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Annals of Economic and Social Measurement, 3/1, 1974 

TOPICS IN STOCHASTIC CONTROL THEORY 

IDENTIFICATION IN CONTROL AND ECONOMETRICS; 

SIMILARITIES AND DIFFERENCES 

BY R. K. MEHRA* 

This report attempts to bridge the gap between the economic and the control literatures on the subject 
of system identification and parameter estimation. It is pointed out that the emphasis in the economic 
literature is on large simultaneous equation models and linear estimation techniques, whereas the emphasis 
in the control literature is on state vector and transfer function models, on probiems due to partial state 
observations and nonlinear estimation techniques. Since a step in the direction of easier communication 
between researchers in the two fields would be the use of a common model, the state-vector model of control 
which has already been used in several economic studies is proposed as a unifying link. The relationship 
of the state-vector model to the simultaneous equation model and the role of process and measurement 
noise in the econometric context are discussed. Complete results on the identifiability of state-vector 
models aiong with a stepwise two-stage least squares method for model structure determination and a 
maximum likelihood method for parameter estimation are given. The problems of closed-loop system 
identification and input design are also briefly discussed. 

\. INTRODUCTION 

The purpose of this report is to make an attempt at bridging the gap between 

System Identification in the Control and Econometric literatures. The task is not 

simple due to a relatively long history of development of the area in both fields. 

Even the word “System Identification” has different connotations in the two 

fields, e.g. in control, the word generally denotes the complete three step iterative 

process of model specification, parameter estimation and model verification (see 

Figure 1). However, in the econometric literature, the term “Jdentification”’ refers 

mainly to identifiability questions which have to be settled before attempting 

parameter estimation. In this paper, we wil! use the word “System Identification” 

in the context of control systems. 

There are perhaps more similarities than differences between the control and 

the econometric literature on the subject of system identification. Both rely heavily 

on the theories of probability and statistical inference, in particular least squares 

estimation, likelihood and Bayesian inference. The differences stem mainly from 

the models considered, availability of data, objectives of identification and the 

specific details of estimation algorithms. We elaborate on these points in the 

following sections and present a model which is general enough to include a large 

number of problems of interest to both econometricians and control engineers. 

This model is based on the state space concept and has been studied quite thorough- 

ly in the control literature. We present identifiability results on this model and 

discuss the estimation techniques that have been employed. Finally, we give a few 

examples and mention other related problems. To help the readers with 
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the U.S. Air Force Office of Scientific Research and the U.S. Office of Naval Research under the Joint 
Services Electronics Program by Contracts N00014-67-A-0298-0006, 0005, and 0008. Technical 
Report No. 647. Reproduction in whole or in part is permitted by the U.S. government. 
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Figure 1 

terminology, a table by Dhrymes, Klein and Steiglitz [1] has been expanded and 

presented below. 

Because of the author’s particular background, it has been very difficult to 

avoid an overemphasis on the contributions from control literature. Perhaps a 

similar attempt by an econometrician would help restore the balance by emphasiz- 

ing the contributions from the econometric literature and showing their relevance 

to the control problems. 

2. COMPARISON OF MODELS AND ESTIMATION TECHNIQUES 

Following the pioneering work of Weiner [2, 1930] on generalized harmonic 

analysis of random processes and his solution to the filtering problem in the 

spectral domain, the earlier work in control and communication used frequency 

domain concepts for system identification. Mostly single-input single-output 

systems with rational transfer functions were considered. Since most of the systems 

could be excited by deterministic sinusoidal inputs and relatively noise-free data 

obtained, little attention was paid to the statistical properties of the identified 

parameters and transfer functions. For illustration purposes, let us consider air- 

craft parameter identification. The equations of motion of a rigid aircraft are 

22 



TABLE | 

TERMINOLOGY OF SYSTEM IDENTIFICATION IN ECONOMETRICS AND CONTROL 

Control Econometrics 

Noise Error 
White Gaussian noise Nonautocorrelated normally distributed error 
Colored noise Autocorrelated error 
Measurement noise Error-in-variables 
Process noise Disturbance term 
Record Sample 
Rational z-transform Rational lag distribution 
Identification Specification and estimation of a model 
Identifiable model Justidentified or overidentified model 
Unidentifiable model Underidentified model 
Input variable Exogeneous variable 
Output variable Endogeneous variable 
Equation error method Ordinary least squares or linear regression 
Output error method Nonlinear regression 
Impulse response model Final form model 
Impulse response function Impact, interim and total multipliers 
Markov parameters 
Weighting pattern 
Filtering Exponential smoothing 

written down easily using Newton’s laws of motion in terms of the aerodynamic, 

gravitational and kinematic forces. The parameters relating the aerodynamic 

forces to the motion variables such as linear and angular velocities are called 

stability and control derivatives. For small deviations in velocities and angles 

from nominal values, the motion can be described by a set of linear differential 

equations of the type 

(1) Ax = Fx + Gu 

(2) y= Hx + Du+v 

where A is an inertia matrix (nonsingular), x denotes the state vector consisting of 

displacements (angular) and velocities, u is the control input (elevator, rudder, 

aeleron), y is the measured output that is assumed to be contaminated with noise v. 

The matrices A, F, G, H and D are assumed constant and contain unknown para- 

meters that are elements of a vector @. All other variables viz. x, u, y and v are 

functions of time. 

A brief survey of the methods used for estimating 6 and refinements of the 

above model would now be presented. Greenberg [3, 1951] in an early survey paper 

describes following techniques. 

(i) Sinusoidal response method 

(ii) Inspection of the transient 

(iii) Fourier Transform Method 

(iv) Derivative method 

(v) Prony’s method 

Methods (i), (iii) and (iv) basically use the principle of least squares, whereas (ii) 

and (v) rely on the response of a linear system to a pulse-type of input. Prony’s 

method is particularly interesting since it uses the fact that y(t) for a step or impulse 
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input u(t) can be expressed as the sum of exponentials corresponding to the eigen- 

values of the F-matrix, e.g. 

n 

(3) yt) = ag + Y a,e*it + vit) 
i=1 

where it is assumed that F has distinct eigenvalues. It is easily seen that equation (3) 

is similar to the distributed lag model which has received increasing attention in the 

econometric literature in recent years [1, 4, 5]. Another technique used early on 

was called Equation—Error Method [6], which is identical to regression analysis. 

