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An Estimation of Economic Models with Recursive
Preferences

Abstract

This paper presents estimates of key preference parameters of the Epstein and Zin (1989,

1991) and Weil (1989) (EZW) recursive utility model, evaluates the model�s ability to �t

asset return data relative to other asset pricing models, and investigates the implications of

such estimates for the unobservable aggregate wealth return. Our empirical results indicate

that the estimated relative risk aversion parameter is high, ranging from 17-60, with higher

values for aggregate consumption than for stockholder consumption, while the estimated

elasticity of intertemporal substitution is above one. In addition, the estimated model-

implied aggregate wealth return is found to be weakly correlated with the CRSP value-

weighted stock market return, suggesting that the return to human wealth is negatively

correlated with the aggregate stock market return. In quarterly data from 1952 to 2005, we

�nd that an SMD estimated EZW recursive utility model can explain a cross-section of size

and book-market sorted portfolio equity returns better than the standard consumption-based

model based on power utility and better than the Lettau and Ludvigson (2001b) cay-scaled

consumption CAPM model, but not as well as the Fama and French (1993) three-factor

model with �nancial returns as risk factors.
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1 Introduction

A large and growing body of theoretical work in macroeconomics and �nance models the

preferences of economic agents using a recursive utility function of the type explored by

Epstein and Zin (1989, 1991) andWeil (1989).1 Recursive utility a¤ords a degree of �exibility

as regards attitudes towards risk and intertemporal substitution not present in other models

of preferences. For example, under the recursive representation, the coe¢ cient of relative

risk aversion need not equal the inverse of the elasticity of intertemporal substitution (EIS),

as it must in time-separable expected utility models with constant relative risk aversion.

This degree of �exibility is appealing in many applications because it is unclear why an

individual�s willingness to substitute consumption across random states of nature should be

so tightly linked to her willingness to substitute consumption deterministically over time.

Despite the growing interest in recursive utility models, there has been a relatively small

amount econometric work aimed at estimating the relevant preference parameters and assess-

ing the model�s �t with the data. As a consequence, theoretical models are often calibrated

with little econometric guidance as to the value of key preference parameters, the extent to

which the model explains the data relative to competing speci�cations, or the implications

of the model�s best-�tting speci�cations for other economic variables of interest, such as the

return to the aggregate wealth portfolio or the return to human wealth. The purpose of this

study is to help �ll this gap in the literature by undertaking a formal econometric evaluation

of the Epstein-Zin-Weil (EZW) recursive utility model.

The EZW recursive utility function is a constant elasticity of substitution (CES) aggre-

gator over current consumption and the expected discounted utility of future consumption.

This structure makes estimation of the general model di¢ cult because the intertemporal

marginal rate of substitution is a function of the unobservable continuation value of the fu-

ture consumption plan. One approach to this problem, based on the insight of Epstein and

Zin (1989), is to exploit the relation between the continuation value and the return on the

aggregate wealth portfolio. To the extent that the return on the aggregate wealth portfolio

can be measured or proxied, the unobservable continuation value can be substituted out of

1See for example Campbell (1993); Campbell (1996); Tallarini (2000); Campbell and Viceira (2001)

Bansal and Yaron (2004); Colacito and Croce (2004); Bansal, Dittmar, and Kiku (2005); Campbell and

Voulteenaho (2005); Gomes and Michaelides (2005); Krueger and Kubler (2005); Hansen, Heaton, and Li

(2005); Kiku (2005); Malloy, Moskowitz, and Vissing-Jorgensen (2005); Campanale, Castro, and Clementi

(2006); Croce (2006); Bansal, Dittmar, and Lundblad (2006); Croce, Lettau, and Ludvigson (2006); Hansen

and Sargent (2006); Piazzesi and Schneider (2006).
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the marginal rate of substitution and estimation can proceed using only observable variables

(e.g., Epstein and Zin (1991), Campbell (1996), Vissing-Jorgensen and Attanasio (2003)).2

Unfortunately, the aggregate wealth portfolio represents a claim to future consumption and

is itself unobservable. Moreover, given the potential importance of human capital and other

nontradable assets in aggregate wealth, its return may not be well proxied by observable

asset market returns.

These di¢ culties can be overcome in speci�c cases of the EZW recursive utility model.

For example, if the EIS is restricted to unity and consumption follows a loglinear time-series

process, the continuation value has an analytical solution and is a function of observable

consumption data (e.g., Hansen, Heaton, and Li (2005)). Alternatively, if consumption and

asset returns are assumed to be jointly lognormally distributed and homoskedastic (or if a

second-order linearization is applied to the Euler equation), the risk premium of any asset

can be expressed as a function of covariances of the asset�s return with current consumption

growth and with news about future consumption growth (e.g., Restoy and Weil (1998)).

In this case, the model�s cross-sectional asset pricing implications can be evaluated using

observable consumption data and a model for expectations of future consumption.

While the study of these speci�c cases has yielded a number of important insights, there

are several reasons why it may be desirable to allow for more general representations of the

model, free from tight parametric or distributional assumptions. First, an EIS of unity im-

plies that the consumption-wealth ratio is constant, contradicting statistical evidence that

it varies considerably over time.3 Moreover, even �rst-order expansions of the EZW model

around an EIS of unity may not capture the magnitude of variability of the consumption-

wealth ratio (Hansen, Heaton, Roussanov, and Lee (2006)). Second, although aggregate

consumption growth itself appears to be well described by a lognormal process, empirical

evidence suggests that the joint distribution of consumption and asset returns exhibits sig-

2Epstein and Zin (1991) use an aggregate stock market return to proxy for the aggregate wealth return.

Campbell (1996) assumes that the aggregate wealth return is a portfolio weighted average of a human capital

return and a �nancial return, and obtains an estimable expression for an approximate loglinear formulation

of the model by assuming that expected returns on human wealth are equal to expected returns on �nancial

wealth. Vissing-Jorgensen and Attanasio (2003) follow Campbell�s approach to estimate the model using

household level consumption data.
3Lettau and Ludvigson (2001a) argue that a cointegrating residual for log consumption, log asset wealth,

and log labor income should be correlated with the unobservable log consumption-aggregate wealth ratio,

and �nd evidence that this residual varies considerably over time and forecasts future stock market returns.

See also recent evidence on the consumption-wealth ratio in Hansen, Heaton, Roussanov, and Lee (2006)

and Lustig, Van Nieuwerburgh, and Verdelhan (2007).
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ni�cant departures from lognormality (Lettau and Ludvigson (2005)). Third, Kocherlakota

(1990) points out that joint lognormality is inconsistent with an individual maximizing a

utility function that satis�es the recursive representation used by Epstein and Zin (1989,

1991) and Weil (1989).

To overcome these issues, we employ a semiparameteric estimation technique that allows

us to conduct estimation and testing of the EZW recursive utility model without the need to

�nd a proxy for the unobservable aggregate wealth return, without linearizing the model, and

without placing tight parametric restrictions on either the law of motion or joint distribution

of consumption and asset returns, or on the value of key preference parameters such as the

EIS. We present estimates of all the preference parameters of the EZW model, evaluate

the model�s ability to �t asset return data relative to competing asset pricing models, and

investigate the implications of such estimates for the unobservable aggregate wealth return

and human wealth return.

To avoid having to �nd a proxy for the return on the aggregate wealth portfolio, we

explicitly estimate the unobservable continuation value of the future consumption plan. By

assuming that consumption growth falls within a general class of stationary, dynamic models,

we may identify the state variables over which the continuation value is de�ned. However,

without placing tight parametric restrictions on the model, the continuation value is still

an unknown function of the relevant state variables. Thus, we estimate the continuation

value function nonparametrically. The resulting empirical speci�cation for investor utility is

semiparametric in the sense that it contains both the �nite dimensional unknown parameters

that are part of the CES utility function (risk aversion, EIS, and subjective time-discount

factor), as well as the in�nite dimensional unknown continuation value function.

Estimation and testing are conducted by applying a pro�le Sieve Minimum Distance

(SMD) procedure to a set of Euler equations corresponding to the EZW utility model we

study. The SMD method is a distribution-free minimum distance procedure, where the

conditional moments associated with the Euler equations are directly estimated nonpara-

metrically as functions of conditioning variables. The �sieve�part of the SMD procedure

requires that the unknown function embedded in the Euler equations (here the continuation

value function) be approximated by a sequence of �exible parametric functions, with the

number of parameters expanding as the sample size grows (Grenander (1981)). The un-

known parameters of the marginal rate of substitution, including the sieve parameters of the

continuation value function and the �nite-dimensional parameters that are part of the CES

utility function, may then be estimated using a pro�le two-step minimum distance estima-
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tor. In the �rst step, for abritrarily �xed candidate �nite dimensional parameter values, the

sieve parameters are estimated by minimizing a weighted quadratic distance from zero of the

nonparametrically estimated conditional moments. In the second step, consistent estimates

of the �nite dimensional parameters are obtained by solving a suitable sample minimum

distance problem.

We estimate two versions of the model. The �rst is a representative agent formulation,

in which the utility function is de�ned over per capita aggregate consumption. The second

is a representative stockholder formulation, in which utility is de�ned over per capita con-

sumption of stockholders. The de�nition of stockholder status, the consumption measure,

and the sample selection follow Vissing-Jorgensen (2002), which uses the Consumer Expen-

diture Survey (CEX). Since CEX data are limited to the period 1982 to 2002, and since

household-level consumption data are known to contain signi�cant measurement error, we

follow Malloy, Moskowitz, and Vissing-Jorgensen (2005) and generate a longer time-series of

data by constructing consumption mimicking factors for aggregate stockholder consumption

growth.

Once estimates of the continuation value function have been obtained, it is possible to

investigate the model�s implications for the aggregate wealth return. This return is in general

unobservable but can be inferred from the model by equating the estimated marginal rate of

substitution with its theoretical representation based on consumption growth and the return

to aggregate wealth. If, in addition, we follow Campbell (1996) and assume that the return

to aggregate wealth is a portfolio weighted average of the unobservable return to human

wealth and the return to �nancial wealth, the estimated model also delivers implications for

the return to human wealth.

Using quarterly data on consumption growth, assets returns and instruments, our em-

pirical results indicate that the estimated relative risk aversion parameter is high, ranging

from 17-60, with higher values for the representative agent version of the model than the

representative stockholder version. The estimated elasticity of intertemporal substitution is

typically above one, and di¤ers considerably from the inverse of the coe¢ cient of relative

risk aversion. In addition, the estimated aggregate wealth return is found to be weakly cor-

related with the CRSP value-weighted stock market return and much less volatile, implying

that the return to human capital is negatively correlated with the aggregate stock market

return. This later �nding is consistent with results in Lustig and Van Nieuwerburgh (2006),

discussed further below. In data from 1952 to 2005, we �nd that an SMD estimated EZW

recursive utility model can explain a cross-section of size and book-market sorted portfolio
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equity returns better than the time-separable, constant relative risk aversion power utility

model and better than the Lettau and Ludvigson (2001b) cay-scaled consumption CAPM

model, but not as well as purely empirical models based on �nancial factors such as the

Fama and French (1993) three-factor model.

Our study is related to recent work estimating speci�c asset pricing models in which

the EZW recursive utility function is embedded. Bansal, Gallant, and Tauchen (2004) and

Bansal, Kiku, and Yaron (2006) estimate models of long-run consumption risk, where the

data generating processes for consumption and dividend growth are explicitly modeled as

linear functions of a small but very persistent long-run risk component and normally distrib-

uted shocks. These papers focus on the representative agent formulation of the model, in

which utility is de�ned over per capita aggregate consumption. In such long-run risk models,

the continuation value can be expressed as a function of innovations in the explicitly im-

posed driving processes for consumption and dividend growth, and inferred either by direct

simulation or by specifying a vector autoregression to capture the predictable component.

Our work di¤ers from these studies in that our estimation procedure does not restrict the

law of motion for consumption or dividend growth. As such, our estimates apply generally

to the EZW recursive preference representation, not to speci�c asset pricing models of cash

�ow dynamics.

