the example
that follows. We also consider the output of the uniform random serial dictatorship

and probabilistic serial mechanisms: their random assignments are listed in Table 1.

24Note that on the domain of deterministic assignments, rank efficiency is not equivalent to ex
post efficiency. See Claim 10.
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a b c d a b c d
1: 1/2 0 1/2 0 1: 1/2 0 1/2 0
2: 1/2 1/6 0 1/3 2: 1/2 1/4 0 1/4
3: 0 5/6 1/6 0 3: 0 3/4 1/4 0

Table 1: Random assignments in the simplified example

N*(1) N*(2)  N*(3)
1 3 3
2 3 3
P9 7/4=175 11/4=275 3
gUBSD - 11/6 ~1.83 8/3 ~ 2.67 3

Table 2: Rank distributions from the simplified example

1: [a] >~ @ - d
2: @ - @ — d
3: @ - - d

The rank distributions of the four assignments are listed in Table 2. We can see that
@ rank dominates the other three assignments, since, column-by-column, it has a
larger rank distribution. Of course, this will not always be the case (rank efficiency
only guarantees that no other assignment rank dominates); in this example, it is due
to the following claim, whose proof illustrates how to show that an assignment is the
unique rank efficient assignment.

Claim 4. In the simplified example, @ is the unique rank efficient assignment.?

Proof. Claim 3 means that we can just show that @ is the unique deterministic
rank efficient assignment. First we show that the rank distribution of @ dominates
any other feasible rank distribution. The three agents’ first choices only cover two
objects; hence, N*(1) < 2, and since there are only three agents, N*(2) < 3. @ hits

250One might argue that this fact casts doubt on rank efficiency as a concept. What if we had
good reason to care more about 1 than 2 and 3?7 In Section 8.1 we will introduce a generalized
version of rank efficiency in which agents can be weighted differently when the rank distribution is
tabulated. Everything we have shown thus far has an analog to a world in which the weighting over
students is fixed, but not uniform.
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this upper bound. Now we show that no other deterministic assignment attains the
bound. Any assignment that attains the bound must give b to 3 and split a between
1 and 2. Since b was given to 3, if we give any a to 2, we will get N*(2) < 3. Thus,
@ uniquely attains the bound, demonstrating that it is the unique rank efficient

assignment. O

Hence, a corollary of the previous claim is that any rank efficient mechanism will
choose @ A natural next step is to look for a method of calculating the rank

efficient assignments for a more general setting.

4.2 The rank-value mechanisms

We will first introduce the rank-value mechanisms, and then we will show that these
mechanisms are to rank efficiency what the random serial dictatorships were to ex
post efficiency. Begin by defining a valuation to be a sequence (vk)lkozlzr Y of strictly
positive real numbers such that vy > vy for all k € {1,--- [|O|}. v will be, in some

4

sense, the “value” that the rank-value mechanism places on k** choice allocations, so
we have no need for more dimensions than |O|+1 (which is the worst rank that anyone
could possible give to an object).?® Also note that the strictness of the inequality is
essential for many upcoming results; we must place a strictly higher value on k**

choice allocations than on (k + 1) choice allocations.

Definition 6. The rank-value mechanism with respect to valuation v (or the
v-rank-value mechanism for short) maps agent rank orderings to a maximizer of

the following linear program.

mg?x Z Z’UTG(O) * Lao

ac€A ocO
s.t. Zxao <q,, Yoe O
a

Zmaogl,VaEA

Yoe O
Vae A

$a0>07

We say that the assignments in the arg max are supported by the v-rank-value

mechanism.

26See the end of Section 2 for a reminder about why we might want an (|O| + 1)** rank.
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A few straightforward properties of rank-value mechanisms follow almost immediately.

Claim 5. For any assignment z in the arg max, > 4, = 1 for all a € A.

Proof. All elements of the valuation vector are strictly positive by definition, so all

agents will be assigned a full unit of probability shares. O]

Having the constraint be an inequality instead of an equality will allow us to use

duality theorems later on.

Claim 6. The v-rank-value mechanism is individually rational, that is if ) € O, it

never assigns an agent to something she likes less than ().

Proof. Say that there is an assignment in the arg max that assigns agent a to some-
thing he likes less than (). Then, moving a to () increases the objective and is feasible,

since vy > v41 and gy = |Al. O

Individual rationality allows us to ignore agent preferences below (). Now, we
introduce a property that is useful for the characterization in Section 5.3. A mech-
anism is non-wasteful if it always chooses an assignment such that z,, > 0 =
[0/ =g 0=, Tao = qo|. Non-wasteful assignments don’t have unassigned objects

that could be used to improve an agent’s welfare.

Claim 7. The v-rank-value mechanism is non-wasteful.

Proof. 1t is feasible for an agent to swap any shares he has with unclaimed shares,

and doing so increases the objective. [

Finally, although we won’t often need to know which maximizer of the linear
program is chosen for the theory we are to develop, this selection is important for
implementation. Consider the set of deterministic assignments. Since this set is finite
and countable, we can rank its elements. Let the tiebreaker function, 7(z), denote
the rank assigned to the deterministic allocation z. Our selection rule will then be
to choose the deterministic assignment in the linear program’s arg max with the
lowest 7 value. The following claim tells us that this is enough to yield a well-defined

mechanism

Claim 8. The arg max of the v-rank-value mechanism is the convex hull of some set

of deterministic assignments.
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Proof. This is a linear optimization on a compact set, so the arg max is not empty.
Consider a lottery representation of some assignment in the arg max. By the linearity
of the problem, it must be that the deterministic assignments in the support are also in
the arg max; otherwise, we could improve the objective by dropping them. Hence, any
assignment in the arg max is a convex combination of deterministic assignments that
are also in the arg max. Also by the linearity of the problem, a convex combination of
any set of assignments in the arg max must also be in the arg max, since the convex

combination will have the same objective value as its components. O]

So, the tiebreaker procedure will always choose some element of the arg max, and
if we draw the tie-breaker ordering from some distribution, the tie-breaker procedure
is effectively implementing a lottery representation of some random assignment in
the arg max. Of course how we choose the tiebreaker can affect the incentives of the
mechanism. In this paper, we will focus on tiebreaker functions that are drawn from
a distribution and fixed before the agents submit their preferences. The most obvious
of these procedures is to choose the tiebreaker uniformly at random from the set of
all tiebreaker functions. This is the same as finding all deterministic assignments
in the arg max and picking one uniformly at random, which in turn is the same as
implementing the random assignment that is the centroid of the arg max. Of course,
other more ad hoc methods seem likely to work, although we do not attempt to prove
SO.

Regardless of the tiebreaker, however, the family of rank-value mechanisms and

the set of rank-efficient assignments are very closely related.

Theorem 1. x s a rank efficient assignment < 3 a valuation v such that x s

supported by the v-rank-value mechanism.

The intuition of this result comes from thinking about assignments in rank dis-
tribution space, that is mapping an assignment z to (N*(1), N*(2),...,N*(|O|)) €
RICI 27 In rank distribution space, the proof of the theorem is similar to the proofs
for the first and second welfare theorems. For instance, the backwards implication

comes from rewriting the objective of the v-rank-value mechanism as®®

|0|-1

Z N*(k) (vr — vpg1) + [A] - vjo)
k=1

2TSince the mechanism is individually rational, it will never assign any agents to their (|O|+ 1)*"

choice.
ZN*(|O|) = | A| by definition, since all agents are assigned to some object (even if it is (}).
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By definition, if z is rank-dominated by z, then x will increase this objective. The
forward implication comes from an argument that uses the non-standard polyhedral
separating hyperplane theorem of McLennan (2002).2° The details of the proof, we
relegate to the Appendix.

The rank-value mechanism is not strategy-proof; in fact, in Section 7 we will show
that no mechanism can be both rank efficient and strategy-proof. We will eventually
address this shortcoming, but for now we merely state it as fact. Also note that
linear programming mechanisms have been previously observed in the field (Roth
1991). In the next section, we will present other characterizations of rank efficiency
and relate them to how Teach for America assigns teachers. Briefly, we mention
that since rank-value mechanisms are ordinally efficient, their existence in the field
helps to explain the puzzling absence of simultaneous eating mechanisms. Instead of
ordinal efficiency most broadly, institutional evolution seems to have chosen the rank

efficiency refinement.

5 Interpreting rank efficiency

Rank efficiency has several interpretations; going through them helps to make clear
where it is present in the field. We will conclude the section by discussing the inter-

pretations in the context of Teach for America’s system for assigning teachers.

5.1 Scoring interpretation

Rewriting the objective of the rank-value mechanisms as ) , vy [Za Y o Lira(o)=k} - %o}
yields an easy interpretation. Score an assignment by giving it v; points for every
agent (in expectation) who gets his first choice, vy points for every agent who gets
his second choice, and so on. Then, look for the feasible assignment with the biggest
score. This is an easy to understand explanation for non-economists, and it can have
some justification depending on where the valuation v came from. For instance, say
that we are assigning teachers to schools, but with some probability, a teacher will
turn down the offer, even though he ranked it above (). Further, say that he is more
likely to refuse an offer for a less preferred job than for more preferred job. If we view
vy, as the probability that an agent will accept the offer given that the job was his k"
choice, then the rank-score mechanism is merely maximizing the expected number of

agents who accept the offer. In fact, as we will discuss at the end of the section, this

29The non-standard theorem is necessary to ensure that vy is strictly larger than vy for all k.
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example very closely parallels a problem faced by Teach for America and is ostensibly

one of their major motivations for using a rank-value mechanism.

5.2 Ex ante welfare interpretation

Let agent a’s von Neumann-Morgenstern utility of object o be wu,(0). This is not a
statement about “how many utils” o is worth to a, but rather a statement about how
a values getting o with certainty relative to a lottery where, with probability p, she
gets her most preferred object, and with probability 1 — p, she gets her least preferred
(possibly unacceptable) object. Using the affine degrees of freedom associated with
von Neumann-Morgenstern utilities, set the utility of the top choice to 1 and the
bottom (possibly unacceptable) choice to 0, for all agents.

When evaluating policy, it is often helpful to look at things from behind the veil-of-
ignorance, that is, from the perspective of a fictional agent with no preferences of his
own, who knows that he will randomly become one of the agents in the assignment
market, inheriting her preferences. From this “original position”, Harsanyi (1975)
proposes that a rational agent should act to maximize his expected utility. Assuming
the von Neumann-Morgenstern axioms for our fictional agent, this gives an expected
utility representation over agent-object pairs (Harsanyi 1955, 1986). Functionally,
this representation is a weighted sum of the expected utilities of the agents, that is,
it is a social welfare function, W =>"_ o, > u.(0).

The u,’s encode how a values gambles over objects; this is an objective statement
that can be falsified. The a’s, however, encode how our fictional agent will evaluate
decisions such as whether he would rather get allocation x as agent a’ with certainty
or take a 50/50 gamble over getting allocation x as either agent a or agent a”. Since
our agent in the original position is only a thought experiment about justice, the a’s
encode moral judgments that cannot be falsified.

