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Annals of Economic and Social Measurement, 2/4, 1973 

ERROR COMPONENTS REGRESSION MODELS AND 

THEIR APPLICATIONS* 

BY SWARNJIT S.: ARORA 

This paper develops an operational method for estimating error components regression models when the 
variance-covariance matrix of the disturbance terms is unknown. Through Monte Carlo studies, the 
relative efficiency of the resulting pooled estimator is compared with (1) an OLS estimator based on data 
aggregated over time, (2) the covariance estimator, (3) the OLS estimator, and (4) a GLS estimator based 
on a known variance-covariance matrix. Overall, the pooled estimator performs best. 

INTRODUCTION 

In several recent studies, attempts have been made to analyze the problems involved 

in pooling cross section and time series data by error components (or variance 

components) regression models. These models can be formulated as 

K-1 
(1.1) Yu = Bo + YD OZNrie + Yin Gi 1,2...,n2¢21,2,...5T) 

k=1 
where y;, is an observation on the dependent variable for individual i in period t. 

Z,i: 18 an observation on the kth independent variable, B, is an intercept term, 

6, (k = 1,2 K — 1) are the fixed but unknown slope coefficients, and u,, is an 

error term. This disturbance term is supposed to represent the net effect of 

numerous individually unimportant, but collectively significant, variables which 

have been omitted from the analysis. Some of these are specific to the individual 

and remain invariant over time (say j;); some are specific t6 the time period but 

are invariant over all individuals (say 4,); and some are specific to both individual 

and time (say v;,). In this case we can write u,, as 

(1.2) Ui = Hy + A, + Vie- 

Mundlak (10) and Hoch (5) analyzed this model, treating 4; and A, as unknown 

parameters and assuming £7_ , uw; = 0 and L7_, 4, = 0. Maddala (9) points out a 

principal weakness in this approach: it eliminates a major portion of the variation 

among both the explained and the explanatory variables when the between indivi- 

duals and between time periods variation is large. This approach can also cause 

a substantial loss in degrees of freedom. An alternative approach is to treat all 

components as random. This case was analyzed by Wallace and Hussain (14), 

Maddala (9), Nerlove (12), and Swamy and the present author (13).’ 

* A major portion of this research was done during the author's stay at the National Bureau of 
Economic Research, as a Research Fellow. Special thanks are due to Professors David Belsley, Murray 
Brown, Paul Holland, and Edwin Kuh for their valuable comments and suggestions, and to Professor 
P. A. V. B. Swamy for introducing me to this subject. Thanks are also due to Mr. David Jones for 
programming assistance. The simulation for this paper was done at the NBER Computer Research 
Center using the TROLL system. 

‘ Whether or not the individual effects may be treated as parameters or random components for 
the purpose of statistical analysis depends upon the underlying data generating mechanism assumed. 
For an illuminating discussion of such data generating mechanisms, see Nerlove (11), p. 364. 
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Under the assumptions of weakly non-stochastic X’s and normally distri- 

buted disturbance terms, both approaches yield asymptotically equivalent esti- 

mates with asymptotically equivalent variance-covariance matrices. In fact, it 

can be shown that there are an infinite number of estimators which have the same 

asymptotic variance-covariance matrices.” 

Asymptotic properties, however, are cold comfort to the econometrician for 

whom the choice of a practical estimator (and its related small sample properties) 

isa problem of crucial importance. Unfortunately, because of mathematical intract- 

ibility, small sample properties are often hard to obtain theoretically. We therefore 

employ Monte Carlo experiments to evaluate relative efficiency of the various 

estimators. 

The plan of this paper is as follows: In section 2, a means of estimating error 

components regression models is developed for a case when the variance- 

covariance matrix of the disturbance term is unknown. We also show the equiva- 

lence of this estimator to an ordinary least squares estimator when inter-individual 

and inter-temporal variations are zero. In section 3, the asymptotic properties of 

this estimator are derived. Section 4 describes the design of the Monte Carlo experi- 

ments and compares the relative efficiency of this estimator with the ordinary least 

squares estimator, a covariance estimator, an ordinary least squares estimator 

based on data aggregated over time and a generalized least squares estimator 

based on a known variance-covariance matrix of the disturbance terms. Conclud- 

ing remarks are presented in section 5. An efficient way of generating random 

numbers and independently distributed normal variates is described in an appendix 

to this paper. 

