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ADAPTIVE DUAL CONTROL METHODS* 

EDISON TsEt 

A new approach is discussed for the problem of stochastic control of nonlinear systems with noisy observa- 
tions. The approach is based on the concept of dual control and the principle of optimality. The resulting 
control sequence exhibits the closed-loop property, i.e., it anticipates how future learning will be accomp- 
lished and how it can be fully utilized. Thus, in addition to being adaptive, this control also plans its future 
learning according to the control objective. Some simulation results illustrate these properties and demon- 
strate the computational feasibility of the adaptive dual control algorithm. 

1. INTRODUCTION 

In many processes arising in engineering, economic and biological systems, the 

problem of decision making (or control) under various sources of uncertainties is 

inherent. These uncertainties prevent exact determination of the effect of all 

present and future actions, and therefore deterministic control theory is not 

applicable. If the effect of these uncertainties is small, one can still use optimal con- 

trol theory to obtain a feedback control law based on deterministic considerations. 

The feedback nature of the control would tend to reduce the sensitivity to uncer- 

tainties but would require the state of the system to be measured exactly. Again, 

this assumption is good only when the measurement error is small in comparison 

with the signal being measured. 

In many cases, the phenomena of uncertainty (including measurement error) 

can be appropriately modelled as stochastic processes, allowing them to be 

considered via stochastic optimal control theory. A very important concept in 

stochastic control is the information pattern available to a controller at specific 

time, for the purpose of decision making. As the process unfolds, additional 

information becomes available to the controller. This information may come 

about accidentally through past control actions, or as a result of active probing 

which itself is a possible control policy. Thus “learning” is present, whether it is 

“accidental” or “deliberate.” The information pattern available to the controller 

indicates not only what type of learning is possible at each instant of time, but, 

more importantly, whether future learning can be anticipated and how it could 

be influenced by present action; i.e., whether probing would be helpful in future 

learning. Since more learning may improve overall control performance, the 

probing signal may indirectly help in controlling the stochastic system. On the 

other hand, excessive probing should not be allowed even though it may promote 

learning because it is “expensive” in the sense that it will, in general, increase the 
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expected cost performance of the system. This interplay between learning and 

control is the key issue of stochastic control theory. 

This “‘dual’’ purposes of the control was pointed out by Fel’dbaum [1] using 

the stochastic dynamic programming approach [2]. Unfortunately the solution 

cannot be obtained numerically in most situations. Some simple examples were 

worked out later indicating the dual role of the control proper and of probing or 

identification [3], [4]. Recently, a dual control algorithm was developed by Tse et al. 

[5], [6] which is applicable to a fairly large class of nonlinear stochastic systemis. 

In this paper, the basic concepts involved in the development of the dual control 

methods as described in [5], [6] are discussed in detail. Hopefully, through this 

discussion, the interplay between learning and control will be brought out more 

clearly. Some simulation results as reported in [6] will also be presented to provide 

deeper understanding of the differences between active and passive learning control 

strategies. - 

2. PROBLEM STATEMENT 

The class of nonlinear stochastic systems to be considered in this paper is 

described by 

(2.1) x(k + 1) = f[k, x(k), a(k)] + E(k): 

-y(k) = hk, x(k)] + (k), k=0,1,....N—1 

where x(k) € R", u(k) € R’, and y(k) € R™. It is assumed that x(0), {E(k), n(k + 1)}i=3 . 

are independent Gaussian vectors with statistics : 

(2.2) — E{x(O)} = &(00): cov {x(0): x(0)} = E00) 

(2.3) E(&(k)} = 0; cov {E(k); E(k)} = Q(k) => 0 

(2.4!) E{nlk +} =0: cov {Hk + 1): nk + I} =RK+ 120. 