2 The Model

The Epstein-Zin-Weil objective function is de�ned recursively by

Vt =
�
(1� �)C1��t + �Rt (Vt+1)

1��� 1
1�� (1)

Rt (Vt+1) =
�
E
�
V 1��
t+1 jFt

�� 1
1�� ; (2)

where Vt+1 is the continuation value of the future consumption plan. The parameter �

governs relative risk aversion and 1=� is the elasticity of intertemporal substitution over

consumption (EIS). When � = �, the utility function can be solved forward to yield the

familiar time-separable, constant relative risk aversion (CRRA) power utility model

Vt = �
C1��t

1� �
: (3)

5



As in Hansen, Heaton, and Li (2005), the utility function may be rescaled and expressed

as a function of stationary variables:

Vt
Ct

=

"
(1� �) + �Rt

�
Vt+1
Ct+1

Ct+1
Ct

�1��# 1
1��

(4)

=

24(1� �) + �Et

"�
Vt+1
Ct+1

�1�� �
Ct+1
Ct

�1��# 1��
1��
35

1
1��

:

The intertemporal marginal rate of substitution (MRS) in consumption is given by

Mt+1 = �

�
Ct+1
Ct

���0@ Vt+1
Ct+1

Ct+1
Ct

Rt

�
Vt+1
Ct+1

Ct+1
Ct

�
1A���

: (5)

The MRS is a function Rt (�) of the expected value of the continuation value-consumption
ratio, Vt+1

Ct+1
; referred to hereafter as the continuation value ratio.

Epstein and Zin (1989, 1991) show that the MRS can be expressed in an alternate form

as

Mt+1 =

(
�

�
Ct+1
Ct

���) 1��
1�� �

1

Rw;t+1

� ���
1��

; (6)

where Rw;t+1 is the return to aggregate wealth, which represents a claim to future consump-

tion. This return is in general unobservable, but some researchers have undertaken empirical

work using an aggregate stock market return as a proxy, as in Epstein and Zin (1991). A

di¢ culty with this approach is that Rw;t+1 may not be well proxied by observable asset

market returns, especially if human wealth and other nontradable assets are quantitatively

important fractions of aggregate wealth. Alternatively, approximate loglinear formulations

of the model can be obtained by making speci�c assumptions regarding the relation between

the return to human wealth and the return to some observable form of asset wealth. For

example, Campbell (1996) assumes that expected returns on human wealth are equal to

expected returns on �nancial wealth. Since the return to human wealth is unobservable,

however, such assumptions are di¢ cult to verify in the data. Consequently, we work with

the formulation of the MRS given in (5), with its explicit dependence on the continuation

value of the future consumption plan.

The �rst-order conditions for optimal consumption choice imply that Et [Mt+1Ri;t+1] = 1,

for any traded asset indexed by i, with a gross return at time t+ 1 of Ri;t+1. Using (5), the
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�rst-order conditions take the form

Et

264� �Ct+1
Ct

���0@ Vt+1
Ct+1

Ct+1
Ct

Rt

�
Vt+1
Ct+1

Ct+1
Ct

�
1A���

Ri;t+1 � 1

375 = 0: (7)

Since the expected product of any traded asset return with Mt+1 equals one, the model

implies that Mt+1 is the stochastic discount factor (SDF), or pricing kernel, for valuing any

traded asset return.

Equation (7) is a cross-sectional asset pricing model; it states that the risk premium

on any traded asset return Ri;t+1 is determined in equilibrium by the covariance between

returns and the stochastic discount factorMt+1. Notice that, compared to the CRRA model

where consumption growth is the single risk factor, the EZW model adds a second risk

factor for explaining the cross-section of asset returns, given by the multiplicative term�
Vt+1
Ct+1

Ct+1
Ct
=Rt

�
Vt+1
Ct+1

Ct+1
Ct

�����
.

The moment restrictions (7) are complicated by the fact that the conditional mean is

taken over a highly nonlinear function of the conditionally expected value of discounted

continuation utility, Rt

�
Vt+1
Ct+1

Ct+1
Ct

�
. However, both the rescaled utility function (4) and the

Euler equations (7) depend on Rt. Thus, equation (4) can be solved for Rt, and the solution

plugged into (7). The resulting expression, for any observed sequence of traded asset returns

fRi;t+1gNi=1, takes the form

Et

264� �Ct+1
Ct

���0B@ Vt+1
Ct+1

Ct+1
Ctn

1
�

h
Vt
Ct

1�� � (1� �)
io 1

1��

1CA
���

Ri;t+1 � 1

375 = 0 i = 1; :::; N: (8)

The moment restrictions (8) form the basis of our empirical investigation.

To avoid having to �nd a proxy for the return on the aggregate wealth portfolio, we

explicitly estimate the unobservable continuation value ratio Vt+1
Ct+1

. To do so, we assume

that consumption growth falls within a general class of stationary, dynamic models, thereby

allowing us to identify the state variables over which the continuation value ratio is de�ned.

Several examples of this approach are given in Hansen, Heaton, and Li (2005). Here, we

assume that consumption growth is a possibly nonlinear function of a hidden �rst-order

Markov process xt that summarizes information about future consumption growth. Let

lower case letters denote log variables, e.g., ln (Ct+1) � ct+1: As a special case, consumption

growth may be a linear function of a hidden �rst-order Markov process xt

ct+1 � ct = �+Hxt +C�t+1; (9)
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xt+1 = �xt +D�t+1; (10)

where �t+1 is a (2� 1) i.i.d. vector with mean zero and identity covariance matrix I and
C and D are (1� 2) vectors. Notice that this allows shocks in the observation equation
(9) to have arbitrary correlation with those in the state equation (10). The speci�cation

(9)-(10) nests a number of stationary univariate representations for consumption growth,

including a �rst-order autoregression, �rst-order moving average representation, a �rst-order

autoregressive-moving average process, or ARMA (1; 1), and i:i:d. The asset pricing litera-

ture on long-run consumption risk often restricts to a special case of the above, where the

innovations in (9) and (10) are uncorrelated and � is close to unity (e.g., Bansal and Yaron

(2004)).

More generally, we can allow consumption growth to be a potentially nonlinear function

of a hidden Markov process xt:

ct+1 � ct = h (xt) + �c;t+1 (11)

xt+1 =  (xt) + �x;t+1; (12)

where h (xt) and  (xt) are no longer necessarily linear functions of the state variable xt, and

�c;t+1 and �x;t+1 are i.i.d. random variables that may be correlated with one another.

In either case, given the �rst-order Markov structure, expected future consumption

growth is summarized by the single state variable xt; implying that xt also summarizes

the state space over which the function Vt
Ct
is de�ned. Notice that while we use the �rst-order

Markov assumption as a motivation for specifying the state space over which continuation

utility is de�ned, as discussed below, the econometric methodology itself leaves the law of

motion of the consumption process unspeci�ed.

There are two remaining complications that must be addressed before estimation can be

undertaken. First, without placing tight parametric restrictions on the model, the continua-

tion value ratio is an unknown function of the relevant state variables. Thus, we estimate Vt
Ct

nonparametrically. Second, the state variable xt that is taken as the input of the unknown

function is itself unobservable and must be inferred from consumption data. In the Appen-

dix, we provide assumptions under which the �rst-order Markov structure in either (9)-(10)

or (11)-(12) implies that the information contained in xt is summarized by the lagged con-

tinuation value ratio Vt�1
Ct�1

and current consumption growth Ct
Ct�1

. It follows that Vt
Ct
may be

modeled as an unknown function V : R2 ! R of the lagged continuation value ratio and

consumption growth:
Vt
Ct
= V

�
Vt�1
Ct�1

;
Ct
Ct�1

�
:

8



Observe that if the innovations in (9) and (10) are positively correlated, Vt
Ct
may display neg-

ative serial dependence, and we expect V1
�
Vt�1
Ct�1

; Ct
Ct�1

�
< 0, where V1 (�) denotes the partial

derivative of V with respect to its �rst argument. In addition, although the linear speci�-

cation (9)-(10) implies that V is a monotonic function of both arguments, if the stochastic

process is nonlinear in xt, as in (11)-(12), the function V can take on more general functional

forms, potentially displaying nonmonotonicity in both its arguments.

3 Empirical Implementation

This section presents the details of our empirical procedure. The general methodology is

based on estimation of the conditional moment restrictions (8). The empirical model (8) is

semiparametric in the sense that it contains both �nite dimensional and in�nite dimensional

unknown parameters. Let � � (�; �; �)0 denote the vector of �nite dimensional parameters,
and denote �o � (�o; �o; �o)

0 2 D, a compact subset in R3, and Vo (�) 2 V as the true unknown
�nite and in�nite dimensional parameters, respectively, where the function Vo (�) can depend
on parameters �o and data zt, and where (�) denotes the generic argument:We often suppress
the arguments of Vo for notational convenience, i.e., Vo � Vo (zt; �o) � Vo (�; �o).
We may write (8) more compactly as

E f
i(zt+1; �o; Vo (�; �o))jw�
t g = 0; i = 1; :::; N; (13)

where zt+1 is a vector containing all observations used to estimate the conditional moment

(8) at time t, (including consumption and return data), 
i is de�ned as


i(zt+1; �; V ) � �

�
Ct+1
Ct

���0BBB@ V
�
Vt
Ct
; Ct+1
Ct+1

�
Ct+1
Ct�

1
�

�n
V
�
Vt�1
Ct�1

; Ct
Ct�1

�o1��
� (1� �)

�� 1
1��

1CCCA
���

Ri;t+1 � 1;

and the conditional expectation in (13) is taken with respect to agents�information set at

time t, denoted w�
t .

Let wt be a dw�1 observable measurable function of w�
t that does not contain a constant.

Equation (13) implies

E f
i(zt+1; �o; Vo (�; �o))jwtg = 0; i = 1; :::; N: (14)

Given (14), the true parameter value Vo (�; �o) is the solution to the following minimum
distance problem

Vo (�; �o) = arg inf
V 2V

E [m(wt; �o; V )
0m(wt; �o; V )] ; (15)

9



wherem(wt; �; V ) = Ef
(zt+1; �; V )jwtg, 
(zt+1; �; V ) = (
1(zt+1; �; V ); :::; 
N(zt+1; �; V ))
0.4

For any candidate value � � (�; �; �)0 2 D, we de�ne V � � V � (zt; �) � V � (�; �) as the
solution to

V � (�; �) = arg inf
V 2V

E [m(wt; �; V )
0m(wt; �; V )] : (16)

It is clear that Vo (zt; �o) = V � (zt; �o).

Estimation is undertaken using a semiparametric two-step minimum distance estimator;

see e.g., Andrews (1994), Newey andMcFadden (1994), Pakes and Olley (1995) Chen, Linton,

and van Keilegom (2003) and Chen (2006). In the �rst step, for any candidate value � �
(�; �; �)0 2 D, the unknown function V � (�; �) is obtained using the sieve minimum distance

(SMD) estimator developed in Newey and Powell (2003) and Ai and Chen (2003). In the

second step, consistent estimates of the �nite dimensional parameters �o are obtained by

solving a suitable sample minimum distance problem. We show in the Appendix that, under

the assumption of stationary weakly dependent observations, the �rst-step SMD estimator

of V � (�; �) is consistent and converges at rate T 1=4 under certain metric, uniformly over
� � (�; �; �)0 2 D, where T is the sample size. The second-step estimates of the �nite-

dimensional parameters �o � (�o; �o; �o)
0 are

p
T consistent and asymptotically normally

distributed. Notice that the estimation procedure itself leaves the law of motion of the data

unspeci�ed.5

4If the model of consumption dynamics speci�ed above were literally true, the state variables Vt�1
Ct�1

and
Ct
Ct�1

(and all measurable transformations of these) are su¢ cient statistics for the agents information set

w�
t . However, the fundamental asset pricing relation Et [Mt+1Ri;t+1 � 1] ; which includes individual asset

returns, is likely to be a highly nonlinear function of the state variables. In addition, one of the these state

variables is the unknown function, Vt�1Ct�1
; and as such it embeds the unknown sieve parameters. These facts

make the estimation procedure computationally intractable if the subset wt, over which the conditional

mean m(wt; �; V ) is taken, includes
Vt�1
Ct�1

. Fortunately, the procedure can be carried out on an observable

measurable function wt of w�
t , which need not contain

Vt�1
Ct�1

. A consistent estimate of the conditional

mean m(wt; �; V ) can be obtained using known basis functions of observed conditioning variables in wt.