Now that we have laid the groundwork for interpersonal comparison of utility, we
can interpret the rank-value mechanism. The valuation v is an assumption that says
that all agents will value gambles over objects in the same way (modulo differences
in ordinal ranking). The fact that all agents are weighted the same in the objective
of the rank-value mechanism means that we place the same social value on any agent
getting a k™ choice. Of course, while reasonable, this is not the only assumption
one could make. A more general version of the rank-value mechanism, which would
allow for a policy-maker to make whatever assumption about interpersonal utility

comparison he likes, is discussed in Section 8.1.
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To be more precise, we could ask when a planner’s assumptions make veil-of-
ignorance welfare maximization equivalent to the rank-value mechanism. Let vy,
be agent a’s von Neumann-Morgenstern utility value for object o, and let F' be a
distribution over these values for all agents and objects. F' encodes the planner’s
beliefs once he has seen the submitted ordinal preferences, as well as his assumption
about how agents’ utilities compare. Note then that it is without loss of generality
to index v by agent, a, and rank, k. Given F', we assume that the policy-maker
seeks to maximize [ Y, 3 S, Vak - Ly (0)=k} - Tao - dF'(v). The following proposition
makes precise the assumptions the planner would need to make to justify running a

rank-value mechanism.

Proposition 5. Assume the planner wants to maximize welfare subject to assump-
tions about cardinal utilities and interpersonal utility comparisons that are encoded by
the distribution F'. If, relative to F', the unconditional expectation of vy 1s indepen-
dent of a, then the planner can do so by running the v-rank-value mechanism, where
Uk = [ Vo - dF(v) (for any agent a).

Proof. Changing the order of summation (and integration) in the welfare, we find

)39 3) M| KASTL] ST
a o k
a o k a o

[]

Note that the condition of the Proposition can be interpreted either as a direct
assumption, or as an informational limitation, i.e. the planner would have different
beliefs for the agents if he knew more about them, but he doesn’t.

Now, given the veil-of-ignorance interpretation we have just laid out, we can think
of rank-efficiency as an ordinal adaptation of ex ante efficiency, that is, maximizing
expected utility before agent’s types are known.>® The relationships between rank
efficiency, ordinal efficiency, and ex post efficiency are expressed diagrammatically in
Table 3.

Finally, we should mention what happens when other assumptions concerning ex
ante welfare seem prudent. We could weight the different agents differently in the

welfare function, which translates to a different assumption about how the social value

390f course, our model has no formal types; instead we can think of each agent as his own type.
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of a k' choice allocation compares across agents. This generalization is investigated
further in Section 8.1. Another option would be to assume that we know the “type”
of each agent and to make different assumptions about cardinal utility for different
type agents. With such assumptions, we could certainly run a linear program that
looks similar to a rank-score mechanism; however, we would not be guaranteed that
it would yield a rank efficient assignment. Still, such a generalization is an interesting

topic for future research.

5.3 Tough decisions interpretation

Motivating rank efficiency as ex ante efficiency, modulo a few assumptions, might
be reassuring to theorists, but policy-makers tend to think in terms of deterministic
assignments. If this is true, then the following claim might shed some light on why

we don’t see the simultaneous eating mechanisms in the field.
Claim 9. On the domain of deterministic assignments, ordinal efficiency is equivalent

to ex post efficiency.

Proof. On the deterministic domain, stochastic improvement is equivalent to ex post

improvement. ]

The same is not true, however, for rank efficiency

Claim 10. On the domain of deterministic assignments, rank efficiency implies ex

post efficiency, but ex post efficiency does not necessarily imply rank efficiency.

Proof. We have already shown that rank efficiency = ordinal efficiency on a broader
domain. To see the () part, consider and @ from the leading example in

Section 4. Both are ex post efficient deterministic assignments, but only one is rank

efficient. O
Ex post Interim Ex ante
clency Ex post efficiency Ordinal efficiency Rank efficiency
concept e SN
. Random serial Simultaneous Rank-score
Mechanisms : . . . .
dictatorships eating mechanisms mechanisms

Table 3: Relationships between the ex post, ordinal and rank concepts of efficiency
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The fundamental difference is that both ordinal efficiency and ex post efficiency
are Paretian concepts, that is, they only look for improvements that make all agents
weakly better off. Rank efficiency, on the other hand, is equipped with a method for
looking at non-Pareto improvements and deciding whether the good outweighs the
bad. In other words, rank efficiency can make “tough decisions” while ordinal and
ex post efficiency cannot. Thinking about our efficiency concepts in terms of trade

cycles can help us to make this intuition more precise. Formally,

Definition 7. A trade cycle on assignment x is a sequence 7 = ((a1,01) , ..., (@m,0m))
such that z,,, > 0 for each (a, o) in the sequence. Implementing trade cycle
T on assignment x yields a new assignment, Z such that, for all £ € {0,...m}
(interpreting k = 0 and k = m as the same index), Zo,0, , = Tapor_, + mkin {Zay00 s

N . - ,
Taror = Tayo, — 1IN {ZTapo, }» and T = Tgpor, Vo' € O\ {0k, 041}

A trade cycle can be interpreted as a sequence of agents who hold probability
shares of objects. Implementing a trade cycle means that a; gives some of his 0y to
as and receives some o, from a,,, and so on. Ordinal efficiency is characterized in
terms of improvement cycles, that is, trade cycles in which oy 74, ox for all k

(strict for some k) (Bogomolnaia and Moulin 2001).

Proposition 6. x is ordinally efficient < x is non-wasteful and admits no improve-

ment cycles.

Rank efficiency has a similar characterization in terms of trade cycles in which some
agents are made worse off but others are made better off. A valuation vector deter-

mines whether the good outweighs the bad. Formally,

Definition 8. A trade cycle 7 on assignment = is a v-rank-improving cycle if

Z (Urak(okfﬂ - U"'ak(ok)) > 0.

T

Theorem 2. x is rank efficient < x is non-wasteful and 3 a valuation v such that x

admits no v-rank-improving cycles.

The forward implication is obvious, but the reverse implication requires some
subtlety. Intuitively, a change from assignment ¥ to assignment & can be decomposed
into distinct trade cycles and acquisitions of unassigned objects. Now say that & rank
dominates . Then, for any v, the objective of the v-rank-value mechanism must be

bigger for & than for x, which by linearity, means that at least one of these cycles or
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acquisitions must improve the objective, which is exactly what the condition in the
definition of a v-rank-improving cycle means.

Hence, the valuation vector v provides the rule that the v-rank-value mechanism
uses to decide if trade cycles that aren’t Pareto improving should be implemented.
These “tough decisions” cycles are closely related to the concept of callousness brought
up by Budish and Cantillon (forthcoming) and Budish (2009) in the context of multi-
unit assignment. Consider the leading example of this section. Putting weight on the
deterministic assignment can be interpreted as the mechanism allowing 1 to cal-
lously take what he prefers without considering the greater good. Rank efficiency pre-
vents such callousness, and in fact, we can interpret implementing v-rank-improving

cycles as doing just this.

5.4 Teach for America: before and after

The story of Teach for America’s recent redesign of their assignment system sheds
light on how our characterizations of rank efficiency fit together. Teach for America
(TFA) is a nationwide non-profit that puts selected college graduates into at-risk
schools to teach. In 2011, TFA intends to assign around 8,000 teachers nationwide.
The application process for potential TFA admits is arduous and extends over several
rounds, including interviews and tests of teaching ability. Once the original pool of
around 50,000 applicants has been reduced to about 20,000, the applicants submit
a final round application, along with rankings over the regions to which TFA could
potentially assign them.?! From these applications, the admissions team decides who
should be made an offer without considering their regional preferences.>?

At this point, admissions are over and assignment begins. Note that admits get
notification of admission and their assignment simultaneously. For this reason, TFA is
very interested in making assignments that yield the most acceptances. As one might
expect, the probability of an admit accepting TFA’s offer is strongly dependent on
whether that admit is getting a top choice region, just like the example in Section 5.1.
Currently, TFA is considering modeling acceptance probabilities for use in their mech-
anism, which indicates that they take this interpretation of the rank-value mechanism

seriously.

31There were 43 regions in the 2011-2012 assignment cycle.

32When we suggested that assignment and admissions might be integrated, the idea was quickly
rejected. Teach for America separates admission from assignment for two reasons. The first is that
they feel they should admit the best candidates, and that it would be unfair to an unpopular region
to lower the bar in finding its teachers. The second is that Teach for America feels that it can
successfully persuade many admits into accepting their assignment, even if it isn’t a top choice.
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Before the 2010-2011 admissions cycle, TFA used an interesting system to assign
the admits. First, a computer would choose an initial match. How exactly the
computer did this is immaterial, but what is important is that the admissions team
found the computer match to have an unacceptably bad rank distribution. To correct
this, they would spend about a week in a conference room looking for trading cycles
that could improve the match. Almost all of these were cycles where some admits were
made worse off, while the rest were made better off. In other words, the cycles the
assignment team implemented looked a lot like the “tough decisions” cycles described
by the characterization of rank efficiency in Section 5.3.3

We should mention that the reason we know the details of TFA’s assignment sys-
tem is that TFA asked for a redesign of their assignment system during the 2010-2011
admissions cycle.>* We observed the old process and tried to test our understanding by
recreating it with an algorithm. Specifically, we tried to match their non-automated
process with a rank-value linear program. This turned out to be quite successful. Of
course, we worried about strategy-proofness and strongly cautioned TFA about the
potential problems of manipulation, but upon seeing simulations that used random
serial dictatorship, they decided that the costs of strategy-proofness were too high.?®
Although we had not intended the linear program to be what TFA should use, TFA
pressed for it, not because it offered anything new, but because it accomplished in 30
seconds what had before taken two man-weeks. The perceived equivalence between
the automated and non-automated processes used by TFA turns out to line up quite
well with the theoretical results we have established. So, although TFA has only re-
cently started using a rank-score mechanism to run their match, the non-automated

system they used in the past also seems to have been a rank-efficient mechanism.

6 The potential gains of the rank-score mechanism

As mentioned previously, both the ordinally efficient and rank efficient mechanisms
are generically non-strategy-proof. This could be a major problem, as agent manipu-

lation of reported preferences could mean that, while assignments look good relative

33TFA does not allow admits to rank @, and the number of admits was equal to the number of
positions. In this environment, all feasible assignments are non-wasteful.

34Through out this paper, I (Featherstone) have used the formal we, which has led to an ambiguity
in this paragraph. The TFA redesign was jointly undertaken with Al Roth.

35The other part of their reasoning was a strong belief that TFA admits wouldn’t or couldn’t
game the system. They are geographically separated, only rank the regions once, and know little
about the relative popularities of the regions. We formalize a version of this line of reasoning in
Section 7.
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to the submitted preferences, they could be quite bad relative to the true preferences.
Backing away from strategy-proofness, then, is a risky move for a market designer.
In this section, we consider a simple empirical exercise that sheds light on this risk.
Say we have the true preferences from an assignment market. We can run uniform
random serial dictatorship, the baseline strategy-proof mechanism, to get an idea of
how efficient a match we can get without sacrificing strategy-proofness. Then, we
can look at the counterfactual under which we run either probabilistic serial, or a
rank-value mechanism. We can think of the efficiency of these counterfactuals as
an upper bound on what we could gain. Of course, manipulation could completely
undermine these gains, but if we don’t see a significant difference under the truth-
telling counterfactual, then stepping back from strategy-proofness is not even worth

considering.

