This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Annals of Economic and Social Measurement, Volume 2, number 4
Volume Author/Editor: Sanford V. Berg, editor
Volume Publisher: NBER
Volume URL: http://www.nber.org/books/aesm73-4
Publication Date: October 1973

Chapter Title: A Test for Systematic Variation in Regression Coefficients
Chapter Author: David A. Belsley
Chapter URL: http://www.nber.org/chapters/c9940
Chapter pages in book: (p. 495 - 499)
A TEST FOR SYSTEMATIC VARIATION IN REGRESSION COEFFICIENTS

BY DAVID A. BESLEY*

This paper offers a statistical test of the constancy of the parameters of a linear regression. The F test is based on transformed residuals which result from OLS applied to the given equation under the null hypothesis of constancy.

SOME NOTATION

We consider the model

\[y(t) = x'(t)\beta(t) + \epsilon(t) \]
\[\beta(t) = \Gamma z(t) + \delta(t) \]

where

$x(t)$, $z(t)$ K and R vectors, respectively.

$\epsilon(t)$ spherically distributed with $E\epsilon\epsilon' = \sigma^2I$.

$\delta(t)$ independent over time with $E\delta\delta' = \sigma^2\Omega$.

(See preceding article for motivation.

In what follows we consider the special case $\sigma_1^2 = 0$, i.e., variation in $\beta(t)$ is systematic and non random. Hence, we may write

\[y(t) = x(t)\Gamma z(t) + \epsilon(t) \]
\[= [x(t) \otimes z(t)]\Lambda + \epsilon(t) \]

where

\[\Lambda = \begin{bmatrix} \gamma_1 \\ \vdots \\ \gamma_p \end{bmatrix} \]

Let

\[Y = [y(t)] \]
\[X = \begin{bmatrix} x(1) \\ \vdots \\ x(T) \end{bmatrix} \]
\[Z = \begin{bmatrix} z(1) \\ \vdots \\ z(T) \end{bmatrix} \]
\[D = \begin{bmatrix} x(1) \otimes z(1) \\ \vdots \\ x(T) \otimes z(T) \end{bmatrix} \]

Then (2) becomes

\[Y = D\Lambda + \epsilon \]

* Research supported by National Science Foundation Grant GJ-1154 to the National Bureau of Economic Research, Inc. Research Report W0006. This report has not undergone the full critical review accorded the National Bureau's studies, including review by the Board of Directors.
and we note that we may write

\[D = [I \quad I \quad \cdots \quad I] X \otimes I, \]

where \(I_i = \text{diag} Z_i \) and \(Z_i \) is the \(i \)th column of \(Z \).

Thus, (3) becomes

\[Y = \sum_{i=1}^{n} I_i X_i + \epsilon. \]

REMARKS

Our purpose here is to determine a test of the null hypothesis that \(\beta(t) = \beta \)

i.e., is constant, for all \(t \). Clearly a regression could be run on (3) directly if the \(z \)'s were known, but alternative modeling tests would be cumbersome given the size of \(D'D^{-1} \) even for moderate \(K \) and \(R \).

In what follows a two-step test is determined that looks to be efficient and does not require inversion of \(D'D \). Alternative \(Z \) matrices may be compared with a minimum of computation. The first step is OLS of \(Y \) on \(X \) without regard to \(Z \). The second step consists of regressing a transformed set of residuals from step one on the similarly transformed \(z \)'s. \(H_0 \) may be tested with the results of the second regression.

STEP ONE: OLS \(Y \) on \(X \)

First regress \(Y \) on \(X \) to get

\[b = (X'X)^{-1}X'Y \]

\[= (X'X)^{-1}X'Z \alpha + (X'X)^{-1}X'e \]

\[= (X'X)^{-1}X' \sum_{r} J_r Z_r + (X'X)^{-1}X'e \]

and

\[c = Y - Xb = HY \]

\[= H(\alpha + \epsilon) \]

\[= [H J_1 X \cdots H J_n X] \alpha + He \]

\[\equiv [T_1 \ldots T_n] \alpha + He \]

\[\equiv \sum_{i=1}^{n} V_i' \alpha + He \]

where the \(V_i \) are the residual matrices from an auxiliary regression of \(J_r X \) on \(X \).
This regression need not be run in practice. The relevance of \(V_1 \) is seen from

\[H \mathcal{J} X = \mathcal{J} X - X(X'X)^{-1}X'X = \mathcal{J} X - \lambda B_1 \equiv V_1, \]

where \(B_1 \) is the set of regression coefficients from \(\mathcal{J} X = XB_1 + V_1. \)

Thus we have

\[\mathcal{C} = \Sigma V_1^2 + \mathcal{H} \mathcal{C}. \]

We recall that \(H \) is idempotent, has rank \(T - K \), and hence there exists an orthogonal \(C \) such that

\[C'HPC = \left[\begin{array}{cc} I & 0 \\ 0 & 0 \end{array} \right] \equiv G. \]

Further we note \(HV_1 = V_1 \), \(r = 1 \ldots R \) and \(H \mathcal{C} = \mathcal{C} \). Hence, we may write

\[C'HPC\mathcal{C} = CHPC\Sigma V_1^2 + CHPC\mathcal{C} \]

or

\[GC\mathcal{C} = GC\Sigma V_1^2 + GC\mathcal{C}. \]

and, partitioning \(C = [C_1 C_2] \) so that the first \(T - K \) rows of (9) become

\[C_1'HPC = C_1'HPC\Sigma V_1^2 + C_1'HPC\mathcal{C} \]