Shinbrot [7, 1951] proposed a “‘method-function”’ approach in which the equations 

of motion were multiplied by special functions to eliminate errors due to finite 

data lengths and unknown initial conditions in using the Fourier transform 

approach. The idea seems similar to the instrumental variable approach of Reiersel 

[7] in which special matrices are used to obtain consistent estimates. The later 

work in aircraft parameter identification uses nonlinear regressions techniques 

variously called quasilinearization [8], modified Newton—Raphson [9] and differen- 

tial correction. These techniques also apply to nonlinear models. Most recently [10, 

11, 12] maximum likelihood and Bayesian methods have been used for parameter 

estimation in models of the type 

(4) AX = Fx + Gu+w 

(5) y= Hx+Du+v 

where w(t) is an uncorrelated or “white noise’ Gaussian process. 

At this stage, it is appropriate perhaps to say a few more things about the 

model of equations (4) and (5). This model, known as the “‘state-vector model” of 

the system, has assumed central importance in the control literature following the 

pioneering work of Kalman [13, 1960] on the filtering, prediction and control 

properties of this model. More recently, the structural and identifiability properties 

of this model have been studied [14, 15]. The discrete-time equivalent of this model 

bears close resemblance to the “‘simultaneous-equation’”’ model of econometrics 

[16]. 

state-vector 

(7) model 

(6) Discrete-time eg + 1) = Fx(t) + Gu(t) + w(t) 

y(t) = Hx(t) + Du(t) + v(t) 

where A(n x n), x(n x 1), F(n x n), G(n x m), D(p x m), ulm x 1), win x 1), 

y(p x 1), H(p x n), o(p x 1) and 

E[w(t)w"(s)] = Q6,., 

E{v(tw"(s)] = Ré,.. 

We assume that p < n, w and v uncorrelated. 

Simultaneous k 1 

(8) equations 4 IpXt)= — ) Kyt—i + ¥ Bult — i) + eft) 

model int i=® 
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where pip x 1), Tp x p), B{p x m), ulm x 1), e(p x 1) and 

Efe(t)e™(s)] = E(t — s). 

To see the similarities between these models, we use the lag operator z defined 

by 

(9) zy(t) = wt — 1). 

From equation (6), 

(z~'A — F)x(t) = Gu(t) + wie). 

From equation (7), 

(10) y(t) = H(z~'A — F)~*[Gu(t) + w(t)] + v(t) + Du(t). 

From equation (8), 

* =f I 
(11) y(t) = | » re | Y Ba! a) + a) 

i=0 i=0 

Equations (10) and (11) are same if we set 

k -1j 1 
(12) D + H(z~'!A — F)"'G= (5 re| (> B.' 

; i=0 i=0 

and equate the spectral density functions or autocorrelation functions of 

[H(z~'A — F)~'w(t) + o(t)] 

and 

k 1 
| » re e(t). 
i=0 

The problem of obtaining (F, G, H, Q, R) from {T;, B;, E(t — s)} has received atten- 

tion in the control literature and is known as the stochastic realization problem [17, 

18}.! 

Now let us consider some special cases which will bring out the similarity of 

the models (6)(7) and (8) more clearly. 

(i) Complete State Vector Observed without Exvor (Perfect Measurements Case) 

In this case, y(t) = x(t) so that equation (6) becomes 

(13) Ayt + 1) = Fy(t) + Gut) + wit). 

This is a simultaneous equation model with ‘‘predetermined variables” consisting 

on one lag endogeneous variables y(t), exogeneous variables u(t) and uncorrelated 

‘In most of the control models, matrix A either turns out to be or can easily be reduced to an 
identity matrix. The “reduced form” state-vector model thus obtained can be given direct physical 
interpretation so that there is very little advantage in using the “simultaneous equation” state-vector 
model. The situation in econometrics is different since a priori information on parameters in the 
simultaneous equation model is not easily translated to the reduced form model. 

25 



stochastic errors w(t). The time-index, t on u and w can be changed to (t + 1) 

without effecting the model. 

(ii) No Stochastic Disturbances in the State Equations (Zero Process Noise Case) 

With w(t) = 0, equation (10) can be written as 

(14) yt) = H(z~'A — F)~'Gu(t) + v(t). 

Assuming that the eigenvalues of A~'F lie inside the unit circle, we can perform a 

Laurent series expansion in z and obtain 

(15) We) = F Made — i) + v0). 
i=0 

Equation (15) is a distributed lag model with lag coefficients M;. In the control 

literature, M; have been variously called Markov parameters, impulse response 

function, weighting pattern etc. The problem of obtaining matrices {F,G, H} 

given {M;, i= 0,...,00}, assuming A = / known as the minimal realization 

problem was solved by Ho and Kalman [19, 1966]. The concepts of controllability, 

observability and minimal realizations [20] play an important role in solving this 

problem. In general, one does not obtain unique {F,G,H}, but by imposing 

structural restrictions, it is possible to obtain unique {F, G, H}. In this way, one 

obtains unique canonical forms for the system which also have the property of 

containing the smallest numbers of unknown parameters. The extensions of these 
results to the process noise case are also available and will be discussed later. 

(iii) Role of Process and Measurement Noise 

It is seen from the above discussion that in econometric models only one 

noise term is present, which, however, can be correlated in time. The question 

arises : Is there any advantage of separating total noise into two parts? The signific- 

ance of this in the control problem derives from the fact that in many situations one 

has sufficient a priori knowledge on the characteristics of w(t) and v(t) separately. 

For example, v(t) being measurement noise, comes from the measuring instruments 

which can be separately calibrated. On the other hand, separate identification of 

w(t) and v(t) (whenever possible) provides much valuable information which is lost 

if only a combination of the two is identified. The situation is somewhat similar to 

the use of the simultaneous-equation model versus the reduced form model for 

parameter estimation in econometrics. 

The use of both measurement noise and process noise in econometric models 

has certain applications. We mention two of these 

(a) Error in variables. The state vector model of equations (6) and (7) allows 

one to consider errors in output or endogeneous variables. The errors in exogene- 

ous variables u(t) may be considered indirectly by adding them to process-noise 

w(t). The questions of identifiability will be considered in Section 3. 