6.1 Assigning students to overseas programs at Harvard Busi-

ness School

The data we will use to run our counterfactual exercise comes from the 2011 overseas
program match at Harvard Business School (HBS). As part of its core curriculum,
first year MBAs at HBS must participate in an overseas program.3® They are assigned
to a foreign company and remotely work on a project with that company during the
first semester. The program culminates in a two-week trip over the winter break in
which the MBA will present her work in person and be given the opportunity to make
foreign business contacts.

In 2011, at the beginning of their first semester at HBS, 900 MBAs were asked
to rank the 11 different countries to which they could be assigned.?” The mechanism
we38 used to match the students was strategy-proof, so we feel comfortable in taking
the preferences submitted to it as truthful. We should mention that preferences
with indifferences were elicited from the MBAs. The strategy-proof adaptation of
random serial dictatorship that we used is briefly described in the Appendix. In the
main text, we will keep things simple by randomly breaking student indifferences and
considering only strict preference assignment mechanisms. All results are qualitatively

the same regardless of the method we use to break student indifferences, and regardless

36 At HBS, it is known as the FIELD 2 program.

37Students only rank countries; once they are assigned to a country, the company they get is
administratively assigned without their input.

38 Again, the fact that this paper is narrated using the formal we causes ambiguity. Al Roth and
I redesigned the HBS match together.
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of whether be break indifferences. Results from these alternate specifications are

included in the Appendix.

6.2 The data

The analysis in this section is borrowed from Featherstone and Roth (2011). Figure 1
shows the rank distribution we get when we run uniform random serial dictatorship,

probabilistic serial, or the v-rank-value mechanism, where the valuation vector is
v = (100, 80, 50, 35, 15,10, 5,3,2,1,0.5)

The first thing to notice is that the rank distribution from probabilistic serial is
essentially identical to that of uniform random serial dictatorship. The underlying
assignments are also very similar, which means that there is little reason to favor the
more complicated probabilistic serial mechanism over the simpler uniform random
serial dictatorship. Che and Kojima (2010) show that, theoretically, the random
assignment generated by the probabilistic serial mechanism asymptotically converges
to the random assignment generated by uniform random serial dictatorship in the
large market limit. Often with asymptotics, however, it is hard to know how large
is large enough. In the case of HBS, 900 students and 11 countries seems to hit the
mark.

Perhaps more striking is how well the v-rank-score mechanism performs. The
number of students who get their first or second choice is increased by more than
15% when we move from the uniform random serial dictatorship to the rank-score
mechanism. In absolute terms, this is about 120 students. So the gains from moving
to a rank-value mechanism might indeed be large enough to justify backing away from
strategy-proofness. Again though, the figures we are looking at are upper bounds.
It could be that manipulation completely undermines these gains, or even makes
the rank-value mechanism perform worse than random serial dictatorship.?® We are
merely making the case that backing away from strategy-proofness for the gains given
by probabilistic serial does not make sense for the HBS match, but that doing so for

the gains given by the rank-value mechanism might well be worth it.

39Note that the work we do in Section 7 indicates that in at least some environments, we expect
truth-telling.

28



Ranked k" or better

100%

95%

90%

85%

80%

75%

70%

65%

60%

>

Figure 1: Rank distributions for our

29

mechanisms

-=U-RSD
—=PS
-+RVM



6.3 Strategy-proofness versus efficiency

The previous exercise illustrates that the concept of rank efficiency and its associated
rank-value mechanisms fit well with previous literature that has considered the costs
of strategy-proofness, as first discussed by Erdil and Ergin (2008) and Abdulkadiroglu,
Pathak and Roth (2009) in the context of stable matching. Paralleling Azevedo and
Leshno (2010), it remains an open question whether there exists an equilibrium of
a rank-value mechanism that actually yields a worse rank distribution than uniform
random serial dictatorship.

Briefly, we mention a few papers that consider strategy-proofness versus efficiency
in the context of non-stable assignment. Mostly this has focused on how the Boston
mechanism (Abdulkadiroglu and Sénmez 2003b) can outperform random serial dicta-
torship. Featherstone and Niederle (2011) show this in the context of a truth-telling
equilibrium, while Abdulkadiroglu, Che and Yasuda (2011) focus on a non-truth-
telling equilibrium. Both papers rely on stylized assumptions about how preferences
are distributed. The present paper differs in two ways. First, it offers a new approach
to get at cardinal utility in the context of an ordinal mechanism: make reasonable
assumptions and maximize welfare accordingly. Second, in past literature, the leading
contender with random serial dictatorship has been the class of Boston mechanisms.
This paper offers a new mechanism that is based on the well-established empirical
fact that policy-makers care about rank distributions.*® As we have begun to show in
this section, the rank-value mechanisms might be an important part of the discussion

about the costs of strategy-proofness in ordinal assignment markets.

7 Incentives for truth-telling

One way that a rank-value mechanism could outperform random serial dictatorship in
spite of its non-strategy-proofness is to have a manipulating equilibrium in which the
efficiency gains don’t disappear, much like in Abdulkadiroglu, Che and Yasuda (2011).
This sort of approach, while interesting, is not what we will pursue. Instead, we will
look for environments in which truth-telling can be supported in equilibrium. First,
however, we will show that rank efficiency and strategy-proofness are theoretically

incompatible.

40The Boston mechanism has been axiomatized. See Kojima and Unver (2011).
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7.1 An impossibility result

A mechanism is called strategy-proof if the allocation it gives to any agent when
she truthfully reveals her ordinal preference stochastically dominates the allocation it
would give her if she revealed anything else. A mechanism is called weakly strategy-
proof if the allocation it gives to an agent when she deviates from truth-telling never
strictly stochastically dominates what it gives her when she truthfully reveals. An-
other way to phrase the difference between these two concepts is in terms of the car-
dinal preferences that rationalize the true ordinal preferences. Strategy-proof means
that truth-telling is a dominant strategy regardless of the rationalizing cardinal util-
ities. Weakly strategy-proof means that for any beliefs, there exist rationalizing

cardinal utilities that make truth-telling a best-response.

Theorem 3. No rank-efficient mechanism is strategy-proof. In fact, no rank efficient

mechanism is even weakly strategy-proof.

Proof. Consider a four agent, four object example.

1: b > e
2: b > ¢ > e
3 - d > e
4: d > b

The unique?! rank-efficient allocation is {(1,e),(2,b),(3,¢),(4,d)}. So under any
rank-efficient mechanism, 1 must be assigned to e. Now, consider what happens if
1 deviates from truth-telling and submits b > ¢ > d > e instead. Now, the unique
rank-efficient allocation is {(1,0),(2,¢),(3,¢), (4,d)}. Hence, under any rank-efficient
mechanism, 1 gets b with the deviation, which first-order stochastically dominates the
certain e he would get with the truth. O

Intuitively, someone has to get stuck with e. Under the true preferences, we pay
the smallest price for sticking 1 with e. When he submits b > ¢ > d > e instead,
he is essentially exaggerating about how bad e is for him, forcing the mechanism to
give it to 2 instead. Still, this example required quite a bit of specific knowledge. We
might wonder whether truth-telling is a natural response in environments with less

information.

41For an example of how to show that an assignment is the unique rank efficient assignment, see
Claim 4 above.
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7.2 A possibility result

Before presenting our result about when we might expect truthful preference reve-
lation to a rank-value mechanism, we must first lay a bit of groundwork. Following
Roth and Rothblum (1999), for some preference profile -, define = to be the same
preference profile, except all agents have switched the objects o and o' in their ordi-
nal rankings. Similarly, let 2°° denote the (possibly infeasible) assignment where
everyone assigned to o in z is reassigned to o' and vice-versa. Finally, define (7, q)OHOI
to simultaneously switch the capacities of o and o', while redefining the tiebreaker,
()7 =71 (:13"“"/). Note that 2°¢ will be feasible if the capacities are switched
to ¢°°. An agent a’s beliefs are then summarized by a vector of random variables
that range over potential ordinal preferences of the other agents (2Z_,), capacities of

the objects (g), and tie-breaker numberings, (7). We treat =—,, A, and O as known.

~as

Definition 9. An agent’s beliefs are {0, 0’ }-symmetric if the distributions of (22_4,q, T)
)0(—>O

and (=_q,q,7)°7% coincide. If the beliefs are {0, o'}-symmetric for all 0,0’ € O\ {0},

then we simply call the beliefs symmetric.

One interpretation of this condition is that it represents a very symmetric envi-
ronment. The interpretation we favor, however, is that it represents an environment
in which agents have very little specific information, that is, an environment in which
nothing really distinguishes one object from the other. Even when this is not globally
true, it is often the case that preferences are tiered and that, within a tier, beliefs
are close to symmetric. Note that this condition is well defined even for preferences
that have indifferences. Under this informational assumption, we are guaranteed
that switching the order of two objects in the submitted preference is not profitable.

Formally,

Proposition 7. Under a rank-value mechanism, if agent a’s beliefs are {o, o'} -symmetric,
and o' =, o, then for a, the allocation under any submitted preference that declares

0 >4 0 is weakly stochastically dominated by the allocation of a submitted preference
that does not. If the beliefs are symmetric, then this holds for all 0,0' € O\ {0}.

The proof for the theorem leverages the symmetry assumption to show that for
every state of the world in which the lie is profitable, there is at least one equally
likely state of the world in which it is not. This result is stated in a way that allows
for indifference, but from this point on, for expositional ease, we will limit ourselves

to assignment markets where all preferences are strict. For the interested reader,
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the more general results for indifferences are in the Appendix. Now, an immediate
corollary of Theorem 7 is that if an agent has strict preferences and must rank all

objects, then he does best to truth-tell if his beliefs are symmetric. Formally,

Theorem 4. Under a rank-value mechanism, if an agent’s beliefs are symmetric, his
preferences are strict, and he is required to rank all objects, then the allocation he
receives under truth-telling weakly stochastically dominates the allocation he receives

under any other strategy.

Corollary to Theorem 4. Under the conditions of Theorem 4, all agents truth-

telling is an equilibrium.

Although the requirement to rank all objects may seem unrealistic, it turns out
that it is quite prevalent in the field. Consider public school assignment. Students are
not required to rank all schools, but if they cannot be assigned to a school they ranked,
they are generally given an administrative assignment.*? In this sort of situation,
failing to rank all schools is equivalent to the student saying to the school district,
“beyond what I ranked, you can fill out the rest of my rank-order list for me.” Teach
for America also does not allow agents to rank the null object.

To understand manipulation when agents are not required to rank all objects,
we must first lay a bit more groundwork, as we have reached the end of what we
can do without resolving some of the ambiguity concerning the rank functions that
we mentioned near the end of Section 2. First, define a rank scheme to be upward-
looking if r,(0) is independent of the preferences among objects to which o is strictly
preferred . Now, consider how we deal with the outcome of being unmatched in the
case of an agent whose true preferences are a = b = (). One natural alternative is
to treat () like any other object, that is r(a) = 1, r(b) = 2, and r(0)) = 3. Often,
however, policy-makers like to think of being unmatched as a distinct worst element
in the overall rank distribution; that is, r(0) = |O|+1, regardless of how many objects
the agent declared acceptable. To help in thinking about this, consider inserting a
new indifference class, I, which contains o, into its own new acceptable indifference
class at the bottom of a preference -, (but right ahead of (). Call this new preference
Zal I ros1(0) = rz,(0), then we call the ranking scheme unmatched-neutral, as

0 is treated just as any other object. If r_11(0) = 7=, (@), then we call the ranking

42We know for certain that this is the policy in the San Francisco Unified School District, where we
(I and Atila Abdulkadiroglu, Muriel Niederle, Parag Pathak, and Al Roth) spent a year redesigning
the assignment system; however, it is hard to imagine a school district that doesn’t work in this
way, as all students legally must be able to claim some seat in a public school, even after the match
has run.
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scheme unmatched-distinct. In this language, the example where we treat () just
like any other object is unmatched-neutral, and the example where we always give ()
the lowest rank possible is unmatched-distinct.