The performance measure is given by 

N-1 

(2.5) j= E | vtxlNy + Y L{x(k), wlh), a} 
k=0 

where the expectation E{-} is taken over all underlying random quantities. To 

complete the formulation, one has to specify the class of admissible control laws 

to be considered. In order to emphasize the interplay between learning and control, 

we shall distinguish the difference between a feedback control law and a closed-loop 

control law. Such a distinction has not been made in the literature; as a matter 

of fact, their usage has been interchanged quite frequently. However, in order to 

get further insight into the dual characteristic of the control, such a distinction 

should be stressed. 

In the control engineering literature, a control law is defined as a mapping 

from the information state (see Section 3 and [8]) space to the control space. 

Within the class of control laws, we shall make fine distinction between feedback 

' For perfect observation, we have R(k + 1) = 0 for all k. The discussions in this paper include 
this special case which is of interest to economists. 
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control law and closed-loop control law via the information pattern available to 

the controller at each instant of time. The information pattern indicates what type 

of knowledge is available to the controller so as to construct the mapping from 

the information state space to the control space. A feedback law is defined as one 

in which the structure of mapping is dependent on the system dynamic, the past 

measurement program and the past measurement statistics. For the feedback 

controller, the future observation program and future observation statistics are 

not available to the controller, and therefore the controller cannot anticipate how 

future learning will be utilized. Feedback control systems will ignore the possibility 

of future learning and perform control action in a cautious manner. Thus for a 

feedback system, learning is “‘accidental.’’ A closed-loop controller is defined as 

one in which the structure of the mapping depends on the system dynamic, the 

past and future measurement program as well as the past and future measurement 

statistics. The closed-loop controller can therefore take into account the possibility 

of future learning and have it regulated according to the control objective. To 

express these concepts in mathematical terms, let us denote by J* the information 

about the system dynamics 

D © {f[i, -, -]}t=o 

M* the information about the measurement program up to time x 

M* © ffi, -]}*_, 

and /* the information about the statistics of the initial state, the process noise 

up to time N — | and the observation noise up to time k: 

S* = {R(0|0), Z(0|0), Q(0), ..., QIN — 1), R(1), .. -, R(k)} 
and 

SF & {8(0|0), H(0|0), QO), ..., AN — 1}. 

A control law is said to be of feedback type if 

(2.6) wP®(k) = wP®(k, Y*, U*-!:QN-!, a, S*) 

where Y* 4 {y(1),..., y(k)}, Ut"! © {u(O)},...,u(k — 1)}. A control law is said to 

be of closed-loop type if 

(2.7) u@“(k) = uW'(k, Y*, UF~ 1 QN~ 1, WN 1, NO), 

From (2.6) and (2.7) it is clear that we have the inclusion relation as described 

by Figure 2.1. 

CLASS OF CONTROL LAWS 

CLASS OF CLOSED-LOOP LAWS 

CLASS OF FEEDBACK LAWS 

Figure 2.1 Inclusion of different control laws 
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Now a stochastic control problem can be formulated as follows: 

Stochastic Control Problem 

@ Find a closed-loop control law which will minimize the average cost (2.5) 

subject to the dynamic and observation constraints (2.1). 

Before going into the solution for optimal closed-loop control law, let us 

consider several suboptimal adaptive control laws which are frequently used in 

the literature; and see which subclass they belong to. 

1. Certainty Equivalence [7}, [31] 

uo*(k) = o(k, &(kj|k)) 

where @(k, -) is the optimal control law for the corresponding deterministic control 

problem (and thus does not dependon “*~' and .@~'), and &(k\k) is the optimum 

state estimate (and thus depends on 9*, .W@*, /*). It is easily seen that u“*(k) is 

within the class of feedback. 

2. Separation [5], [32] 

The control is a function of the conditional mean state estimate 

u'(k) = i(k, X(k\k)) 

where (k, -) can be different from the deterministic optimum control law @(k, -). 

If w(k, -) is dependent on {9%~', W*~', YN~!\. it is a closed-loop law; otherwise 

it is a feedback law. 

