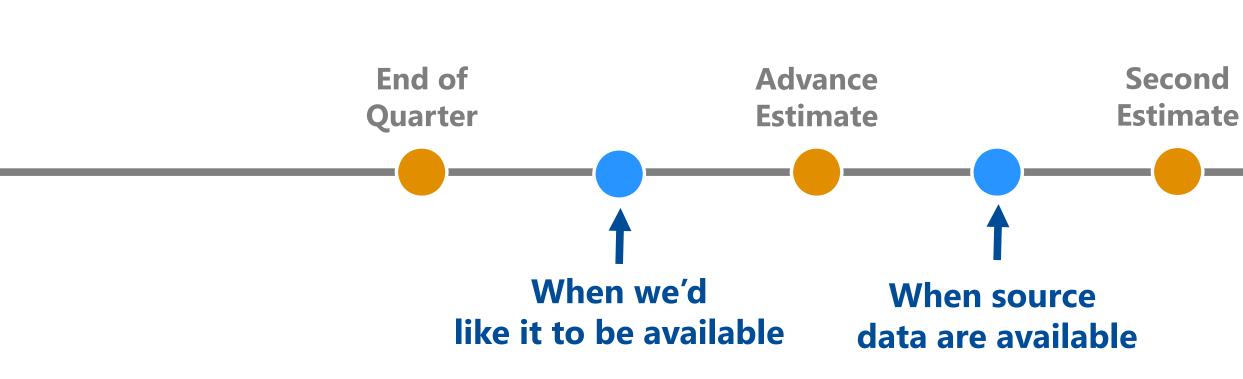
Off to the Races: A Comparison of Machine Learning and Alternative Data for Predicting Economic Indicators

Jeffrey C. Chen, Abe Dunn, Kyle Hood, Alex Driessen and Andrea Batch

Roadmap

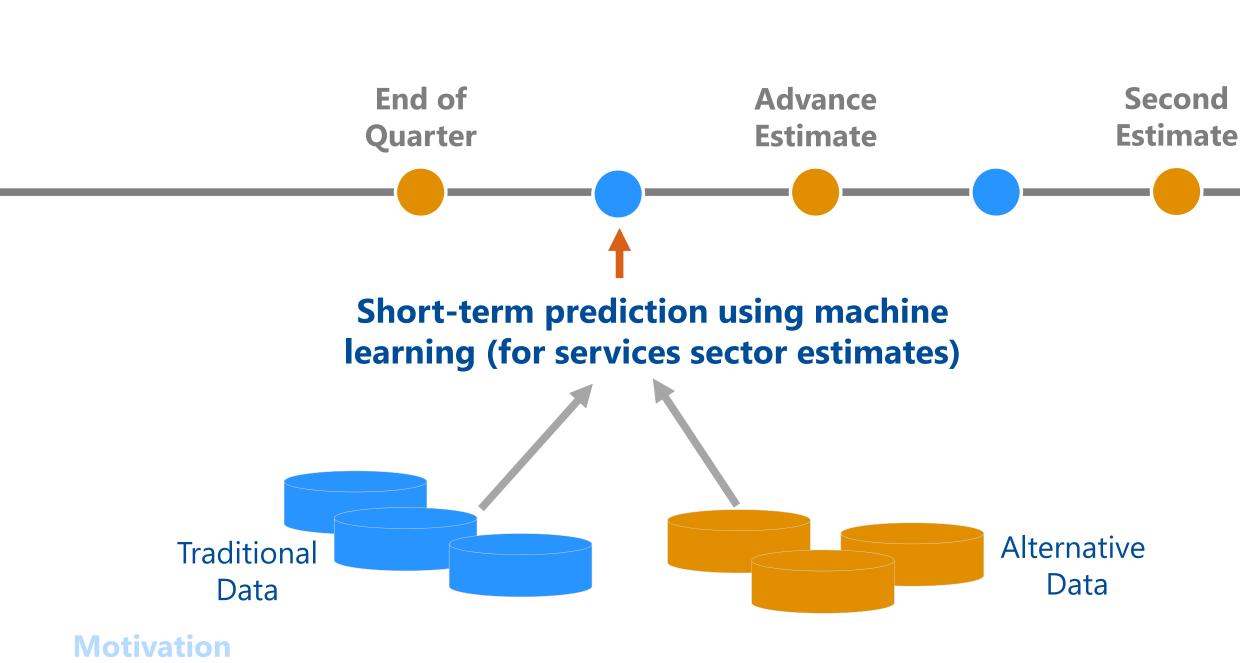
- 1. Motivation
- 2. Approach
- 3. Results
- 4. Implications

Timing of GDP Estimates

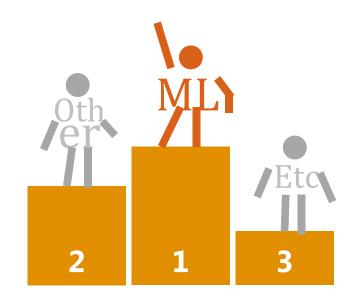


Motivation

Timing of GDP Estimates



Objectives: ML for National Economic Accounts



Identify which modeling considerations (e.g. algorithm, data, feature selection) are associated with accuracy gains for PCE services component of GDP.