Now, we define two important classes of manipulations. Call a submitted pref-
erence -/ a truncation of the true preference =, if there is some object o =, ()

such that =97 is equivalent*® to »=/. Similarly, call a submitted preference >’ an
extension of the true preference -, if there is some object () >, o such that =2 is
equivalent to /. Note that under these definitions, truth-telling is both a truncation

and an extension.**

Theorem 5. If an agent’s beliefs are symmetric, his preferences are strict, and the

rank scheme is upward-looking and...

o ...unmatched-distinct, then his allocation from any other strateqy is weakly stochas-

tically dominated by his allocation from playing some truncation.

o ...unmatched-neutral, then his allocation from any other strateqy is weakly stochas-

tically dominated by his allocation from playing some extension.

Note that we can’t leverage both parts of the theorem simultaneously to find a con-

dition for truth-telling.

Claim 11. A ranking scheme cannot be both unmatched-neutral and unmatched-

distinct.

Proof. 1f it is unmatched-neutral, then r_11(p) = r»,(0), which means that r_1:(0) >
-, (0), contradicting the assumption that the ranking scheme was unmatched-distinct.
O

Truncations are a familiar class of mechanisms,* and the intuition for why they
can be profitable is simple. When the ranking scheme is unmatched-distinct, a trun-
cation can be interpreted as an agent threatening the linear program: “give me some-
thing I like, or pay the price of giving me (). When the ranking scheme is unmatched-
neutral, this threat no longer works, as truncating actually relaxes the optimization.

So why extensions? Intuitively, consider an agent whose preference is a = b > () in a

43Since we are dealing with an individually rational mechanism, how things are listed below ()
does not matter.

441n the definitions, we see this when o = 0.

45The paper in which our informational assumption was first used, Roth and Rothblum (1999),
found that, in symmetric environments, agents on the proposed-to side of a deferred acceptance
mechanism can always do just as well with a truncation.
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market with 100 other agents whose preferences are a = b= c>=d = e = f = 0. If
the agent doesn’t extend, the linear program will assign him to (), since doing so is
worth v3 — v7 more than the alternative of putting some other agent in §).

So even in low information environments, agents can gain, but it is notable that
they gain by using a class of strategies very similar to those that can be used to
game two-sided deferred acceptance in a low information environment. In the lab,
Featherstone and Mayefsky (2011) are able to show that subjects fail to truncate
under a deferred acceptance mechanism, leaving a significant amount of money on
the table by doing so. It would be interesting to see if a similar result held for rank-
value mechanisms,*® and in fact, the experimental and computational work of Unver
(2001) and Unver (2005) indicate that this is a real possibility.

8 Connection to competitive equilibrium mecha-

nisms

A common idea for assignment is to harness the power of the market by creating a
pseudomarket, endowing all agents with a budget of fiat*” money, and calculating a
competitive equilibrium. The first paper to operationalize this idea was Hylland and
Zeckhauser (1979). In this section, we will show that rank efficiency has a strong
connection to pseudomarket mechanisms. Before we do this, however, we need to
expand our conceptual framework. First, we will introduce a generalization of rank-
efficiency in which agents are weighted differently in the rank distribution. Then,
we will show that even when we consider the union of all assignments that are rank
efficient relative to some weights, the resultant efficiency concept remains a refinement

of ordinal efficiency.

8.1 Generalizing rank efficiency

Until now, we have weighted all agents equally in the rank distribution, which is

equivalent to saying that the utility that any agent gets from a k" choice is directly

46The theorems we just proved can help us to design experiments that deal with the large strategy
space of ordinal mechanisms, by allowing us to focus only on truncations or extensions. For a taste
of how this might work, see Featherstone and Mayefsky (2011), which uses the “truncations are
exhaustive” result of Roth and Rothblum (1999) to yield a more analytically tractable design when
thinking about deferred acceptance mechanisms.

47See Footnote 10 for a definition in this context.
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comparable to the utility that any other agent gets from a k" choice.*® Now, we
step back from this assumption by allowing for a general weighting scheme in the
rank distribution. Formally, define the rank distribution of assignment x with

respect to weights a (or the a-rank distribution for short) to be

Ny(k) = Z Z Qg L, (0)<k} " Tao

acA o€

NZ(k) is just the weighted expected number of agents who get their &' choice or

better under assignment x.

Definition 10. A feasible random assignment z is a-rank dominated by another
feasible assignment 7 if the a-rank distribution of Z first-order stochastically dom-
inates that of x, that is, N¥(k) > NZ(k) for all k (strict for some k). A random
assignment is called a-rank efficient if it is not a-rank-dominated by any other

feasible assignment.

The mechanisms that correspond to a-rank efficiency are a similarly modified

version of the v-rank-value mechanisms.

Definition 11. The rank-value mechanism with respect to weights a and
valuation v (or the (e, v)-rank-value mechanism for short) maps agent rank

orderings to a maximizer of the following linear program.

mmax E E Qg * Urg(o) " Lao

acA ocO
s.t. Zxao < q,, Yo O
a

Zxaogl,VaeA

We say that the assignments in the arg max are supported by the (a,v)-rank-

value mechanism.

Everything we have proved thus far is easily adapted to any given vector of weights
a. We can think about the a vector as an assumption about how we should compare

the utilities of different agents, as discussed in Section 5.2.

48The interpersonal utility comparison is actually more subtle than this; see Section 5.2 for a
discussion.
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8.2 Supportable rank efficiency

Of course, we might not want to make any assumption about this. That is, we might
be perfectly happy to make assumptions about agent’s cardinal utilities, but not

about how those utilities compare. The following concept makes this idea precise.

Definition 12. An assignment x is called supportably rank-efficient if there exists

an « such that x is a-rank-efficient.
Claim 12. Supportable rank efficiency implies ordinal efficiency.

Proof. Supportable rank efficiency implies, for some «, a-rank efficiency, which in

turn, for any «, implies ordinal efficiency O]

At this point, the natural question whether supportable rank efficiency is equiva-

lent to ordinal efficiency. It turns out that this is not the case.
Theorem 6. Not all ordinally efficient allocations are supportably rank-efficient.

The intuition here is rooted in appropriate generalization of the “tough decisions”
trade cycles of Section 5.3. For an assignment to be supportably rank efficient, there
must be one («, v) pair such that all trade cycles fail to be (a,v)-rank improving.*’
This means that every trade cycle has some inequality associated with it. The proof
of the theorem starts with an ordinally efficient assignment and then defines enough
trade cycles to where the corresponding set of inequalities has no solution. There is
nothing special about the counterexample we choose; as an assignment grows large,
it has many trade cycles, so unless special provision is made to keep them all from
being («, v)-rank improving relative to some common («, v), it is no surprise that the
system of inequalities cannot be satisfied. Although we have not proven it, the proof
suggests a natural conjecture: as the market grows, the size of the set of supportably
rank-efficient assignments becomes smaller when compared to the size of the set of
ordinally efficient assignments. Also, note that there is no reason that probabilistic
serial assignments are special; in fact, the proof to Theorem 6 uses a probabilistic serial
assignment to get the ordinally efficient assignment that forms the counterexample.
Corollary to the proof. Probabilistic serial does not always yield supportably rank-

efficient assignments.

“Formally, in Definition 8, replace Z (vr%(okﬂ) *Ur%(ok)> > 0 with Zaak .
k k
(U"'ak(ok—l) — vrak(Ok)) > 0.
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This result might seem especially surprising in the light of McLennan (2002) and
Manea (2008), who both find (using non-constructive and constructive methods, re-
spectively) that any ordinally efficient assignment is ex ante efficient relative to some
set of cardinal preferences that rationalize the ordinal preferences. The difference
here is that, as we showed in Section 5.2, the concept of rank-efficiency imposes the
added constraint that all agents must share the same cardinal utility across ranks,
that is, for any ranks j and k, the ratio of agent a’s utility for her j** ranked object

and her k' ranked object must be the same for all agents a.

8.3 Competitive equilibrium mechanisms

A commonly considered idea in random assignment is to take submitted preferences,

t°° money and calculate a competitive equilibrium. This

give all agents a budget of fia
class of pseudomarket mechanisms for cardinal preferences was first considered in
Hylland and Zeckhauser (1979). Since we are dealing with ordinal preferences, we
assume a valuation vector and adapt Hylland and Zeckhauser (1979) to our ordinal
setting.

Definition 13. The prices and random assignment (Z,p), form a budget equilib-

rium with respect to valuation v and budgets B if

T, € argmax > U, (o) Tao
x>0 °

St Zﬁo * xao S Ba ,V(I

Y ke <1

and
Tqo € arg max Y3 Do Tao
Tao20 577,
s.t. > Tao < o
a

A (B,wv)-budget mechanism maps ordinal preferences to an assignment that is

part of a (B, v)-budget equilibrium.

50See Footnote 10 for a definition in this context.
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We can think of the first optimization as the agent’s problem, and the second as the

producer’s problem.

Remark 5. The producer’s problem is equivalent to > 2., < g, and p, > 0 = > 4, <
qo, for all 0o € O.

The resemblance to the familiar Walrasian equilibrium is enough to make us think

that some results resembling the welfare theorems must be present.!

Claim 13. A (B, v)-budget mechanism’s assignment must be ordinally efficient.

Proof. Say that it isn’t. Then there is a Pareto improvement, which cannot be, since
the pseudomarket yields an ex ante Pareto efficient allocation relative to the cardinal
utilities v, by a slight adjustment of the first welfare theorem argument presented in
Hylland and Zeckhauser (1979). O

The previous claim was a version of the first welfare theorem; however, we won’t
find a version of the second. To get both welfare theorems, it turns out that support-
able rank efficiency is the correct efficiency concept. Put less technically, the budget

mechanisms are the supportably rank efficient mechanisms.

Theorem 7. z is supportably rank efficient < 3(B,v) such that x is supported by
the (B, v)-budget mechanism.

5INote that the («,v)-rank-value mechanism can be decentralized to look like a Walrasian equi-
librium as well.

Definition 14. Prices and an assignment, (z*, p), form a discount equilibrium with respect
to weights a and valuation v (or just («,v)-discount equilibrium) if

* Do

roe arg max Zo: (Ura(o) - ;) “Tao
s.t. Y, <1
o

x
,Va

and

Y, € argmax  ».> Dy Tao
a o

LaoZ

s.t. > Zao < Go
o

X

Proposition 8. z is a-rank efficient < 3p,v such that (z*,p) form an (o, v)-discount equilibrium

This is a strange decentralization, as it distorts prices in a way that one might expect it to not
yield any sort of efficiency. The proof of the Proposition, as well as some discussion on why a
price-distorted equilibrium concept should yield any sort of efficiency can be found in the Appendix.
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The intuition for this proof comes from considering the linear programming du-
als of the optimizations involved in the (o, v)-rank-value mechanism and the (B, v)-
budget mechanism. If we start with a supportably rank efficient assignment x, then it
must be that x is in the arg max of the («, v)-rank-value mechanism for some (v, v).
We can keep the same valuation v in our budget equilibrium. The prices p that will
decentralize x are the shadow prices associated with the object quota constraints in
the (o, v)-rank-value mechanism. To make sure that agent a can afford his allocation,
T4, we give him a budget B, = >, Do - Zgo-

To go in the other direction, we start with an assignment z that is a (B, v)-budget
equilibrium. Again, we can stick with the same valuation v, but we have to choose
weights « such that x is in the arg max of the (o, v)-rank-value mechanism. To do
this, we set a, to the inverse of the shadow price of budget in agent a’s optimization.?