3. Open-Loop Feedback Optimal (OLFO) [22], {29}, [30] 

At any time k, the problem of choosing a deterministic sequence 

{u(k),...,u(N — 1)} 

sO as to minimize the conditional average cost 

N-1 
J, = E{W(N)) + YL L[xti, ui, MY", U4} 

i=k 

subject to the dynamic constraint 

x(i + 1) = f(i,x() + Gi): i=k,..., N-1 

is solved; and the first in the control sequence is applied to the system. When a 

new observation y(k + 1) is obtained, the optimization problem is repeated again 

at time k + 1. Notice that the solution of the optimization problem at each time 

k is not influenced by knowledge of future measurement program and associated 

future measurement noise statistics. Thus the OLFO control law is within the 

class of feedback control laws. 

Many other suboptimal adaptive control laws discussed in the literature are 

within the feedback class [21]—[25]. From the above discussion, we see that a 

feedback control law does not have the capability of anticipating future uncertainty, 
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and thus, in general. it may not give satisfactory performance when the time 

horizon to be considered is relatively short. It is only in some special cases that 

feedback law give satisfactory or even optimum performance [5]—[11], [28]. 

In the next section, a method is described for obtaining a closed-loop control 

law which appropriately regulates learning for the purpose of control. 

3. OPTIMAL STOCHASTIC CONTROL 

From the above discussion, we note that a closed-loop control law will have 

the capability of anticipating how future learning will be carried out. The “‘best”’ 

or optimum closed-loop control law would take into account not only how future 

observations will be made but also how they will be utilized in an optimum manner. 

This is an important aspect of the principle of optimality. Therefore a natural 

approach to the stochastic control problem is via stochastic dynamic program- 

ming. The derivation of the stochastic dynamic programming can be found in 

many different places [2], [8] and therefore will not be repeated here. What we 

would like to present in this section are: 

1. The basic ingredient of stochastic dynamic programming, and 

2. The basic difficulties involved in the solution. 

These discussions will not only help us to appreciate the formulation, they also 

serve as motivation for future development. 

There are three basic ingredients in stochastic dynamic programming: 

1. The concept of information state [8] at time k which is sufficient to represent 

the past behavior of the system up to time k. This is analogous to the vector 

state in the deterministic case. We shall denote the information state by 

P,. The combined sequence (Y*, U*~') can be an information state, and 

so is the conditional density p(x(k)| ¥*, U*~*). 

. An optimal-cost-go associated with each information state at time k + 1 

which expresses how future observations will be made and they will be 

utilized by the controller in an optimum manner. It will be denoted by 

I*{F.44,k + 1}. 

. The conversion of a multistage stochastic optimization problem into a 

sequence of single stage optimization problems which can be performed 

sequentially. 

The stochastic dynamic programming equation expresses how 1*{F,, k} can 

be computed, at least in principle, recursively by 

(3.1) I*{A,k} = min E{ P[x(k), u(k), kK] + I*{A. [A, alk], k + 1} ¥*, U*"*}, 
u(k) 

where u(k) is a deterministic quantity and ZX, ,[A, u(k)] represents the evolution 

of the information state. Notice that from (3.1), the optimum u(k) will depend, 

among other things, on ¥,. The end condition for I*{-, -} is 

(6.2) I*{Py, N} = E{Wx(N))|¥", UX"). 

It is quite straight forward to verify that the control law obtained via (3.1)—(3.2) is 

a closed-loop type as defined by (2.7). 

Theoretically, the optimal control problem has been solved when equations 

(3.1) and (3.2) are derived; however, in practice, the problem only begins with 

69 



these equations. Some of the major difficulties are discussed in Tse, Bar-Shalom 

and Meier [5]. In this paper we shall summarize the difficulties as follows: 

1. The information state is either infinite dimensional or finite but grows 

with time. 

2. The optimal cost-to-go associated with the information state is generally 

not an explicit function. In general, the optimal cost-to-go can only be 

expressed as a table-look-up type function of the information state. 

3. Storage of the control value associated with each information state at 

time k, k = 0,..., N — 1 is practically impossible due to the large dimen- 

sionality. 