2. ESTIMATION OF ERROR COMPONENTS REGRESSION MODELS 

Let us assume that u;,, = yu; + v;,and the components y,,s and v,,’s are random 

such that 

Eu; = 0 

a ifi =j 
Ena) =\ 

wh ae ifi <j 

Evi, 0 

Ev,v’, a 
ifi=jandt=t' 

0 otherwise.* 

2 See Swamy and Arora (13), p. 267. 

3 In (13) Swamy and I have analytically shown that the estimator based on the assumption of 
both y; and A, being random is more efficient than either the covariance estimator or the ordinary least 
squares estimator only if (a) n and T are sufficiently larger than 10, and (b) if the sum of squares due 
to variation over time exceeds the sum of squares due to remaining variation. If these conditions are not 
satisfied, random error components model with both components random may give results inferior 
to other estimators. For a case where either n or T is less than 10, we conjecture that the error com- 
ponents models with a random component (the other component being a parameter or zero) perform 
better than the model which assumes both yz; and A; as random. Here we consider a model with A, = A 
for all t, but we can easily treat all A,’s as different. 
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Let us further assume that py; and v,, are independent of each other.* Furthermore 

T > K and n> K and the variances o? and o? are unknown. For all the nT 

observations combined we can write (1.1) 

(2.1) y= XBP+u, 

where y = (y,1,---,Virs-++>¥nts+-+>¥n7) 8 annT x 1 vector of observations on 

the dependent variable, X = [:,,,Z]isannT x K matrix of explanatory variables, 

1,7 1s a vector of 1’s of order nT x 1, and Z is annT x K’ matrix of independent 

variables given by 

2211 ao: 2x-1.11 

Zx- 1,1T 

Ze-s a1 

LZinr Lont re Zx- 1.97 J z 

6 is a (K’ x 1) vector of slope coefficients, B = (6), 6’), K’ = K — 1, andu= 

tas, sss Mawes «<3 he u,7) is an nT x 1 vector of disturbance terms. Under 

the above assumptions, it is readily verified that 

(2.2) Euu' = 62(1,, ® tpty) + O21, 7- 

Since the variance-covariance matrix of u is not scalar, application of the ordinary 

least squares procedure will in general lead to an inefficient estimator of £. 

Let us consider an orthogonal matrix, O,, of order T such that its first row 

is equal to h/t. Let O; = [tr//T, C] where C, is a(T — 1) x T matrix such 

that Cyiz = 0,C,C, = I7_,, and C,C, = I; — 171/T. 

Define the transformations Q, = (I, @ 1',/./T) and Q, = (I, @C,). By 

applying the transformation Q, to all nT observations, we get 

(2.3) y, = X,B+u,, 

where y, = Q,yisann x 1 vector of transformed dependent variables, X, = Q,X 

ism x K matrix of independent variables, and u, is ann x 1 vector of transformed 

disturbances. The variance-covariance matrix of u, is 

(2.4) Eu,u', = Q,Euu'Q;. 

Substituting for Euu’ from (2.2) and simplifying we get 

(2.5) Eu,u', = o71,, 

*A model in this form was also used by Kuh (7), except that he did not assume y; and v,, are 
uncorrelated. Hussain (6) treats a model with y;’s as parameters, and A, and v,, as random. 
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where o{ = To; + o?. Thus the variance-covariance matrix reduces to scalar 

form, a best linear unbiased estimator of B is an OLS estimator 

(2.6) BQ) = (XX)! Xi). 

The subvector of f(1) corresponding to the slope coefficients only is given by 

(2.7) &(1) = (Z,NZ,)"'Z,Ny,, 

where Z, = Q,Z is an nx K’ matrix and N = IJ, — 1,1;/n; a subscript 1 is 

attached to # and 6 to differentiate these estimators from the other estimators of 

B and 6 to be described later. 

The variance-covariance matrix of 5(1) is 

(2.8) V[H(1)] = o7(Z,NZ,)~. 

Applying the transformation Q,.= (I, @ C,) to all nT observations we have 

(2.9) y2 = Z26 + up, 

where y, = Q,yisannT”’ x 1 vector of transformed observations on the dependent 

variable, Z, isannT’ x K’ matrix of transformed observations on K’ independent 

variables, u. = Q,u is an nT’ x 1 vector of transformed disturbances, and use is 

also made of the result Q,1,. = 0. The variance-covariance matrix of u, is 

(2.10) Eu,u, = EQ,uu'Q, = Q,Euu'Q, 

= (1, ® Con, ® trtr) + OF Lyr) Un ®@ C)), 

which can easily be reduced to o7I,,;’. Thus the variance-covariance matrix of u, 

is of scalar form. A best linear unbiased estimator of 6 is the OLS estimator given 

by 

(2.11) (2) = (Z,Z2) 'Ziy2.° 

The variance-covariance matrix of 4(2) is o2(Z,Z,)~'. Notice that Q,Q5 = 0. 