(b) Random coefficients in regression models. Consider the scalar regression 

model 

- I 
(16) wt) = ¥ aylt — i) + Y dbult — i) + v0). 

i=0 
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The usual assumption in regression models is that (a;,b;,i = 1,——k, j = 0,-—J) io “j> 
are constant. Suppose a; , b; are known to vary from one time-period to next and let 

the increments be random, e.g. 

a{t + 1) = aft) + w(t). 

Denote by x(t) the (k + | + 1) vector of coefficients a,, b; at time t. Then ati 

(17) x(t + 1) = x(t) + wi) 

and 

(18) wt) = H(t)x(t) + v(t) 

where H(t) = [y(t — 1),-—, x(t — k), u(t), u(t — 1),-— u(t — |). The case where H(t) 

is deterministic? but time-varying has been considered extensively in the control 

‘iterature. The case of H(t) random has received less attention and needs to be 

further investigated [21]. 

(iv) Correlated Errors and Colored Noise 

In equations (6) and (7), w(t) and v(t) were assumed to be uncorrelated in time 

and with each other. The correlation between w(t) and v(t) is easily handled by a 

transformation approach in which the system (6)-{7) is replaced by another system 

of equations having uncorrelated w(t) and v(t). If E[w(t)v"(s)] = C(t)d,, then the 

equivalent system is 

(19) Ax(t + 1) =(F -— CR™'H)x(t) + Gut) + CR™'y(t) + n(t) 

wt) = Hx{t) + v(t) 

where 

(20) E[n(t)v"(s)] = 0, 

E{n(t)n"(s)] = (Q — CR~'C"\, 

The auto-correlation of w(t) and v(t} is handled by representing them as white 

noise through a linear system and augmenting the state vector.*? For example, let 

w(t) be represented as 

(21) x(t + 1) = Fx (t) + G,e(t) 

w(t) = H,x,(t) + <(t) 

where x,,(t) is the state vector for representing w(t); e(t) and ¢(t) are white noise 

processes. Then equations (21) and (22) can be combined with (6) and (7) by using an 

augmented state vector 

& 

x w 

Notice that even if the state vector x is completely observed, the augmented 

state vector x, is only partially observed. 

? This would be the case if a, = 0,i = i, --k. 
3 This can always be done for stationary processes with proper rational spectra. 
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(v) Recursive versus Simultaneous Equation Models 

In the econometric literature, there has been a lot of discussion about the use 

of recursive versus simultaneous equation models. Wold [28] has maintained that 

the real world economic systems are recursive in time (or causal chains) and that 

simultaneous equation models are approximations based on neglecting fast time- 

constant phenomenon that are unobservable due to the large sampling interval. 

Liu [29] has emphasized the interdependence of economic variables and has 

questioned whether the complete interdependence and simultaneity is properly 

considered in the proposed econometric models such as the Klein—Goldberger 

model [30]. Fisher [31] has taken an intermediate position and shown that the 

econometric models in use may be thought of as approximations to reality as 

conjectured by Wold [28] or Liu [29]. 

In the control literature, questions of this type have not received much atten- 

tion. A control engineer, by training, is accustomed to thinking of the world as 

recursive or causal. The concepts-of state and Markov models of a system are 

partly based on this notion of reality. The recent interest in large scale systems and 

model-simplification techniques has led to the use of aggregation concepts [32] 

and asymptotic expansion methods [33]. Some of these methods lead to a set of 

simultaneous equations corresponding to small time-constants in the system. The 

use of simultaneous equation models in control is an area for further research. 

(vi) Estimation Techniques 

A large amount of the work in control is concerned with estimation techniques 

as is evidenced by several survey papers including Astrom and Eykhoff [22]. The 

lack of emphasis on model structure determination and identifiability may be due 

to the fact that engineering models are fairly well understood and in single-input 

single-output models, the identifiability conditions are not very complicated. By 

and large, the models that have been considered in control applications are 

identifiable. The main concern in control has been in devising efficient computa- 

tional methods for parameter estimation. In many applications, the estimation has 

to be done on-line and this rules out iterative methods like the full-information 

maximum likelihood method. Other differences in estimation methods arise from 

the fact that only part of the state vector is observed and the observations contain 

measurement noise. Under these conditions, a direct application of ordinary least 

squares (OLS) leads to biased estimates. The approach taken in control is to go to 

nonlinear least-squares rather than modify OLS as is often done in econometrics. 

It is fair to say that the control literature has not made full use of linear least 

squares techniques. On the other hand, much valuable experience has been 

gathered on nonlinear optimization techniques applied to least squares and 

maximum likelihood criteria. A combination of the experience gained in the two 

fields should certainly be fruitful. Two examples of this are refs. [1] and [23]. 

3. IDENTIFICATION AND ESTIMATION OF STATE VECTOR MODELS 

In this section, we present some known and some new results on the identifica- 

tion and maximum likelihood estimation of state-vector models. It is hoped that 

these results would find applications in the econometric literature. 

28 



For simplicity, we would consider the reduced form state-vector model by 

assuming that A = / and D = 0. The extensions of the identifiability results given 

below to the case A # J need to be worked out. From here on, we consider the 

simplified model 

(23) x(t + 1) = Fx(t) + Gu(t) + w(t) 

(24) wt) = Hx(t) + v(t). 

3.1. Identifiability Results 

From the work of Astrém [22], Kalman [20], Mehra [25, 26], Kailath [27], 

Mayne [14], Popov [15] and Tse Weinert, et al. [29], it is known that the following 

conditions must be imposed on the model (23)}{24) to make it identifiable. 

Condition (i). [F, G] controllable and [F, H] observable, i.e. 

(25) Rank [G, FG, F?G,—-, F"-'G] = n 

(26) Rank [H?, F7H"’,...,(F7)"~'H™] =n. 

These conditions are generalizations of the no pole-zero cancellation condi- 

tions used in time-series analysis. 

Condition (ii). All the-elements of the process noise covariance matrix Q are 

identifiable iff all the state variables are measured, i.e. p = n. If p < n, only the 

proper canonical representation of (23)(24) given by a steady-state Kalman filter is 

identifiable [25—27]. This representation has the form 

(27) R(t + 1) = FR(t) + Gu(t) + FKv(t) 

(28) y(t) = Hx(t) + v(t) 

where E[v(t)v7(s)] = £6, ,. The white noise process v(t) represents one-step aherd 

prediction errors and is also known as the “‘innovation”’ process. 