We take this approach here, using Ct
Ct�1

and several other observable conditioning variables as part of the

econometrician�s information wt.
5Under the assumption of i.i.d. observations, Ai and Chen (2003) show that the SMD estimators of the

unknown functions such as V � (�; �) are consistent with rate T 1=4, that the SMD estimators of the �nite-

dimensional parameters such as � = (�; �; �)
0 are

p
T consistent and asymptotically normally distributed

and the optimally weighted versions are semiparametric e¢ cient. In the Appendix we show that the results

on nonparametric consistency and parametric
p
T�asymptotic normality can be easily extended to allow

for stationary beta-mixing time series observations in our application. Beta-mixing is one popular measure

of temporal dependence for nonlinear time series that is satis�ed by many widely used �nancial time series

models including nonlinear ARCH, GARCH, stochastic volatility and di¤usion models�see the Appendix for
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3.1 First-Step SMD Estimation of V � (�; �)

For any candidate value � =(�; �; �)0 2 D, an initial estimate of the unknown function
V � (�; �) is obtained using the sieve minimum distance (SMD) estimator, described below.

In practice, this is achieved by applying the SMD estimator at each point in a 3-dimensional

grid for � 2 D. The idea behind the SMD estimator is that sample analog of the conditional
moment (8) can be consistently estimated via minimum distance estimation in a procedure

that itself has two essential parts. First, although the functional form of the conditional

distribution implied by (8) is unknown, we may replace the conditional expectation itself

with a consistent nonparametric estimator (to be speci�ed later). Second, although the

value function V � (�; �) is an in�nite-dimensional unknown parameter, we can approximate
it by a sequence of �nite-dimensional unknown parameters (sieves) VKT

(�; �), where the
approximation error decreases as the dimension KT increases with the sample size T . For

each � 2D, the function VKT
(�; �) is estimated by minimizing a (weighted) quadratic norm

of nonparametrically estimated conditional expectation functions based on the conditional

moment restrictions (8).

Estimation in the �rst step is carried out by implementing the following algorithm. First,

the ratio Vt
Ct
is treated as unknown function Vt

Ct
= V �

�
Vt�1
Ct�1

; Ct
Ct�1

; �
�
, with the initial value for

Vt
Ct
at time t = 0; denoted V0

C0
, taken as a unknown scalar parameter to be estimated: Second,

the unknown function V �
�
Vt�1
Ct�1

; Ct
Ct�1

; �
�
is approximated by a bivariate sieve function

V �
�
Vt�1
Ct�1

;
Ct
Ct�1

; �

�
� VKT

(�; �) = a0(�) +

KTX
j=1

aj(�)Bj

�
Vt�1
Ct�1

;
Ct
Ct�1

�
;

where the sieve coe¢ cients fa0; a1; :::; aKT
g depend on �, but the sieve basis functions

fBj(�; �) : j = 1; :::; KTg have known functional forms that are independent of �; see the
Appendix for examples of the sieve basis functions Bj(�; �). To provide a nonparametric esti-
mate of the true unknown function, KT must grow with the sample size to insure consistency

of the method.6 We are not interested in the sieve parameters (a0; a1; :::; aKT
)0 per se, but

the formal de�nition. Thus, the estimation procedure requires stationary ergodic observations but does not

restrict to linear time series speci�cations or speci�c parametric laws of motions of the data.
6Asymptotic theory only provides guidance about the rate at which KT must increase with the sample

size T . Thus, in practice, other considerations must be used to judge how best to set this dimensionality. The

bigger is KT , the greater is the number of parameters that must be estimated, therefore the dimensionality

of the sieve is naturally limited by the size of our data set. With KT = 9, the dimension of the parameter

vector, � along with V0
C0
, is 11, estimated using a sample of size T = 213. In practice, we obtained very
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rather in the �nite dimensional parameters �o, and in the dynamic behavior of the continu-

ation value and the marginal rate of substitution, all of which depend on those parameters.

For the empirical application below, we set KT = 9 (see the Appendix for further discus-

sion), leaving 10 sieve parameters to be estimated in V �, plus the initial value V0
C0
: The total

number of parameters to be estimated, including the three �nite dimensional parameters in

�, is therefore 14.

Given values V0
C0
, fajgKT

j=1, fBjg
KT

j=1 and data on consumption
n

Ct
Ct�1

oT
t=1
, the function VKT

is used to generate a sequence
n
Vi
Ci

oT
i=1
that can be taken as data to be used in the estimation

of (8).

Implementation of the sieve minimum distance estimator requires a consistent estimate of

the conditional meanm(wt; �; V ): A consistent estimate of the conditional meanm(wt; �; V )

can be obtained using known basis functions of observed conditioning variables in wt. Let

fp0j(wt); j = 1; 2; :::; JTg be a sequence of known basis functions (including a constant func-
tion) that map from Rdw into R. Denote pJT (�) � (p01 (�) ; :::; p0JT (�))

0 and the T �JT matrix
P �

�
pJT (w1) ; :::; p

JT (wT )
�0
. Then

bm(w; �; V ) =  TX
t=1


(zt+1; �; V )p
JT (wt)

0(P0P)�1

!
pJT (w) (17)

is a sieve Least Squares estimator of the conditional mean vectorm(w; �; V ) = Ef
(zt+1; �; V )jwt =
wg: (Note that JT must grow with the sample size to ensure that m(wt; �; V ) is estimated
consistently). We form the �rst-step SMD estimate bV (�) for V � (�) based on this estimate of
the conditional mean vector and the sample analog of (16):

bV (�; �) = argmin
VKT

1

T

TX
t=1

bm(wt; �; VKT
)0 bm(wt; �; VKT

): (18)

We refer to the function being minimized in (18) as the sieve minimum distance criterion

function. The appendix gives a detailed description of the SMD estimation procedure.

As shown in the Appendix, an attractive feature of this estimator is that it can be

implemented as an instance of GMM with a particular weighting matrixW given by

W = IN
 (P0P)�1 :

The procedure is equivalent to regressing each 
i on the set of instruments p
JT (�) and taking

the �tted values from this regression as an estimate of the conditional mean, where the

similar results setting KT = 10; thus we present the results for the more parsimonious speci�cation using

KT = 9 below.
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particular weighting matrix gives greater weight to moments that are more highly correlated

with the instruments pJT (�). The weighting scheme can be understood intuitively by noting
that variation in the conditional mean is what identi�es the unknown function V � (�; �).

3.2 Second-Step Estimation of �

Once an initial nonparametric estimate bV (�; �) is obtained for V � (�; �), we can estimate the
�nite dimensional parameters �o consistently by solving a suitable sample minimum distance

problem, for example by using a Generalized Method of Moments (GMM, Hansen (1982))

estimator. An advantage of this two-step approach is that the second-stage estimation need

not be based on the SMD criterion

b� = argmin
�2D

1

T

TX
t=1

bm(wt; �; bV (�; �))0 bm(wt; �; bV (�; �));
which gives greater weight to moments that are more highly correlated with the instruments

pJT (�). Such a weighting scheme is required to identify the unknown function V � (�; �), but
is not required for pinning down the �nite dimensional preference parameters �o. We discuss

this further below.

Notice that if the number of test asset returns N � 3, consistent estimation of � =

(�; �; �)0could in principal be based on the unconditional population moments implied by

(8):

E f
i(zt+1; �o; V � (�; �o))g = 0; i = 1; :::; N:

More generally, minimum distance estimation of �o based on the moment conditions (8)

could be conducted using any subset of the conditioning variables that make up the econo-

metrician�s information set wt, as long as the number of moment conditions is at least as

large as the number of �nite dimensional parameters to be estimated. Let the conditioning

variables used in the second-step estimation of �o be denoted xt, where xt is a dx� 1 vector
that could include a constant. We estimate �o by minimizing a GMM objective function:

b� = argmin
�2D

h
gT (�; bVT (�; �) ;y)i0W h

gT ((�;bVT (�; �) ;y)i ; (19)

where W is a positive, semi-de�nite weighting matrix, y �
�
z0T+1; :::z

0
2;x

0
T ; :::x

0
1

�0
denotes

the vector containing all observations in the sample of size T and

gT (�; bV (�; �) ;yT ) � 1

T

TX
t=1


(zt+1; �; bV (�; �))
 xt (20)
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are the sample moment conditions associated with the Ndx� 1 -vector of population uncon-
ditional moment conditions:

E f
i(zt+1; �o; V � (�; �o))
 xtg = 0; i = 1; :::; N: (21)

The GMM criterion is

QT (�) =
h
gT (�;bV (�; �) ;yT )i0W h

gT (�;bV (�; �) ;yT )i : (22)

Observe that bV (�; �) is not held �xed in this step, but instead depends explicitly on �:
Consequently, the second-step estimation of � plays an important role in determining the

�nal estimate of Vo = bV ��; b�� :
We use two di¤erent weighting matricesW and two di¤erent conditioning vectors xt to

obtain second step estimates of �. We use two di¤erent weighting matrices to obtain second

step estimates of �. The �rst is the identity weighting matrix W = I; the second is the

inverse of the sample second moment matrix of the N asset returns upon which the model is

evaluated, denoted G�1
T (i.e., the (i; j)th element of GT is 1

T

PT
t=1Ri;tRj;t for i; j = 1; :::; N:)

To understand the motivation behind usingW = I andW = G�1
T to weight the second-

step GMM criterion function, it is useful to �rst observe that, in principal, all the parameters

of the model (including the �nite dimensional preference parameters), could be estimated in

one step by minimizing the SMD criterion. However, the two-step procedure employed here

has several advantages for our empirical application. First, we want estimates of standard

preference parameters such as risk aversion and the EIS to re�ect values required to match

unconditional moments commonly emphasized in the asset pricing literature, those associ-

ated with unconditional risk premia. This is not possible when estimates of � and V are

obtained in one step, since the weighting scheme inherent in the SMD procedure emphasizes

conditional moments, placing greater weight on moments that are more highly correlated

with the instruments. Second, both the weighting scheme inherent in the SMD procedure

and the use of instruments pJT (�) e¤ectively change the set of test assets, implying that key
preference parameters are estimated on linear combinations of the original portfolio returns.

Such linear combinations often bear little relation to the original test asset returns upon

which much of the asset pricing literature has focused. They may also imply implausible

long and short positions in the original test assets and do not necessarily deliver a large

spread in unconditional mean returns. These concerns can be alleviated by estimating the

�nite dimensional parameters in a second step, using the identity weighting matrixW = I

along with xt = 1N ; an N � 1 vector of ones..
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We also use W = G�1
T along with xt = 1N . Parameter estimates computed in this

way have the advantage that they are obtained by minimizing an objective function that is

invariant to the initial choice of asset returns (Kandel and Stambaugh (1995)). In addition,

the square root of the minimized GMM objective function has the appealing interpretation

as the maximum pricing error per unit norm of any portfolio of the original test assets, and

serves as a measure of model misspeci�cation (Hansen and Jagannathan (1997)). We use

this below to compare the performance of the estimated EZW model to that of competing

asset pricing models.

3.3 Decision Interval of Household

We model the decision interval of the household at �xed horizons and measure consumption

and returns over the same horizon. In reality, the decision interval of the household may

di¤er from the data sampling interval. If the decision interval of the household is shorter

than the data sampling interval, the consumption data are time aggregated. Heaton (1993)

studies the e¤ects of time aggregation in a consumption based asset pricing model with

habit formation, and concludes, based on a �rst-order linear approximation of the Euler

equation, that time aggregation can bias GMM parameter estimates of the habit coe¢ cient.