$M_1 vs. M_2$

Develop a framework to determine where predictions can be reliably applied to reduce revisions given sample size constraints.

Motivation

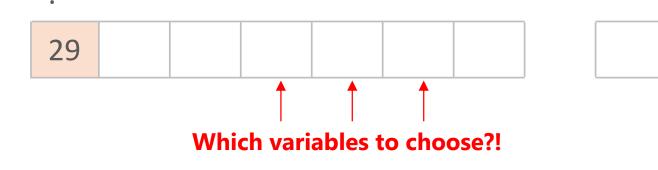
There's more variables than records.

Issue

Traditional statistical methods have trouble

with k > n

Id	Y	X1	X2	Х3	X4	X5	• •	x999
1								
2								
3								



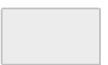
Solution

Many ML methods can efficiently sift through inputs that maximize predictive accuracy.

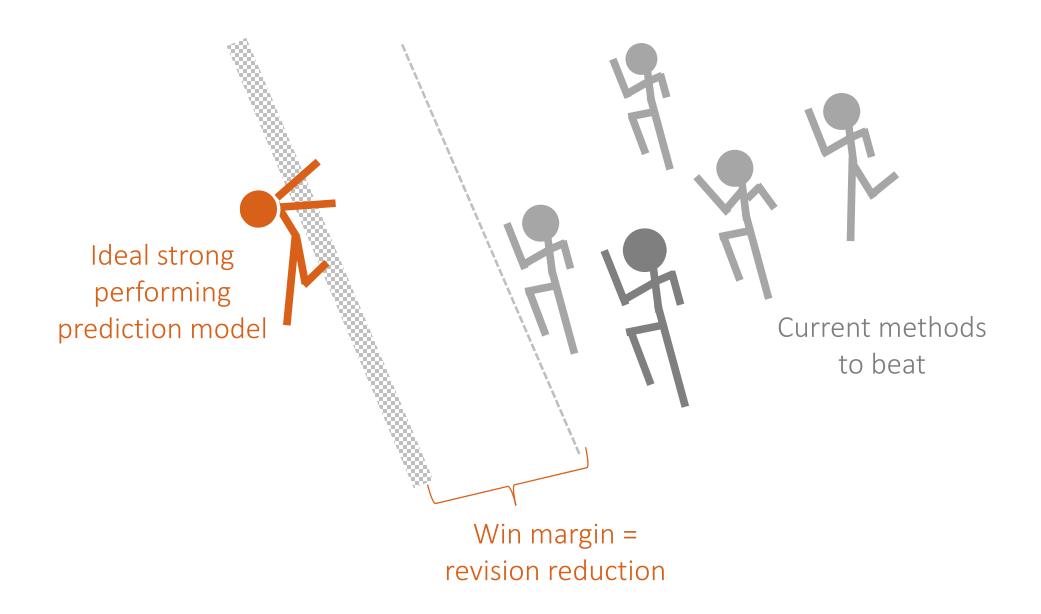
Id	Y	X1	X2	Х3	X4	X5	• •	x999
							•	
1								
2								
3								



Motivation



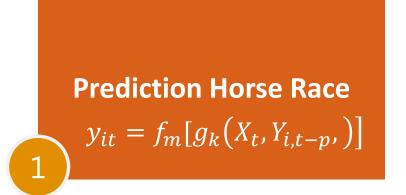
Predictions must beat current methods.



Motivation

Poor performing prediction model

A Prediction Horse Race



Evaluate Absolute Performance

2

3

Predict the Quarterly Services Survey (QSS).