It is further required that [F, K] be controllable. 

Condition(iii). F and H are in the following canonical forms or their parameters 

are consistently solvable in terms of the parameters of this canonical form. 

Fy, 

F, 



where F;; is n; x n; 

a Hi; ; H;_, : 

becom q er owas 

where H; is i x n matrix consisting of the first i rows of H.n, represents the addi- 

tional part of the state space observed by the ith output over the first (i — 1) out- 

puts. The set of indices (n,,n,,——n,) have been called output numbers of the 

system by Mayne [14] and are invariant under coordinate transformations. From 

the observability condition, 

n; = Nn. M:> 
1 i 

The canonical form of H assuming none of the output numbers are zero is 

~ 
3.8. @!} 

ae 00. .10 ma apa 
= | | + p rows. 

it. ke ee ! 1! / 

2 | | | 
| 

- vy ~~ EY bs 

n, columns_ n, columns n3 

Ifn; = 0, then the ith row of H has non-zero entries in the first(n, + —— + n;_,) 

columns. 

The total number of unknown parameters in F, and H- is s = n, + (n, + m3) 

+-—— + (n, + —— + n,) which is less than np. An observable system can be put into 

the above canonical form by using the state transformation matrix 

fricilgesd hy | 

h,F™-! | hh, | 

(32) T= 35 

h,F"—! 

sail 

Let x’ = TR. 
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Using equations (27)}{28), 

(33) x(t + 1) = TFT~'x'(t) + TGut) + TFKv(t) 

(34) yt) = HT~'x'(t) + v(t). 

It can be shown that [39] 

(35) TFT! = F. 

(36) HT~' = H.. 

Also let 

(37) TG = G,, TK = K,. 

Equations (33)+37) represent the canonical model of the system. By using equation 

(32) for transformation T, we can relate the parameters of F, G, H, K to the para- 

meters of F., H., G, and K, which are identifiable. The canonical set has a total of 

(s + nm + np) < n(m + 2p) parameters. In addition, the covariance matrix of the 

innovation process v(t) viz X is identifiable. The matrices Q and R are related to 

x, H, F, G, K by the following matrix equations. 

(38) <= =H.P.H' +R 

(39) K, = P.H™="! 

(40) P. = F{I — K.H)P.F? + Q. 

where P is ann x n positive definite matrix. Methods for solving equations (38)- 

(40) have been discussed by Faurre [17] and Mehra [34, 35]. 

Condition (iv).* The support of the spectral distribution function S,,(«) of the 

input u(t) contains more than k = [NP/2p] points where NP is the number of 

unknown parameters in F, G, and H and [a] denotes the mteger part of a. The 

support of S,,(w) is defined as 

(41) Support S,,(@) = {w|—2 < w < 2, Ve > 0, [S,,(@ + €) — S,,(@ — &)] > O}. 

This condition is derived in Ref. [26] and can be expressed in terms of the 

autocorrelation function of u(t). If the input is sinusoidal, then it must contain more 

than k frequencies for the system to be identifiable. Such inputs have been called 

“persistently exciting” inputs [22]. 

Condition (v). F is a stable matrix or all the roots of (z~'IJ — F) lie outside the 

unit circle. 

Remarks 

(a) The Kalman Filter representation (27)}{28) of the system is both causal 

and causally invertible with respect to the input-output pair v(t) and y(t). One can 

write using the lag operator z, and using equations (27}{28), 

(42) y(t) = H(z~ "I — F)~*Gu(t) + [H(z7 "I — F)-'K + Mv(e) 

* This is a necessary condition when w(t) = 0 and u(t) is assumed scalar. For sufficiency and for 
multi-input systems, further conditions are required. 
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and 

(43) v(t) = {1 — H[z~'I — FI — KH)]~'FK}y(t) — H[z~'I — FI — KH)]~'Gu(t). 

From (43), it is clear that F(J — KH) must also be a stable matrix. Kalman [13] 

has shown that under the conditions of complete controllability and observability 

and K given by equations (38}{40), F(J — KH) is a stable matrix. If K is identified 

directly, this condition must be imposed separately. 

(b) In the terminology of econometrics [16], if the number of unknown 

parameters @ in the original system {F,G,H,Q,R} is exactly the same as the 

number of parameters ¢ in the canonical representation {F.,G,, H,., K,, =}, and 

the mapping from the sets ® to © is one-to-one onto (0 € ©, ¢ € ®), the system is 

just-identified. If the dimension of @ is less than that of ¢, and the mapping from ® to 

O is onto, the system is over-identified. Finally if the dimension of @ is larger than 
that of ¢ or the mapping from ® to O is not onto, the system is under-identified or 

unidentifiable. 

(c) Rothenberg [40] has shown that a necessary and sufficient condition for 

local identifiability of @ to 6), under certain regularity conditions, is that the Fisher 

Information matrix be nonsingular at 6). However, this condition is not easy to 

verify in practice, except numerically. The author has not as yet related other condi- 

tions of identifiability given by Rothenberg [40] to the above conditions. 

3.2. Consistent Least Squares Estimation of Canonical Parameters and Determination 

ofn,,...,M, 

Equations (27){28) along with canonical forms F, and H, can be written as a 

set of p difference equations in terms of the input-output variables (y, u, v). The 

resulting form is known as the external model of the system. Once the system 

equations are written in the external form, the applicability of regression methods 

can be easily examined. We demonstrate this by considering the equation for the 

first output variable y,(t). (The elements of vectors and matrices will be denoted 

by subscripts.) 

(44) yi(t) = X,,(0) + v0) 

= y Bui Xft - 1) + Y (G.),,, ut — 1) 
+ good j=1 J 

P 
+ }) (FK),,,vAt — 1) + v4 (0) 

j=1 

m b 
(45) xft — 1) = x;4,(t — 2) + ¥ (Gude — 2) + ¥ (FK)jvdt — 2). 

i=1 i=1 

Solving equation (45) recursively in terms of x,,(t — 2),-——x,,(t — n,)and substitu- 

ting in terms of y,(t — 2),— —y,(t — n), we get an equation of the type 

ny nm m > mi Pp 

(46) y,(t) = > Bis yilt — f+ Y df gi udt — j) + > civdt — j) 
j=1 j=1j=1 j=0 i=1 
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where g,, and c;; are defined by correspondence. Equation (46) represents an auto- 
regressive moving average (ARMA) model of order n, with m deterministic inputs 
and p white noise inputs. 

