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Abstract 

Open source software allows free access to digital tools and constitutes a part of intangible 
investment with the qualities of public goods. Open source software (OSS) provides users with 
an unknown amount of freely modifiable software tools and other useful products; they are 
created both within the business sector and outside of it.  Better accounting for the contribution 
of public spending to investments in OSS, a vital component of science activity, motivates this 
paper.  We develop a bottom-up approach to document the scope and impact of OSS created by 
all sectors of the economy by collecting data on OSS languages R and Python, as well as from 
the Federal Government’s Code.gov.   
 
Using lines of code and a standard model to estimate package developer time, we convert lines 
of code to resource cost. We estimate that the resource cost for developing R and Python 
packages exceeds three billion dollars, based on 2017 costs. We find that the base software for R 
was downloaded over 1 million times in 2018, with more than 400 thousand of those from the 
United States.  Add-on components, or “packages” were downloaded over 600 million separate 
times worldwide in 2018, and over 256 million times in the US. We analyze downloads and 
reuses between software packages as measures of relative impact. We find that by either measure 
ggplot, a graphics package, and Rccp, a package with C++ tools, are among the highest impact 
packages. This methodology provides the first step to developing a set of prototype statistics for 
the contribution of public investment in open source software; the bottom-up approach makes it 
possible to begin identifying the sector of the contributors based on publicly available data. This 
can provide an additional indicator of the outcomes of research dollars, currently characterized 
primarily by patents and bibliometric indicators. 
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Introduction and Contribution 

Open source software (OSS) is everywhere, both as specialized applications nurtured by devoted 

user communities and as digital infrastructure underlying platforms used by millions daily. It is 

computer software shared with a license in which the copyright holder provides the rights to 

study, change, and distribute the software to anyone and for any purpose.  OSS is developed, 

maintained, and extended both within the private sector and outside of it, through the 

contribution of independent developers as well as people from businesses, universities, 

government research institutions, and nonprofits.   

Many OSS projects create long-lived tools that are often outputs of public spending, a 

kind of freely share-able intangible asset that in many cases have been developed outside the 

business sector and subsequently used within the business sector. The scale and use of these 

modifiable software tools highlight an aspect of technology diffusion and flow that is not 

captured in market measures.  Measures of creation and use of OSS would complement existing 

science and technology indicators on peer-reviewed publications and patents that are calculated 

from databases covering scientific articles and patent documents.  Many well-developed 

methodologies and extensions exist, and a research community continues to grow, invigorated by 

improved computing power and algorithms.  We are motivated to better account for both the 

scale of OSS overall and the contribution of public spending to investments in open source 

software, a vital component of science activity. 

In this paper, we explore non-survey data to see how they may be used to measure the 

scope and impact of OSS, focusing on the open source languages R and Python as prototypes. 

Python is among the most common OSS languages and R has features for statistical analysis and 

visualization that make it a no-cost substitute for proprietary software like SAS.  
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 Our data collection strategy combines data from multiple sources. We collect OSS data 

that is disseminated online from archives, repositories and from the projects themselves. We start 

with the location with the broadest coverage of the target languages, registries and package 

managers, that host and distribute OSS, such as the Comprehensive R Archive Network (CRAN) 

and the Python Package Index (PyPI). These online sources provide individual package files 

containing metadata such as author, license, version, and dependencies (required packages to 

function). We collect variables such as the number of complete R and Python packages available, 

downloads per package, and reuses in other packages. The information includes source code 

hosting platforms, such as GitHub, where these projects are developed and maintained. We 

identify R and Python packages that are hosted on GitHub and collect data also on their 

development activity (e.g., lines of code, contributors, code changes over time).  

We have a two-pronged approach to measuring the scope and impact of OSS. First: we 

estimate the resource cost associated with creating these packages and projects to indicate the 

scale of the project. Following Boehm (1981, 2000), we use lines of code in a package as the 

measure of effort to estimate the time spent on software development. Average compensation for 

computer programmers and computer system analysts from Bureau of Labor Statistics wage data 

and other costs based on national accounts methodologies allow us to estimate per package 

resource costs for the R and Python packages on GitHub.  Second: we use methods developed 

for bibliometrics and patent analysis to study the impact of these projects. This involves counting 

OSS software packages and projects as discrete units of output, analyzing the downloads, and 

calculating the relationships between packages that imply re-use across packages. The 

production and delivery of OSS through publicly accessible websites provide harvestable count 

and linkage data for software languages and packages.   
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This paper is organized as follows. First, we explain how software is measured in the 

national economic accounts and describe the project’s motivation through the landscape of open 

source software and the platforms where it is shared. We then describe our approach to data 

collection and preparation. We describe and present both counts and order of magnitude estimate 

for the resource costs of OSS packages for R and Python.  We rank packages by two different 

types of impact and finish our paper with a look at the internet domains that are associated with 

package maintainers.   

Measurement of Software in the National Accounts.  
 
Annual investment in software in the US as a nation is estimated at $381 billion a year in 2017, 

according to the BEA (2018a, 2018b).   About $38 billion of this is public sector investment 

(federal labs and facilities, public universities, state and local government entities).  Most 

investment accounted for, more than $350 billion dollars, is for private sector investment in 

software (Figure 1).  

 

Figure 1 BEA’s Software Investment Measures for the US in 2017 
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Private investment is published in three categories, prepackaged, custom, and own-

account.  OSS created with public funding would be part of the $17.7 billion in S&L investment 

if funded by a public university, and part of the $10.7 billion if funded by the Federal 

government.  If funded by a private, nonprofit university or institution, it would be part of private 

investment. What we don’t know is how much of any of this is for open source software. Macro-

level statistics don’t have the resolution to tell us.     

As measured in the national accounts, software investment has three types, prepackaged, 

custom, and own-account (inhouse work). For counting investment, prepackaged and custom 

software are purchased inputs, product revenues should be an available data source.  However, 

production activity within firms and organizations also bring forward new software tools. As a 

freely-shared software tool, OSS can be custom software or own-account. Own-account software 

is not purchased or sold: it is new, or significantly-enhanced software created by business 

enterprises or government units for their own use and its value is estimated based on in-house 

expenditures for its creation (Parker and Grimm, 2000).   

This software investment drives a wide range of economic and value creation activity that 

challenges current measurement. Many digital products are used by consumers without a direct 

payment: similar to network television programming, their costs are supported by advertising.   