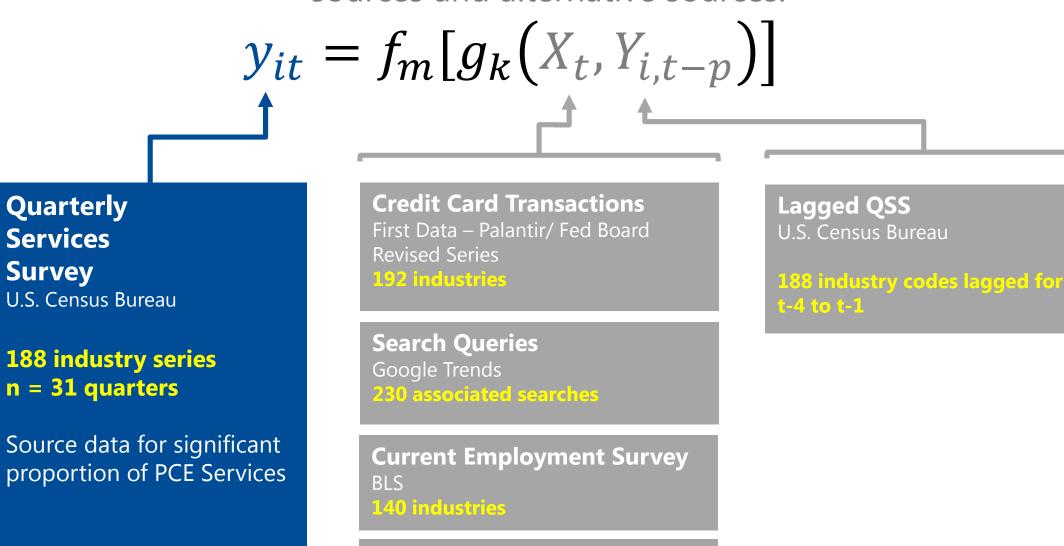
Identify Best Relative Reductions

$$y_{it} = f_m[g_k(X_t, Y_{i,t-p})]$$

"Predict quarterly industry growth y_{it} using a large number of combinations of algorithms, data, and variable selection methods"

Step 1: Data in Horse Race

Draw on a broad range of potential source data to compare traditional sources and alternative sources.



Consumer Price Index BLS

500+ indexes

Step 1: Algorithms in Horse Race

$$y_{it} = f_m[g_k(X_t, Y_{i,t-p})]$$
4Q Moving AverageRidge RegressionStepwise RegressionCARTLASSO RegressionRandom ForestMulti-Adaptive
Regression Splines

Horse Race

Step 1: Algorithms in Horse Race

$$y_{it} = f_m[g_k(X_t, Y_{i,t-p})]$$
 $4Q$ Moving AverageRidge Regression $Extreme Gradient BoostingStepwise RegressionCARTLASSO RegressionRandom ForestMulti-Adaptive Regression Splines$

Horse Race

Type of Method

Univariate Multivariate Regression Non-Linear or Non-Parametric

Step 1: Algorithms in Horse Race

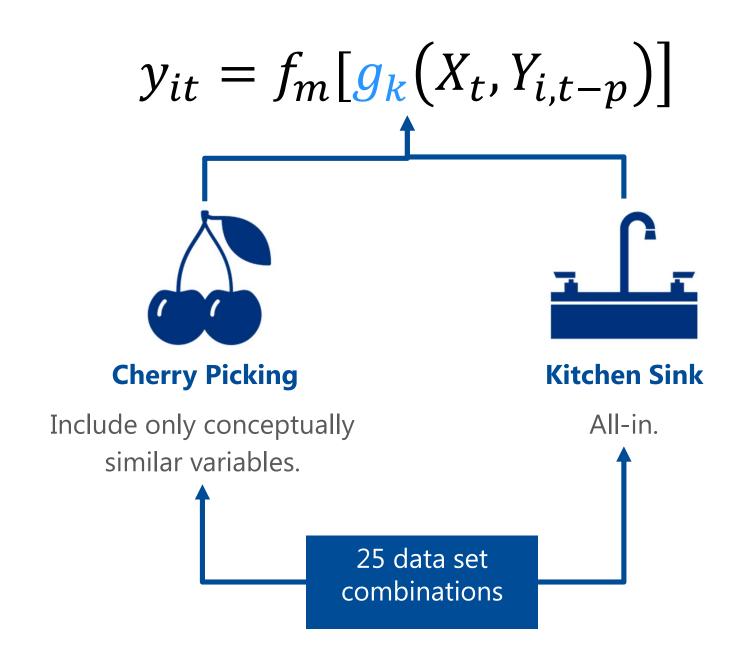
$$y_{it} = f_m[g_k(X_t, Y_{i,t-p})]$$
4Q Moving AverageRidge RegressionStepwise RegressionCARTSupport Vector
MachinesLASSO RegressionRandom ForestMulti-Adaptive
Regression Splines