An important corollary to the proof of this proposition is that, for a given val-
uation v and set of preferences ~, we have a natural mapping between weights a
and budgets B. What’s more if, with a mind toward procedural fairness, we run a
v-rank-value mechanism, then the assignments in our arg max will be supported by a
budget equilibrium in which budgets are not guaranteed to be equal. Similarly, if we
start with equal budgets, then our assignment will be supported by an (o, v)-rank-
value mechanism in which the weights are not guaranteed to be equal. In this sense,

procedural fairness is fundamentally different in our two mechanisms.

9 Justice and rank-efficiency

Looking at the leading example from Section 4, one might object that agent 1 has been
unfairly singled out. Envy-freeness is the idea that makes this intuition precise. Let an
assignment be strongly envy-free if x, weakly first-order stochastically dominates
xo relative to 7o,, for all a,a’ € A. Let an assignment be weakly envy-free if

there is no @’ € A such that z, strongly first-order stochastically dominates z,

relative to 7-,, for all a € A. Finally, let an assignment be envy-free relative to

~as

some cardinal preferences if each agent weakly prefers his own allocation to all other

agents’ allocations.
Theorem 8. No mechanism is rank efficient and even weakly envy-free

Proof. Consider the abbreviated example from Section 4. @ is the unique rank

52We have to be a little careful when the shadow price is zero. This case is worked out in more
detail in the Appendix.
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efficient assignment, so any rank efficient mechanism must choose it. But 1 would
prefer 2’s allocation, regardless of the cardinal preferences that rationalize his ordinal

preference. [

Before we go any further, it behooves us to press a bit more into what this theorem
means. Justice is a philosophically tricky subject, but a good start is to consider
Dworkin’s concept of equality of resources. The idea is rooted in the thought that
no agent in the market should envy another agent’s allocation. In addition to this,
however, Dworkin adds a requirement of the sort of efficiency the market provides.
After all, it is easy to imagine envy-free assignments that lack efficiency.”® In Dworkin
(1981), he literally suggests a cardinal version of this paper’s budget equilibrium
from equal budgets . In contrast to equality of resources, we have Harsanyian justice
(Harsanyi 1975). Here, a just policy is chosen by an expected utility maximizer in the
original position.’® Under this conception, we might decide to have an envious agent
if doing so were to help many other agents.”® The “tough decisions” of Section 5.3
are part and parcel to Harsanyian justice.

Now that we have introduced these two concepts of justice, Theorem 8 comes into
sharper focus. It says that in assignment markets, the fairness concepts of Dworkin
and Harsanyi are mutually exclusive. This is no surprise in view of the proof of
Theorem 7. If an assignment is implemented by a budget equilibrium from equal
budgets, then it is also implemented by a rank-score mechanism with unequal weights.
If an assignment is implemented by a rank-score mechanism with equal weights, then
it is also implemented by a budget equilibrium with different budgets. So to move
forward from Theorem 8, we must choose either Dworkin or Harsanyi. As discussed
in Section 5.2, the rank-value mechanism with equal weights implements Harsanyian
justice modulo a few assumptions. But what if we want Dworkin justice? Due to our
ordinal setting, we won’t be able to get strong envy-freeness, but budget equilibrium
from equal budgets will get us weak envy-freeness (and envy-freeness, modulo a few

assumptions).

Proposition 9. If 3p,v, B such that B, = By for all a,a’ € A and (z,p) is a

(B, v)-budget equilibrium, then x is weakly envy-free and a-rank efficient for some c.

53For instance, assign all agents to (.

54That is, from the perspective of a fictional agent who knows that they will become one of
the agents in the market, uniformly and at random, and will inherit that agent’s preferences and
allocation.

55 Although Harsanyi’s conception of justice is based on Rawls’ veil-of-ignorance, the Difference
Principle (i.e. insistence on a maximin objective from the original position) places Rawls’ conception
more in line with Dworkin’s (Rawls 1972).
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Further, x is envy-free relative to the cardinal preferences encoded by v.

Proof. Budget equilibria are supportably rank efficient, so x must be a-rank efficient
for some a. Now, assume that z, strongly first-order stochastically dominates z,
relative to 7Z,. Then, for any v, agent a’s objective in the definition of the (B,v)-
budget equilibrium must be higher at z,, than at z,. But a could have afforded z,
by the equal budgets assumption. This contradicts optimality. Envy-freeness relative

to v follows by similar logic. O]

Although this provides a partial workaround to the impasse we just discussed,
weak envy-freeness is not a strong condition. The proposition only guarantees that
there ezist rationalizing cardinal utilities that make the assignment envy-free. Still,
the exercise is very similar to how we justified the v-rank-value mechanism as max-
imizing social welfare, that is, in the absence of cardinal information, we make as-
sumptions and push forward. In that sense, given that we are willing to make an
assumption about rationalizing cardinal utilities, budget equilibrium from equal bud-
gets is to envy-freeness what the rank-value mechanism is to ex ante efficiency. Finally,
we should note that the probabilistic serial mechanism of Bogomolnaia and Moulin
(2001) is strongly envy free, but as we showed in Section 8.2, it may not be ex ante
efficient in a world where we our beliefs about agents’ cardinal preferences meet the

condition of Proposition 5.°¢

10 Conclusion

Rank efficiency is a natural concept that is used in the field, and under truth-telling,
rank efficient mechanisms can yield significant efficiency gains. Unfortunately, rank
efficiency is also theoretically incompatible with strategy-proofness. This situation is
not unique: there is a growing body of literature that points to the fact that the costs
of strategy-proofness can be quite high. When then should the market designer pay
this cost? In the paper, we showed that truth-telling is an equilibrium in a stylized,
low-information environment. Such a theorem gives us the important intuition that
rank-value mechanisms are more likely to work when agents know little about the
popularity of the objects. Unfortunately, we do not have results about equilibrium

in other environments, and in fact, it seems likely that there exist environments in

56Briefly, we note that the wedge between fairness and efficiency exists in the cardinal setting as
well. Competitive equilibrium from equal incomes (Varian 1974, Hylland and Zeckhauser 1979) gives
Pareto efficiency, but Negishi’s theorem (Negishi 1960) does not guarantee that the corresponding
weights in the planner’s problem will be equal.

42



which the performance of rank efficient mechanisms will be unacceptably poor. Un-
fortunately, any such characterization is likely to again be limited to a stylized model,
and characterizations that truly generalize across environments seem intractable. In
addition, it is certainly plausible that in more complicated situations, equilibrium
predictions will be not be born out in the field. Thus, to understand when the costs
of strategy-proofness are too dear, we will need to complement theoretical results with
more empirical approaches, such as experiments and learning models. We are cur-
rently pursuing both of these avenues in parallel work: the computational agenda in
Featherstone and Roth (2011), and the experimental agenda in an experiment similar
in design to Featherstone and Mayefsky (2011).

Regardless of such evidence, it may be that, in the long run, in any environment
in which a mechanism fails to admit a truth-telling equilibrium, agents will eventually
converge to an equilibrium. Even if this is true, we argue that it is still a worthwhile
exercise to consider how much the short run can be extended. Consider antibiotics.
In the long run, it is inevitable that resistant pathogens will evolve; however, in the
short-run, lives are saved. Less rhetorically, consider the HBS match discussed in
Section 6. In the first year of the match, had we run a rank-efficient mechanism,
it is quite plausible that agents would have truthfully revealed their preferences.
We didn’t do this, however, because we were worried about the MBAs learning to
manipulate over time. Taking extra efficiency in the first year, at the expense of
subsequent years, seemed like too much of a “smash-and-grab” strategy. But what
if the learning process were slower, such that we could reap the efficiency gains for
the first five years? In such a setting, the “smash-and-grab” strategy starts to sound
like a good idea; in fact, we could even imagine running a rank efficient mechanism
for four years and then switching to a strategy-proof mechanism as learning began
to cause problems. Coming back to the antibiotics analogy, pharmaceutical research
extends the short-run by manufacturing different types of antibiotics, so that the
evolutionary process (so far) is unable to keep up. Thinking about ways to slow the
speed with which agents learn to manipulate a non-strategy-proof mechanism seems
like an interesting, and thus far, unpursued line of research. When the efficiency cost
of strategy-proofness is high, as we have shown can be the case, this line of inquiry
could prove quite fruitful.

In conclusion, the fact that we see linear programming mechanisms in the field
could imply that rank-efficient mechanisms are successful in some situations, but it
could also mean that policy-makers have implemented a bad policy. Market designers

should either be correcting the impulse of policy-makers to depart from strategy-
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proofness, or they should be sometimes suggesting that strategy-proofness is a small
cost to pay for big efficiency gains. Which advice is correct will very likely be strongly
dependent on the environment in which the mechanism is meant to serve, as well as
the dynamics of the social learning process. Understanding when (if ever) market
designers can feel comfortable suggesting a rank efficient mechanism thus remains an

important open question.
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Appendix

A Ex post dominance expressed as state-by-state

dominance

Consider a discrete probability space, (2,29, p(+)). Formally, a lottery over determin-
istic assignments can be thought of as a random variable X that maps each element of
the state space, w € 2, into a deterministic assignment. State-of-the-world w occurs
with probability p(w), so the probability that a given deterministic assignment x is
drawn is p(x) = > 1{x(w)=z} - P(w). Hence, X represents a lottery over assignments
in which a given deterministic assignment x is chosen with probability p(z). If two
lotteries can be embedded in some discrete probability space as random variables X
and X’ in such a way that all agents weakly prefer X (w) to X'(w) for all w € €,
with strict preference for at least one agent in one state w € €2, then we say that the
lottery embedded as X state-by-state ex post dominates the lottery embedded
as X'.

Claim 14. z is ex post efficient < x has a lottery representation that cannot be
state-by-state ex post dominated by any other lottery over feasible deterministic as-

signments

Proof. (<) Assume that the support of any lottery representation of ex post efficient
assignment x contains at least one ex post dominated deterministic assignment. Re-
placing this element of the support with its ex post dominator yields the state-by-state
dominator for every lottery representation of x, a contradiction.

(=) Assume that any lottery representation of x has a state-by-state dominator.
Then one of these ex post efficient assignments must be ex post dominated, meaning
that there is no representation of x that is a lottery over ex post efficient assignments,

a contradiction. O

B Random serial dictatorship with indifferences

Several papers have looked at serial dictatorships adapted for indifferences (Svensson
1994, 1999, Bogomolnaia, Deb and Ehlers 2005), but they have mainly focused on
theoretical characterizations. In this section of the appendix, we will briefly describe

the theoretical mechanism and then two methods by which it can be implemented.
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Let m be a permutation of (1,...,[A|), and let pru) be the rank of arx)’s most
preferred objects that she can be assigned while still assigning agent ar () something
that he ranked pr(i, for all k" < k. Define serial dictatorship with indifferences
relative to 7 as the mechanism that yields any deterministic assignment that fulfills
the rank guarantees we just recursively defined.