This kind of free content that is bundled with advertising can be understood as a barter 

transaction, content in exchange for being exposed to the advertising. In the absence of a direct 

price, this content created in the business sector can be valued based on its production cost 

(Nakamura, Samuels, and Soloveichik, 2016 & 2017).   

Software and databases can provide revenue in an additional way.  In use, online 

platforms collect data about users as well as transaction fees. These data are part of the value that 
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the platform provides. Li and co-authors (2018) describe several different types of online 

platforms, including E-commerce, online resource sharing, e-financial services, and online social 

network services, where data collection provides high value to the business.  In these cases, the 

cost and market-based approaches underestimate the value of data.  Using an income approach, 

they argue, better captures the variety of ways that firms monetize software and data.  

 Beyond these categories, Corrado, Hulten, and Sichel (2005) provide a framework for 

consistent accounting for a larger set of intangibles that generate future benefits, including brand 

equity and investments in human and organizational capital. Further arguing that public 

expenditures yielding long-lived returns should be understood as investment, Corrado, Haskell, 

and Jona-Lasinio (2015) propose a public investment category: information, scientific, and 

cultural assets. They argue that better accounting of public investment in intangibles would 

provide a more complete picture of economic growth.  

 

Open Source Software Related Definitions 
 

Open source software (OSS): Computer software with its source code made available with a license in 
which the copyright holder provides the rights to study, change, and distribute the software to anyone and for 
any purpose.  For this paper, we treat as open source any software language or package with an Open Source 
Initiative (OSI)-approved license. 
 
Own account software: A category of software investment in national economic accounts. Own-account 
software is long-lasting software created for internal use, rather than as a market product. 
Production Ready Release: A software package that is ready for production in its current ecosystem. 
Registry: A location that hosts, manages, and distributes OSS.  The Comprehensive R Archive Network 
(CRAN) and PyPI for Python are examples. 
 
Repository: An online hosting facility for maintaining versions of software programs.  Source code hosting 
facilities such as GitHub, SourceForge, Bitbucket, and GitLab are commonly used to develop, download, 
review, and publish OSS projects and computer code.  
 
Commits: With respect to OSS development, a commit is an incorporated improvement to existing code. 
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The Landscape of Open Source Software (OSS)  
 
Beginning in the early 1980s, OSS projects have provided users with zero-dollar cost and freely 

modifiable software tools.  Table 1 lists some of the widely-used OSS projects and the year of 

their initial release. LaTeX is typesetting software popular for its ease with mathematical 

symbols, introduced in 1983 by the nonprofit research organization SRI. The Linux operating 

system is the basis for many applications, including the most widely-used operating system 

globally-- the Linux-based Android operating system (GlobalStats statcounter, 2018).  Apache is 

server software developed with federal and state funds at the National Center for 

Supercomputing Applications in Illinois. As of July 2018, Apache is the most frequently used 

HTTP server on the internet (W3Techs, 2018).   Greenstein and Nagle (2014) estimated the 

value of capital stock of Apache software in use in 2013 at between $2 and $12 billion.  

Table 1. Major OSS Projects 
 

Name   Type Initial Release 
LaTeX Typesetting     1983 
Linux Operating System (OS)     1991 
Apache HTTP Server Web server     1995 
GIMP Raster graphics editor     1996 
VLC media player Media player     2001 
Mozilla Firefox Web browser     2002 
QGIS Geographic information system (GIS)     2002 
LLVM Compiler     2003 
Mozilla Thunderbird Email client; Personal information manager     2003 
WordPress Content Management System (CMS)     2005 
Bootstrap Front-end framework     2011 
LibreOffice Productivity Suite     2011 
OpenBLAS BLAS implementation (Linear algebra)     2011 
React JavaScript library     2013 
TensorFlow Machine learning library     2015 
Project Jupyter Shell     2015 
Atom Text Editor; Source code editor     2016 
Hugo Static Site Generator     2017 
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A lot of reuseable code is also created as part of the ongoing work of the Federal Government. 

As of late July 2018, more than 4,000 separate software projects are shared for reuse on the 

website, Code.gov, as part of an effort to make custom-developed code broadly available across 

the Federal Government.    

 Table 2. Contributions to Code.gov by lines of code.  

 
 

Table 2 shows the number of projects listed by each Federal Government agency on 

Code.gov. These projects include both code developed within the Federal Government and code 

created through contracting. The table shows number of projects for each agency as well as lines 

of code, commits (incorporated improvement to existing code), and contributors. Based on lines 
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of code, the Department of Energy (DOE) contributed the most, two large DOE projects are 

Raven, statistical software for risk analysis in nuclear reactor systems, and Qball, which uses 

molecular dynamics to compute the electronic structure of matter. The projects also include 

applications built from existing OSS projects; for example, the US government’s data portal, 

www.data.gov, is an OSS project built from WordPress.  

Repositories and Source Code Hosting 
 
While some government software is controlled through restrictive access requirements on 

government-controlled repositories, as Table 2 shows, many of the Federal government’s OSS 

projects are shared on GitHub. GitHub, SourceForge, and Bitbucket are the most widely-used 

source code hosting platforms that allow OSS projects to be shared. These platforms are used to 

develop, download, review, and publish OSS projects and computer code. They host both private 

repositories and free accounts and provide access control and several collaboration features such 

as bug tracking, web-hosting, feature requests, task management, and wikis for every project. 

They use version control systems, such as Git, for tracking changes and coordinating work on 

files among multiple developers. GitHub is by far the largest hosting facility, with 31 million 

users and developers worldwide (Octoverse, 2018a).   GitHub is shown with other sharing 

platforms and their scale in users and projects in Table 3.  