Horse Race

Single or Ensemble (many in one) Single

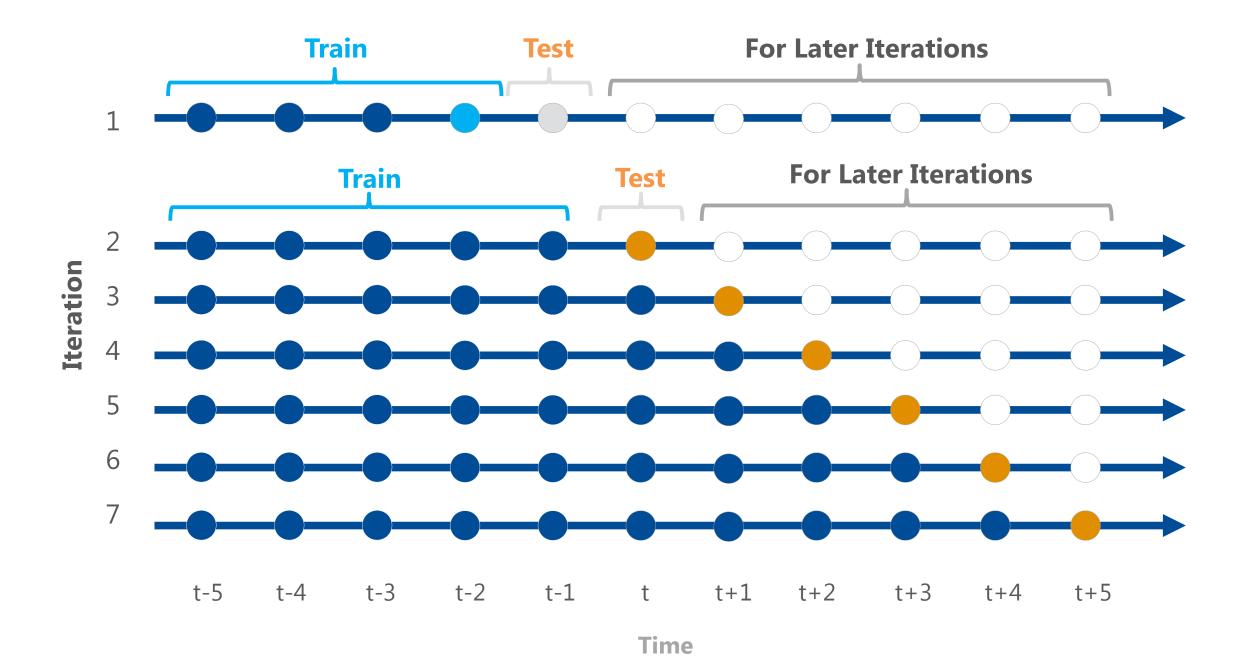
Ensemble

Step 1: Variable Selection Procedures in Horse Race



Horse Race

Methods: One-Step Ahead



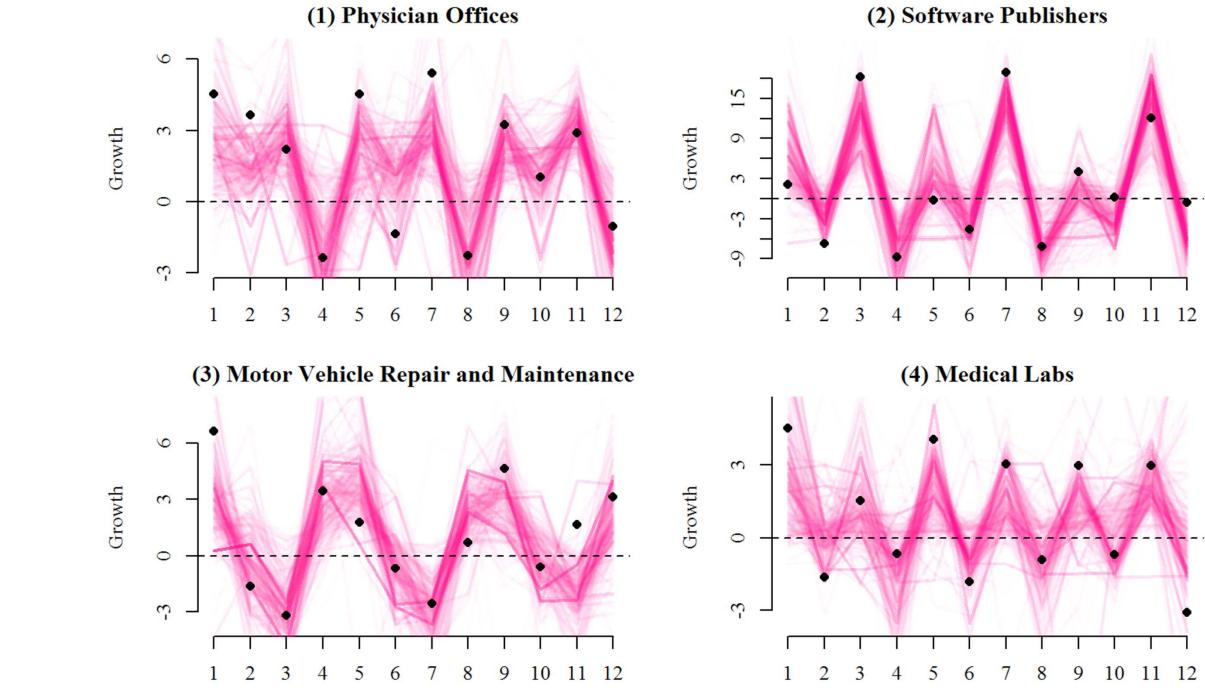
Horse Race

For this study 886,608 models were trained, based on the combinations of

> industry Х data sets Х algorithm Х variable selection Х time period

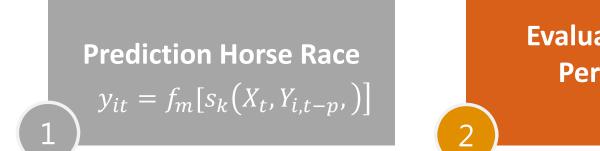
Horse Race

Prediction tracks show agreement and [disagreement] in growth patterns.



Horse Race

Approach (Part 2): Evaluating Absolute Performance