The extent to which time aggregation may in�uence parameter estimates in nonlinear Euler

equation estimation is not generally known.

In practice, it is di¢ cult or impossible to assess the extent to which time aggregation

is likely to bias parameter estimates, for several reasons. First, the decision interval of the

household is not directly observable. Time aggregation arises only if the decision interval

of the household is shorter than the data sampling interval. Recently, several researchers

have argued that the decision interval of the household may in fact be longer than the

monthly, quarterly, or annual data sampling intervals typically employed in empirical work

(Gabaix and Laibson (2002), Jagannathan and Wang (2007)). In this case, time aggregation

is absent and has no in�uence on parameter estimates. Second, even if consumption data

are time aggregated, its in�uence on parameter estimates is likely to depend on a number

of factors that are di¢ cult to evaluate in practice, such as the stochastic law of motion for

consumption growth, and the degree to which the interval for household decisions falls short

of the data sampling interval.

If time-aggregation is present, however, it may induce a spurious correlation between

the estimated error terms over which conditional means are taken (
i(zt+1; �o; Vo (�; �o));
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above), and the information set at time t (wt). Therefore, as a precaution, we conduct

our empirical estimation using instruments at time t that do not admit the most recent

lagged values of the variables (i.e., using two-period lagged instruments instead of one-period

lagged instruments). The cost of doing so is that the two-period lagged instruments may

not be as informative as the one-period lagged instruments, but this cost may be small if

the instruments are serially correlated, as are a number of those employed here (see the next

section).

4 Data

A detailed description of the data and our sources is provided in the Appendix. Our aggregate

data are quarterly, and span the period from the �rst quarter of 1952 to the �rst quarter of

2005.

The focus of this paper is on testing the model�s theoretical restrictions for a cross-sections

of asset returns. If the theory is correct, the cross-sectional asset pricing model (7) should be

informative about the model�s key preference parameters as well as about the unobservable

continuation value function. Speci�cally, the �rst-order conditions for optimal consumption

choice place tight restrictions both across assets and over time on equilibrium asset returns.

Consequently, we study a cross-section of asset returns known to deliver a large spread in

mean returns, which have been particularly challenging for classic asset pricing models to

explain (Fama and French (1992) and Fama and French (1993)). These assets include the

three-month Treasury bill rate and six value-weighted portfolios of common stock sorted into

two size quantiles and three book value-market value quantiles, for a total of 7 asset returns.

All stock return data are taken from Kenneth French�s Dartmouth web page (URL provided

in the appendix), created from stocks traded on the NYSE, AMEX and NASDAQ.

To estimate the representative agent formulation of the model, we use real, per-capita

expenditures on nondurables and services as a measure of aggregate consumption. Since

consumption is real, our estimation uses real asset returns, which are the nominal returns

described above de�ated by the implicit chain-type price de�ator to measure consumption.

We use quarterly consumption data because it is known to contain less measurement error

than monthly consumption data.

We also construct a stockholder consumption measure to estimate the representative

stockholder version of the model. The de�nition of stockholder status, the consumption

measure, and the sample selection follow Vissing-Jorgensen (2002), which uses the Consumer
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Expenditure Survey (CEX). Since CEX data are limited to the period 1980 to 2002, and since

household-level consumption data are known to contain signi�cant measurement error, we

follow Malloy, Moskowitz, and Vissing-Jorgensen (2005) and generate a longer time-series of

data by constructing consumption mimicking factors for aggregate stockholder consumption

growth. The CEX interviews households three months apart and households are asked to

report consumption for the previous three months. Thus, while each household is interviewed

three months apart, the interviews are spread out over the quarter implying that there will

be households interviewed in each month of the sample. This permits the computation

of quarterly consumption growth rates at a monthly frequency. As in Malloy, Moskowitz,

and Vissing-Jorgensen (2005), we construct a time series of average consumption growth for

stockholders from t to t+ 1 as
1

H

HX
h=1

Cht+1
Cht

;

where Cht+1 is the quarterly consumption of household h for quarter t and H is the number

of stockholder households in quarter t. We use this average series to form a mimicking factor

for stockholder consumption growth, by regressing it on aggregate variables (available at

monthly frequency) and taking the �tted values as a measure of the mimicking factor for

stockholder consumption growth.

Mimicking factors for stockholder consumption growth are formed for two reasons. First,

the household level consumption data are known to be measured with considerable error,

mostly driven by survey error. To the extent that measurement error is uncorrelated with

aggregate variables, the mimicking factor will be free of the survey measurement error present

in the household level consumption series. Second, since the CEX sample is short (1982

to 2002), the construction of mimicking factors allows a longer time-series of data to be

constructed. The procedure follows Malloy, Moskowitz, and Vissing-Jorgensen (2005). We

project the average consumption growth of stockholders on a set of instruments (available

over a longer period) and use the estimated coe¢ cients to construct a longer time-series of

stockholder consumption growth, spanning the same sample as the aggregate consumption

data. As instruments, we use two aggregate variables that display signi�cant correlation

with average stockholder consumption growth: the log di¤erence of industrial production

growth, � ln(IPt), and the log di¤erences of real services expenditure growth, � ln (SVt).

The regression is estimated using monthly data from July 1982 to February 2002, using the

average CEX stockholder consumption growth rates. The �tted values from these regressions

provide monthly observations on a mimicking factor for the quarterly consumption growth of
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stockholders. The results from this regression, with Newey and West (1987) t-statistics, are

reported in Table 1. Average stockholder consumption growth is positively related to both

the growth in industrial production, and to the growth in expenditures on services. Each

variable has a statistically signi�cant e¤ect on average stockholder consumption growth,

though the R2 statistics are modest. The modest R2 statistics are not surprising given the

substantial amount of measurement error in household-level consumption data (for example,

comparable R2 values can be found in Malloy, Moskowitz, and Vissing-Jorgensen (2005)).

For the subsequent empirical analysis, we construct a quarterly measure of the stock-

holder consumption growth mimicking factor by matching the �tted values for quarterly

consumption growth over the three consecutive months corresponding to the three months

in a quarter (e.g., we use the observation on �tted consumption growth from March to Jan-

uary in a given year as a measure of �rst quarter consumption growth in that year). We

refer the reader to Vissing-Jorgensen (2002) and Malloy, Moskowitz, and Vissing-Jorgensen

(2005) for further details on the CEX data and the construction of mimicking factors.

The empirical procedure also requires computation of instruments, pJT (wt), which are

known basis functions (including a constant function) of conditioning variables, wt. We

include lagged consumption growth in wt, as well as three variables that have been shown

elsewhere to have signi�cant forecasting power for excess stock returns and consumption

growth in quarterly data.7 Two variables that have been found to display forecasting power

for excess stock returns at a quarterly frequency are the �relative T-bill rate� (which we

measure as the three month Treasury-bill rate minus its 4-quarter moving average), and the

lagged value of the excess return on the Standard & Poor 500 stock market index (S&P

500) over the three-month Treasury bill rate (see Campbell (1991), Hodrick (1992), Lettau

and Ludvigson (2001a)). We denote the relative bill rate RREL and the excess return on

the S&P 500 index, SPEX.8 We also use the proxy for the log consumption-wealth ratio

studied in (Lettau and Ludvigson (2001a)) to forecast returns.9 This proxy is measured as

7The importance of instrument relevance in a GMM setting (i.e., using instruments that are su¢ ciently

correlated with the included endogenous variables) is now well understood. See Stock, Wright, and Yogo

(2002) for a survey of this issue. No formal test of instrument relevance has been developed for estimation

involving an unknown function. Thus we choose variables for wt that are known to be strong predictors of

asset returns and consumption growth in quarterly data.
8We focus on these variables rather than some others because, in samples that include recent data, they

drive out many of the other popular forecasting variables for stock returns, such as an aggregate dividend-

price ratio, earnings-price ratio, term spreads and default spreads (Lettau and Ludvigson (2001a)).
9This variable has strong forecasting power for stock returns over horizons ranging from one quarter to

several years. Lettau and Ludvigson (2001b) report that this variable also forecasts returns on portfolios
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the cointegrating residual between log consumption, log asset wealth, and log labor income

and is denoteddcayt.10 Lettau and Ludvigson (2004) �nd that quarterly consumption growth
is predictable by one lag of wealth growth, a variable that is highly correlated with SPEX,

and results (not reported) con�rm that it is also predictable by one lag of SPEX. Thus, we

use wt =
hdcayt; RRELt; SPEXt;

Ct
Ct�1

i0
:We note that consumption growth�often thought to

be nearly unforecastable�displays a fair amount of short-horizon predictability in the sample

used here: a linear regression of consumption growth on the one-period lagged value wt and

a constant produces an F�statistic for the regression in excess of 12.11

Since the error term 
i(zt+1; �o; Vo) is orthogonal to the information set wt, any mea-

surable transformation of wt, pJT (wt), can be used as valid instruments in the �rst-step

estimation of Vo. We use power series as instruments, where the speci�cation includes a

constant, the linear terms, squared terms and pair-wise cross products of each variable in

wt, or 15 instruments in total.

5 Empirical Results

5.1 Parameter Estimates

The shape of our estimated continuation value ratio function Vt
Ct
= V

�
Vt�1
Ct�1

; Ct
Ct�1

�
can be

illustrated by plotting bV ��; b�� as a function of Vt�1
Ct�1

; holding �xed current consumption

growth, Ct
Ct�1

. Figures 1 and 2 plot this relation for each estimation described above, using

aggregate consumption (Figure 1) or the stockholder mimicking factor as a measure of stock-

holder consumption (Figure 2). For these plots, Vt�1
Ct�1

varies along the horizontal axis, with
Ct
Ct�1

alternately held �xed at its median, 25th, and 75th percentile values in our sample.

We draw several conclusions from the �gures. First, the estimated continuation value-

consumption ratio function is nonlinear; this is evident from the curved shape of the functions

and from the �nding that the shape depends on where in the domain space the function is

evaluated. In particular, for the representative agent version of the model (Figure 1), the

sorted by size and book-market ratios.
10See Lettau and Ludvigson (2001a) and Lettau and Ludvigson (2004) for further discussion of this variable

and its relation to the log consumption-wealth ratio. Note that standard errors do not need to be corrected for

pre-estimation of the cointegrating parameters indcayt, since cointegrating coe¢ cients are �superconsistent,�
converging at a rate faster than the square root of the sample size.
11As recommended by Cochrane (2001), the conditioning variables in wt are normalized by standardizing

and adding one to each variable, so that they have roughly the same units as unscaled returns.
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serial dependence of bV depends on where in the domain space the function is evaluated. It is
negative for low values of Vt�1

Ct�1
and positive for high values. Such a nonmonotone pattern is

possible, for example, under the functionally non-linear state space model (11)-(12). Negative

serial dependence can arise even in the linear state space model, if the innovation in the

observation equation (9) is correlated with the innovation in the state equation (10). Second,

the estimated continuation value ratio is increasing in current consumption growth, in both

the representative agent (Figure 1) and representative stockholder (Figure 2) versions of the

model. The estimated relation is, however, nonlinear in consumption growth, a �nding that

is especially evident in Figure 2. Third, in the representative stockholder version of the

model (Figure 2), the serial dependence of bV is negative over most of the domain space.

The shapes of the estimated continuation value ratio functions imply that the functionally

linear state space representation (9)-(10) commonly employed in asset pricing models may

not provide a good description of these data. For example, as Hansen, Heaton, and Li (2005)

show, if (9)-(10) holds and the EIS=1, log( Vt�1
Ct�1

) is linear in the state xt. Since the log ofbV ��; b�� is clearly nonlinear, the �ndings suggest that a linear state space representation, in
conjunction with an EIS=1, is unlikely to provide an accurate description of the data. In

addition, the nonmonotonicity of bV ��; b�� over its �rst argument is also inconsistent with the
linear state space representation, though nonmonotonicities are possible with a functionally

nonlinear state space representation as in (11)-(12).