There is a very special class of problems, known as the LQG (Linear-— 

Quadratic—Gaussian) [20] problems, in which (3.1), (3.2) can be solved exactly, 

and the optimal closed-loop control is a feedback law. This is the case when 

(3.3) f(k, x(k), u(k)) "= A(k)xik) + B(k)ju(k) 

(3.4) h(k, x(k)) = C(k)x(k) 

(3.5) W(x(N)) = 3x(N)Fx(N) 

(3.6) L (x(k), w(k), k) = 3 [x'(k)W(k)x(k) + w(k)N(k)u(k)] 

with F > 0, W(k) > 0, N(k) > 0. In this case, &(k\k) + E{x(k)|¥*, U*~'} is an 

information state and [21] the optimal cost-to-go has a closed-form expression of 

the information state. 

(N-1 

(3.7) T*{ (kk), k} = 2X'(k|A)K(K)R(k|k) + dtr) [W(i)X(iji) 
=k 

+(X(i + Li) — Li + Li + 1)KG + 1) + FaNiN)| 

where K(k) satisfies a Riccati equation which can be precomputed once A(k), 

B(k), W(k), N(k) and F are known; L(iji) = cov {x(i)|Y',U'~"}, D+ 1) = 

cov {x(i + 1)|¥‘, U‘~'} which are independent of control. Note that the future 

updated error covariances, which express how future learning will be possible, 

are included in I*{&(k|k), k}. However, since these covariances will not be influenced 

by the control action, only caution but no probing should be exercised by the 

optimum control. For the particular cost criterion (Quadratic), the optimum 

control law is a certainty equivalence law [6], [9], [10], [28], which is a feedback 

law (see Section 2). 

4. DuAL CONTROL METHODS 

In this section, we shall describe the dual control methods as developed by 

Tse et al. [5], [6]. The detailed equations can be found in [5], [6] and therefore will 

not be repeated here. The purpose of this section is to provide a basic under- 

standing of the method. 

As was noted before, the solution of (3.1)—(3.2) is practically impossible due 

to the large dimensionality. Instead of carrying out numerical approximation to 

the stochastic dynamic prograniming equation, we shall carry out “conceptual” 
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(4.1) 

(4.2) 

approximation to the principle of optimality. The procedures in the approximation 

are as follows: 

1. 

Ww 

Approximate the information state by keeping only the first two moments 

of the state estimate; i.e., consider a close-ioop control of the type 

uo "(k, R(k|k), D(k|k); DY—', MN-1, FN-}). 

The computation of &(k|k), Z(k|k) can be done by any one of the following 

methods: Extended Kalman filter [12], [13], adaptive filter [13], [14], 

second order filter [14], [15] and optimum filter [16], [17], [18]. For 

perfect measurement, we use observer-estimator [14], [26], [27] to obtain 

the state estimate. 

. Approximate the optimal cost-to-go associated with the approximated 

“information state,” {(&(k + 1|k + 1), X(k + 1k + 1)}, at time k + 1. Let 

us associate with each predicted state &(k + 1|k)anominal control sequence 

U,[k + 1,N — 1: 8(k + 1|k)]. Usually, this nominal control sequence 

represents optimum (or near optimum) decision sequence if no noise and 

no state uncertainties are present. Using this nominal control sequence, 

a nominal state trajectory sequence is also generated via state equation 

(2.1) with all the noise terms set to zero. Perturbation analysis is carried 

out around these nominals, approximate optimal cost-to-go, 

I[R(k + 1k + 1), E(k + 1k + 1), k + 1], 

that explicitly reflects the future learning and control performance can be 

obtained. Detail equations for the approximate optimal cost-to-go can be 

found in [5], we only remark here that /}[-, -, -]isquadraticin &(k + 1|k + 1). 