Evaluate Absolute Performance

3

Measure what generally leads to an accuracy increase in the QSS

Absolute Performance

Identify Best Relative Reductions

$$RMSE_{i,k,m} = \beta + \alpha_i + \gamma_m + \xi_k + \varepsilon_{i,k,m}$$

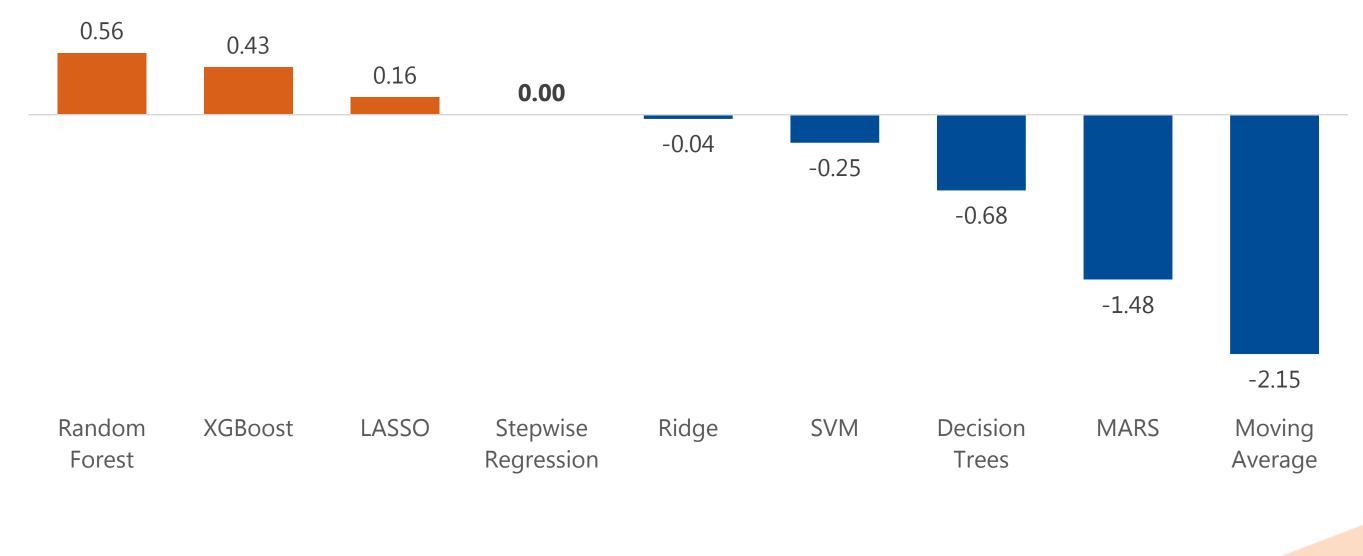
Estimate a **fixed-effects regression** to parse out the average accuracy gain associated with each algorithm, data set, etc.

Absolute Performance

m

Results: Average RMSE Improvement (Relative to Stepwise)

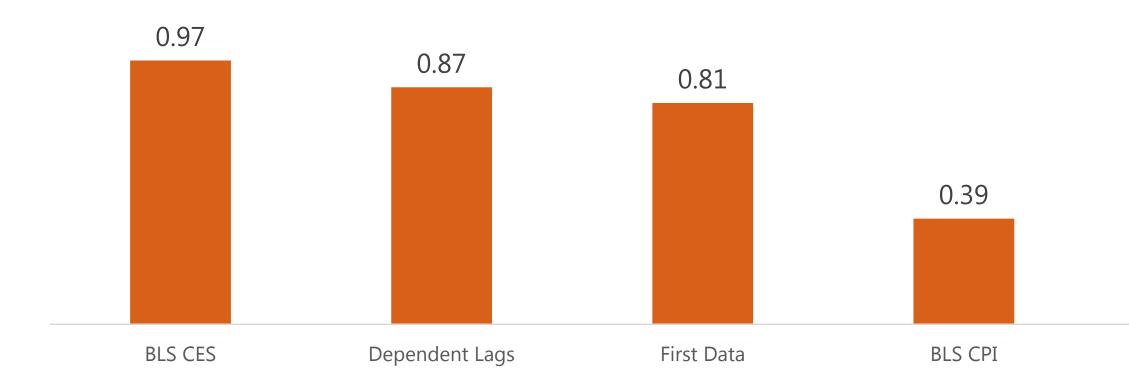
<u>Takeaway</u>: On average, ensemble methods improve accuracy the most.