This last inequality comes from noting that \(V_1 = H \mathcal{J} X \), and hence \(C_1V_1 = C_1'HPC\Sigma V_1^2 + C_1'HPC\mathcal{C} \) and \(C_1V_1 = C_1'HPC\mathcal{C} \). We have also let \(C_1 = \eta \). We also note that \(\eta \) is spherically distributed, since \(E\eta = 0, V\eta = V^2 = E\Sigma C_1 \Sigma C_1 = \sigma^2 \Sigma^2 + \sigma^2 I_{T-K} \), due to the orthogonality of \(C \).

It is the transformed residuals \(f = C_1V_1 \) that we make use of in step two. The transformation \(C_1 \) comes from finding an orthogonal set of eigenvectors of \(H = I - X(X'X)^{-1}X' \), and hence \(f \) depends only on knowledge of \(X \) and \(Y \) and does not require knowledge of \(Z \).

Step Two

It is clear from (10) that the residuals from step one depend in a very involved way on the interrelation of \(X \) and \(Z \) through the terms \(\mathcal{J} X \). However, under the null hypothesis \(H_0: \beta^0 = \beta \), these terms disappear, and a simpler test is available.

Consider a mechanical regression of \(f \) on \(Z \) transformed by \(C_1 \) (which depends only on \(X \)):

\[f = C_1'Z\delta + \phi. \]

\[\text{In passing we note from (6) that} \quad \delta = \Sigma YX + \text{weighted sum of the } \gamma, \quad \text{and } V\delta = \sum YX + \text{weighted sum of the } \gamma. \]

Hence, \(\delta = \Sigma YX \), a weighted sum of the \(\gamma \), and \(V\delta = \sum YX + \text{weighted sum of the } \gamma. \)

This latter sum goes from \(r = 2 \) to \(R \) since, if \(Z_i \) the first col. of \(Z \) is a column vector of all ones, then \(\mathcal{J}_i = 1 \) and hence \(V_1 = \mathcal{J} X = \mathcal{J}_i X = \mathcal{J}_i X \). These residuals must necessarily be zero, since \(\mathcal{J}_i = 1 \) does the trick of minimizing the sum of squares. Hence, \(C_1V_1 = 0 = C_1'\mathcal{J} X = C_1'X. \)
OLS gives

\[(12) \quad d = (ZC_1C_1Z)^{-1}ZC_1f\]

and from (10)

\[
= (ZC_1C_1Z)^{-1}ZC_1\sum_{r=1}^{R} \beta_r X_{ir} + (ZC_1C_1Z)^{-1}Z C_1\epsilon
\]

where \(Q \equiv C_1C_1\).

Under the null hypothesis \(H_0: \beta(t) = \beta; \beta_r = 0\) for \(r = 2 \ldots R\), and hence the first term of (12) is 0. That is, under \(H_0:\)

\[(13) \quad d = (ZQZ)^{-1}ZQ\epsilon = (ZQZ)^{-1}Z C_1f.\]

In addition, from (10) we have under \(H_0\) that

\[(14) \quad f = C_1\epsilon.\]

Further, we note for future reference that \(Q\) is idempotent since \(QQ = C_1C_1C_1C' = C_1C_1 = \epsilon - \text{of rank } T - K.\)

Now consider the residuals \(g\) of this second step; using (13) and (14),

\[(15) \quad g = f - C_1Zd = C_1\epsilon - C_1Z(ZQZ)^{-1}ZQ\epsilon = C_1[I - Z(ZQZ)^{-1}Z]Q\epsilon = N\epsilon \quad \text{where we let } N = C_1[I - Z(ZQZ)^{-1}Z].\]

Now

\[
g^2 = \epsilon N N\epsilon
\]

\[
= \epsilon[I - Q(ZQZ)^{-1}Z]C_1C_1[I - Z(ZQZ)^{-1}Z]Q\epsilon
\]

\[
= \epsilon[Q - Q(ZQZ)^{-1}Z]Q[I - Q(ZQZ)^{-1}Z]Q\epsilon
\]

\[(16) \quad = \epsilon MM\epsilon \quad \text{where } M = Q - Q(ZQZ)^{-1}ZQ\]

since \(M\) is seen to be idempotent with \(\text{tr } M = T - K - R.\) And hence,

\[(17) \quad g^2 = \sigma^2\epsilon^2X_{1-k-R}
\]

From (13) we have

\[(18) \quad d = (ZQZ)^{-1}ZQ\epsilon = B\epsilon\]

498
and

\[BM = (Z'QZ)^{-1} Z' Q (Q - Q Z (Z'Q Z)^{-1} Z' Q) \]

\[= (Z'QZ)^{-1} Z' Q - (Z'QZ)^{-1} Z' Q = 0. \]

Hence, the linear form (18) is distributed independently of the quadratic form (17) and the usual tests of significance on \(d \) may take place. Under \(H_0: E_d = 0 \), and hence a \(t \) value for a specific \(d \) at \(T - K - R \) degrees of freedom in excess of the test level rejects the null hypothesis.

Boston College, and
National Bureau of Economic Research