. At each time k = 0, 1,..., N — 1, we shall solve an optimization problem 

in real-time. Using the concept of principle of optimality, the total cost of 

applying the control u(k) is P 

I ,{u(k)] = E{ (x(k), a(k), k) 

+ [#[R(k + 1k + 1: u(k)), D(k + 1k + 1; u(k)),k + 1)/¥*, U*~"} 

where &(k + 1|k + 1; u(k)), D(K + 1|k + 1: u(k)) is the updated state esti- 

mate and covariance when u(k) is used. Since [}[-,-,-] is quadratic in 

R(k + 1|k + 1), the right-hand side of (4.2) can be simplified to have the 

form 

I {u(k)] = Tr {Z,.[R(kIk), u(k), KTZ(KK)} 

+ T[&(k + 1k: u(k), L(k + 1\k;u(k)), k + 1) 

where &(k + 1|k;u(k)), £(k + 1|k;u(k)) is the predicted state and covariance 

when u(k) is applied (see [5] for the details on I({-, -, -]). The optimization 

problem to be solved at time k is to find u(k) which will minimize /,[u(k)). 

This is usually accomplished via search methods [5], [6], [19]. Once the 

minimizing value u*(k) is obtained, it is applied to the system. Then 

R(k + 1k + 1)and X(k + 1|k + 1) are updated using one of the estimation 
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methods mentioned above. The whole procedure is repeated for time 

k + 1 and so on until the end of the control period. An outline of the 

method, in the form of a flow-chart, is given in Figure 4.1. Note that the 

resulting control law is a closed-loop law. 

5. LINEAR SYSTEMS WITH RANDOM PARAMETERS 

In this section, we shall describe an explicit dual control algorithm for the 

class of problems of controlling linear systems with random parameters vector. 

Consider a discrete-time linear system described by 

(5.1)? x(k + 1) = Afk, O(k)]x(k) + bfk, O(k)Ju(k) + E(k): =k =0,1... 

y(k) = Ck, O(k)}x(k) + afk); k = 1,2,... 

where x(k) € R", y(k) € R™, @(k) € R° and u(k) is a scalar control.* It is assumed that 

@(k) is a vector Markov process satisfying 

(5.2) Ok + 1) = D(k)O(k) + y(k) k= 0,1,... 

where D(k) is a known matrix.* The vectors {x(0), 6(0), E(k), n(k + 1), y(k),k = 0,1,...} 

are assumed to be mutually independent Gaussian random variables with known 

mean and covariances. The cost functional is quadratic in nature 

(5.3) J = 4E{[x(N) — p(N)]'W(N)[x(N) — p(N)] 

N-1 

+ ¥ [x(k) — p(k)]’ - Wk) [x(k) — plk)] + A(kju?(k)} 
k=0 

where it is assumed that W(k) > 0, A(k) > 0, and {p(k),k = 0,...,N} is given 

a priori. 

We can transform this problem to the form discussed in the previous sections 

by augmenting the parameters to form a new stage z'(k) 4 [x’(k):@'(k)]. In here, 

we shall specify a procedure to choose the nominals that results in an explicit 

algorithm for the class of problems discussed. The nominal control sequence 

U,[k + 1, N + 1: u(k)] is chosen by minimizing 

Jofk + 1) = 3[Xo(N) — p(N)]'W(N)[Xo(N) — p(N)] 

N-1 

+4 ¥ {lx — pT WW [xol/) — pL) + AD uo(D?} 
j=k+1 

subject to the constraints : 

Xo(j + 1) = ALJ: Oo(J))Xo(J) + DLJ: Oo(J)Juol J); Xo(k + 1) = RK + 1k) 

Bo(j + 1) = D(j)Oo(J); @o(k + 1) = Ok + 1k) 

where &(k + 1|k) is the predicted state if u(k) is applied. Note that 0o(j),j = k + 1, 

...,N can be computed independently of how the control uo(j) is selected. The 

? If perfect measurement is available, we have Ck, Ak)}] = L, and n(k) = 0, this would imply that 
the covariance for 9(k) is zero. 

3 For simplicity, we shall discuss only the scalar input case. The results can be extended to the 
multi-input case. See Tse and Bar-Shalom [6]. 