Table 2 presents estimates of the model�s preference parameters � = (�; �; �)0. The

subjective time-discount factor, �, is close to one in each estimation, with values between 0.99

and 0.999, depending on the measure of consumption and the weighting matrix employed

in the second step (W = I or W=G�1
T ). The estimated relative risk aversion parameter

� ranges from 17-60, with higher values for the representative agent version of the model

than the representative stockholder version. For example, using aggregate consumption data,

estimated risk aversion is around 60, regardless of which estimation is employed in the second

step (W = I orW=G�1
T ). By contrast, estimated risk aversion is either 20 or 17 when we

use the stockholder mimicking factor as a measure of stockholder consumption. The �nding

that estimated risk aversion is signi�cantly higher for the model with aggregate consumption

than for that with stockholder consumption is consistent with results in Malloy, Moskowitz,

and Vissing-Jorgensen (2005), who focus on the special case of the EZW utility model in

which the EIS, 1=�, equals one. In this case, the pricing kernel simpli�es to an expression

that depends only on the expected present value of long horizon consumption growth.

The estimated value of � is less than one, indicating that the EIS is above one and con-
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siderably di¤erent from the inverse of the coe¢ cient of relative risk aversion. The results are

similar across estimations. The EIS is estimated to be between 1.667 and 2 in the representa-

tive agent version of the model, and between 1.11 and 2.22 in the representative stockholder

version of the model. The estimates for this parameter are in line with those reported in

Bansal, Gallant, and Tauchen (2004) who estimate a model of long-run consumption risk

with EZW utility. In theoretical work, Bansal and Yaron (2004) have emphasized the im-

portance of EZW preferences with an EIS >1, in conjunction with a persistent component

of consumption growth, to explain the dynamics of aggregate stock market returns.

Under standard regularity conditions typically imposed in semiparameteric models, the

two-step estimator b� ispT consistent and asymptotically normally distributed. However, the
asymptotic variance-covariance matrix is of complicated form. We therefore compute block

bootstrap estimates of their �nite sample distributions, as suggested by Chen, Linton, and

van Keilegom (2003). The sieve parameters V0
C0
, fajgKT

j=1, the conditional mean bm(wt; �; V ),

and the �nite dimensional parameters � = (�; �; �)0 are all estimated for each simulated

realization.12 Unfortunately, the procedure is highly numerically intensive, and takes several

days to run on a workstation computer, thus limiting the number of bootstrap simulations

that can be feasibly performed. Therefore we conduct the two-step SMD estimation on 100

block bootstrap samples. The resulting con�dence regions are wide, a �nding that may in

part be attributable to the imprecision in the bootstrapped con�dence regions, itself a result

of the small number of bootstrap iterations. Even with the large con�dence regions, however,

in the representative agent formulation of the model we can always reject the hypothesis that

� = �. Moreover, the 95% con�dence region for � is moderate and contains only values below

one, or an EIS above one.

5.2 Model Comparison

How well does the EZW recursive utility model explain asset pricing data relative to com-

peting speci�cations? To address this question, we use the methodology provided by Hansen

and Jagannathan (1997), who develop a way to compare asset pricing models when all sto-

chastic discount factor models are treated as misspeci�ed proxies for the true unknown SDF,

and the relevant question is which model contains the least speci�cation error.

12The bootstrap sample is obtained by sampling blocks of the raw data randomly with replacement and

laying them end-to-end in the order sampled. To choose the block length, we follow the recommendation

of Hall, Horowitz, and Jing (1995) who show that the asymptotically optimal block length for estimating a

symmetrical distribution function is l _ T 1=5; also see Horowitz (2003).
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Hansen and Jagannathan suggest that we compare the pricing errors of various candi-

date SDF models by choosing each model�s parameters, b, to minimize the quadratic form

gHJT (b) � w0
T (b)G

�1
T wT (b), where wT (b) = (w1T (b); :::; wNT (b))

0 is the vector of the sample

average of pricing errors (i.e., wiT (b) = 1
T

PT
t=1Mt(b)Ri;t � 1 for i = 1; :::; N), and GT is the

sample second moment matrix of the N asset returns upon which the models are evaluated

(i.e., the (i; j)-the element of GT is 1
T

PT
t=1Ri;tRj;t for i; j = 1; :::; N). The measure of model

misspeci�cation is then the square root of this minimized quadratic form, dT �
q
gHJT (bb),

which gives the maximum pricing error per unit norm on any portfolio of the N assets stud-

ied, and delivers a metric suitable for model comparison. It is also a measure of the distance

between the candidate SDF proxy, and the set of all admissable stochastic discount factors

(Hansen and Jagannathan (1997)). We refer to the square root of this minimized quadratic

form, dT �
q
gHJT (bb), as the Hansen-Jagannathan distance, or HJ distance for short.

We also compute a conditional version of the distance metric that incorporates con-

ditioning information Zt. In this case, gT (b) � 1
T

PT
t=1 [(Mt+1 (b)Rt+1 � 1N)
 Zt] and

GT � 1
T

PT
t=1 (Rt+1 
 Zt) (Rt+1 
 Zt)

0. Because the number of test assets increases quickly

with the dimension of Zt; we use just a single instrument Zt = cayt: This instrument is

useful because it has been shown elsewhere to contain signi�cant predictive power for re-

turns on the size and book-market sorted portfolios used in this empirical study (Lettau and

Ludvigson (2001b)). We refer to the Hansen-Jagannathan distance metric that incorporates

conditioning information as the conditional HJ distance, and likewise refer to the distance

without conditioning information as the unconditional HJ distance.

An important advantage of this procedure is that the second moment matrix of returns

delivers an objective function that is invariant to the initial choice of asset returns. The iden-

tity and other �xed weighting matrices do not share this property. Kandel and Stambaugh

(1995) have suggested that asset pricing tests using these other �xed weighting matrices can

be highly sensitive to the choice of test assets. Using the second moment matrix helps to

avert this problem.

We compare the speci�cation errors of the estimated EZW recursive utility model to those

of the time-separable, constant relative risk aversion (CRRA) power utility model (3) and to

two alternative asset pricing models that have been studied in the literature: the three-factor,

portfolio-based asset pricing model of Fama and French (1993), and the approximately linear,

conditional, or �scaled�consumption-based capital asset pricing model explored in Lettau

and Ludvigson (2001b). These models are both linear stochastic discount factor models
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taking the form

Mt+1 = b0 +
kX
i=1

biFi;t+1; (23)

where Fi;t+1 are variable factors, and the coe¢ cients b0 and bi are treated as free parameters

to be estimated. Fama and French develop an empirical three-factor model (k = 3), with

variable factors related to �rm size (market capitalization), book equity-to-market equity,

and the aggregate stock market. These factors are the �small-minus-big�(SMBt+1) portfo-

lio return, the �high-minus-low�(HMLt+1) portfolio return, and the market return, Rm;t+1,

respectively.13 The Fama-French pricing kernel is an empirical model not motivated from

any speci�c economic model of preferences. It nevertheless serves as a benchmark because it

has displayed unusual success in explaining the cross section of mean equity returns (Fama

and French (1993), Fama and French (1996)). The model explored by Lettau and Ludvig-

son (2001b) can be interpreted as a �scaled� or conditional consumption CAPM (�scaled

CCAPM�hereafter) and also has three variable factors (k = 3),dcayt;dcayt �� logCt+1, and
� logCt+1: Lettau and Ludvigson (2001b) show that such a model can be thought of as a

linear approximation to any consumption-based CAPM (CCAPM) in which risk-premia vary

over time.

To insure that the SDF proxies we explore preclude arbitrage opportunities over all assets

in our sample (including derivative securities), the estimated SDF must always be positive.

The SDF of the time-separable CRRA utility model and of the EZW recursive utility model

is always positive, thus these models are arbitrage free. By contrast, the SDFs of the linear

comparison models may often take on large negative values, and are therefore not arbitrage

free. In order to avoid comparisons between models that are arbitrage free and those that

are not, we restrict the parameters of the linear SDF to those that produce a positive SDF

in every period. Although we cannot guarantee that the linear SDFs will always be positive

out-of-sample, we can at minimum choose parameters so as to insure that they are positive

in sample, and therefore suitable for pricing derivative claims in sample.

In practice, the set of parameters that deliver positive SDFs is not closed, so it is conve-

nient to include limit points by choosing among parameters b that deliver nonnegative SDFs.

13SMB is the di¤erence between the returns on small and big stock portfolios with the same weight-

average book-to-market equity. HML is the di¤erence between returns on high and low book-to-market

equity portfolios with the same weighted-average size. Further details on these variables can be found in

Fama and French (1993). We follow Fama and French and use the CRSP value-weighted return as a proxy

for the market portfolio, Rm. The data are taken from Kenneth French�s Dartmouth web page (see the

Appendix).
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Therefore, for the linear asset pricing models, the unknown parameters b = (b0; b1; :::; bk)
0

are chosen to minimize the squared HJ distance for that model, subject to the constraint

that the SDF proxy be nonnegative in every period of our sample. In the computation of

the HJ distance metric, this implies that we restrict gT (b)� 1
T

PT
t=1 [fMt+1 (b)g+Rt+1�1N ]

or gT (b)� 1
T

PT
t=1 [(fMt+1 (b)g+Rt+1�1N)
Zt], where fMt+1 (b)g+ = max f0;Mt+1 (b)g :

For the EZW recursive utility model, the SDF is always positive and the restriction

is nonbinding. The HJ distance for the EZW model is computed by using the parameter

estimates obtained from the two-step SMD procedure described above, for the case in which

W = GT in the second step. Notice that this drastically restricts the number of parameters

in the EZW model that are chosen to minimize the HJ distance. In particular, we choose

only the �nite-dimensional parameters � = (�; �; �)0 of the EZW model to minimize the

HJ distance�the parameters of the nonparametric V function are chosen to minimize the

SMD criterion. Note that this places the EZW model at a disadvantage because the sieve

parameters of the unknown function V are not chosen to minimize the HJ criterion, which is

the measure of model misspeci�cation. By contrast all of the comparison models�parameters

are chosen to minimize the HJ criterion.14 To rank competing models, we apply an AIC

penalty to the HJ criterion of each model, for the number of free parameters chosen to

minimize the HJ distance. The HJ distances for all models are reported in Table 3.

Table 3 reports the measure of speci�cation error given by the HJ distance (�HJ Dist�),

dT �
q
gHJT (bb), for all the models discussed above. Several general patterns emerge from the

results. First, for both the representative agent version of the model and the representative

stockholder version of the model, the estimated EZW recursive utility model always displays

smaller speci�cation error than the time-separable CRRA model, but greater speci�cation

error than the Fama-French model. This is true regardless of whether the unconditional or

conditional HJ distance is used to compare models. The unconditional HJ distance for the

EZW recursive speci�cation is 0.449, about 13 percent smaller than that of the time-separable

CRRA model, but about 26 percent larger than the Fama-French model. When models are

compared according to the conditional HJ distance, the distance metric for the recursive

model is only 15 percent larger than that of the Fama-French model. Second, the EZW

model performs better than than the scaled CCAPM: the HJ distance is smaller when models

are compared on the basis of either the unconditional or conditional HJ distance, regardless

14Recall that the SMD minimization gives greater weight to moments that are more highly correlated with

the instruments pJT (wt), while the HJ minimization matches unconditional moments.

24



of which measure of consumption is used.15 Third, when the representative stockholder

version of the model is estimated, the recursive utility model performs better than every

model except the Fama-French model according to both the conditional and unconditional

distance metrics. These results are encouraging for the recursive utility framework, because

they suggest that the model�s ability to �t the data is in a comparable range with other

models that have shown particular success in explaining the cross-section of expected stock

returns.

Note that the HJ distances computed so as to insure that the SDF proxies are nonneg-

ative, are in principle distinct from an alternative distance metric suggested by Hansen and

Jagannathan (1997), denoted �HJ+ Dist,�which restricts the set of admissible stochastic

discount factors to be nonnegative. In practice, however, the two distance metrics are quite

similar. Estimates of �HJ+ Dist�are reported in Table 4.