Absolute Performance

Average RMSE Improvement (Relative to Google Trends)

<u>Takeaway</u>: Measures of consumption and employment help the most. Also, the processes are strongly seasonal.



Absolute Performance

0.00

Google Trends

More data might not better, and cherry picking does not help.

Cherry Picking vs. Kitchen Sink

-0.28 Cherry Picking *adds* error to predictions.

Number of Data Sets (Need to be considered in conjunction with dataset parameter estimates)

Two data sets add some additional error, but can be offset depending on the datasets that are combined.

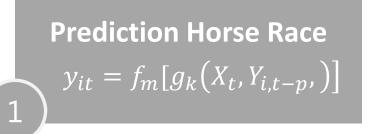
Three data sets add a disproportionate amount of error, but no three data set combination is better than a two data set combination.

Absolute Performance

-0.31

-0.8

Revision Impacts



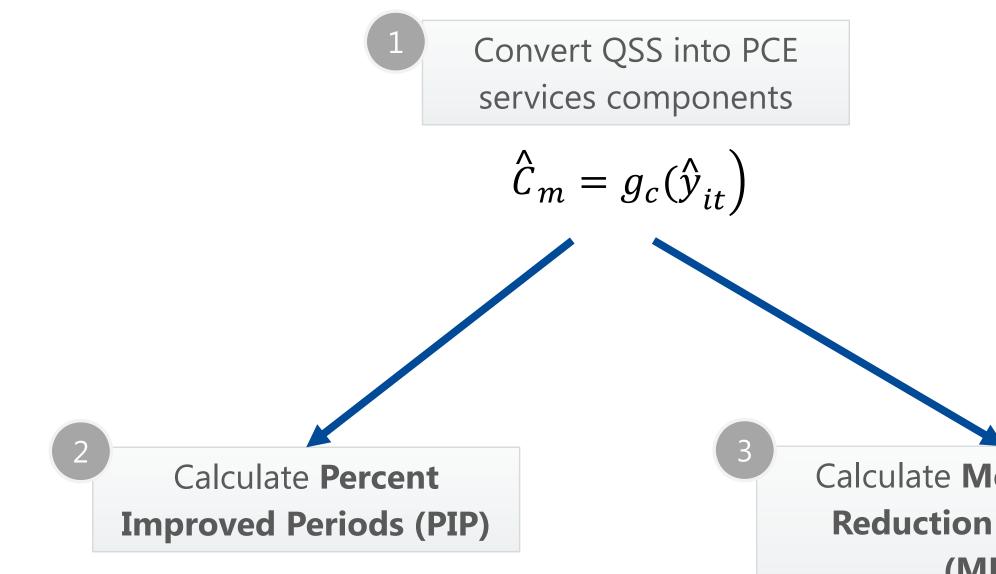
Evaluate Absolute Performance