* The approach can be extended to the case where D is a function of x also. 
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6. SIMULATION STUDIES 
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Flowchart of the dual control algorithm 

solution for this optimization problem can be obtained easily [11]. For the com- 

plete set of equations, relevant to:a one-step optimization problem, see Tse and 

Bar-Shalom [6]. 

In this section, an example of controlling a third order time invariant linear 

system with six unknown parameters will be presented. The performance of the 

actively adaptive dual control algorithm will be compared to those of the certainty 

equivalence (C.E.) control and the optimal control with the known parameters. 

The latter will serve as an unachievable lower bound. In both examples, a second 



order filter is used for estimation. A discussion of the actively adaptive feature 

of the dual control algorithm and its computational feasibility is also presented. 

Consider the third-order system 

(6.1) x(k + 1) = A(O,, 02, 03)x(k) + B(O,, 05, Auk) + E(k) 

yk) = [0 O 1}x(k) + nk) 

where 

4.098 0, 

(6.2) A(O,,9,,9;3;=| 0 O 1}: B(O,,0;,96) =| 95 

6, 0, 4; 46 

and {6,\°, are unknown constant parameters with normal a priori statistics 

having mean and variance 4 

6(0|0) = [1.0, —0.6, 0.3, 0.1, 0.7, 1.5)’, 

©°*(0\0) = diag (0.1, 0.1, 0.01, 0.01, 0.01, 0.1). 

The true parameters are 

6 = [1.8, —1.01, 0.58, 0.3, 0.5, 1.0)’. 

The initial state is assumed to be known: 

R(0|0) = x(0) = 0. 

Two examples will be considered. In the first example, the cost performance 

is expressed by 

4 N-1 
(6.3) J= 1E}La(N) — p}? + » awa}. 

In the second example, the cost performance is given by 

i=2 

N-1 

(6.4) J= $e {[aN) — plixiN)— p] + ¥ ww} 

where A = 1073, p = 20 and p’ = [0, 0, 20}. 

Twenty Monte Carlo runs were performed for both examples (with the same 

noise samples) and their average performances are summarized in Tables 6.1 and 

6.2). It is noted that in both examples, the dual control algorithm gives a sub- 

' stantial improvement over the C.E. control, both in average performance and 

reliability. The terminal miss for the dual control is also much better than the 

C.E. control in both cases. 

To understand the interplay between learning and control, and the distinction 

between active and passive learning, we shall take a closer look at the two examples. 

Conceptually, the second example is a “harder” problem than the first 

example since in the first example, the aim is to “hit’’ a surface while in the second 

example, the aim is to “hit” a point in the state space. Therefore, it should be 

expected that the average cost would be higher in the second example than that 
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TABLE 6.1 

SUMMARY OF RESULTS FOR THE First EXAMPLE 

Optimal Control with C.E. Control with Dual Control with 
Control Policy Known Parameters Unknown Parameters Unknown Parameters 

Average cost 6 114 14 

Maximum cost in a sample . 
of twenty runs 20 458 53 

Standard deviation of the 
cost 6 140 16 

Average miss distance 
squared 12 225 22 

Weighted cumulative control 
energy prior to final stage 0.1 1.4 3.2 

TABLE 6.2 

SUMMARY OF RESULTS FOR THE SECOND EXAMPLE 

Optimal Control with C.E. Control with Dual Control with 
Control Policy Known Parameters Unknown Parameters Unknown Parameters 

Average cost ; 15 104 28 

Maximum cost in a sample 
of twenty runs 35 445 62 

Standard deviation of the 
cost 9 114 11 

Average miss distance 
squared 28 192 32 

Weighted cumulative control 
energy prior to final stage 1 7 12 

in the first case. This is seen to hold true, as showr in Tables 6.1 and 6.2, for the 

dual contro! and the optimal control with known parameters. However, for C.E. 

control, it does not hold true. This may seem strange, but careful analysis of the 

simulation will offer an explanation for this. 

Let us compare the C.E. controls for the two examples. Note that the control 

energy used in the second case is much more than that used in the first example. 

