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Annals of Economic and Social Measurement, 2/4, 1973 

THE APPLICABILITY OF THE KALMAN FILTER IN THE 

DETERMINATION OF SYSTEMATIC PARAMETER VARIATION 

BY Davip A. -BELSLEY* 

The basic optimality theorem for the Kalman filter is stated and generalized to account for a conditional 
mean varying systematically with respect to additional variates z. The relevance of the resulting “state” 
estimator is discussed in the context of determining systematic parameter variation in a linear regression 
model. The Kalman filter is seen to have essentially the same drawbacks as the moving-window technique 
discussed in an eurlier study. 

In the context of a regression model with time-varying parameters 

(1) y(t) = x'(t)P(t) + a(t), 

an increasingly popular model for the parameter variation is the Kalman Filter 

which specifies that f(t) changes state according to the dynamic transition equation 

(2) P(t + 1) = OP(t) + v(t). 

THE KALMAN FILTER 

The relevant theorem suggesting the use of the Kalman Filter is 

Theorem 1: 

Given (1) and (2) with 

(3) Ev(t)v'(t) = R, 

Ev(t)e(t) = 0 

Ete (t) = R2, 

v and ¢ multivariate normal, 

then, the estimator of A(t + 1) that minimizes 

(4) Eg{a(B(t + 1) — A(t + 1) 

ior any symmetric, nondecreasing function g, is given by the recursive system 

Bit + 1) = @B(t) + KL -- x(OPO) 

where 

(5) K(t) = ®P(t)x'(t)[x()P(Ox(t) + R27! 

P(t + 1) = [© — K(t)x(t))P()®’ + R, 

and where ® may be a function of time [1, Ch. 7}. 
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This model has been treated by Duncan [3], Sarris [10], [11], and Mehra (4), 

[S], [6], and even for ® constant over time, it would seem to offer an efficient means 

of approximating complex parameter variation in many economic circumstances. 

THE KALMAN FILTER AND SYSTEMATIC PARAMETER VARIATION 

In many other circumstances, however, it is reasonable to assume that at least 

some component of f(t) varies systematically with respect to additional variates, z. 

Such systematic parameter variation is treated by Quandt [7], [8], [9] and by 

Belsley [2]. 

The above theorem may be generalized to take into account a systematic 

component of parameter variation in the following [1, p. 234]: 

Theorem 2: 

Given the system 

6) Wet) = x(OPle) + alt) 

Bit + 1) = OP(t) + Twit) + vft) 

(7) Ev(t)u'(s) = 6,,.Ri 

Ev(t)e'(s) = 6, R12 

Eat)e'(s) = 6, .R2 

where 6,, is the Kronecker delta, then the estimators of A(t + 1), optimal in the 

sense of (4), are determined from the following recursive system: 

Blt + 1) = OPO) + T(t) + KOOL) — x(OPO) 

where 

K(t) = [@P(t)x'(t) + Ry2)[x(t)P()x'(t) + R2)7' 

P(t + 1) = OP(t)}®’ + R, — K(t)[R, + x(t)P(t)x'(t)]K'(t). 

LINEAR SYSTEMATIC PARAMETER VARIATION 

It is of interest to note here that the preceding Theorem 2 covers the case of 

linear systematic parameter variation treated by Belsley in [2], but seems to offer 

no particular advantage over the moving-window technique suggested there. 

In [2] Belsley treats model (1) with 

(8) B(t) = T2(t) + u(t) 

where I is a matrix of parameters and the z(t) are additional variates systematically 

determining f(t). 

The elements of I are estimated (and the relevance of the z’s tested) by using 

an estimated time series of the A(t)’s obtained independently of the z’s by a moving- 

window regression applied to (1) without regard to parameter variation. This 

technique is shown to have a bias that becomes smaller the more slowly the z 

variates move over time. [See 2, p. 491]. 
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The Belsley model can be cast into the general Kalman framework of Theorem 

2 if u(t) is assumed to be distributed with independent increments, for then we may 

write from (8), 

(9) Bit + 1) = P(t) + TAz(t + 1) + oft). 

where 
v(t) = Aut + 1) 

Ev(s)v'(t) = 6, ,R>. 

The model (1) and (9) clearly fits into Theorem 2 with ® = J and w(t) = Az(t + 1). 

It would seem that the general Kalman technique would offer an alternative 

means of estimating the A(t) time series required in [2]. But the Kalman technique 

clearly requires knowledge of the z’s from the outset, and hence is not appropriate 

for testing among alternative z’s when the exact z variates are not known. 

For slowly moving z series (Az(t) small), however, (9) is approximated by (2), 

and under these conditions the estimator of Theorem 1, which does noi require 

knowledge of the z’s, may offer a good means of determining a f(t) series for test- 

ing alternative z’s. This method should be compared to the moving-window 

method used in [2]. It is interesting to note that the “slowly moving z” require- 

ment is exactly that needed to justify the moving-window technique as a good 

approximation. 

Boston College, and 

National Bureau of Economic Research 
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