Basically, we can think of this as a random serial dictatorship in which agents are
serially assigned an indifference class guarantee instead of an actual object. Define
random serial dictatorship with indifferences analogously to the random serial
dictatorship without indifferences defined in Section 3. Svensson (1994) proves that,
even with indifferences, a deterministic assignment is ex post efficient if and only if it
can be generated by serial dictatorship with indifferences relative to some ordering 7.
The extension to random assignments, an analog of Proposition 1 in the main text,

is straightforward.

Proposition 10. An assignment x is ex post efficient <3 a distribution over dicta-
torship orderings such that the corresponding random serial dictatorship with indif-

ferences can yield x

Also true, and perhaps obvious, is that the extension of random serial dictatorship

to indifferences is strategy-proof.

Proposition 11 (Svensson 1994). Random serial dictatorship with indifferences is
strategy-proof, so long as the distribution over dictatorship ordering is fixed before

agents reveal their preferences.

A natural question at this point is “How does one run this mechanism practically?”
Svensson (1994) offers an algorithm for calculating the opportunity sets of the agents
as the dictatorship progresses, but not for calculating an actual assignment. We offer

two more practical algorithms.

B.1 Integer programming approach

We can easily calculate an agent’s rank guarantee with a simple linear integer program

Pr(k) = Max raw(k)(o)
s.t. > o Tao < o
20 Tao = 1
ZLao € {0,1}
Tar () Ta o = Pay Tago
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Any assignment in the arg max of the calculation of p 4| is generated by serial dic-
tatorship with indifferences relative to m. The advantage to this approach is that
random serial dictatorship with indifferences can be easily calculated with off-the-
shelf linear optimization software, such as CPLEX or the open-source GNU Linear
Programming Kit (GLPK).

B.2 Augmenting paths approach

The downsides of the integer programming approach are that it uses black box soft-
ware and that for large problems, the integer program might solve quite slowly. For
these reasons, we introduce a more primitive algorithm that can be coded from scratch
if necessary. Consider a bipartite graph connecting agents to objects (g, different
nodes for each object o) with two kinds of links — potential and realized. Realized
links represent tentative allocations, while potential links represent allocations that
we could implement if we so chose. At any stage in the algorithm we are about
to present, the realized links will be a near maximum matching in which only one
agent has no realized link, but does have potential links. To see if we can match our
unmatched agent, we will need to look for an augmenting path, which is a path
(a1,09,a3,04,...0,-1,0,) Where (a;,0;41) is a potential link, and (0;,a;11) is a real-
ized link. Implementing an augmenting path means switching all of its potential
links to realized links, and vice-versa. This necessarily increases the number of agents
in the realized link matching by one. In fact, Berge’s theorem (Berge 1957) tells us
that a matching is a maximum matching if and only if it has no augmenting path.
With this background, the algorithm can be laid out.

1. Initialize.

(a) Create the graph Gy

i. Put a potential link between all agents and objects.
ii. Pick any feasible deterministic assignment and put a realized link be-

tween every agent and objects that are assigned to each other.

(b) Set i =1 and k = 1.

2. Let Oy be the set of objects in the k™ indifference class of agent 7(i). Create
G by deleting all links (implemented and potential) in G;_; that connect
to agent (i) and replacing them with potential links between agent 7 (i) and

every object in Oy.
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3. If there is an augmenting path in G, implement it, set G; = G, increment

1, set k =1, and go to Step 4. If not, then increment k& and go to Step 2.
4. If i < |A|, then go to Step 2. Otherwise terminate the algorithm.

When the algorithm terminates, the realized links in G4 represent a match is gen-
erated by serial dictatorship with indifferences relative to .

The algorithm is simple. As we go through the agents, serially, we try to match
them to the best indifference class we can, while preserving a feasible match for the
rest of the agents. Berge’s theorem assures us that if we can’t find an augmenting
path, then our agent in question cannot be matched to anything in the indifference
class we are trying for. The only computationally difficult parts of this algorithm
are finding the initial matching and searching for an augmenting path in a bipartite
graph. Finding the initial matching can be accomplished via the Hopcroft-Karp
algorithm (Hopcroft and Karp 1973), and finding an augmenting path is typically
accomplished with a breadth first search. Algorithms for these subroutines are easily
found in most textbooks on combinatorial optimization (Schrijver 2003, Cook et al.
1998, Papadimitriou and Steiglitz 1998).

C The HBS overseas match: indifferences and how

they were broken

Again, most the results from this section are borrowed from Featherstone and Roth
(2011). The HBS match, as mentioned in the main text, allowed for indifferences
to be submitted. It was run using the strategy-proof extension of random serial
dictatorship described in Section B. In the main text, however, we showed results for
strict preferences, which we constructed by breaking the ties in each agent’s submitted
preference. There are two reasonable ways to do this. One is to break the ties by
independently replacing each indifference class with a uniform random draw from the
sets of strict orderings over the objects in the class. We call this the uncorrelated tie-
breaker. The other way we looked at was to break all indifferences in the alphabetical
order of the regions, which was also the order in which the regions were listed on the
website used to elicit preferences from the agents. We call this the correlated tie-
breaker. The results from the correlated tie-breaker are presented in Figure 1 in
the main text, while the results from the uncorrelated tie-breaker are presented in

Figure 2 in the Appendix.
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Figure 2: Results from the uncorrelated tie-breaker

We also present the actual results from the HBS match when we deal with indif-
ferences instead of breaking them in Figure 3. Also included in the figure is the rank
distribution from the correlated tie-breaker version of uniform random serial dicta-
torship (U-RSD-T)), which is the baseline strategy-proof strict preferences baseline
that is most commonly used in assignment markets. Note that accounting for indif-
ferences increases the percentage of MBAs who get a first choice from 63% to 77%, a
more than 20% improvement. Though indifferences are not the primary topic of this
paper, it is striking that this sort of improvement can be made without sacrificing
strategy-proofness. Indifferences are often treated as a theoretical inconvenience in
the matching literature; the HBS provides evidence that failing to elicit indifferences

can leave a significant amount of welfare on the table.
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D Proofs

D.1 Rank efficiency

D.1.1 Characterization of rank-value mechanisms

Theorem 1. z is a rank efficient assignment < 3 a valuation v such that x is

supported by the v-rank-value mechanism.

Proof. We start by proving the first statement. The objective of the defining linear
k—1

program can be rewritten as Y NZ(k) (v — vg1) . By way of contradiction, let =
k=1

be a random assignment that a-rank-dominates the allocation yielded by the (a,v)-

rank-efficient mechanism, x*. Then, the following is true:

k—1 k—1
Nze(k) - (05 = vkg1) > D N2 (k) - (05 = Vpg)
k=1 k=1

because the rank-dominance of  over x* means that the left-hand side is weakly
greater than the right-hand side, term by term, and strictly so for at least one term.
But this is a contradiction of the optimality of the rank-efficient mechanism’s defining
linear program.

Now, we prove the second statement. Consider the set of a-rank-CDF's that can
be generated by a random allocations, A, C RF~!, where the first index of the vector
corresponds to NZ(1), the second to NZ(2), and so on. By the definition of an a-
rank-CDF, A, is convex. Now, let z be an a-rank-efficient allocation, and let b € A
be the a-rank-CDF generated by x. Let the set of a-rank-CDFs that would a-rank-
dominate the CDF b if they were generated by feasible random allocations be denoted
by U(b) = {a‘a e RF1: a; > b, Vi; 3, a; > bi} . U(b) is also convex. Any member
of both A, and U(b) would a-rank-dominate z, so it must be that A, NU(b) = 0.
The separating hyperplane theorem then tells us that there is some p # 0 and some
¢ such that p-u > ¢,YVu € U(b) and p-a < ¢,Va € A,. By construction, p-b = c.
Without loss of generality, assume ¢ > 0. Now, let e; denote the unit vector that
points along the i" axis of RF!. For any 6>0 , we know that b+ de; € U(b). This

means that p - (b + de;) = ¢+ dp; > ¢, which means that p; > 0. If p; > 0, Vi, then
k=1

we can rescale p and ¢ such that ) p; = 1. We will show this in the next paragraph,
j=1

i—1 _
but first, consider the valuation v where v; =1 — ) p;,Vi € {2, I 1}, v, = 1,
j=1
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and v = 0. Since p; > 0, v > vp41, that is, we have indeed constructed a valuation.
The (o, v)-rank-efficient mechanism supports z.

To show that p; > 0, Vi, we need the stronger Polyhedral Separating Hyperplane
Theorem of McLennan (2002). Adopting the notation of that paper’s Theorem 2, we
let P=A, —RF'and b=pe P. The a-rank-efficiency of x tells us that z is not in
the relative interior of P, so the Theorem lets us conclude that there is a hyperplane
H such that P is contained in one of its half-spaces, P C H~, and F'= PN H is the
smallest face of P that contains b. Let this hyperplane be H = {u e RF1 ‘ p-u= c}.
First, note that for § > 0, b — de; € P, by definition. Now, say that p;, = 0. Then,
Lemma 2 of McLennan (2002) with S = {b} tells us that the relative interior of S, that
is b, is contained in the relative interior of the smallest face that contains .S, that is F'.
Hence, for some § > 0 small enough, b+ de; € F. But since F' C P, this contradicts

our original assumption of the a-rank-efficiency of x. Hence, p; > 0, V. O

D.1.2 Ex ante efficiency interpretation

The proof in the main text only addresses uniform weights. To justify an (o, v)-rank-
value mechanism, we need [ vy, - F(v) = coo + [ Var - F(v). In other words, we need

the unconditional expectations of v, for all agents to be proportional.

D.1.3 Tough decisions interpretation

Lemma 1. Without changing the number of copies of the objects (including (), con-
sider adding ", g, — |A| dummy agents to the market that are indifferent between all
the objects. Let T be an extension of x in which all real agents’ allocations stay the
same and the remaining objects are feasibly assigned to the dummy agents. Then, x

is non-wasteful < P an improvement cycle in & that includes a dummy agent.

Proof. (=) If there is an improvement cycle that includes a dummy agent, then there
is also a two agent improvement cycle where one of the agents is the dummy. Since
the dummy is indifferent between all the objects and is holding something that was
not assigned in x, this cycle is equivalent to the real agent claiming something that
was not assigned, contradicting the assumption that x was non-wasteful. (<) If z is
wasteful, then  must have a two person improvement cycle between the real agent
who wants to claim an object unassigned under x and the dummy agent who was

assigned that object in . O

Corollary to the proof. In the same setup, x is non-wasteful < B an (a,v)-rank

improving cycle in T that includes a dummy agent, for any (o, v).
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Proof. The same logic holds because a two-agent improvement cycle involving one
real agent and one dummy is also an (o, v)-rank improving cycle for any («,v), and

vice-versa. N

Proposition 6. = is ordinally efficient < x is non-wasteful and admits no improve-

ment cycles.

Proof. This is a straightforward generalization of a theorem from Katta and Sethu-
raman (2006), which in turn is a generalization of a theorem from Bogomolnaia and
Moulin (2001). The lemmas show us that we can generalize our setup to the setup
of Katta and Sethuraman (2006), where |A| = )" q,. Non-wastefulness bridges the
gap. 0

Theorem 2. z is rank efficient < x is non-wasteful and 3 a valuation v such that x

admits no v-rank-improving cycles.