Table 3. Source Code Hosting Platforms and Users  
Platform Company Users/Developers Number of Projects 

        

GitHub.com Microsoft 31 million 96 million 

Bitbucket.org Atlassian 5 million N/A 

SourceForge.net Slashdot Media 3.7 million 500 thousand 

GitLab.com GitLab 100 thousand 546 thousand 

   
 

     
    
    

Notes: 
GitHub.com: Octoverse, 2018a. “The State of the Octoverse.” https://octoverse.github.com/ 
Bitbucket.org: Bitbucket, 2017. “Bitbucket Cloud: 5 million developers and 900,000 teams.”   
https://bitbucket.org/blog/bitbucket-cloud-5-million-developers-900000-teams. Retrieved 2017-03-25. 
SourceForget.net:  Alexa, 2018. "How popular is SourceForge.net?" alexa.com. Retrieved 2018-12-25. 
GitLab.com: GitLab, 2016. "2015 was a great year at GitLab!" https://about.gitlab.com/2016/02/11/gitlab-
retrospective/. Retrieved 28 July 2016. 
   

http://www.data.gov/
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Counting Packages, Downloads, and Linkages 
 
Public investment in the US in research, technology, and the tools needed for this work comes at 

the cost of other national priorities, thus policymakers are interested in data that can help them 

evaluate progress and impact. Neither progress nor impact is easy to measure in dollars. In 

comparing science and engineering activity in the US and China, the National Science Board 

highlights numbers of peer-reviewed science and engineering publications in addition to R&D 

expenditures (NSB, 2018). Numbers of publications are an indicator of S&E activity, and 

citations from other work to a focal publication are indicators of impact.  For patents, Hall, Jaffe, 

and Trajtenberg (2001) released an electronic data set for US Patent and Trademark Office 

(USPTO) patents along with methodological information for its use in the NBER patent citation 

file. An intersecting literature drives increasingly sophisticated analysis and visualization of data 

sets released from patent offices across the world. Our methods build on these foundations as 

well as the methods of extraction, interpretation and analysis of empirical data from software 

source code described by Ghosh et al. (2002).  These approaches have also been applied to 

assign credit to OSS contributors.2  

Data and Methods 

We define OSS as computer software with its source code made available with a license 

in which the copyright holder provides the rights to study, change, and distribute the software to 

                                                 
2 Depsy is a proof of concept project introduced in 2015 with NSF-funding that tracked the impact of research code 
using citations and other impact measures (Piwowar and Priem, 2016). More recently, the IEEE uses similar 
methods to create an indicator of the prevalence of different programming languages in the references of conference 
and journal articles, taking advantage of their digital library, IEEE Xplore (IEEE Spectrum, 2018b). 
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anyone and for any purpose.  For this paper, we treat as open source any software language or 

package with an Open Source Initiative (OSI)-approved license.3   

 Table 4. Licenses  
Name License Initial Release 
Perl Artistic-2.0     1987 

Python Python-2.0     1990 
Haskell BSD-3-Clause     1992 

R  GPL-2.0     1993 
LUA MIT     1993 
PHP PHP-3.0     1995 

MySQL GPL-2.0     1995 
Ruby BSD-2-Clause     1995 
Scala BSD-3-Clause     2004 

OpenJDK GPL-2.0     2007 
Go  BSD-3-Clause     2009 

Rust  MIT     2010 
Julia MIT     2012 
Swift Apache-2.0      2014 

 
 

 

Table 4 lists the type of licenses and year of initial release for several popular OSS 

languages. BSD (Berkeley Software Development) and MIT licenses were developed in these 

universities.  GPL is the GNU Public License, developed by Richard Stallman and the Free 

Software Foundation (Tozzi, 2017). Artistic, PHP, Python, and Apache are project-specific 

licenses that conform to the OSI standards. 

There are hundreds of programming languages used for various purposes, with constantly 

changing popularity rankings.  Table 5 summarizes the most widely used rankings and the data 

sources and methods used. We observe close (not perfect) alignment in the language 

rankings based on the various methods. 

                                                 
3 The Open Source Initiative is an organization that reviews software licenses for compliance with this definition. 

Notes: 
BSD: Berkeley Software Distribution 
MIT: Massachusetts Institute of Technology 
GPL: GNU Public License 
PHP: A special license for the PHP scripting language 
 
  
   



12 

Table 5. Comparison of Software Language Rankings 
Popularity Ranking Language Coverage Data Sources Method Top 10 languages 

(2018) 
The IEEE Spectrum 
Top Programming 
Languages interactive 
app covers contexts 
that include social 
chatter, open-source 
code production, and 
job postings (IEEE 
Spectrum 2018a). 

Starting from a list of over 
300 programming 
languages gathered from 
GitHub, they remove 
languages with a very low 
number of search results 
in Google and eventually 
track 47 languages. (IEEE 
Spectrum 2018b) 

9 sources: Google 
Search, Google Trends, 
Twitter, GitHub, Stack 
Overflow, Reddit, 
Hacker News, 
CareerBuilder, and IEEE 
Xplore Digital Library 
(with over 3.6 million 
conference and journal 
articles). 

The popularity is 
calculated by 
searching the name 
of the language in 
the data sources, 
e.g., number of hits 
on Google Search, 
mentions in the 
journal articles. 

Python, C++, Java, 
C, C#, PHP, R, 
Scala, Go, 
MATLAB 

TIOBE index is 
created monthly and 
maintained by the 
TIOBE Company 
based in the 
Netherlands (TIOBE 
2019a). 

TIOBE tracks over 256 
programming languages 
that satisfy certain 
requirements. such as 
having an own entry in 
Wikipedia and having at 
least 5,000 hits on Google 
(TIOBE 2019b). 

25 most popular search 
engines including 
Google, MSN, Yahoo!, 
Wikipedia and YouTube. 

The ranking scores 
are calculated by 
counting hits, i.e., 
the number of web 
pages with the 
language name. 
 

Java, C, Python, 
C++, VB.Net, 
JavaScript, C#, 
PHP, SQL, 
Objective-C  

Stack Overflow 
Developer Survey 
(Stack OverFlow 
2018). Stack 
OverFlow is a forum-
based tool primarily 
used to help solve 
coding problems. 

The ranking lists top 25 
languages (the survey 
question is not provided) 

Survey of 101,592 
software developers from 
183 countries around the 
world. Recruited 
primarily through 
channels owned by Stack 
Overflow. 
 

Survey question 
asks respondents to 
select all languages 
that apply; 78,334 
responses  

JavaScript, HTML, 
CSS, SQL, Java, 
Bash/Shell, 
Python, C#, PHP, 
C++, C 

Octoverse report by 
GitHub Data Science 
Team provides annual 
trends and insights 
into GitHub activity 
(Octoverse 2018a). 
 

337 unique programming 
languages on GitHub 
(Octoverse 2017) 

GitHub repositories, 
contributors and pull 
requests (contributions to 
an open development 
project) 

Based on the 
opened pull requests 
and by number of 
unique contributors 
to public and private 
repositories tagged 
with the primary 
language (Octoverse 
2018b) 

JavaScript, Java, 
Python, PHP, C++, 
C#, Typescript, 
Bash/Shell, C, 
Ruby 

The PYPL Popularity 
of Programming 
Language Index 
(PYPL 2019) 

The index is currently 
limited to 22 languages 
 

Google Trends Created by 
analyzing hits of 
language ‘tutorials’ 
on Google. 
 