2

Identify Best Relative Reductions

Convert QSS into PCE and find sure-fire improvements compared with current

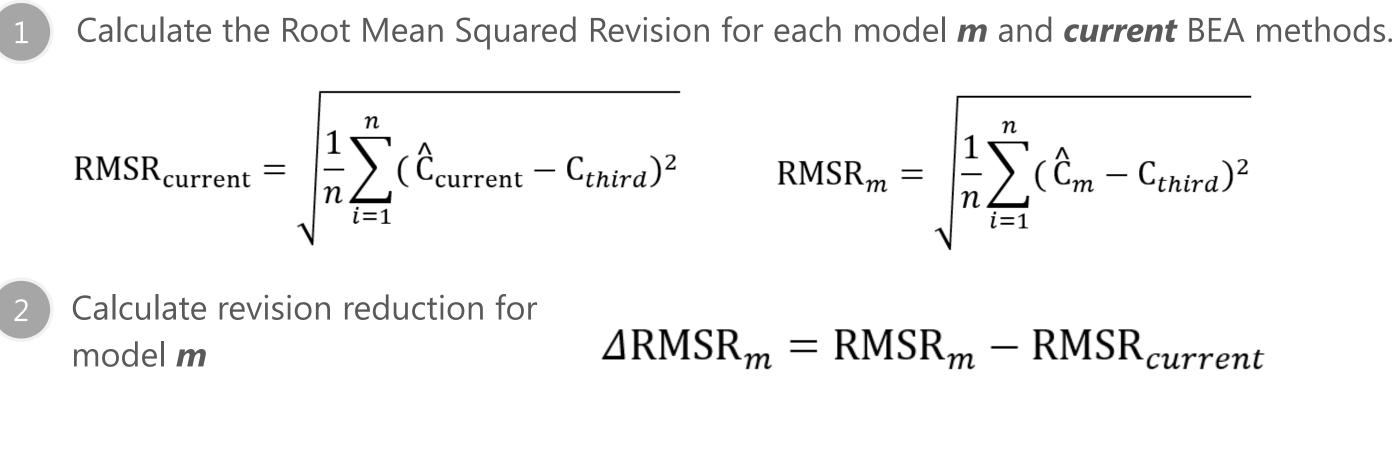
Calculate Sustainable Improvements



Revision Impacts

Calculate Mean Revision Reduction Probability (MRRP)

Mean Revision Reduction Probability



Estimate probability that any model will result in revision reduction for component **C**

$$MRRP_{c} = \frac{1}{M} \sum_{m=1}^{M} (\Delta RMSR_{m})$$

Revision Impacts

$$(\hat{C}_m - C_{third})^2$$

< 0)

Percent Improved Periods (PIP)

How *often* do models offer an improvement?

Calculate the Root Mean Squared Revision for each model *m* and *current* BEA methods. Т

$$PIP_m = \frac{1}{T} \sum_{i=1}^{T} (|\hat{C}_{mt} - C_{third,t}| < |\hat{C}_{current,t} - C_t]$$

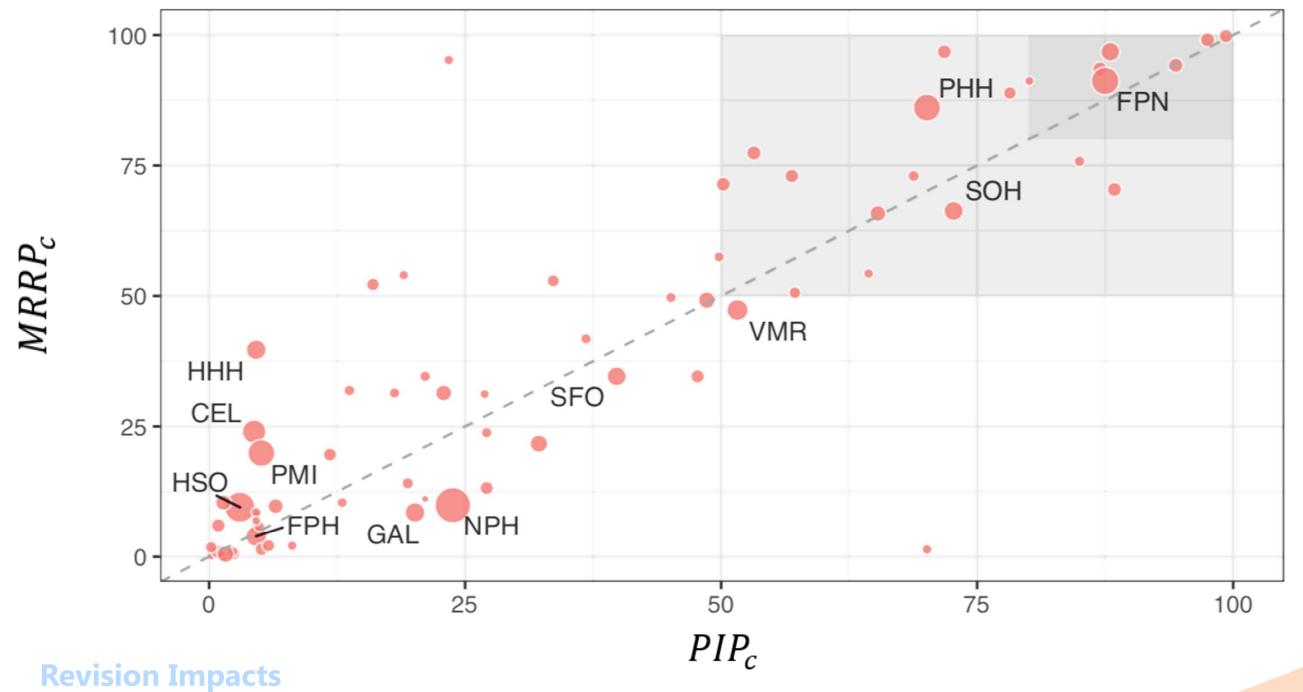
Calculate average revision reduction using model *m*