Proof. (=) If x is wasteful, then by Claim 7, it cannot be generated by any rank-
value mechanism, and hence is not a-rank efficient by Theorem 7. Now, assume that
for any valuation v, there exists an («, v)-rank improving cycle. This would yield an
improvement in the objective of the (a,v)-rank-value mechanism, which means that
x cannot be generated by any (o, v)-rank-value mechanism, which, by Theorem ?,
means that x is not a-rank efficient.

(<) Consider the augmented market of Lemma 7. Now, by way of contradiction, let
2 a-rank dominate Z in that market. Let £ = £ — 2. Now, construct a cycle by the
following procedure. Find some (a, o) such that £,, < 0, and let that agent and object
be (a1, 01). Now, find some a such that &,,, > 0, and let that be as. Necessarily there
will be an 09 such that &,,,, > 0. Continue this process until we come back to (a1, 01),
which must happen by the finiteness of the market. By construction, we have a trade

cycle in Z. Now, define

(
— min |[&y| Tk st (a,0) = (ag,ox)

(a’,0")eT
w0 = min [{yy| Jk st (a,0) = (ags1, 0k)
(a’,0")eT
0 otherwise

\

Then & — ¢! has at least one fewer non-zero entries than £. Hence, we can repeat this
process to decompose ¢ into a finite sum of trade cycles, that is § = >, " where each

&' represents a trade cycle. This means that & = & + Y, &". Now, since & a-rank
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dominates, the objective of the («, v)-rank-value mechanism is bigger at &, regardless
of the valuation. By the linearity of the objective of the (¢, v)-rank-value mechanism,
it cannot be that the value of the objective evaluated at £ is weakly negative for all 4.
In other words, regardless of the valuation, at least one of the £s must be («, v)-rank

improving, a contradiction. ]

D.2 Truth-telling in low information environments

We will derive all theorems allowing for indifferences, but we will state when an
immediate corollary of the more general theorem is the less general theorem stated
in the main text of the paper. Let RV M®"(>;q;T) denote a’s allocation under the
(cv, v)-rank-value mechanism when the submitted preferences are 7, the capacities

are ¢, and the tie-breaker ordering is 7.

Lemma 2. Let o’ =, 0. Then,

[RVM (Ziq:7) = o] = [RVME“’” (i"‘%/, i:fa;q;T) = 0}

Proof. Let the objective function of the (a,v)-rank-value mechanism evaluated at

assignment x and submitted preferences 7~ be denoted by

(RN, — § §
4 (?\:7 I) = Qg = Up oy (0”) * Lao"

a// 0//

Then,
Ver (2007 5 w) = VOU(5ia) + e (0o = Urato) (B0 — 7o) (1)
Now, let y = REM®" (¥;q; 7). Hence, y,, = 1 and
Vel = Vel (2077, 5w ) =~ (orato) — Vi) <0

Now consider another assignment z # y that is a member of the arg max of the linear

program when when o and o' are switched, that is

Vv <,>\_JZ<—>0” i-,fa; Z) > o (i:g(—)d, féfa; y> (2>
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First, we show that z,, = 1. Assume otherwise. Then, by Equation 1, we derive
Va,v (’?” Z) o Voz,v (iZHOly i—a; Z> 2 0> Va,u (iv y) o Va,v (iZHO/, i—cﬂ y)

If we add this inequality to Inequality 2, we find that y was not an optimum to start
with, a contradiction. Hence, a must receive o when he switches. Now, if z,, = 1,

then following the same logic, we derive
Ve (zia) = Ve (a7 n e s) = VAU (i) — Ve (2070 % i)

and combine it with Inequality 2 to find that either y was not an optimum to start
with (a contradiction), or that z is a member of the arg max under both normal and
switched preferences. But then, the only way that z could be chosen under the switch

is if 7(2) < 7(y), which would contradict y being chosen under the truth. O

Corollary (to Lemma 2). Let o' =, o. Then,

RVME (2007 5 im) = o] = [REME (5i7) = 0]
Proposition 7. Under a rank-value mechanism, if agent a’s beliefs are {o, o'}-symmetric,
and o =, o, then for a, the allocation under any submitted preference that declares

0 4 0 is weakly stochastically dominated by the allocation of a submitted preference
that does not. If the beliefs are symmetric, then this holds for all 0,0’ € O\ {0}.

Proof. First, note that since the linear program does not depend on labels,

RV Mg (Zigim) = o] & |[RVME® (5007 g7 7007 )

d
!

I
S

[RVM" (Ziq;7) = o] & [RVM,? " (”HOI; 7 TH>

~J

where 0,0’ € O and v € O\ {0,0'}. Then, it must also be that

~O ~v—a

[RVM(?’U (}ZHO/, i_a;qﬂ') _ Ui| o [RVM;’U <>_ >_o<—>o/_qo<—>o/;7_o<—>o/) _ U]

[RVMGW’ (ﬁfﬁo,,i_a;qﬁ) = o} & [RVM;“’” <> >-‘f:0,;qo<_>ol§7'o<_m/> = 0,}

~a)

Now, using Lemma 2 and its corollary, we can think about the gains and losses an

agent a who prefers o' to o gets from switching those two objects. The possible cases
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Lie: RV Mg (zgﬁo T—al 5 T)
=u ¢{o,0'} =0 =o0
=v ¢ {o,0} Case A Impossible Case B

Truth: RV M, (Za, Z—a; ¢ T) =0 Case C Case D Case E
=0 Impossible  Impossible Case F

Table 4: Cases

a tells the truth a switches o and o

’ ’ ’ ’ ’
(Za,Z-ai @ 7) (ia,i”‘;“’ qeee s Toee ) (iZ"’“ ,i—a;q;T) (*0"’“ BT T S )

Case A v U U v
Case B v o 0 v
Case C o U U 0
Case D o 0 o o
Case E o o 0 0
Case F 0 o ) o

Table 5: Assignments under the different cases

are shown in Table 4. Using these cases, we can then think about what our agent gets
when everyone else’s preferences switch o and o', which is equally likely due to the
assumption of {o, 0'}-symmetric beliefs. This analysis is shown in Table 5. In each
of the cases, when we consider that everyone else switching o and o' is equally likely,
truth-telling yields an allocation for a that weakly stochastically dominates what she

would have gotten by switching o and o'. ]

We will formally name the condition in Proposition 7 weak order preservation.
It essentially says that it is possible to break indifferences in such a way that the

submitted preferences and the true preferences map to the same strict preference.

Definition 15. A reported preference =/, is called weakly {o, o'}-order-preserving
with respect to 3, if [0’ =, 0] = [0 7 o]. If this is true for all 0,0’ € O\ {0},
then we just call the reported preference weakly order-preserving with respect
to Z,.

Notice that if we are dealing with a world where only strict preferences are allowed,
then this property basically says that objects besides () are listed in their true order,

which is where we get Theorem 4. If we allow for indifferences, then we are not

60



insisting on truthful ordering, but instead are insisting that a true strict ordering of
two objects is never reported reversed. Before moving on, we review a notation that
was only briefly introduced in the main text. Let the true preference be 7, and the
preference that adds an indifference class I of unacceptable objects right above @be

=+ For some object o, let ~1° denote ii{o}.

Lemma 3. If the ranking scheme is upward-looking and unmatched-distinct then,
submitting a preference where the bottom declared-acceptable indifference class con-
sists entirely of truly unacceptable objects is weakly stochastically dominated by the
submitting the same preference with the bottom declared-acceptable indifference class

dropped.

Proof. By way of contradiction, assume that submitting =}/ makes a better off,
that is RVM, (ZH, Z-a;q;7) = 2, RVM, (Z;¢;7) =y, and y, <4 Z.. Then, by

~a )~

optimality, we know that V (7Z;y) > V (7Z;2) and V (>+1 ) >V (>-+I y)

~a 7Na ~a )~ a)

Now, y, is necessarily not in the lowest indifference class of == but it could either

be in a higher indifference class, or it could be (.

Case 1. (y, is ranked above = 17) z, must also be ranked above the bottom acceptable

indifference class of =17, so (since we have assumed that the rankings are upward-

looking) V (4!, Z—aiy) =V (Ziy) and V (27, = a;2) = V (Z; 2). Combined with
the optimality inequalities, these equalities imply that y and z are both in the arg
max under both preferences. This cannot be, since the tiebreaker 7 would choose one

or the other.

Case 2. (y, = 0) z, is necessarily not in the lowest acceptable indifference class of

=dl so V (Zd! moa;z) = V(Z;2). Now since the ranking scheme is unmatched-

~a ~a '~ a)

distinct, V' (*Z{I, = y) V (Z;y). Stringing inequalities together, we find that y

and z are both in the arg max under both preferences. This cannot be, since the

tiebreaker 7 would choose one or the other.
O]

Lemma 4. If the ranking scheme is upward-looking and unmatched-neutral, then if

0 s a truly acceptable object that is declared unacceptable in then

N(l7

RVM" (Ziq;7) Za RVME® (20° Z-ai @i 7)

~a )~ a7
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Proof. Define y = RVM®*" (zZ;q;7) and z = RVM®*" (ZZ1°, 7 _4;¢; 7). Since y is an

~a '~—A)

arg max under -, we have V¥ (77;y) > V*?(Z; 2), and since z is an arg max under
(Zdo, =), we have VU (o = - 2) > Var(mre = y).

~a Y~—a ~a )~y ~a )~

Now, by way of contradiction, assume that y, >, z,. There are three cases.

Case 1. (z, = 0) The ranking scheme is unmatched-neutral, so V*(z; z) > Vv (zte
, a3 Z). Since y, is above the part of the rank-order that has changed, we know
Ver(zte = y) = VU (Z;y) by the upward-looking assumption. Combined with
the optimality inequalities, these equalities imply that y and z are both in the arg
max under both preferences. This cannot be, since the tiebreaker 7 would choose one

or the other.

Case 2. (z, = 0) Denote by z|(Pthe assignment we get by starting with z and only
moving a from o to (). This is feasible, so since y is an arg max under ~, we know that
Ve (ziy) > Ver(z; 2|@?) By unmatched-neutrality, Ver(x; z|(@0) = yewv(—+o
,Z—a; %) Again, since y, is above any changes to the rank orders, V*'(xz;y) =
Ver(zte = _.;y). Combined with the fact that z is an arg max under (771, 7 _,),
we can deduce that all of these objective values must be equal. But if this were
true, there would no way that the same tiebreaker 7 could have chosen two different

assignments.

Case 3. (z4 >4 0) Both z, and y, are above any changes in the rank orders. Hence, by
the upward-looking assumption, z and y must be in the arg max for both submitted
preferences, and since we break ties by choosing the lowest 7, it is a contradiction

that we choose y under the true preferences and z under the truncations.

]

Proposition 12. Assume that agent a’s beliefs are symmetric. If the ranking scheme
18 upward-looking and unmatched-neutral, then truly acceptable objects must be de-
clared acceptable. If the ranking scheme is upward-looking and unmatched-distinct,
then any unacceptable objects that a declares acceptable must be in the bottom indif-

ference class and declared indifferent to some acceptable objects.