Proceeding in the same fashion, y,(t) can be written as an autoregressive model 
of order n, with y,(t}, u(t) and v(t) as inputs and so on. In other words, this system of 
equations is recursive and we can estimate the parameters by solving p regression 
problems in sequence. However, since the error terms are correlated with some of 
the independent variables, OLS would give biased and inconsistent estimates. We 
use the two-stage least-squares procedure of Theil [16] to obtain consistent 
estimates of 8 and g parameters. The c parameters can then be obtained fitting a 

moving average model to the residuals. It is also possible to use the three-stage 
least squares prccedure [16], but we would instead use the maximum likelihood 

procedure of Appendix A for obtaining efficient estimates of all the parameters. 

Two-Stage Least-Squares Estimation of Parameters 

Define 

y(n) 

1, 

y,(N) 

where N is the total number of sample points. Equation (46) may now be written for 
t=n,,--—-N as 

0 
(47) y= (Mim, | +¥ 

L9, 

where 
— 

u,(n, — 1),...,u,(0) ; u(n —1),...,u,(0) 

u,(n,),...,u4,(1) | u,(n;),..., uz(0) 

|u,(N — 1),...,u,(N — m4)! u,(N — 1),...,u,(N — n)! 

u,(n, — J) u(0) 

Uml M1), «+ +5 Umi 1) 

| Ug — 1),-- 5 Ug N — my) | 

[ y(n, — 1),..., (0) 

y(n,),..., (1) 

| AN — 1),...,N — 1m) | 
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Equation (47) can also be written as 

(48) y=M@+¥ 

] 
where M = [M,:M,] and 6 = |< Notice that only M, and v are correlated 

2 a ~ 
in equation (47). In two stage least squares, one replaces M, by M, such that M, 

is uncorrelated with the new error term. The calculation of M, is done by using the 

final form of the model (or the impulse response model) of equation (46) viz. 
i 8) 

(49) y(t) = ¥ > yyudt — j) + n,(0) 
j=1i=1 

where y,; is obtained from 

my =~} nm m Ce) m 

(i it» bs. | Yd sez} = LD rye. 
y=1 j=1 i=1 y=1i=1 

Using the stability property of the system, we will truncate the sum in equation (49) 

at an appropriately large value q < (N — n,). Then equation (49) fort = n,,...,.N, 

can be written 

(51) y= Uy+y 

where 

—1) ... 0),0,...,0 fii u,(n, ) u(0). 

(N—1)x 4m) y(N—1) ... u(N—@) 

...! af, — J) ... “pa 

Ay u,(N—1) ...  u,(N —q) 
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y and y are easily defined by correspondence. 

The model (51) has the property that U and yare uncorrelated and a consistent 

estimate of y is obtained by OLS. 

9 =(UTU)"'U’y. 

But 7 is not BLUE (best linear unbiased estimator) since E[yn’] #4 07]. We 

use it to obtain § which denotes the part of y that is linearly correlated with U, i.e. 

(52) 

We now write 

(53) 

where 

Pi(n,) ... Pil) 

WN —1) ... S(N—n,) 

and ¢ = (M, — M,)6,. It is easily shown that (v + ¢) is uncorrelated with M, so 

that one can use OLS to obtain consistent estimates of 6.° 

6, M'M, M!M,]|~'[M, | 
(54) + 8 RE eee : h 

6, MM, MM, LM, 

Estimator (54) can also be written as 

DRTC wntnelln 
6.) LM?M, M™M,—kwtwilm, — wl” 

with k = 1 and W = (M, — M.,). 

The estimator (55) is called the k-class estimator. It reduces to OLS for k = 0 
and can be shown to be related to the maximum-likelihood estimator [16]. 

Estimation of n,...n, 

Model (46) after replacement of y,(t — j) on the right-hand side by ,(t — j) 

is in a form suitable for using step-wise regression [36] as proposed by Parzen [37] 

in a somewhat different context. In this procedure, the significance of various 

regression terms is tested by using partial correlations and partial F-tests. Other 

statistical criteria, such as Akaike’s FPE (final prediction error) [38] can also be 

used depending on the objective of identification (i.e. prediction, control, etc.). 

Remarks 

(a) The case in which there is no deterministic input u(t), the two-stage least 

squares procedure cannot be used. However, in that case, modified Yule—Walker 

* The estimates are efficient only if c,, = 0. V j, i. 
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equations can be used to obtain consistent estimates of B parameters [25]. More 

efficient estimates can be obtained by using Durbin’s method [51] or the Hannan- 

Parzen approach [52, 37]. 

(b) The consistent estimates of c j: Of Matrix K can be obtained in several ways. 

See, e.g. Refs. [34, 23, 39]. 

(c) The two-stage least-squares approach can be made on-line as has already 

been demonstrated by Pandya [23]. In fact, most of the linear least-squares pro- 

cedures can be made recursive by expressing the inverse of the information matrix 

for (N + 1) measurements in terms of the inverse for N measurements using the 

matrix inversion lemma 

(M~' + H™R~'H)~' = M — MH"(HMH' + R)~'HM. 

4. FURTHER COMMENTS 

In this section, we discuss two problems which have received considerable 

attention in the control literature. 

4.1. Closed-Loop or Feedback Systems 

Closed-loop systems are of interest to both control engineers and econo- 

metricians. A typical closed-loop system is shown in Figure 2. In particular situa- 

tions, only some of the external inputs shown may be present. A number of interest- 

ing results are available in the control literature on closed-loop system identifica- 

tion. It was shown by E. Fisher [41, 1965] that in the deterministic case (i.e., no 

stochastic inputs), no external input and linear system dynamics, the system is 

unidentifiable with linear feedback, but is identifiable with nonlinear feedback. It is 

interesting to contrast this result with that of Reiersol [42, 1950] who showed that 

the error-in-variables simultaneous equation model of econometrics is unidentifi- 

able with normai errors, but is identifiable with nonnormal errors. 