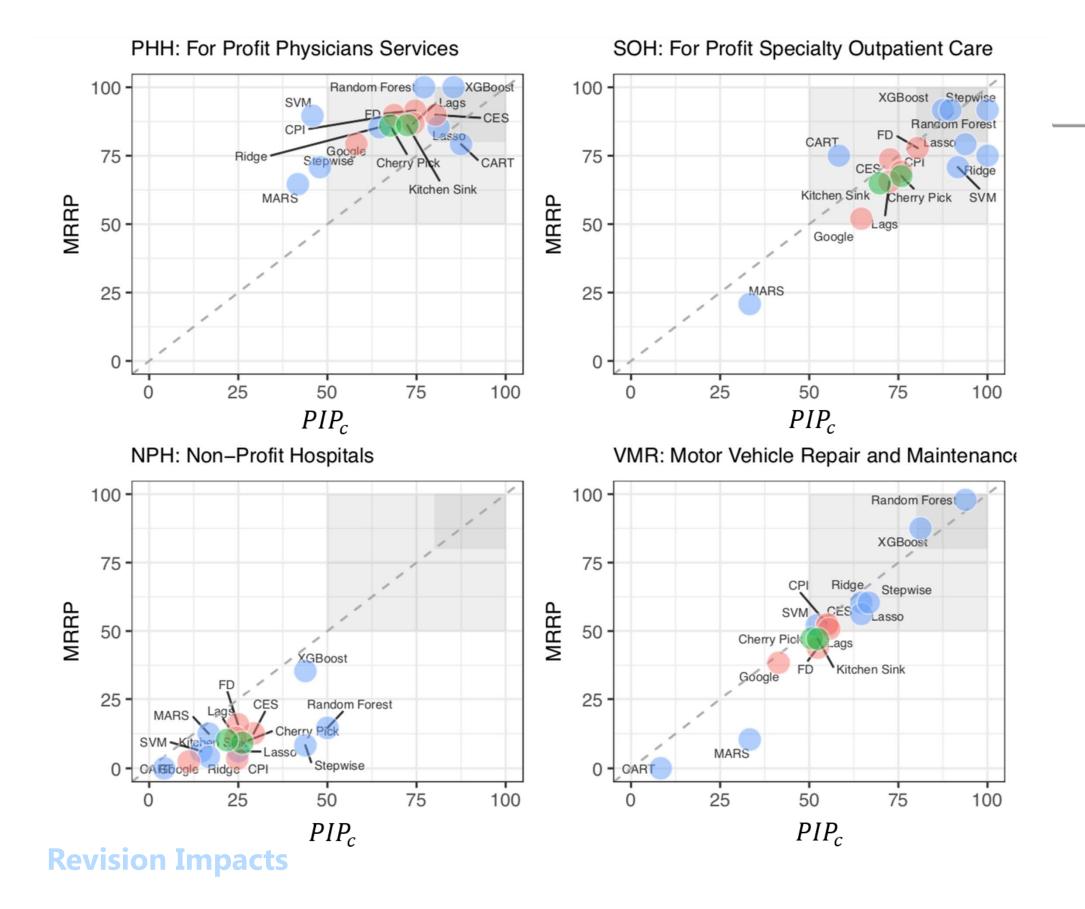
$$PIP_{c} = \frac{1}{M} \sum_{m=1}^{M} (PIP_{m} > 0.5)$$

Revision Impacts

hird,t)

Identifying predictable series comparing MRRP and PIP





Given the methods and data, some algorithms are far less predictable than others.

Mean Revision Impacts for Random Forest models

	Percent				Levels (\$Mil)			Direction	
Component	10th	Mean	Median	90th	Mean	Median	ML	Current	
PCE	5.59	12.17	13.11	18.33	2054.75	2213.61	100	100	
PCE Services	0.2	10.3	11.78	19.72	1552.69	1775.76	100	100	
Health Care	2.23	11.27	12.64	18.99	1442.62	1618	100	100	
Transportation	2.91	25.57	26.7	43.86	1100.38	1149.29	75	67	
Recreation	4.28	8.47	8.28	12.75	349.73	341.88	92	83	
Education	1.74	3.25	3.11	5.16	17.6	16.83	100	100	
Professional and Other	1.38	4.2	3.72	7.02	77.84	68.89	75	67	
Personal Care and Clothing	21.8	27.37	28.24	31.03	513.85	530.18	92	83	
Social Services and Religious	10.29	14.21	14.7	17.82	155.06	160.42	83	83	
Household Maintenance	-24.25	10.94	16.71	34.38	45.49	69.49	100	92	
GO NP Social Services	0.07	0.43	0.47	0.74	9.37	10.2	33	33	
GO NP Prof Advocacy	26.24	36.99	41.03	47.8	235.12	260.79	100	100	

Revision Impacts

Next Steps Conduct testing and operationalize a productionable prediction system.



Jeffrey.Chen@bea.gov