The rank of Q, is equal to the rank of 1p/./T multiplied by the rank of I, because 

if A and B are any arbitrary matrices, the rank of (A @ B) is equal to the rank of 

A multiplied by the rank of B. Therefore the rank of Q, + Q, =n + nT —n = nT, 

which is the total number of observations. This indicates that in estimating (2.3) 

and (2.9) we have used up all the orthogonal linear combinations of the available 

observations. 5(1) and 6(2) are two uncorrelated estimators of the same parametric 

vector and we can pool them in the following manner. 

A ZiNZ m2. it ZN Z. 
(2.12) 6(0) = : ; 14 1 - + | 

oj oy Oo; a. 

where 0 = [7, 02]’. The estimator 5(0) is a generalized least squares estimator of 

6. For given values of o7 and a2, it is a best linear unbiased estimator. Any other - 

5 It can be easily recognized that the estimator (1) in (2.6) is an OLS estimator obtained by apply- 
ing OLS to data aggregated over time and multiplied by 1 |./T ; the estimator (2) in (2.11) is obtained by 
applying OLS to nT observations, each observation expressed as a deviation from its time series mean 
and the overall mean. Please note that there are only n(T — 1) independent observations. 
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estimator of 6 which is also linear in the vector y and is unbiased, has a variance- 

covariance matrix which exceeds that of (0) by a positive semidefinite matrix. 

An unbiased estimator of o? is given by 

(2.13) 6} = yi:M,y,/n — K), 

where M, = I, — X,(X,X,)"'X;. Also, an unbiased estimator of o is 

(2.14) 62 = vM,y,/(nT’ — K’), 

where M, = I, — Z(Z2Z,)"'Z,, T’ = T— 1, and K’ = K — 1. An Aitken 

estimator of the slope coefficients based on the estimated values of o? and a? is 

given by 

a Z,NZ Z.Z.\.*1 ZiN¢ Zay 
(2.15) 6(0) = ae M4 7 sols. + “al 

a; 0, or 6? 

where 6 = [6?, 62]'.° 

We can readily show that the estimator (2) as obtained in (2.11) is equiva- 

lent to a covariance estimator ( say 5) obtained by assuming i,’s as fixed parameters. 

We can also show equivalence of 5(9) with an ordinary least squares estimator (6) 

when o2 = 0s follows: 

An ordinary least squares estimator of the slope coefficients in (1.1) is 

(2.16) 5 = (Z'Q,Z) 'Z'Quy, 

where 

= ] lnT nT 
Q, “a a. i 

a 

The Aitken estimator 4(6) in (2.15) when a2 = 0 is 

(2.17) 6(6) = [Z,NZ, + Z,Z2]~'[Z,Ny, + Z2y2] 

= [Z(Q\NQ, + Q202)Z] '[Z(QiNQ, + Q20.)y). 

Since 

ino, = (1,052) - amar 
7 nT 

and 

0:02 = 1,8 [Ir - mt) 

we can easily show that Q;NQ, + Q2Q02 = In7 — (tartnr/NT) = Qq, thus proving 

equality of 6 and 6(6) when o? = 0. 

° A similar pooled estimator of 5(0) can be obtained if 4, and v,, are assumed to be random. The 
variance-covariance matrix of u is given by o3(:,1, @ 7) + o71,7. To reduce this to scalar form_we 
consider an orthogonal matrix 0, = [«,/,/n, C;]' of order n, and apply transformations Q, = (1,/,/n @ 
I,) and Q, = (C, @ I) to all the nT observations. 
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3. PROPERTIES OF THE ESTIMATORS 

The estimator 5(8) of 5 can be written in the generalized least squares form as 

follows: 
[ZiN Z][1 9] [NZ] | '}[ZiN 22] 1 9 || Ny 

es 67 6} 
(3.1) (0) = ' 

0 62 Z, 0 62 y2 

If W = (ZN, Z3], V = diag [671,, 671,;] and y = [y,N, y2]’, the equation (3.1) 

can be written as 

(3.2) 5(6) = (W'D-''W)- Ww’ *». 