Disturbance 

Noise 

+ 
Input ain pom. System See, Sree Output 

em er re eee ee ee —~—- — — — —- — ~ 

Contr oller 
Feedback 
Control | 

Disturbance 

Figure 2 Block diagram of a feedback control system 
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In stochastic systems, interesting results on identifiability have been given by 

Wingrove [43], Box and MacGregor [44] and Phadke and Wu [45] for the case 

where both the system and controller dynamics are unknown. They have shown 

that without the external input or disturbances into the system, the closed-loop 

system (i.e., the system and the controller) may be unidentifiable. If one simply 

cross-correlates the input sequence and the output sequence of the system (after 

pre-whitening), one obtains the inverse of the.controller transfer function rather 

than the system transfer function. Consequently, it is necessary to have an external 

input or disturbance into the system that is uncorrelated with output noise in order 

to identify the system. In addition, it is also necessary to have some time-delay or 

dead-time in the loop to make the system completely identifiable [43, 44, 45]. 

An area of active interest where closed-loop identification is essential and has 

been extensively used for the last 15 years is human operator modeling [46]. Most 

of the work has used spectral methods, but recently maximum likelihood estima- 

tion and parametric models have been used with good success [47]. 

4.2. Input Design 

The problem of input design has received considerable attention in the control 

literature due to the fact that inputs can often be selected and they can have con- 

siderable influence on the accuracy of parameter estimation. This problem has been 

formulated in a number of different ways which include 

(i) an optimal control formulation [48, 49], and 

(ii) a minimax approached based on the theory of optimal experiments in 

regression [26, 50]. 

The latter approach has given very general results on the design of optimal 

inputs. The two approaches have been applied to the design of control inputs 

for aircraft parameter identification. 

5. CONCLUSIONS 

In this report, we have pointed out certain similarities and differences between 

system identification in the control and econometric literatures. In particular, the 

state-vector model commonly used in control is compared with the simultaneous 

equations model used in econometrics. An approach to the identification and 

estimation of parameters in state vector models is presented based on canonical 

forms, stepwise two-stage least squares and maximum likelihood estimation using a 

Kalman filter. The problems of closed-loop identification and input design are also 

briefly discussed. 

Harvard University 

REFERENCES 

[1] P. J. Dhrymes, L. R. Klein, and K. Steiglitz, “Estimation of Distributed Lags,” International 
Economic Review, Vol. Il, No. 2, June 1970. 

[2] N. Weiner, “Generalized Harmonic Analysis,” Acta Math., 55, 1930, pp. 117-258 
[3] H. Greenberg, “A Survey of Methods for Determining Stability Parameters of an Airplane from 

Dynamic Flight Measurements,” Tech. Note 2340, NACA, 1951. 

37 



[4] D. W. Jorgensen, ‘‘Rational Distributed Lag Functions,” Econometrica, XXXIV, January 1966. 
[5] P. J. Dhrymes, Distributed Lags, Problems of Estimation and Formulation, Holden-Day, Inc., 

1971. 
[6] M. Shinbrot, ““A Least Squares Curve Fitting Method with Applications to the Calculation of 

Stability Coefficients from Transient Response [ata,”’ Tech. Note 2341, NACA, April 1951. 
[7] O. Reiersgl, ‘Confluence Analysis by Means of Instrumental Sets of Variables,” Arkiv for 

Mathematik, Astronimi och Fysik, 32A (4), 1941. 
[8] R. Bellman and R. Kalaba, Quasilinearization and Nonlinear Boundary-value Problems, American 

Elsevier Publishing Co., New York, 1965. 
[9] L. W. Taylor, K. W. Iliff, and B. G. Powers, ‘“‘A Comparison of Newton—Raphson and Other 

Methods for Determining Stability Derivatives from Flight Data,” AIAA Third Flight Test, 
Simulation and Support Conf., March 1969. 

[10] R. K. Mehra, “Maximum Likelihood Identification of Aircraft Parameters,” Preprints 1970 Joint 
Aut. Cont. Conf., Atlanta, Georgia, June 1970. 

[11] R. K. Mehra, D. E. Stepner, and Jj. S. Tyler, “Generalized Method for the Determination of 
Aircraft Stability and Control Derivatives from Flight Test Data,’ Preprints 1972 Joint Aut. 
Cont. Conf., Stanford, California, 1972. 

{12] A. V. Balakrishnan, —‘Identification and Adaptive Control: An Application to Flight Control 
Systems,” Journal of Optimization Theary and Applications, March 1972. 

{13] R. E. Kalman, “A New Approach to Linear Filtering and Prediction Problems,” Trans. ASME, 
J. Basic Eng., Series D, Vol. 82, March 1960. 

[14] D. Mayne, ““A Canonical Model for Identification of Multivariable Linear Systems,” JEEE Trans. 
Auto. Cont., Vol. AC-17, pp. 728-729, 1972. 

[15] V. Popov, “Invariant Description of Linear Time-invariant Controllable Systems,” S/AM J. 
Control, Vol. 19, pp. 252-264, 1972. 

[16] H. Theil, Principles of Econometrics, John Wiley & Sons, Inc. 1971. 
[17] P. Faurre and J. P. Marmorat, “Une Algorithm de Realization Stochastique,” C.R. Acad. Sci., 

Vol. 268, April 1969. 
[18] R. Rissanen and T. Kailath, ‘Partial Realization of Random Systems,” Automatic, Vol. 8, 

pp. 389-396, 1972. 
[19] B. L. Ho and R. E. Kalman, “Effective Construction of Linear State-Variable Models from 

Input/Output Functions,” Proc. Third Allerton Conf., October 1965. 
[20] R. Kalman, P. Falb, and M. Arbib, Topics on Mathematical Sysiem Theory, McGraw-Hill, New 

York, 1969. 
[21] S. S. L. Chang, “Optimum Filtering and Control of Randomly Sampled Systems,” JEE T-AC, 

Vol. AC-12, October 1967. 
[22] K. J. Astrém and P. Eykhoff, “System Identification—A Survey,” Automatica 7, pp. 123-162, 

1971. 
[23] R. N. Pandya, “A Class of Bootstrap Estimates for Identification of Linear Discrete Time 

Models,” TR No. SE72-3, Carleton Univ., Ottawa, Canada, August 1972. 
[24] A. E. Bryson and Y. C. Ho, Applied Optimai Control, Blaisdell, Mass., 1969. 
[25] R. K. Mehra, “On-Line Identification of Linear Dynamic Systems with Applications to Kalman 

Filtering,” IEEE T-AC, Vol. AC-16, No. 1, February 1971. 
[26] R. K. Mehra, “Frequency Domain Synthesis of Optimal Inputs for Estimating Parameters in 

Linear Dynamic Systems,” Harvard Tech. Report, July 1973 (to appear in JEEE T-AC, Dec 
1974). 