Proof. The previous lemma establishes the first part of the theorem. For the second
part, note that symmetry requires that the objects are submitted in a weakly order
preserving way. Hence, there can exist only one indifference class that contains both
unacceptable and acceptable objects. Below that indifference class, all classes must
be filled with unacceptable objects. By Lemma 3, we can drop those indifference

classes. O
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This combined with Proposition 7 gives us the generalization of Theorem 5 to

preferences with indifferences.

Theorem 9. If an agent’s beliefs are symmetric and the rank scheme is upward-

looking and...

e ...unmatched-distinct, then his expected allocation from any other strategy is
weakly stochastically dominated by his expected allocation from submitting some
weakly order preserving preference in which any truly unacceptable objects that
are declared acceptable are declared indifferent to some truly acceptable object

and are declared in the lowest acceptable indifference class.

o ...unmatched-neutral, then his expected allocation from any other strategy is
weakly stochastically dominated by his expected allocation from submitting some
weakly order preserving preference in which all truly acceptable objects are de-

clared acceptable.

D.3 Supportable rank efficiency and the competitive equilib-

rium mechanisms

Theorem 6. Not all ordinally efficient allocations are supportably rank-efficient.

|7l

Proof. For a trade cycle 7, define AV = Y q; - (Vra, (om-1)—Ura., (om)), Where
m=1

0p is understood to be o,,. By Theorem 7, an a_ssignment is only supportably rank
efficient there exists some (a,v) such that ALY <0 for all trade cycles 7. Now,

consider a 6 agent example, where there is one seat at a through d and 2 seats at e.

1: a - d = e
2: a - c - e
3: a > b ~- e
4 b » ¢ - e
5 c = d > e
6 : b - e

Probabilistic serial yields the random allocation

63



a b c d e

1: 1/3 0 0 17/27 1/27
2: 1/3 0 7/27 0 11/27
3:1/3 1/9 0 0 15/27
4: 0 4/9 4/27 0 11/27
5: 0 0 16/27 10/27 1/27
6: 0 4/9 0 0 15/27

which we know to be ordinally efficient. Relative to the trade cycles

o= ((1,a),(2,¢))

Ty = ((1,e),(2,a))

o= ((1,a),(3,0),(4,0),(5d))
o= ((La),(2€),(3,0),(4,¢),(5,d))

we can calculate how A"V will change:

AS—?’U)V = (CYQ — Oll) . (Ul - Ug)

AS—?U)V == (041 — 042) . (Ul — ’U3)

AS—?U)V = (063 + oy + a5 — Ckl) . (Ul — Ug)

AS—%U)V = —Q7- (Ul — UQ) + a9 - (Ul — U3) — Q3 - (UQ — U3) + (CY4 + (15) . (Ul — Ug)

Now, we show how there is no («, v) such that one of these trade cycles isn’t (o, v)-
rank improving, that is APV < 0. Since v; > vs, we need a; = ay to prevent
either 7y and 75 from being (a, v)-rank-improving. To prevent 73 from being a-rank-
improving, we need a; > ag + a4 + a5. Finally, since ay = ay, we can simplify
ALY 0 (g — ag) - (s — v3) + (as + as) - (v1 — v2). The second term is definitely
positive, so it must be that a; < a3. But combining the last two inequalities gives us
a3 > az + a4 + a;, which cannot be. Hence, there is no («,v) such that ALY <0
for all four of the trade cycles we have listed. Thus the ordinally efficient assignment
we started with is not supportably rank efficient.

O

Proposition 8. 1 is a-rank efficient < 3p, v such that (x*,p) form an (o, v)-discount

equilibrium
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Proof.

The LP dual of the (o, v)-rank efficient mechanism is

min {Zqo-po—i- Zaa'ua}

Uq >0,p0>0 0c® acA

s.t. Uq > Vry (o) — z—‘; Yoe O,ae A

First, note that some prices must be zero. To see this, say that they weren’t.
Then we could subtract some ¢ > 0 from all prices and add ¢/q, to u,. This change
does not violate any constraints and adds the term (|A| — )" q,) - € to the objective.
Since we are assuming that () € O, this term must be negative, which contradicts
optimality.

We will support the discount equilibrium with the prices from the dual of the rank
efficient mechanism. Now, the LP dual of the agent a’s problem in the (o, v)-discount

equilibrium with these prices is

min Ug

Uq
St Ug > Vpy(0) — 2—2 Yo e O
By nested optimization, we see that the u, from the rank efficient mechanism’s
dual also solves the discount equilibrium duals. Now, let x,, be the assignment we
are considering from the arg max of the rank efficient mechanism. The LP duality

theorem tells us that

ZQO'po—i_ZOéa’ua:Zzaa'vra(o)'xao

0O acA acA o€
From the constraint in the dual of the rank efficient mechanism, we can then
derive that, for any £ such that > &, < 1,Va € A, we have

ZQO'po+Zaa'Z (Ura(o) _]095_2) 'Sao < Zzaa'vra(o) * Lao

ocO acA 0O acA o€

If we plug in « for £, then this reduces to D Do (qo =D uea xao) < 0. Since all
elements of that sum are weakly positive, we conclude that } ., po- (qo =D ued %o) =
0. This, coupled with a constraint from the rank efficient mechanism, is the second

condition of the discount equilibrium. Note that we have also shown that

ZQO'p0+Zaa'Z (Ura(o) _Z_Z) 'xaozzzaa'vm(o) *Lao

00 acA oeO a€A 0o€O
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Finally, we show that the x,, from the arg max of the rank efficient mechanism must
also be part of the arg max for the agents’ problems in the discount equilibrium.
By way of contradiction, say that they aren’t, and let £, be the bundle chosen by
agent a under prices p. Then, for all agents, > &, <1and ), <Ura (0) g—(;) Cao >

> <vra(0) — 5—0> - a0, With the second inequality strict for some agent a’. Thus,

ZQO'po+Zaa'Z (Ura (o) £ao > ZQO po+zaa Z (Ura (o) — Z_(;) *Lao

0€Q acA o ) 0eO acA o

But we have shown

ZQO Do + Z@a Z (vra (o) — ) Lgo = Zzaa Urq(0) * Laos

ocO acA o a€A 0O

which means that we have derived

ZQO'po+Zaa'Z(vrao ) 5ao>zz@a Urao Lao

0O acA o acA o€

which stands in direct contradiction to something we have already proven. Therefore,
the assignment from the rank efficient mechanism solves the agents’ problems in the
discount equilibrium. Thus we have shown that any member of the arg max of the

rank-efficient equilibrium can be supported as a discount equilibrium.

Consider the optimization

max {Zzaa ’ UTa(O) " Lao + Zpo : (qo - Zxao> }
s.t. > e <1
Zmao S Ga

Clearly the value of this optimization is less than or equal to the value of

max ».> Qg Ury(o) * Tao
z o a
s.t. > e <1
o

D Zao < qa
a

Now, if we start with the assignment x from some discount equilibrium, by nested
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optimization and market clearing, we know that it solves the first optimization. But
by the second condition in the definition of a discount equilibrium, we know that the
value of this assignment in the first optimization is attained in the second as well.
Hence, x must solve the second optimization, since it attains the upper bound at x.
Hence, x is in the arg max of the rank efficient mechanism’s defining program.

[]

Theorem 7. x is supportably rank efficient < 3(B,v) such that x is supported by
the (B, v)-budget mechanism.

Proof. We have already proven that discount equilibria and a-rank efficient assign-
ments are the same things. Now, we show that discount equilibria and and budget
equilibria are the same. This established the theorem.

(DE = BE) Take an («, v)-discount equilibrium, (z*,p). Now, let B, = > p, -«

ao
o

be the income assigned to agent a. Now, by way of contradiction, assume that

(x*,p) is not a (B,v)-budget equilibrium assignment for and B. By construction, it

is feasible, so it must be that there is some other feasible z such that > v, (o) - Z40 >

o
*

a

Y Ura(o) * Tao- Since it is feasible, we also know that Y D, Tao < D> Do T
o

o

,- Combining
the last two inequalities (multiplying the first by o), we find Y- (vro(0) — Do) * Tao >

> (vra(o) — ﬁo) - x¥,, a contradiction of the original assumption that (z*,p) was an
o

(cv, v)-assignment equilibrium.
(BE = DE) Take a (B, v)-budget equilibrium, (Z,p). Now, consider the LP dual

of the agent optimization problem:

X:z A;) ' a /\a : -/B\a
s.t. Ma > Urq(0) — ]/); : )\a

Take a solution to this dual problem for an agent a. Also, consider the LP dual of

the agent optimization problem in an (o, v)-discount equilibrium:

* € argmin
:ua MaZO :ua ’V(],

s.t. fa = Qg * Vry(0) — Do
Now, from here we continue by cases.

Case 1. (Xa = 0): By inspection of the dual, we can see that p, = v;. By the LP
duality theorem, we then know that ) v,.(0)  Zao = fta = v1i. The only way this

can happen is if o, = 1, (0)=1}, that is, if agent a is able to buy a full share of his
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most preferred object, r;(1). without exhausting his budget. Set a, = 1 + T“ <1 )
This does two things. First, it makes the objective in the agent’s optlrmzatlon the
same in both the discount and budget equilibrium (remember, only one term in
the sum is actually there, since z,, is only positive for one o). Hence, the agent’s
problem in the discount equilibrium is a relaxation of the agent’s problem in the
budget equilibrium. Second, it makes the LP duals of the optimizations in the two
problems identical. These two facts, coupled with the LP duality theorem, mean that
Y o Ura(0) " Tho = M = fha = D, Ura (o) Tao- Since T is feasible and attains the optimum,
we have shown that our agent has found an optimum of the agent’s problem in the

discount equilibrium.

Case 2. (X; >0): Set o, = L. This makes our two LP duals rescaled versions

Aq_

of each other, such that u} = & + B,. The LP duality theorem then gives us that

> Qo Vpo(o) — Do) Tl = i = ’i‘l =, 0a Ur(0)  Tao— Ba. This means that ) p,-
x;, = B,, that is 2™ is feasible in the budget equilibrium agent optimization. Further,

this means that Y P - Teo < > . Do -

must also be feasible. Now, assume that the budget equilibrium assignment is not

ro, since a budget equilibrium assignment
part of a discount equilibrium. This must mean that ) (aa “Vry(0) — pAO) ST, >

> (aa “Ura(o) — ]5;) - Tyo. Combining the last two inequalities and factoring out a

*

COMMON (g ZiVes US D Vr, (o) * Tho

> > Ur.(o) - Tao Which contradicts the original
assertion that z,, was part of a discount equilibrium assignment. Hence, Z is an

optimum of the agent’s problem in the discount equilibrium.

Hence we have shown that agents optimizing according to the problem in the discount

equilibrium can choose x, given an appropriately chosen a vector. O

The efficiency of the budget equilibria lines up well with our understanding of gen-
eral equilibrium and the welfare theorems, but why should the discount equilibrium
yield an efficient outcome. Distorting prices with the a-discounts seems like it should
cause trouble, in the same way that distortionary taxation does. So what is going
on? We can think of the agent’s problem in the discount equilibrium as an agent with
enough money to buy whatever he wants, but who values money quasi-linearly. Since
we have this sort of separation, and our efficiency concepts only rely on the distribu-
tion of objects among the agents, the distortion only serves to limit how much each
agent is willing to spend on objects. In short, in the discount equilibrium, distortions
in the relative cost of keeping money serve a similar role to the budgets in the budget

equilibrium.
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