5.3 Fixing the EIS = 1

Several authors have focused on the cross-sectional implications of EZW preferences when the

EIS, ��1, is restricted to unity (e.g., Hansen, Heaton, and Li (2005), Malloy, Moskowitz, and

Vissing-Jorgensen (2005)). Malloy et. al., conjecture that risk-aversion estimates identi�ed

from a cross-section of returns are unlikely to be greatly a¤ected by the value of the EIS. To

investigate this possibility in our setting, we repeated our estimation �xing � = 1.

The results are somewhat sensitive to the weighting matrix used in the second step

estimation. For example, in an estimation of the representative agent version of the model

with � = 1 andW = IN
 (P0P)�1, the relative risk aversion coe¢ cient � is estimated to be
20, much lower than the value of almost 60 reached when � is freely estimated (Table 2). But

whenW=G�1
T , the coe¢ cient of relative risk aversion � is estimated to be 60, precisely the

same value obtained when � is left unrestricted. In addition, the HJ distance is about the

same when � = 1, equal to 0.448 compared to 0.451 when � is unrestricted (the HJ distance

is slightly smaller when � = 1 because, when � is �xed, one fewer parameter is estimated,

reducing the AIC penalty). Thus, the results using W=G�1
T are largely supportive of the

15The estimated HJ distances for the linear scaled CCAPM are larger than reported in previous work

(e.g., Lettau and Ludvigson (2001b)) due to the restriction that the SDF proxy be positive. Although the

scaled CCAPM does a good job of assigning the right prices to size and book-market sorted equity returns,

its linearity implies that it can assign negative prices to some positive derivative payo¤s on those assets.

This is not surprising, since linear models�typically implemented as approximations of nonlinear models for

use in speci�c applications�are not designed to price derivative claims.
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conjecture of Malloy, Moskowitz, and Vissing-Jorgensen (2005). We note, however, that if

the model with � = 1 is misspeci�ed, parameter estimates can be quite sensitive to the

objective function minimized, as we �nd here.

We �nd qualitatively similar results in an estimation of the representative stockholder

version of the model. In this case, when � = 1 andW = IN
 (P0P)�1, the relative risk aver-
sion coe¢ cient � is estimated to be 20, the same value obtained when � is left unrestricted.

This is not surprising because the unrestricted value of � is already quite close to unity, equal

to 0.9. On the other hand, when W=G�1
T , � is estimated to be 10, considerably smaller

than the value of 17 estimated when � is unrestricted with a point estimate of 0.68. But the

HJ distance is 0.469 when � = 1, only slightly larger than the value of 0.463 found when �

is unrestricted. We conclude that the model�s cross-sectional performance, as measured by

the HJ distance, is not sensitive to �xing the EIS at unity.

5.4 The Return to Aggregate Wealth and Human Wealth

In this section, we investigate the estimated EZW recursive utility model�s implications for

the return to aggregate wealth, Rw;t+1, and the return to human wealth, denoted Ry;t+1

hereafter. The return to aggregate wealth represents a claim to future consumption and is in

general unobservable. However, it can be inferred from our estimates of Vt=Ct by equating the

marginal rate of substitution (5), evaluated at the estimated parameter values
nb�;bV ��; b��o,

with its theoretical representation based on consumption growth and the return to aggregate

wealth (6):

�

�
Ct+1
Ct

���0@ Vt+1
Ct+1

Ct+1
Ct

Rt

�
Vt+1
Ct+1

Ct+1
Ct

�
1A���

=

(
�

�
Ct+1
Ct

���) 1��
1�� �

1

Rw;t+1

� ���
1��

:

If, in addition, we explicitly model human wealth as part of the aggregate wealth portfolio,

the framework also has implications for the return to human wealth, Ry;t. We do so by

following Campbell (1996), who assumes that the return to aggregate wealth is a portfolio

weighted average of the unobservable return to human wealth and the return to �nancial

wealth. Speci�cally, Campbell starts with the relationship

Rw;t+1 = (1� �t)Ra;t+1 + �tRy;t+1; (24)

where �t is the ratio of human wealth to aggregate wealth, and Ra;t+1 is the gross simple

return on nonhuman wealth (a refers to �nancial asset wealth). A di¢ culty with (24) is that
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the wealth shares may in principal vary over time. Campbell deals with this by linearizing

(24) around the means of �t, the log return on nonhuman asset wealth, and the log return

on human wealth, assuming that the means of the latter two are the same. Under these

assumptions, an approximate expression for the log return on aggregate wealth may be

obtained with constant portfolio shares. Unfortunately, this approximation assumes that

the means of human and nonhuman wealth returns are the same. As a start, we instead

adopt the crude assumption that portfolio shares in (24) are constant:

Rw;t+1 = (1� �)Ra;t+1 + �Ry;t+1:

Such an assumption is presumably a reasonable approximation if portfolio shares between

human and nonhuman wealth are relatively stable over quarterly horizons. Given observa-

tions on Rw;t+1 from our estimation of the EZW recursive utility model, and given a value

for �, the return to human wealth, Ry;t+1, may be inferred.

The excercise in this section is similar in spirit to the investigation of Lustig and Van

Nieuwerburgh (2006). These authors, following Campbell (1996), investigate a loglinear

version of the EZW recursive utility model under the assumption that asset returns and

consumption are jointly lognormal and homoskedastic. With these assumptions, the authors

back out the human wealth return from observable aggregate consumption data, and �nd

a strong negative correlation between the return to asset wealth and the return to human

wealth. Our approach generalizes their excercise in that it provides an estimate of the fully

nonlinear EZW model without requiring the assumption that asset returns and consumption

are jointly lognormal and homoskedastic. An important question of this study is whether our

approach leads to signi�cantly di¤erent implications for both the aggregate wealth return

and the human wealth return.

Tables 5 and 6 present summary statistics for our estimated aggregate wealth return,

Rw;t+1 and human wealth return, Ry;t+1: Following Campbell (1996) and Lustig and Van

Nieuwerburgh (2006), we use the CRSP value-weighted stock market return to measure

Ra;t+1. The statistics for Ry;t+1 are presented for two di¤erent values of the share of human

wealth in aggregate wealth: � = 0:333 and � = 0:667. There are two di¤erent sets of

estimates, depending on whether W = I or W = G�1
T in the second-step estimation of

the EZW model. Summary statistics for the W = I case are presented in Table 5, for the

W = G�1
T case in Table 6. For comparison, summary statistics on the CRSP value-weighted

return, RCRSP;t+1 are also presented.

Several conclusions can be drawn from the results in Tables 5 and 6. First, the return
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to aggregate wealth is always considerably less volatile than the aggregate stock market re-

turn. For example, in Table 5, the annualized standard deviation of Rw;t+1 is 0.01 in the

representative agent model and 0.036 in the representative stockholder model. By contrast,

the annualized standard deviation of RCRSP;t+1 is 0.165. Second, in the representative agent

model, the mean of Rw;t+1 is less than the mean of RCRSP;t+1, but is larger in the repre-

sentative stockholder model. Since the mean of Rw;t+1 is a weighted average of the means

of Ry;t+1 and RCRSP;t+1, and given that the mean of RCRSP;t+1 is 0.084, the mean of the

human wealth return can be quite small if, as in the representative agent model, the mean of

aggregate wealth is small. This is especially so when the share of human wealth takes on the

smaller value of 0.333. Indeed, if the mean of aggregate wealth is su¢ ciently small (as it is in

Table 6 where it equals 0.024), the gross return on human wealth can even be less than one,

so that the simple net return is negative. Third, the return to human wealth is a weighted

average (where the weights exceed one in absolute value) of the returns to aggregate wealth

and the return to asset wealth. Thus, unless the correlation between the stock market return

and the aggregate wealth return is su¢ ciently high, the return to human wealth can be quite

volatile, especially when � is small. This occurs in the representative stockholder versions of

the model when � = 0:333.

Finally, the results show that the only way to reconcile a relatively stable aggregate

wealth return with a volatile stock market return, is to have the correlation between the

human wealth return and the stock market return be negative and large in absolute value.

The correlation between Ry;t+1 and RCRSP;t+1 range from -0.764 in Table 6 when � = 0:667,

to -0.996 in Table 5 when � = 0:333: These numbers are strikingly close to those reported in

Lustig and Van Nieuwerburgh (2006) for the cases where the EIS exceeds one. The �nding

reinforces their conclusion that �good news on Wall street is bad news on Main street.�As

Lustig and Van Nieuwerburgh (2006) point out, a negative correlation between human and

�nancial wealth is inconsistent with the production functions typically employed in standard

business cycle models, which imply a near perfect correlation between the two forms of

wealth.

6 Conclusion

In this paper we undertake a formal econometric evaluation of the Epstein-Zin-Weil recur-

sive utility model, a framework upon which a large and growing body of theoretical work

macroeconomics and �nance is based. We conduct estimation and testing of the EZW model
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without employing an observable �nancial market return as a proxy for the unobservable ag-

gregate wealth return, without linearizing the model, and without placing tight parametric

restrictions on either the law of motion or joint distribution of consumption and asset returns,

or on the value of key preference parameters such as the elasticity of intertemporal substi-

tution. We present estimates of all the preference parameters of the EZW model, evaluate

the model�s ability to �t asset return data relative to competing asset pricing models, and

investigate the implications of such estimates for the unobservable aggregate wealth return

and human wealth return.

Using quarterly data on consumption growth, assets returns and instruments, we �nd

evidence that the elasticity of intertemporal substitution in consumption di¤ers considerably

from the inverse of the coe¢ cient of relative risk aversion, and that the EZW recursive utility

model displays less model misspeci�cation than the familiar time-separable CRRA power

utility model. Taken together, these �ndings suggest that the consumption and asset return

data we study are better explained by the recursive generalization of the standard CRRA

model than by the special case of this model in which preferences are time-separable and the

coe¢ cient of relative risk aversion equals the inverse of the EIS.

Our results can be compared to those in the existing the literature. For example, we

�nd that the estimated relative risk aversion parameter ranges from 17-60, with considerably

higher values for the representative agent representation of the model than the representative

stockholder representation. These �ndings echo those in the approximate loglinear version of

the model where the EIS is restricted to unity, studied by Malloy, Moskowitz, and Vissing-

Jorgensen (2005). On the other hand, we �nd that the estimated elasticity of intertemporal

substitution is typically above one, regardless of which consumption measure is employed.

Finally, the empirical estimates imply that the unobservable aggregate wealth return is

weakly correlated with the CRSP value-weighted stock market return and only one-tenth to

one-�fth as volatile. These �ndings suggest that the return to human wealth must be strongly

negatively correlated with the aggregate stock market return, similar to results reported for

an approximate loglinear version of the model studied by Lustig and Van Nieuwerburgh

(2006).

As an asset pricing model, the EZW recursive utility framework includes an additional

risk factor for explaining asset returns, above and beyond the single consumption growth risk

factor found in the time-separable, CRRA power utility framework. The added risk factor

in the EZW recursive utility model is a multiplicative term involving the continuation value

of the future consumption plan relative to its conditional expected value today. This factor
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can in principal add volatility to the marginal rate of substitution in consumption, helping

to explain the behavior of equity return data (Hansen and Jagannathan (1991)). One way

this factor can be volatile is if the conditional mean of consumption growth varies over long

horizons. The estimation procedure employed here allows us to assess the plausibility of

this implication from the consumption and return data alone, without imposing restrictions

on the data generating process for consumption. The results suggest that the additional

risk factor in the EZW model has su¢ cient dynamics so as to provide a better description

of the data than the CRRA power utility model, implying that the conditional mean of

consumption growth is unlikely to be constant over time (Kocherlakota (1990)). At the

same time, the added volatility coming from continuation utility is modest and must be

magni�ed by a relatively high value for risk aversion in order to �t the equity return data.