[27] R. Geesey and T. Kailath, “Applications of the Canonical Representation to Estimation and 
Detection in Colored Noise,’ Symp on Computer Processing in Communications, Polytechnic 
Inst. of Brooklyn, 1969. 

(28] H. O. Wold, Ed., Econometric Model Building, Chapter 1, North Holland Publ. Co., 1964. 
(29] T. Liu, “Underidentification Structural Estimation and Forecasting,” Econometrica, Vol. 28, 4, 

October 1960. 
[30] L. R. Klein and A. S. Goldberger, An Econometric Model of the United States, 1929-1952, North- 

Holland Publ. Co., 1955. 
(31] F. M. Fisher, ‘On the Cost of Approximate Specification in Simultaneous Equation Estimation,” 

Econometrica, Vol. 29, April 1961. 
[32] M. Aoki, “Control of Large-Scale Dynamic Systems by Aggregation,” JEEE T-AC, June 1968. 
[33] P. Sannuti and P. Kokotovic, “Near Optimum Design of Linear Systems by a Singular Perturba- 

tion Method,” /bid, February 1969. 
[34] ah Mehra, “On the Identification of Variances and Adaptive Kalman Filtering,” /bid., April 

[35] R. K. Mehra, “An Algorithm to Solve Matrix Equation PH’ = G and P = ®P®' + IT™,” 
Tbid., October 1970. 

38 



[36] N. R. Draper and H. Smith, Applied Regression Analysis, John Wiley & Sons, Inc., 1966. 
(37) E. Parzen, Time Series Analysis and System Identification, Lecture Notes, Regional Conf., 

Univ. of N. Carolina, January 1973. 
[38] H. Akaike, “Statistical Predictor Identification,” Ann. Inst. Statistical Math., Vol. 22, 1970. 
[39] E. Tse, H. Weinert, J. Anton, and R. Mehra, “Model Structure Determination and Identifiability 

Problems in System Identification,” Final Report, Systems Control, Inc., February 1973. 
[40] T. J. Rothenberg, “Identification in Parametric Models,” Econometrica, Vol. 39, May 1971. 
[41] E. Fisher, “‘The Identification of Linear Systems,” Proc. 1965 JACC, Np. 473-475. 
[42] O. Reiersgl, “Identifiability of a Linear Relation Between Variables which are Subject to Error,” 

Econometrica, 18, 1950. 
[43] R. Wingrove, “Comparison of Methods for Identifying Pilot Transfer Functions from Closed- 

Loop Operating Records,” NASA TN D-6235, March 1971. 
[44] C. E. P. Box and J. F. MacGregor, “The Analysis of Closed-Loop Mynamic-Stochastic Systems,” 

TR 309, Dept. of Statistics, Univ. of Wisconsin, July 1972. 
[45] M.S. Phadke and S. M. Wu, “Identification of Process Dynamics from Feedback Control Data 

Its Application to Papermaking Process,”” Regional Conference on Time Series Analysis, Univ. 
of N. Carolina, January 1973. 

[46] D. T. McRuer and H. R. Jex, “A Review of Quasi-Linear Pilot Models,” /EEE T-Human Factors 
Electronics, HFE-8, No. 3, Sept. 1967. 

[47] R. K. Mehra and J. S. Tyler, “Modeling the Human Operator Under Stress Conditions Using 
System Identification,” Preprints 1972 JACC, Stanford, Calif., August 1972. 

[48] M. Aoki and R. Staley, “On Input Signai Synthesis in Parameter Identification,” Automatica, 
Vol. 6, 1970. 

[49] R. K. Mehra, “Optimal Inputs for Linear System Identification,” 1972 JACC, Stanford, Calif. 
[50] B. Viort, ““D-Optimal Designs for Dynamic Models,” TR 314, Dept. of Statistics, Univ. of 

Wisconsin, October 1972. 
[51] J. Durbin, “Efficient Estimators of Parameters in Moving Average Models,” Biometrika, 46, 

1959. 
[52] E. J. Hannan, Multiple Time Serigs Analysis, John Wiley and Sons, Inc., 1970. 

APPENDIX A: AN INNOVATIONS APPROACH TO MAXIMUM LIKELIHOOD 

IDENTIFICATION OF LINEAR AND NONLINEAR DYNAMIC SYSTEMS 

This appendix presents an approach to maximum likelihood identification of 

multi-input multi-output linear and nonlinear dynamic systems with arbitrary 

inputs. The approach is based on state vector formulation and uses t!.e innovation 

properties of optimal filters for these systems. Application to the identification of 

the transfer function of a chemical reactor is considered. 

1. Introduction 

The maximum likelihocd estimation of autoregressive and moving average 

parameters in time series analysis has been considered by several investigators 

[1, 2].° The related problem of linear system identification can often be cast in this 

framework, though the parameter transformations involved may be nonlinear and 

nonunique. Special difficulties are encountered in handling multi-input multi- 

output linear models and nonlinear models using the time-series approach. The 

author [3, 4) has tried to circumvent these difficulties by working directly with the 

physical models and using the innovations approach of Kailath [5, 6]. A schematic 

diagram of this method is shown in Figure A.1. 

© References for Appendix A are given separately at the end. 
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Figure A.1_ Implementation of maximum likelihood estimator 

2. Linear Systems 

Consider a discrete-time linear system’ 

(A.1) x(t + 1) = Fx(t) + Gu(t) + Twit) 

(A.2) y(t) = Hx(t) + v(t) 

where 

x(t) =n x 1 state vector; u(t) = p x 1 input vector; 

w(t) = q x 1 vector of random forcing functions ; 

y(t) = r x 1 output vectors; and v(t) = r x 1 vector of output errors 

and 

E{w(t)} = 0, E{w(t)w"(z)} = Q6, , 

where 6, is the Kronecker delta function. 

E{w(t)v7(x)} = 0 

E{v(t)} = 0, E{v(t)v"(t)} = Ré,., 

It is assumed that the structure of the model is known. The vector of unknown 

parameters from F,G,I, H, Q and R is denoted by @. It is assumed that 0 is identifi- 

able. 