Python, Java, 
JavaScript, C#, R, 
C/C++, Objective-
C, Swift, PHP, 
MATLAB 

OpenHub is a public 
directory that provides 
statistics on different 
free/libre and open-
source software 
(FLOSS) projects 
(OpenHub 2018). 
 

Provides statistics on 112 
languages 

Active OSS projects on 
OpenHub 

Based on commits, 
contributors, lines 
of code changes, 
and the total number 
of new projects 
 

Python, Bash/shell,  
HTML, JavaScript, 
C, C++, Java, 
PHP, Ruby, Perl 

 
 

Next we show more detail for two of these rankings, the IEEE Rating and the TIOBE 

Index. As Table 5 shows, the IEEE Spectrum ranking is a weighted index of 11 metrics, Google 
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Trends, Twitter, GitHub, Stack Overflow, Reddit, Hacker News, CareerBuilder, Dice, and the 

mentions of each language in IEEE Xplore Digital Library.  TIOBE rankings (TIOBE stands for 

“The Importance of Being Earnest”) are a measure of popularity of programming languages, 

created monthly and maintained by the TIOBE Company.   

Table 6. IEEE Rating and TIOBE Index for Programming Languages 
      

Name IEEE spectrum TIOBE Index Developer 
Initial 

Release 
Open vs. 

Proprietary 

Python 100 8.29% 
Python Software Foundation (Non-

profit organization) 1990 Open 

C++ 99.7 8.16% Bell Labs (Private company) 1985 Open 

Java 97.5 16.90% Oracle Corporation 1995 Open 

C 96.7 13.34% Bell Labs  (Private company) 1972 Open 

C# 89.4 3.28% Microsoft 2000 Open 

PHP 84.9 2.68% 
Zend Technologies  (Private 

company) 1995 Open 

R 82.9 1.33% 
R Foundation  (Non-profit 

organization) 1993 Open 

Scala 82.6 n/a 
École Polytechnique Fédérale de 

Lausanne (University) 2004 Open 

Go 76.4 1.12% Google 2009 Open 

MATLAB 72.8 1.50% MathWorks 1984 Proprietary 

JavaScript 72.1 3.30% 
Mozilla Foundation (Non-profit 

organization) 1995 Open 

Ruby 71.4 1.10% Yukihiro Matsumoto, et al. 1995 Open 

HTML 71.2 n/a W3C (Int'l Standards Organization) 1993 Open 

Bash/Shell 66.1 n/a Brian Fox 1989 Open 

      
            
            

Table 6 summarizes the top 15 languages based on IEEE Spectrum (IEEE Spectrum 2018a) and 

TIOBE rankings (TIOBE 2019a), sorted by the former. The TIOBE Index includes languages 

with more than 5,000 search hits on Google.  The top 15 languages of TIOBE index listed in 
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Table 6 account for 73% of the search hits in Google for all languages, i.e., the webpages that 

contain the name of the language.  For example, Python accounts for 8.3% of the hits.  

We focus on two programming languages, R and Python, that are themselves open source 

and are also used by others in further development.  The R language is a set of tools for statistical 

analysis and mathematical modeling that has grown rapidly in the last decade. It is functionally a 

substitute for statistical software such as SAS and SPSS, except that it can be used free of 

charge. Since its release in 2000, users around the world have developed packages for it that are 

shared with the whole R community. It was developed at the University of Auckland in New 

Zealand by academics for use in their teaching laboratory; over time it had extended 

development by others, including Hadley Wickham, at Rice and Stanford Universities (Ihaka, 

1998, Wickham, n.d.).  As additional contributors extend R’s functionality through additional 

packages. the Comprehensive R Archive Network (CRAN) emerged at the Technical University 

of Vienna in Austria; production ready packages are hosted from this site.  

Python is one of the most widely-used programming languages mainly due to its simple 

syntax that makes its code easy to learn and share, and its flexibility.  Like R it is also used for data 

analysis and visualization, however compared to R, Python's simplicity makes it a good general-

purpose language for other purposes, including scripting and web development. Some of the most 

popular packages include django which is a tool for building web applications, pandas that 

provides high-performance data structures and analysis tools; and scikit-learn used for machine 

learning. Python is the successor to the ABC language (ABC, 2018), was developed by a Dutch 

programmer at National Research Institute for Mathematics and Computer Science in Netherlands 

(Centrum, 2018) in the late 1980s (Rossum, 2009). PyPI is an indexed repository for Python 
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packages.  There are over 166K projects and 299K contributors on PyPI as of February 2019 (PyPI, 

2019). 

Data Collection and Preparation 
 

Keller et al. (2018) describes the overall approach used here to explore data sources 

beyond surveys to improve and extend indicators of science and engineering activity and of 

innovation. This approach includes structured processes to discover, acquire, profile, clean, link, 

explore the fitness-for-use, and statistically analyze the data.  Here we gather and use publicly 

available metadata about individual packages and their contributors, as well as information 

within the code.  

The natural way to obtain the information about the development of an OSS project is to 

inspect the repository that hosts the code for that package or application. The first step is to catalog 

all projects available to the programming language. This information is stored by a registry, where 

all the packages are stored (the universe of packages for the language). For example, 

Comprehensive R Archive Network (CRAN) and Python Package Index (PyPI) are registries used 

to distribute the R and Python packages, respectively. Every programming language has the ability 

to install additional packages from the registry by using that particular languages’ package 

manager. Package managers take the package that the user wants to install and finds the package 

in the registry. The package manager obtains all the information that is needed by using the 

metadata stored on the registry, such as a unique identifier (usually the package name), a release 

version to identify what version of the package should be retrieved, and the repository location 

(where to find the actual code). The metadata stored on the registry also holds information such as 

name, author, maintainer, license, description, dependencies, and project status. These are shown 

in Figure 2.  
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Figure 2. Package Managers and Repositories  
 

We use the registries of R and Python: (i) CRAN at  https://cran.r-

project.org/web/packages/available_packages_by_name.html, and (ii) PyPI at  

https://pypi.org/simple/.  We use the information provided in the registries to identify the list of 

packages that are production-ready, i.e., not in development stage (different heuristics were used 

for different registries), and that have Open Source Initiative (OSI)-approved licenses (which is 

given in the package registry metadata).  Using the information in the metadata, we find the set of 

packages that have their code bases on GitHub to obtain development activity and perform a lines-

of-code count for analysis. Table 7 shows the number of R and Python packages we collected from 

their respective registries, the number of OSI-approved packages that are production ready, and 

the subset of these packages that are also on GitHub. The number of packages used in our analysis 

for each language is given in the final column. 