7 Appendix

This appendices consist of several parts: Appendix 1 describes the data. Appendix 2 pro-

vides details of the two-step procedure, including discussion of the arguments of Vt
Ct
, the

implementation of the SMD estimator as an instance of GMM, and the choice of sieve func-

tion to approximate V (�). Appendix 3 describes the general sieve minimum distance (SMD)
procedure. Appendix 4 presents large sample properties of the two-step semiparameteric

estimator.

Appendix 1: Data Description

The sources and description of each data series we use are listed below.

AGGREGATE CONSUMPTION

Aggregate consumption is measured as expenditures on nondurables and services, excluding

shoes and clothing. The quarterly data are seasonally adjusted at annual rates, in billions

of chain- weighted 2000 dollars. The components are chain-weighted together, and this

series is scaled up so that the sample mean matches the sample mean of total personal

consumption expenditures. Our source is the U.S. Department of Commerce, Bureau of

Economic Analysis.

STOCKHOLDER CONSUMPTION

The de�nition of stockholder status, the consumption measure, and the sample selection

follow Vissing-Jorgensen (2002). Consumption is measured as nondurables and services

expenditures. Details on this construction can be found in Appendix A of Malloy, Moskowitz,
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and Vissing-Jorgensen (2005). We use their �simple� measure of stockholders, based on

responses to the survey indicating positive holdings of �stocks, bonds, mutual funds and

other such securities.� Nominal consumption values are de�ated by the BLS de�ator for

nondurables for urban households. Our source is the Consumer Expenditure Survey.

POPULATION

A measure of population is created by dividing real total disposable income by real per

capita disposable income. Consumption, wealth, labor income, and dividends are in per

capita terms. Our source is the Bureau of Economic Analysis.

PRICE DEFLATOR

Real asset returns are de�ated by the implicit chain-type price de�ator (2000=100) given for

the consumption measure described above. Our source is the U.S. Department of Commerce,

Bureau of Economic Analysis.

MONTHLY INDUSTRIAL PRODUCTION INDEX

Industrial production is measured as the seasonally adjusted total industrial production

index (2002=100). Our source is the Board of Governors of the Federal Reserve System.

MONTHLY SERVICES EXPENDITURES

Measured as personal consumption expenditures on services, billions of dollars; months sea-

sonally adjusted at annual rates. Nominal consumption is de�ated by the implicit price

de�ator for services expenditures. Our source is the Bureau of Economic Analysis.

ASSET RETURNS

� 3-Month Treasury Bill Rate: secondary market, averages of business days, discount
basis percent; Source: H.15 Release �Federal Reserve Board of Governors.

� 6 size/book-market returns: Six portfolios, monthly returns from July 1926-December
2001. The portfolios, which are constructed at the end of each June, are the inter-

sections of 2 portfolios formed on size (market equity, ME) and 3 portfolios formed

on the ratio of book equity to market equity (BE/ME). The size breakpoint for

year t is the median NYSE market equity at the end of June of year t. BE/ME

for June of year t is the book equity for the last �scal year end in t-1 divided by

ME for December of t-1. The BE/ME breakpoints are the 30th and 70th NYSE

percentiles. Source: Kenneth French�s homepage, http://mba.tuck.dartmouth.edu/

pages/faculty/ken.french/data_library.html.
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PROXY FOR LOG CONSUMPTION-WEALTH RATIO,dcay
The proxy for the log consumption-wealth ratio is computed as described in Lettau and

Ludvigson (2001a).

RELATIVE BILL RATE, RREL

The relative bill rate is the 3-month treasury bill yield less its four-quarter moving average.

Our source is the Board of Governors of the Federal Reserve System.

LOG EXCESS RETURNS ON S&P 500 INDEX: SPEX

SPEX is the log di¤erence in the Standard and Poor 500 stock market index, less the log

3-month treasury bill yield. Our source is the Board of Governors of the Federal Reserve

System.

Rm, SMB, HML

The Fama/French benchmark factors, Rm, SMB, and HML, are constructed from six size/book-

to-market benchmark portfolios that do not include hold ranges and do not incur transaction

costs. Rm, the return on the market, is the value-weighted return on all NYSE, AMEX, and

NASDAQ stocks. Source: Kenneth French�s homepage,

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/data_library.html.

Appendix 2: Two-step Semiparametric Estimation Procedure

The arguments of Vt
Ct
. If the Markov structure is linear, as in (9) and (10), we give

assumptions under which Vt
Ct
= V

�
Vt�1
Ct�1

; Ct
Ct�1

�
: First note that the dynamic system (9) and

(10) converges asymptotically to time-invariant innovations representation taking the form

�ct+1 = �+Hbxt + "t+1 (25)bxt+1 = �bxt +K"t+1; (26)

where the scalar variable "t+1 � �ct+1��bct+1 = H (xt � bxt)+C�t+1, bxt denotes a linear least
squares projection of xt onto �ct;�ct�1; :::�c�1, andK � (DC0 + �PH) (HPH +CC0)

�1
;

where P solves

P = (��KH)2 P + (D�KC) (D�KC)0 :

(See Hansen and Sargent (2007).) The representation above shows that the state variablebxt replaces xt as the argument of the function over which Vt
Ct
is de�ned. Assume Vt

Ct
is an

invertable function f (bxt). Then, bxt = f�1
�
Vt
Ct

�
:
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From (26) we have

Vt
Ct

= f (bx) = g (bxt�1; "t)
= g

�
f�1

�
Vt�1
Ct�1

�
; "t

�
; (27)

for some function g: By inverting (25), we obtain

"t = h (exp (�ct+1) ; bxt�1)
= h

�
exp

�
ln

�
Ct
Ct�1

��
; f�1

�
Vt�1
Ct�1

��
; (28)

where h
�

Ct
Ct�1

; bxt� = ln h Ct
Ct�1

i
���Hbx. Plugging (28) into (27), we have Vt

Ct
= V

�
Vt�1
Ct�1

; Ct
Ct�1

�
,

for V : R2 ! R: Observe that if the innovations in (9) and (10) are positively correlated,
Vt
Ct
may display negative serial dependence. The linear model implies that V is a monotonic

function of Ct
Ct�1

:

If the stochastic process for consumption growth is a nonlinear function of a hidden

�rst-order Markov process xt, the function V can take on more general functional forms,

potentially displaying nonmonotonicity in both its arguments. For example, consider the

functionally non-linear state space model:

ct+1 � ct = h (xt) + �c;t+1 (29)

xt+1 =  (xt) + �x;t+1; (30)

where E (�c;t+1) = E (�d;t+1) = 0, Var(�j;t+1) = �j; j = c; x, E (�c;t+1�x;t+1) = �cx and

h (xt) and  (xt) are no longer necessarily linear functions of the state variable xt. Harvey

(1989) shows that, under the assumption that the innovations in (29)-(30) are Gaussian, an

approximate innovations representation can be obtained by linearizing the model and then

applying a modi�cation of the usual Kalman �lter to the resulting linearized representation

of (29)-(30). Let b�tjt�1 denote the conditional mean of xt: If the functions h (xt) and  (xt)
are expanded in Taylor series around b�tjt�1, an innovations representation may be obtained
which takes the form:

b�t+1jt =  
�b�tjt�1 + Ptjt�1Ht+1F

�1
t et+1

�
(31)

�ct+1 = h
�b�tjt�1�+ et+1; (32)
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where et+1 = �ct+1�h
�b�tjt�1� and Ptjt�1solves a suitable recursion applied to the linearized

state space representation corresponding to the dynamic system (29)-(30):

Pt+1jt = e�2�Ptjt�1 � nPtjt�1 eH + �cx

o2
F�1t

�
+ �x

Ft = eH2Pt+1jt + 2Ht+1�cx + �c;

where e� and eH are partial derivatives of  and h respectively. See Harvey (1989), Ch., 3.

Given invertability, from either (25)-(26) or (31)-(32), we again have the implication that
Vt
Ct
= V

�
Vt�1
Ct�1

; Ct
Ct�1

�
, for some V : R2 ! R, but unlike the case for the linear Markov

model, the function V may display nonmonotonicities as well as nonlinearities. The as-

sumptions embedded in this example are meant to be illustrative: more general nonlinear

state space models and distributional assumptions are likely to produce more complicated

dynamic relationships between Vt
Ct
and its own lagged value, as well as consumption growth.

B-spline Approximation of V (�): We use cubic B-splines to approximate the unknown
continuation value-consumption ratio function because unlike other basis functions (e.g.,

polynomials) they are shape-preserving (Chui (1992)). The multivariate sieve function Bj is

implemented as a tensor product cubic B-spline taking the form:

V (z; c) = �0 +

K1TX
i=1

K2TX
j=1

aijBm

�
z � i+

m

2

�
Bm(

c

�2

+ & � j); (33)

where z � Vt
Ct
, c � Ct+1

Ct
, Bm(:) is a B-spline of degree m, and aij are parameters to be

estimated. The term m
2
recenter the function, which insures that the function is shape-

preserving (preserving nonnegativity, monotonicity and convexity of the unknown function

to be approximated). For consumption growth the parameters �2 and & are set to guarantee

that the support of Bm stays within the bounds [0:97; 1:04] since this is the range for which

we observe variation in gross consumption growth data. This insures that as j goes from 1

to K2T , Bm is always evaluated only over the support [0:97; 1:04]. �2 �xes the support of

the spline. By shifting i and j, the spline is moved on the real line.

We use a cardinal B-spline given by

Bm(y) =
1

(m� 1)!

mX
k=0

(�1)k
�
m

k

�
(y � k)m�1+

where �
m

k

�
� m!

(m� k)!k!
;
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and

(y � k)+ � max (0; y � k) :

The order of the spline, m, for our application is set to 3. For the dimensionality of the B-

spline sieve, we setK1T = K2T = 3. Because asymptotic theory only provides guidance about

the rate at which K1T �K2T + 1 must increase with the sample size T , other considerations

must be used to judge how best to set this dimensionality. The bigger are K1T and K2T , the

greater is the number of parameters that must be estimated, therefore the dimensionality

of the sieve is naturally limited by the size of our data set. With K1T = K2T = 3, the

dimension of the parameter vector, � = (�;V )0 =
�
�; �; �; a0; a11; :::; aK1TK2T

; V0
C0

�0
, is 14,

estimated using a sample of size T = 216. In practice, we obtained very similar results

setting K1T = K2T = 3; thus we present the results for the more parsimonious speci�cation

using K1T = K2T = 3 below.

Appendix 3. Sieve Minimum Distance (SMD) Procedure

The sieve minimum distance (SMD) procedure has been proposed respectively in Newey

and Powell (2003) for nonparametric IV regression, and in Ai and Chen (2003) for semi-

parametric conditional moment restrictions. Here we describe the SMD procedure in the

estimation of �o = (�o; Vo) for the EZW recursive utility model model (14). We assume that

�o 2 [�; �] � [�; �] � [�; �] � V, where [�; �] � [�; �] � [�; �] denotes the compact parameter
space for the �nite dimensional parameters �, and V denotes the parameter space for the
in�nite dimensional unknown function V . In the application we assume Vo 2 V where

V �
�
g 2 L2(X ) :

Z
RL

jwjjeV (w)jdw <1
�
;

here X is a convex open bounded set in RL. This means V 2 V if and only if it is

square integrable and its Fourier transform eV has �nite �rst moment, where eV (w) �R
exp(�iw0x)V (x)dx is the Fourier transform of V .