Substituting y = W6 + e, where e = [u',N, u]’ in (3.2), we get 

(3.3) 5(6) = 5 + (W'V-'W)-'W'D Ie. 

A generalized least squares estimator for a given V, as obtained in (2.12), can also 

be expressed as follows:- 

(3.4) 5(0) = 6 + (W'V-'W)'W'V le. 

If we assume that u’s are normally distributed, and since 

M,X,= U, — X(X4X,)- 'X))X, = 0, 

we can show that the linear form Z’, Nu, is distributed independently of the quad- 

ratic form 6{ = y,M,y,/(n — K). Similarly, we can show that the linear form Zu, 

is independently distributed of the quadratic form 6? = y,M,y,/(nT’ — K’). With 

these results, we can show that 

(3.5) E(6(6)|0] = 6. 

Since the expectation of 6 over the distribution of @ is 6, ie., E55 = 5, this proves 

that 0(@) is an unbiased estimator of 6. Sf. 

To establish the asymptotic properties of 0(@), we assume that X’s are weakly 

non-stochastic and, for a fixed n, lim;_.,,.(nT)~'Z',NZ,, limy..,, (nT) ‘ZZ, 

are all finite positive definite matrices.’ For a fixed n, under the above assumptions, 

we can show that lim, _.,, n”?T~ 7(Z,Nu,u,NZ,) = lim;_.,,n"?T~ 7Zu,u,Z = 0, 

thus insuring that plim;_,,(nT)~'Z,Nu, = 0 = plim;_,,(nT)~'Z3u,. Also, 

plim;..,, 67 = 07, plim;_.,, ¢? = o?. Under these conditions, we can easily show 

that 

(3.6) plim ./nT(5(6) — 5] = 0, 
T-@ 

i.e., 0(0) is a consistent estimator of 6. j 

Under the above assumptions, we can readily show that V is a consistent 

estimator of V, and that 6(6), as obtained in (2.15), is asymptotically equivalent to 

6(0), in the sense that ./nT[4(0) — 5(0)] converges in probability to zero as T > ©, 

’ The assumption of non-stochastic implies that the time pattern of the variable is bounded by 
some finite limits, even though it is not necessary for the pattern of the variable to repeat itself. The 
meaning of non-stochastic X’s is simply that the realization of the X’s is in accordance with some fixed 
(albeit unknown) process. Since economic data are stochastic, whichever assumption we adopt about 
the nature of the fixity of X"s, we are simplifying and possibly mis-specifying the model. See also Wallace 
and Hussain (14), pp. 55-72. 
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both coefficient estimators being asymptotically normally distributed with mean 

vector 6 and covariance matrix (W’V~'W)~'. Since plim,;_.,, 67/T = 07, we can 

further show that (6) is also asymptotically equivalent to the covariance estimator 

6, ie., 

(3.7) plim ./nT|5(6) — 5| = 0. 
T-@ 

In fact we can show that there is an infinitely large number of estimators which 

yield asymptotically equivalent estimates with asymptotically equivalent variance- 

covariance matrices. Thus asymptotic theory casts relatively little light on the 

comparative small sample properties of the estimators. In the next section, we 

evaluate relative efficiency of the various estimation procedures by using a Monte 

Carlo study. 

4. DESIGN OF THE EXPERIMENT AND THE COMPARATIVE PROPERTIES 

OF THE VARIOUS ESTIMATORS 

The design of the Monte Carlo experiments given here is similar to that of 

Nerlove, except that our model contains an intercept and we generate random 

numbers by a slightly different, but more efficient, method.* Since Nerlove has 

already done extensive Monte Carlo studies, we examine intensively only those 

cases with large inter-individual heterogeneity and varying T. The model is given by 

(4.1) Vie = Bo + BiX iin + Hit Vie- 

The explanatory variable, X ,;,, held fixed throughout the experiment, is generated 

as follows : 

(4.2) X sie = 0.1(t — 1) + 1.05X,4-1 + 

where w, is uniformly distributed in the range from 0 to 2. Initial values of X ; io 

are chosen at random from the uniformly distributed numbers in the range 0 to 

100. To generate n7 values of u;, independent normal variables with zero mean 

and unit variance, n y,;'s are first selected with py; ~ N(0,o2), nT v;,’s are then 

selected with v,, ~ N(0, a2), and these are summed to give the u,,’s. Defining p, the 

intra-class correlation cofficient, as p = o7/o7, where o* = a7 + of, we can write 

u; ~ N(0, po?) and v;, ~ N(0,(1 — p)o’). 