The ML estimate of @ is given by 

(A.3) 6 = Arg {max log p( Yy/6)} 

where 

Yy = {y(1),---, WN)} 

7 Continuous-time systems are handled in the same fashion. See Ref. 3. 
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and 

P( ¥y/9) = conditional probability density of Y, given 0. 

An expression for p( Y,/6) is derived as 

P(¥y/A) = p(y(1), - -- , WN)/9) 

= AYWN)|Yy-1, pl Yn— 110) 

= PYWN)|Yy-1, PAN — 1)|¥v-2, O)p( Yn 219) 

Therefore 

(A.4) log p(Yy|@) = } log p(J)l¥;-,, 4) 
j=l 

Consider the case in which x(0), w(t) and v(t) are normally distributed. Then 

P(y(j)| Y;- ,, 9) by a well-known property of normal distributions is also normal. 

Let 

(A.5) -E{ yl ¥}- 1.9} = 9G -) 

and 

(A.6) Cov {yJ)|¥;- 1,9} = BUI — 1). 

It is known that $(/|j— 1) and B(j\j — 1) can be obtained from a Kalman filter [7] 

of the following form: 

(A.7) Rt + 1/t) = FR(t/t) + Gu(t) 

(A.8) R(t/t) = Rt/t — 1) + K(t)v(t) 

(A.9) v(t) = y(t) — HX(t/t — 1) 

(A.10) K(t) = P(t/t — 1)H™B™ (t/t — 1) 

(A.11) Bit) = HP(t/t — 1)H"' +R 

(A.12) P(t/t) = (1 — K(t)H)P(t/t — 1) 

(A.13) P(t + 1/t) = FP(t/t)F" + ror’. 

The likelihood function (A.4) can now be written as 

N 

(A.14) log p(¥yl@) = —$ ¥ [vB "Ui — Iv) + log |BU/j — 1). 
j=1 

Here v(t) denotes the innovation sequence which is zero mean, Gaussian and white 

[5]. ML estimate 6 is obtained by maximizing (A.14) with respect to @ subject to the 

constraints (A.7)}{A.13). This is a very difficult optimization problem. An approxi- 

mation suggested in Ref. (3) simplifies the problem tremendously. It is assumed that 
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the filter gain K(t) and covariance B(t/t — 1) have reached constant values K and B 

and the vector 4 consists of unknown parameters from F, G, K and B only. Then 

N 

(A.15) log p(¥yl9) = —2 } [v()B- 'v(j) + log |B}). 
i= 

Maximizing (A.15) over B, produces 

1 N 

(A.16) B= = d wildv"(l8) 
j=1 

where « is the ML estimate of unknowns in F, G and K. It is given by the root of 

the equation 

N 

(A.17) 7 v7 1) =0 
j=1 Oa 

where (dv(j))/d is calculated from equations (A.7){A.9). The root of equation 

(A17) is found by a Newton-Raphson or Gauss—Newton iteration. Once @ is 

obtained, I’, @ and R are obtained from equations (i0)-{13). In this way, the non- 

linear constraints cf equations (10}({13) are avoided during optimization. The 

above method is no more complicated than the well-known output error method. 

In fact, it reduces to the output error method when there is no process noise, 

i.e., w(t) = 0. In that case, Q = 9, K = 0 and w(t) = y(t) — Hx(t) is the output 

error. A flow chart of the method is shown in Figure A.2. 

3. Nonlinear Systems 

Consider a nonlinear dynamic system 

(A.18) x(t + 1) = f (x(t), 0, u(t)) + w(t) 

(A.19) y(t) = h(x(t)) + v(c) 

where f(-) and h(-) aren x l andr x 1 vectors of nonlinear functions. Also, w(t) 

and v(t) are Gaussian white noise sequences with zero mean and covariances Q and 

R. 

The evaluation of the true ML estimate would require the calculation of 

p(y(j)|¥;-,,) using an optimal nonlinear filter. Since this is computationally 

infeasible, we approximate p((y(j)|¥;-,, 4) by a Gaussian density with mean and 

covariance obtained from an Extended Kalman Filter [8] of the following form: 

(A.20) Rt + 1/t) = f(X(t/t)), 6, u(t)) 

(A.21) Rt/t) = R(t/t — 1) + K(t)v(t) 

(A.22) v(t) = y(t) -- A(X(t/t — 1)) 

K(t) is calculated from equations (A.10)}{(A.13) by using time-varying matrices F(t) 

and H(t). 

(A.23) H(t) = - 
x x =R(t/t— i) 
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Figure A.2 Flow chart of the maximum likelihood algorithm 

(A.24) F(t) = of 
x x = &(t/t) 

Kailath [6] has shown that the density of the innovation v(t) tends to a Gaussian 

density as the sampling rate is increased. Thus the above approximation is quite 

good for high sampling rates. 

4. Applications 

The above method has been applied to two bench-mark problems. The first 

problem involves estimation of 3 time consiants, gain, dead time and variances of 
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Figure A.3 Maximum likelihood identification of a chemical reactor benchmark problem 

input and output noise in the transfer function of a chemical reactor (Figure A.3). 

The state variables are defined as 

X2 = Ty X; + Xy 

X3 = T2X2 + Xp. 

The state equations are 

_[* th. 8 mL ts 

dt X47 = 0, —6,, 0, X2 + 0 u(t - 45) 

X3 0, 0, —6, X3 6, 

where 6, = 1/t,, 0, = 1/t2, 03 = 1/t3, 0, = G/z; and 0, = D. 

Table A.1 shows the values of true and estimated parameters based on input 

and output time histories of Figure A.4. The innovations pass the whiteness test at 

95 per cent confidence level. A sample fit is shown in Figure A.5. 
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The second application concerns the determination of stability and control 

derivatives of an X-22 VTOL aircraft. The model is nonlinear and has flight 

disturbance (gusts, etc.) forcing functions with 23 unknown parameters. For this 

and other applications, see Ref. [9]. 

TABLE A.1 

TRUE AND ESTIMATED VALUES OF PARAMETERS FOR THE CHEMICAL REACTOR PROBLEMS 

Parameters D Ty T T; G 

ML estimates based on 480 samples 4 min 4.98 
ML estimates based on 240 samples 5 min 3.63 
True values 4.2 min 3.9 
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