 

 

 

https://cran.r-project.org/web/packages/available_packages_by_name.html
https://cran.r-project.org/web/packages/available_packages_by_name.html
https://pypi.org/search/
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Table 7 Data Collection Summary  
        
Data Collection           

Language 
Package 
manager 

Number of 
packages 

Production 
ready 

OSI-approved 
& production 
ready 

Packages 
on GitHub 

Packages 
on GitHub 
(analysis)  

R CRAN  13,719 13,350  13,143  4,407 4,358  

Python PyPI 164,836 17,482  15,043  11,016 9,773  
 

We collected information about 13,719 packages on CRAN on February 16, 2019, 

successfully downloading 13,350 packages.4 We use license information and the production status 

of the release versions of these packages provided on CRAN to obtain 13,143 production-ready 

packages with OSI-approved licenses.  Of these, we subset those also on GitHub, and obtain 4,364 

R package repositories.  

The initial list of 164,836 Python packages was obtained on January 23, 2019 from PyPI 

(PyPI, 2019). The latest package source of each package was downloaded (between 2019-01-28 

and 2019-01-30) and user-reported production status in the metadata source was used to identify 

production-ready packages. We obtain a list of 17,482 production ready/stable and mature 

Python packages.  The license information of these packages is obtained using the libraries.io (a 

web-service compiling and providing information on Python packages), resulting in 15,043 

production ready packages with OSI-approved licenses. We use the package source to obtain the 

GitHub repository locations of these packages (if exists), and we download 9,775 repositories on 

March 1, 2019. Using the downloaded repositories of R and Python packages, we obtain 

development information including the number of contributors, the lines of code (added and 

deleted), number and time of commits (incorporated improvement to existing code from contributors), 

                                                 
4 In the time it takes us to download, as of February 28, 2019, we lose 244 packages that had an update during the 
12-day period which led to the change in their URL’s on CRAN; hence they could not be downloaded. 

http://libraries.io/
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and profile of contributors. The lines of code can be used as a measure of output, as we will 

describe. 

Labor time, Cost and Impact Estimates 
 

We are interested in resource cost estimates for OSS software that will be comparable 

with expenditures for R&D and with fixed investment data in intellectual property products.  The 

US National Accounts production costs for own account software include those for analysis, 

design, programming and testing, and exclude maintenance and repair (Parker and Grimm, 

2000).  As originally described, cost of production is the sum of labor costs and intermediate 

inputs (such as materials and supplies and overhead).  In US economic statistics, these costs are 

estimated based on hours worked by computer programmers and system analysts in each 

industry or government entity. The underlying assumption is that own-account software is 

created as a fixed proportion of the work activity of these occupations.  Mean wage rates, 

adjusted for compensation costs that include fringe benefits are multiplied by the number of 

computer programmers and system analysts in each industry.5   

Constructive Cost Model (COCOMO) 
 

The challenge of keeping large software projects on schedule and within budget 

motivates a literature in cost estimation within software engineering (Sharma, Bhardwaj, 

Sharma, 2011).  Experience has shown that while costs can be estimated as a function of the 

number of instructions, as software projects grow, effort increases nonlinearly.  We observe 

development of cost models that account for complexity, reliability, and scale in a variety of 

                                                 
5 Wage, employment and compensation are from the U.S. Bureau of Labor Statistics Occupational Employment 
Survey data. To account for time spent on tasks other than software development, BEA uses an adjustment ratio 
from a survey of software developers’ time. Non-labor costs for OSS development are estimated with industry 
production ratios (Parker and Grimm 2000).   
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ways based on characteristics of the product, the platform, the contributors, and the project.  

Examples of these estimation models include Constructive Cost model COCOMO II, the Putnam 

Software Life Cycle Management model, and models based on function points (Boehm and 

Valerdi, 2008). This is the approach that we use here. 

The logic of the constructive cost model is that: 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑃𝑃𝑃𝑃𝑡𝑡𝑡𝑡 𝑃𝑃𝑃𝑃 𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃ℎ𝑃𝑃 =

𝐶𝐶𝐶𝐶𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑓𝑓𝐶𝐶𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 𝑥𝑥 𝐶𝐶𝑃𝑃𝑃𝑃𝑡𝑡𝑃𝑃 𝑃𝑃𝑓𝑓 𝑃𝑃𝑃𝑃𝑃𝑃𝑡𝑡 𝑥𝑥 𝑡𝑡𝑓𝑓𝑓𝑓𝑃𝑃𝑃𝑃𝑃𝑃 𝑡𝑡𝑃𝑃𝐶𝐶𝑃𝑃𝑃𝑃𝑚𝑚𝐶𝐶𝑃𝑃𝑡𝑡𝑃𝑃𝑃𝑃 . 

The calibration factor represents the person months needed for a set number of lines of 

code, unadjusted for effort factors.  The effort multipliers account for complexity, reliability, and 

scale for these models; they lead to increased cost. Translating this approach to our data on OSS, 

the package-specific data we collected provides lines of code for each completed package.  

In our use of this model, we multiply lines of code by a COCOMO II calibration factor 

(Boehm et al., 2000) to estimate person-hours per package or project.  The effort multipliers 

from COCOMO II are parameters that we selected for the organic software class which consists 

of software dealing with a well-known programming language and a small, but experienced team 

of contributors.  While we held these consistent across all packages, the model allows for these 

parameters to be adjusted based on additional data.  

Effort = 2.4(KLOC)1.05   

Nominal development time = 2.5(Effort).38   

Development cost = Monthly wage x Nominal development time 

KLOC stands for kilo (thousand) lines of code. With these person-month calculations per 

OSS package, we estimate a resource cost by multiplying by monthly wages for programming 

occupations.  Appendix Table 1 shows the steps and data sources for the estimation. To 

summarize our method, we assume that the input time of contributors is roughly equivalent to the 
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average wage for computer programmers (from Bureau of Labor Statistics (BLS) (2017).  