Note from Figures 6.3 and 6.6 that up to about k = 12, the C.E. control uses 

about the same cumulative energy for the two examples. The fact that the final 

mission is different has not yet become important enough to change the control 

strategy. As a consequence, the learning for both cases is almost the same up to 

this time. In the first example, since the final destination is a surface, the controller 

can wait almost until the final time to apply a contro! to achieve the control 

objective, and therefore the C.E. control is still applying little energy after time 
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Figure 6.1 Average estimation error squared in 0,, 0,, 0, for the first example 

twelve. The learning of the parameters 6,,0,, and 0, is only slightly improved. 

However, for the second example, since the final destination is a point in the state 

space, the control must work “harder” to achieve its objective (transferring from 

one point to another arbitrary point requires three time units). Therefore, the 

control energy after time twelve increases very quickly for the second example. 

This results in a much better estimation of the gain parameters. Since the learning 

in the first example is poorer than in the second example for the C.E. control, a 

higher cost is accrued in the first example than in the second. Note that even 

though the second example is a “harder” problem, a better performance value is 

obtained. This is primarily because “accidental” learning is enhanced by the 

difficulty of achieving the final mission. 
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Figure 6.2 Average estimation error squared in 0,, 0,, 0, for the second example 

For the dual control, quite a different control strategy at the beginning rather 

than at the end of the control interval can be noticed. The fact that a different end 

condition has to be fulfilled is propagated from the final time to the initial time. 

For the second example, the dual controller, realizing that the final mission is 

much more difficult to achieve, decides to invest more energy in the beginning, 

because learning is very important in this case to achieve a satisfactory final 

objective. Note the “‘speed”’ of learning in the second example compared with 

the first example (see Figures 6.1, 6.2, 6.4, 6.5). The dual control regulates its 

energy in learning: in the first example where learning is less important, it does 

not insist on learning which would involve the application of large controls in the 

beginning; in the second example, the learning is much more important and thus 
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more energy is utilized for the learning purpose. For both examples, the expected 

miss distances squared are comparable, thus, the increase in cost in the second 

example is primarily due to the increase in cumulative input energy. This demon- 

strates the active learning characteristic of the dual control. 

Finally, we shall remark on the computation time required by the dual control 

and compare it with that for C.E. control to give some idea of the computational 

feasibility of the dual control algorithm. The optimum control with known 

parameters took 3 sec on an UNIVAC 1108 while the C.E. required 6 sec for one 
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Figure 6.4 Average estimation error squared in 6, , 8, 0; for the second example 

run. The time required for the dual control was 45 sec (with a program that was 

not optimized). However, judging from the improvement over the C.E. control, 

the extra computation time seems worthwhile. 

7. CONCLUDING REMARKS 

This paper describes an approach for obtaining a control algorithm that 

exhibits the dual characteristic of appropriately distributing the control energy for 
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Figure 6.5 Average cumulative control energy for the first example 

learning and control purposes. The approach is an approximation based on the 

principle of optimality that retains the closed-loop feature of the control. An 

adaptive dual control is described that possesses the distinguishing characteristic 

of regulating its learning as required by the control objective. Such an “active” 

learning feature is not present in most of the feedback control methods reported 

in the literature [21]—[25]. For those classes of problems where the interplay 

between learning and control is crucial for obtaining good system performance, 

the dual control method described in this paper can be expected to provide a better 

performance than the “passive’’ feedback control methods. One such class of 

problems is described in Sections 4 and 5. 
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Figure 6.6 Average cumulavive control energy for the second example 

The applicability of the dual control algorithm is particularly well suited to 

problems when the physical sampling interval is on the order of hours and days 

(e.g., problems in economics:. On the other hand, for those problems where “‘real 

time’’ is on the order of micro-seconds or seconds, more work on reducing the 

computational requirement of the dual control algorithm is needed. The poten. 

tial of dual control is so promising that it is felt that further work should be 

continued. 

Systems Control, Inc. 

Palo Alto, California 
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