First we approximate a function V 2 V by VT 2 VT , where VT is the tensor product
B-spline (33), which becomes dense in V as sample size T ! 1. Then for arbitrarily �xed
candidate value � = (�; ; �; �; VT ) 2 [�; �] � [�; �] � [�; �] � VT , we estimate the population
conditional moment function:

mi(wt;�) � E f
i(zt+1; �; 
; gT )jwtg ; i = 1; :::; N

nonparametrically by bmi(wt;�) and denote bm(wt;�)
0 = (bm1(wt;�); :::; bmN(wt;�)).
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There are many nonparametric procedures such as kernel, local linear regression, nearest

neighbor and various sieve methods that can be used to estimate mi(wt;�); i = 1; :::; N . In

our application we again consider the sieve estimator. For each �xed (wt;�), we approximate

mi(wt;�) by

mi(wt;�) �
JTX
j=1

aj(�)p0j(wt); i = 1; :::; N;

where p0j some known �xed basis functions, and JT ! 1 slowly as T ! 1: We then

estimate the sieve coe¢ cients fajg simply by OLS regression:

min
fajg

1

T

TX
t=1

[
i(zt+1;�)�
JTX
j=1

aj(�)p0j(wt)]
0[
i(zt+1;�)�

JTX
j=1

aj(�)p0j(wt)]

and the resulting estimator is denoted as: bmi(w;�) =
PJT

j=1 baj(�)p0j(wt). In the following

we denote: pJT (w) = (p01(w); :::; p0JT (w))
0 and P = (pJT (w1); :::; p

JT (wT ))
0, then:

bmi(w;�) =
TX
t=1


i(zt+1;�)p
JT (wt)

0(P0P)�1pJT (w); i = 1; :::; N: (34)

Again many known sieve bases could be used as fp0jg. In our application we take the
power series and Fourier series as the pJT (w). The empirical �ndings are not sensitive to the

di¤erent choice of sieve bases, and we only report the results based on power series due to

the length of the paper.

GMM Implementation of SMD Estimator. In general, the SMD criterion can not be

expressed as a GMM criterion. However, when the nonparametric estimator bmi(w;�) is the

linear sieve estimator (34), the SMD criterion (??) becomes the GMM criterion (35). To see

this, plug the sieve least squares estimator bm(w;�) into (18) to obtain:
b� = argmin

�

h
g(�;yT )

i0
fIN
 (P0P)�1g

h
g(�;yT )

i
; (35)

where yT �
�
z0T+1; :::z

0
2;w

0
T ; :::w

0
1

�0
denotes the vector containing all observations in the

sample of size T and

gT (�;y
T ) � 1

T

TX
t=1


(zt+1;�)p
JT (wt) (36)

are the sample moment conditions associated with the NJT � 1 -vector of population un-
conditional moment conditions:

E f
i(zt+1; �o; �o; �o; Vo)p0j(wt)g = 0; i = 1; :::; N; j = 1; :::; JT : (37)
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Thus the GMM criterion is

QT (�) =
h
gT (�;y

T )
i0
W
h
gT (�;y

T )
i
; (38)

where W = IN
 (P0P)�1. For this speci�c weighting matrix, the GMM implementation

preserves the desirable properties of the SMD estimator, parameter consistency, reasonable

rates of convergence, and asymptotic normality of the �nite dimensional parameters. We

cannot, however, presume that these properties would be preserved in GMM estimation

using an arbitrary weighting matrixW, since such an implementation is not an instance of

SMD estimation.

Appendix 4: Large Sample Properties of Two-Step Semiparametric Estimator

To be completed.
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Table 1
First-Stage Estimates of Weights for Stockholder Consumption

Model: �cSHt = 
0 + 
1� ln(IPt) + 
2� ln (SVt) + "t

Est. (t-stat)


0 0.007 (1.447)


1 0.833 (6:780)


2 1.992 (2:204)

R2 0.075

Notes: The table reports the results from regressing stockholder consumption growth on the log di¤erence

of industrial production growth, � ln(IPt), and the log di¤erences of real services expenditure growth,

� ln (SVt). Point estimates are reported, along with Newey and West (1987) corrected t-statistics in

parentheses. The sample period is 1982:M7-2002:M2.



Table 2
Preference Parameter Estimates

2nd Step Estimation � � �

(95% CI) (95% CI) (95% CI)

Aggregate Consumption

W = I 0.990 57.5 0.60

(.985, .996) (27.5, 129) (.24, .99)

W = G�1
T 0.999 60 0.50

(.994, .9999) (42,144) (.20, .75)

Stockholder Consumption

W = I 0.994 20.00 0.90

(.993, .9995) (.25, 40) (.38, 1.24)

W = G�1
T 0.998 17.0 0.68

(.992, .9999) (1, 43.3) (.23, 1.01)

Notes: The table reports second-step estimates of preference parameters, with 95% con�dence intervals

in parenthesis. � is the subjective time discount factor, � is the coe¢ cient of relative risk aversion, and � is

the inverse of the elasticity of intertemporal substitution. Second-step estimates are obtained by minimizing

the GMM criterion with eitherW = I or withW = G�1
T ; where in both cases xt=1N , an N � 1 vector

of ones. The sample is 1952:Q1-2005:Q1.



Table 3
Speci�cation Errors for Alternative Models: HJ Distance

Unconditional Conditional

Aggregate Consumption

Model HJ Dist HJ Dist

(1) (2) (3)

Recursive 0.451 0.591

CRRA Utility 0.514 0.627

Fama-French 0.363 0.515

Scaled CCAPM 0.456 0.625

Stockholder Consumption

Model HJ Dist HJ Dist

(1) (2) (3)

Recursive 0.463 0.605

CRRA Utility 0.517 0.627

Fama-French 0.363 0.515

Scaled CCAPM 0.490 0.620

Notes: The table reports the Hansen-Jagannathan distance metric

HJ DistT (b) = min
b

q
gT (b)

0G�1
T gT (b) ;

where b are parameter values associated with the model listed in column 1. In column 2, gT (b) �
1
T

PT
t=1 [fMt (b)g+Rt�1N ] ; and GT� 1

T

PT
t=1RtR

0
t, where Mt (b) is the stochastic discount fac-

tor associated with the model listed in column 1 and fMt (b)g+ = max f0;Mt (b)g. In column 3,

gT (b) � 1
T

PT
t=1 [(fMt+1 (b)g+Rt+1�1N)
Zt] andGT � 1

T

PT
t=1 (Rt+1
Zt+1) (Rt+1
Zt)

0
with

Zt= cayt. The sample is 1952:Q1-2005:Q1.



Table 4
Speci�cation Errors for Alternative Models: HJ+ Distance

Unconditional Conditional

Aggregate Consumption

Model HJ+ Dist HJ+ Dist

(1) (2) (3)

Recursive 0.451 0.591

CRRA Utility 0.514 0.627

Fama-French 0.341 0.519

Scaled CCAPM 0.464 0.643

Stockholder Consumption

Model HJ+ Dist HJ+ Dist

(1) (2) (3)

Recursive 0.463 0.605

CRRA Utility 0.517 0.627

Fama-French 0.338 0.506

Scaled CCAPM 0.467 0.661

Notes: For each model in column 1, �HJ+ Dist� is the distance between the model proxy and

the family of admissible nonnegative stochastic discount factors. The sample is 1952:Q1-2005:Q1.



Table 5
Preference Parameter Estimates, EIS=1

2nd Step Estimation � � HJ Dist

Aggregate Consumption

W = I 0.985 20 �

W = G�1
T 0.985 60 0.448

Stockholder Consumption

W = I 0.990 20.00 �

W = G�1
T 0.999 10.0 0.469

Notes: The table reports second-step estimates of preference parameters, when the EIS = ��1 is �xed

at one. � is the subjective time discount factor,and � is the coe¢ cient of relative risk aversion. Second-step

estimates are obtained by minimizing the GMM criterion with eitherW = I or withW = G�1
T ; where in

both cases xt=1N , an N � 1 vector of ones. The sample is 1952:Q1-2005:Q1.



Table 6
Summary Statistics for Return to Aggregate Wealth, Human Wealth,W = I

Model-Implied Aggregate Wealth Return

Representative Agent Rep Stockholder

Rw;t RCRSP;t Rw;t RCRSP;t

Panel A: Correlation Matrix

Rw;t 1.00 0.171 1.00 -0.049

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.057 0.084 0.109 0.084

Standard deviation 0.010 0.165 0.036 0.165

Autocorrelation 0.234 0.055 -0.08 0.055

Notes: See next page.



Table 6, continued

Model-Implied Human Wealth Return, � = 0:333

Representative Agent Rep Stockholder

Ry;t RCRSP;t Ry;t RCRSP;t

Panel A: Correlation Matrix

Ry;t 1.00 -0.996 1.00 -0.953

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.003 0.084 0.160 0.084

Standard deviation 0.327 0.165 0.353 0.165

Autocorrelation 0.044 0.055 0.042 0.055

Model-Implied Human Wealth Return, � = 0:667

Representative Agent Rep Stockholder

Ry;t RCRSP;t Ry;t RCRSP;t

Panel A: Correlation Matrix

Ry;t 1.00 -0.982 1.00 -0.847

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.043 0.084 0.121 0.084

Standard deviation 0.082 0.165 0.101 0.165

Autocorrelation 0.036 0.055 0.016 0.055

Notes: The table reports summary statistics for the return to the aggregate wealth portfolio, Rw;t, and

the return to human wealth, Ry;t, implied by the estimates of the model, and for the CRSP value-weighted

stock market return, RCRSP;t. The parameter � is the steady state fraction of human wealth in aggregate

wealth. Means and standard deviations are annualized. Results for the model-implied returns are based

on second-step estimates obtained by minimizing the GMM criterion withW = I and xt=1N , an N � 1
vector of ones. The sample is 1952:Q1-2005:Q1.



Table 7
Summary Statistics for Return to Aggregate Wealth, Human Wealth,W = G�1

T

Model-Implied Aggregate Wealth Return

Representative Agent Rep Stockholder

Rw;t RCRSP;t Rw;t RCRSP;t

Panel A: Correlation Matrix

Rw;t 1.00 0.18 1.00 0.004

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean 0.023 0.084 0.092 0.084

Standard deviation 0.012 0.165 0.046 0.165

Autocorrelation 0.055 0.055 -0.434 0.055

Notes: See next page.



Table 7, continued

Model-Implied Human Wealth Return, � = 0:333

Representative Agent Rep Stockholder

Ry;t RCRSP;t Ry;t RCRSP;t

Panel A: Correlation Matrix

Ry;t 1.00 -0.994 1.00 -0.921

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean -0.093 0.084 0.110 0.084

Standard deviation 0.326 0.165 0.359 0.165

Autocorrelation 0.043 0.055 0.013 0.055

Model-Implied Human Wealth Return, � = 0:667

Representative Agent Rep Stockholder

Ry;t RCRSP;t Ry;t RCRSP;t

Panel A: Correlation Matrix

Ry;t 1.00 -0.975 1.00 -0.764

RCRSP;t 1.00 1.00

Panel B: Univariate Summary Statistics

Mean -0.007 0.084 0.097 0.084

Standard deviation 0.081 0.165 0.108 0.165

Autocorrelation 0.032 0.055 -0.103 0.055

Notes: The table reports summary statistics for the return to the aggregate wealth portfolio, Rw;t, and

the return to human wealth, Ry;t, implied by the estimates of the model, and for the CRSP value-weighted

stock market return, RCRSP;t. The parameter � is the steady state fraction of human wealth in aggregate

wealth. Means and standard deviations are annualized statistics from quarterly data. Results for the model-

implied returns are based on second-step GMM estimation using theW = G�1
T and xt = 1N . The sample

is 1952:Q1-2005:Q1.



Figure 1 
Estimated Continuation Value-Consumption Ratio, Aggregate Consumption, W=I  
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Estimated Continuation Value-Consumption Ratio, Aggregate Consumption, W=GT 
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Notes: The figure plots the estimated continuation value-consumption ratio against lagged values of the 
continuation value with consumption growth held alternately held at the 25th, 50th and 75th percentiles in the 
sample. Consumption is measured as aggregate consumption, “W=” indicates the weighting matrix used in 
second-step estimation. The sample is 1952:Q1-2005Q1.  



Figure 2 
Estimated Continuation Value-Consumption Ratio, Stockholder Consumption, W=I 
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Notes: The figure plots the estimated continuation value-consumption ratio against lagged values of the 
continuation value with consumption growth held alternately held at the 25th, 50th and 75th percentiles in the 
sample. Consumption is measured as stockholder consumption, “W=” indicates the weighting matrix used 
in second-step estimation. The sample is 1952:Q1-2005Q1.  