Occupational Employment Survey data) plus additional intermediate input and capital services 

costs (from Bureau of Economic Analysis (BEA 2014). The per person month cost for OSS 

contribution is obtained as $19,963, which is the amount used in our cost calculations. 

Lines of Code    
 

Lines of code track the scale of development activity for OSS packages. For each of the 

13,143 R packages in Table 7, we counted the total number of lines in all the files that are included 

in the CRAN package source. These files include source code, description files, manuals, data 

files, citations, and images.  With this method, we estimate the cost of almost all of the R packages 

that are on CRAN, providing a broad measure of the number of production ready OSS packages 

for the R language. 

For a subset of these R packages, and for almost 10,000 Python packages, we collect more 

detailed data from GitHub. The packages’ GitHub repositories provide development history 

including information about line insertions and deletions for accepted change or commit.  Using 

the history of the repository, we obtain details of each commit which gives us the total number of 

lines edited, thus capturing the resources and the effort that were put in the development of each 

package.  We can calculate costs with both the total number of lines edited (gross) and with the net 

lines of code (insertions minus deletions).  We focus on the net lines of code as this measure is 

similar to the method (counting the number of lines in the package source files) used on the dataset 

collected from CRAN on R packages. 

Using net lines of code as a measure of effort and the parameters for a well-known 

programming language and small, experienced team of contributors, we estimate the cost of all 

packages that use R and Python, which we view as order of magnitude estimates.  We obtain 
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power-law distributions for all languages.   The density plots and the boxplots are given in Figure 

3.  

.   

Figure 3 Distribution Costs across languages 
 

 

Order of Magnitude Resource Cost Calculations for OSS Languages 
 

Using the widest set of production-ready and OSI-approved R packages on CRAN and 

summing across number of lines in the packages’ source files, we calculate a resource cost in 

2017 dollars of $1.58 billion for 12,901 R packages. The packages with the highest cost 

estimates are given in Table 8. Mapdata, the package with the highest number of lines, is a 

supplement to other map packages, providing a high-resolution mapping tool. The mapdata 

package source files include geometry files involving points and lines to draw maps that results 

in a high count of lines. Hunspell is the spell-checker library used by other open-source 

applications including web-browsers such as Google Chrome, Mozilla Firefox, and the package 

includes dictionaries in English, among other languages. EdgarWebR is a package used for 

accessing and parsing Securities and Exchange Commission (SEC) filings, and the source files of 
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the package include a lot of test code and data, which are very large files. The R packages that 

are written in C language for efficiency needs (faster computation) such as the igraph package 

used for network analysis, also have a large number of lines due to the structure (commonly used 

coding practices) of this language.  

Table 8.  CRAN Packages’ Kilo lines and Estimated Resource Cost 

Package Name Klines Estimated Cost in 
Thousands of 2017$ 

All packages 100,216.787 1,579,689 
mapdata 2,257.20 1,516  
hunspell 756.9 980  
edgarWebR 456.8 801  
TCGA2STAT 376.9 742  
igraph 364 732  

 

Limiting our estimates to the packages on GitHub and using net lines of code, we find a 

resource cost of $0.88 billion dollars for 4,364 R packages, and $1.56 billion for 9,775 Python 

packages based on 2017 US wage rates (though, as we will show, contributors come from many 

countries).   The R and Python packages with the highest cost estimates are given in Table 9. 

Among the top R packages, Archivist is used to store data artifacts, CollessLike for analyzing 

genetic trees, readtext used for text files and ptwikiwords is a dataset with words used pages 

from the Portuguese Wikipedia, and nasapower is used for global meteorology, surface solar 

energy and climatology data. The high number of changes in lines of code is due to the database 

files, images and datasets uploaded that are used for testing. Similarly, the top Python packages, 

such as libsass (style files used for web-development), py3-ortools (research tools developed at 

Google including programming algorithms), LSD-Bubble (used in astronomy), IotPy (used to 

develop applications using sensors an social media data), and openquake.engine (computing 

earthquake hazard and risk) include datasets and documentation.  
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Table 9.  R and Python Packages on GitHub: Kilo lines of code (KLOC) and Estimated Resource 
Cost 

R Packages on GitHub Python Packages on GitHub 

Package 
Name KLOC 

Estimated 
Cost in 

Thousands 
of 2017$ 

Package Name KLOC 

Estimated 
Cost in 

Thousands 
of 2017$ 

All packages 282,167.871 883,209 All packages 611,601.568 1,560,374 

archivist 28488.639 4,169 libsass 50340.53 5,233 

CollessLike 15844.721 3,299 py3-ortools 37412.424 4,648 

readtext 13888.309 3,130 LSD-Bubble 15270.398 3,251 

ptwikiwords 11452.965 2,898 IotPy 14899.252 3,219 

nasapower 10613.638 2,812 openquake.engine 13841.578 3,126 

 
 
Packages on Code.gov 
 
Using the same approach, we estimate the cost for the OSS projects on Code.gov that are hosted 

on GitHub, shown earlier in Table 2. Since many of the projects contributed by Federal 

Government organizations have been developed by contractors as custom software, this resource 

cost is not an estimation of what the government actually paid for these software projects. 

Rather, it gives an order of magnitude cost estimate consistent with own-account software that 

allows comparison with the OSS language packages described in the previous section. We 

estimated a resource cost for these 2.5 billion lines of code at about $1.1 billion dollars, 

calculating all contributions at the rate of 2017 costs.  This is a partial estimate of all the 

contributed projects, because our calculation is only for those projects on GitHub.   

 To sum up, we calculate between about a billion dollars and a billion and a half (0.88 

billion and 1.58) resource cost for R, another 1.5 billion for Python and more than a billion for 

Code.gov. These lines of code provide an ongoing set of snap shots of the scale of development 

activity for OSS packages. As a unit of output has the virtue of be being comparable across 
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packages and projects, as long as it is counting the same objects within files.  Our current method 

does not yet distinguish between lines of computer instructions, documentation, generated 

output, and data files. 

Impact 
 
OSS is generally distributed without cost, and so standard market measures of revenue cannot 

provide an impact measure.   Piwowar and Priem (2016) use downloads and citations to software 

as measures of impact for Python and R packages. When software code is assigned a digital 

object identifier (DOI), it can be cited along with other reference sources, providing an indicator 

of impact to the scientific community.  However, few academic papers actually cite software 

(Piwowar and Priem (2016).   

 Downloads provide an indicator of impact that is broader than scientific impact.  Using 

downloads as a measure of impact, Korkmaz, et al. (2018) analyze factors that affect the impact 

of R and Python packages. They find that three network measures, outdegree, closeness 

centrality, and pagerank significantly affect impact of packages.  Outdegree is a count of reuses 

across packages, while closeness centrality and pagerank assess more complex network 

relationships.    

Estimating Impact through Reuse: From the perspective of the users of OSS as a set of 

tools, ‘reuse of packages’ is a measure of the impact and value through the network. The greater 

the reuse by other packages, the greater the value. When an OSS package requires the code of a 

second package to do its work, the first package is dependent on the second.  For example, an R 

package for statistics as well as an R package for inventory may be both be dependent on the 

same visualization package, such as ggplot2. This reuse, through multiple dependencies and 

imports, increases the visualization package’s impact.  The reverse dependency, reuse, is used as 
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a measure of the impact. Table 9 show the R packages (OSI-approved and production ready) 

with the highest number of reuses.  

 

Table 9 Top packages (Impact Based on Reuse) 
  
Package # Reuse 
ggplot2 925 
Rcpp 838 
dplyr 
stringr 
plyr 
magrittr 

626 
398 
395 
393 

data.table 311 
sp 308 
reshape2 271 
foreach 266 

Note: The dependency information is obtained from the manifest files described earlier (it is given as 
“depends” and “imports”). We consider both “imports” that load a package and “depends” that attach a 
package for our dependency measure. Standard libraries that are supplied with R (e.g., stats, utils, graphics) 
are removed. 
 
Here we are considering only the number of packages that reuse a particular package as 

its impact measure. When we consider these dependencies, a more complete analysis should 

account for the interactions between all of these packages (not only the bilateral relationship 

between two packages in isolation) and the structural features of these interactions. Network 

analysis allows us to use various centrality measures (e.g., betweenness, pagerank) in addition to 

the degree centrality (basic counts of dependencies) as impact measures and provides a fuller 

picture of impact (see Korkmaz et al. 2018). 

Estimating Impact through Downloads: Downloads is a measure of end-user impact.  

Figure 5 shows total downloads of Base R from CRAN between 2013 and 2018; in 2018 base R 

was downloaded over a million times over 400,000 of them in the US.    
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Figure 6. Downloads of Base R from CRAN 2013 – 2018 
 

 

Figure 7. Downloads of R Packages 2013 – 2018 
 

 

Figure 8. Downloads of R Packages 2013 – 2018 

0
200,000
400,000
600,000
800,000

1,000,000
1,200,000

2013 2014 2015 2016 2017 2018
year US downloads Total downloads

0

5,000

10,000

15,000

20,000

0

200,000,000

400,000,000

600,000,000

800,000,000

2013 2014 2015 2016 2017 2018

R Package Downloads
over 600 million separate downloads worldwide

US downloads Total downloads Total packages, right axis

10,000

100,000

1,000,000

10,000,000

2013 2014 2015 2016 2017 2018

Exponential growth in Downloads of  R Packages 
Worldwide, 2013- 2018

ggplot2 Rcpp



27 

The package downloads below are data collected from between 2013 and 2018. They 

show the rapid growth overall in the use of these packages. Note that ggplot2 was the most 

downloaded package in 2013 with 105,774 downloads (Table 10).  In 2018 ggplot2 was 

downloaded an order of magnitude more often, almost 2.5 million times.   

Most Frequently Downloaded R Packages, 2013 and 2018 
     
Package 2013   Package 2018 
ggplot2 105,774   Rcpp 3,519,510 
plyr 101,596   rlang 2,893,889 
digest 99,774   stringi 2,610,184 
stringr 98,086   stringr 2,511,011 
colorspace 93,590   ggplot2 2,495,315 
RColorBrewer 81,448   digest 2,453,958 
reshape2 81,350   glue 2,296,688 
scales 73,385   tibble 2,242,376 
proto 71,698   pillar 2,222,364 
munsell 71,483   yaml 2,207,621 

 
Table 10. Top R Packages, Based on Downloads   
Downloads is a direct, though noisy measure of impact. A single user may reload packages 

several times for use on different platforms.  However, downloads provide a clear measure of the 

diffusion of packages.  

Sectoral Story for R 
OSS software is created as tools for the developer’s own use, as custom software created 

in the market, and also as means for developers to signal their skills to potential employers. 

Firms develop OSS as well; allowing them to sell complementary hardware or consulting 

services (Lerner and Tirole, 2002).  For example, for-profit vendors may offer a free download 

of OSS along with commercial support or dedicated servers. Companies investing heavily in 

OSS include Microsoft, Red Hat, and Oracle, Google, General Electric, Dell, Sony, Nokia, 

Ericsson as well as non-technology specific companies like Volkswagen, Bosch, and BMW 
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(Nagle 2018).  Microsoft’s 2018 purchase of GitHub shows industry sees further potential in 

OSS.  

 However, LaTeX, Linux, Apache, and R were all developed in university, government, or 

nonprofit institutions, some outside of the US.  To fully understand the inputs to the digital 

economy that come from public funding, we need to understand how well the national accounts 

are tracking OSS in all sectors. Figure 10 shows a sectoral framework that embeds OSS within 

the scope of software investment.  It starts with the BEA framework, then adds two rows and two 

columns to the BEA categories.  In the rows we add OSS as a subcategory of custom software it 

is developed by a market producer, and as a subcategory of own-account software when it is 

developed in house. Conceptually, BEA’s 2017 estimate of about $381 billion in software 

investment should include OSS produced by businesses, government entities, and nonprofit 

institutions.   As described earlier, these BEA investment measures are based on receipts for 

software sold in the market and, for own-account software, based on employment counts and 

wage rates for computer programmers and systems analysts.   

So how much OSS is created or funded by governments and nonprofits?  While BEA 

does not publish the composition of public investment in software, it’s methodology for public 

investment is the same as for private, that is to say, software transactions and the count and 

wages of computer programmers and system analysts.  Since BEA the subcomponents of 

government and nonprofit software investment are not released, we don’t actually know.  

However, our analysis suggests to us that it may be substantially undermeasured.  In a 2014 

survey of United Kingdom research software engineers, defined as academics who write 

software used by researchers, found that these software writers had their highest degree in 

physical science (39.4%) compared with computer science (23.6%) (Philippe, et al, 2015).    
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,
Figure 9. Software Investment Framework, Augmented to Show OSS Producers 

 

To identify the sectors where developers are contributing to OSS, we take a closer look at 

the manifest data we collected from CRAN for R packages. We obtain 11,886 OSI-approved 

production-ready packages from CRAN6 published between 2005-10-29 and 2018-06-18, and 

collect information about these packages including the license, published data, authors and their 

roles (creator or maintainer, contributor, copyright holder), and the email address of the 

maintainers, dependencies (imports, suggests, depends), and URL’s to the repositories.  

Every package has at least one author and one maintainer listed; they may be the same 

person. The creator or maintainer is the person to be contacted if there are problems, hence they 

must provide an email address. We use the email addresses to obtain information about the 

location and organization of the creators. This approach gives us a lower boundary on university 

contributions, and a substantial share of email addresses that are insufficient to identify sector.  

In our dataset, we obtain 6,697 unique maintainers associated with 6,871 unique email 

addresses (378 have more than one email addresses).  There are 2,261 unique domains (e.g., 

                                                 
6 https://cran.r-project.org/web/packages/available_packages_by_date.html 
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gmail.com, yahoo.com, outlook.com), and 103 top-level domains (e.g., .com, .edu, .org, .uk). 

One third (32%) of maintainers have Gmail accounts; these can be from any sector.  To get a 

sense of geographical distribution, we obtain a complete list of all country top-level domains 

maintained by the Internet Assigned Numbers Authority (IANA)7 Table 11 summarizes the 

number of projects and number of creators for the most common top-level domains. The largest 

share of package maintainers has .com email addresses; these provide little information about 

geography or economic sector.   However, 17% of both packages and maintainers have .edu 

email addresses, and more than a third have email addresses that are country specific.   

Table 11 Top-level Domains of R Package Maintainers on CRAN 
 
 

Domain Packages Percent Maintainers Percent 

Total 11,886.0   6,697   

.com 4,964 42% 2,770 40% 

.edu 1,981 17% 1,202 17% 

.org 481 4% 184 3% 

.net 168 1% 89 1% 

.gov 69 1% 43 1% 

.name 33 0% 3 0% 

.info 8 0% 6 0% 

.biz 6 0% 3 0% 

.(country) 4,124 35% 2,495 36% 

          

Germany (.de) 687 6% 427 6% 

United Kingdom (.uk) 434 4% 267 4% 

France (.fr) 398 3% 235 3% 

Canada (.ca) 335 3% 160 2% 

Australia (.au) 198 2% 109 2% 

Italy (.it) 198 2% 129 2% 

Switzerland (.ch) 172 1% 102 2% 

Spain (.es) 166 1% 102 2% 

Netherlands (.nl) 151 1% 89 1% 

Austria (.at) 123.0 0.0 56.0 1% 

                                                 
7 https://www.worldstandards.eu/other/tlds/ IANA is responsible for the global coordination of the 
DNS Root, IP addressing, and other Internet protocol resources. 

https://www.worldstandards.eu/other/tlds/
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A country domain is associated with 35% of contributions (packages) and 36% of the 

maintainers. Table 11 also shows the top 10 countries (out of 88 countries) that have the highest 

number of contributions (packages) and the number of maintainers. These exclude projects with 

an associated .com email addresses (42% of all projects) Finally, we analyze the creators’ email 

domains with .edu., we obtain 1,981 packages (16.7%) created by 1,202 maintainers. 

Although we cannot parse the Gmail addresses by sector, we find almost 17% are 

associated with university domains, and more than one third come from country domains.  We 

view these shares as a lower boundary on the sector’s contribution to OSS.  We add two columns 

on the right that show that a full accounting will need to include OSS created outside of work 

and OSS created internationally.   
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Conclusion  
 
 We have described the open source software ecosystem and showed how data gathered freely 

from ISS registries and repositories can be used to estimate the resource costs and impact of 

OSS. Data collected data from CRAN, PyPI. Code.gov and GitHub provide information about 

the development activity of OSS projects.  Cost models developed in software engineering, and 

own-account investment measurement methods like those used by national accounts estimate the 

resource cost of these projects/packages. We find that the resource cost for developing packages 

for two well-known OSS programming languages, R and Python, exceeds $3 billion dollars. 

Applying this approach to OSS projects available on Code.gov results in an estimated value of 

more than $1 billion, based on 2017 costs.  

From Resource Cost to Investment 
Annual Investment: Resource cost estimates presented here for R and Python are aggregated across several 
years and treated as though all expenditures were made in 2017. To move to annual investment measures, 
each year’s resource costs will need to be deflated with prices for the appropriate year.  
  
Deflators: GDP measures economic output after removing the impact of overall inflation. This is done 
product by product using deflation with price indexes which reflect the movement of prices separate from 
quality or volume. BEA deflates expenditures for prepackaged software with their producer price index for 
software publishing.  Custom software and own-account software are deflated with a weighted average of 
the prepackaged software price and of an input-cost index based on BLS data on wage rates for computer 
programmers and systems analysts and on intermediate input costs associated with the production of 
software (BEA 2017).   
 
Depreciation: Given that their useful life exceeds a year, expenditures for capital assets lead to 
accumulation over time, less depreciation, which accounts for loss over time in utility. Physical capital loses 
its value as its useful declines with wear and tear, and well as through obsolescence, as newer alternative 
assets emerge.  Intellectual property products, such as software, R&D and entertainment originals lose their 
value through obsolescence. This can happen as costs for maintain the asset rise over time, or through a 
crease in the value of services provided, despite a constant flow in the quantity of these services (Oulton and 
Srinivasan, 2003).  BEA uses an estimated 3-year service life for prepackaged software and a 5-year 
estimated service life for custom and own-account software (Soleveichik and Wasshausen, 2013).   Li and 
Hall (2016) argue that for R&D investment, depreciation through obsolescence and competition can be 
estimate through the decline in firm profits received from prior R&D investments. 

http://code.gov/
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While our work does not propose or imply any change the definition of Investment in BEA’s 

GDP accounts, from the perspective of identifying sources of innovation and technology 

diffusion, we see value in quantifying OSS created both in the market and outside of it, as well as 

the international contribution.  The value of our work for GDP measurement is in the use of 

alternative methodology and source data that focuses on a subset of an investment category in 

the national economics accounts.  The bottom-up method we use may reveal some currently 

unaccounted-for software investment—and that may be of broader interest because it would 

affect the level and composition of software investment.  
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