Twelve sets of y,,’s were generated for various combinations of the parameter 

values B, = 0 and 5; B, = 0.5 and 0.8; p = 0, 0.4 and 0.8; and o” = 10. Initially 

n is set at 25 and T at 6.° For each set of parameters, five estimating procedures 

were examined : 

(a) OLS estimator based on data aggregated over time, 4(1), 

8 This method and a method to convert uniformly distributed random variables to normal variate 
is described ii, Appendix A-2. See also Nerlove (11), pp. 366-371. 

° These parameters were selected from the initial set of parameters 8, = 0.0, 0.5, 1.0, 5.0 and 10.0; 
B, = 0.1, 0.5, 0.8; p = 0.0, 0.2, 0.4, 0.6 and 0.8; o? = 10 and 20. For these 150 sets of parameters 2 
repetitions were performed. On the basis of mean square error of the estimators in the various estimat- 
ing procedures only 12 parameter sets were selected for intensive study. The choice of these pasameter 
values may itself cause bias in our results, but the very consistency of the trend strengthens our belief 
that this is a representative set. 
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(b) covariance estimator, 5(2), 

(c) ordinary least squares, (4), 

(d) a estimator based on the estimated variance-covariance matrix, 

), 
(e) generalized least squares based on known variance-covariance matrix, 

5(8). 

In each experiment, 20 repetitions are performed, from which the mean and 

the mean square error of the estimated coefficients are calculated. The entire set of 

experiments is repeated with T set at 15, giving 480 runs and 24 tables of mean and 

mean square error of the coefficients for different estimating procedures. ‘° Table 1 

presents the mean and the mean square error for one such experiment. Results of 

various other runs are presented in an appendix to this paper. 

From Table 1, we find that the mean values of By and f, for all estimating 

methods are finitely close to the true values, thus demonstrating that all estimators 

under consideration are unbiased, but that the mean square error for the different 

estimators varies considerably. The mean square error of OLS—Agg. is about three 

times as large as that of the generalized least squares estimator, while those of the 

covariance estimator and of the ordinary least squares estimator are only about 

twice as large. The mean square error of the pooled estimator is nearly the same as 

that of the generalized least squares. 

This is true for all values of p except p = 0. In this case, all estimators have 

mean square error equal to that of the generalized least squares estimator.'' As p 

increases, so does the ratio of the mean square error of the OLS estimator to that 

of the GLS estimator, but for all values of p the mean square error of the pooled 

estimator nearly equals the mean square error of the GLS. Further, for large 

values of p, the OLS method gives a serious underestimate of o?, giving low 

standard errors of the estimates. In contrast, the standard errors for the pooled 

estimator and the GLS are nearly equal. As T increases, the mean square error of 

the covariance estimator declines, becoming almost equal to that of the pooled 

estimator and the GLS estimator. 

TABLE | 

MEAN AND MEAN SQUARE ERROR OF THE COEFFICIENTS FOR VARIOUS ESTIMATING METHODS 
FOR o? = 10, N = 25, T = 6, AND p = 0.8 

Method Mean (fq) m.s.e. (Bo) Mean (f,) m.s.e. (f;) 

True Value $ 0 0.5 0 
OLS—Agg. 4.99184 0.703589 0.499717 7.725E-05 
Covariance -- 0.499688 5.221E-05 
OLS 4.99208 0.595746 0.499714 5.540E-05 
Pooled 5.00708 0.400888 0.499682 2.791 E-05 
GLS 4.99329 0.386660 0.499695 2.788E-05 

‘© Mean square error of an estimator 4 of @ is given by 

> 
ms.e. = — } (6, — 0)’. 

i i=1 
'! See tables 1 and 2 in the appendix to this paper. Closeness of the estimates to the true values may 

also indicate that the error terms are relatively small as compared to the X’s. 
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Hence we see, on the basis of the criterion of minimum mean square error, | 

that the pooled estimator compares favorably, for all T’s and all p’s, with all other 

estimators which do not require a prior knowledge of the variance-covariance 

matrix. Furthermore, this estimator shows definite superiority to other estimators 

for small T’s and large p. On the basis of the criterion of unbiasedness, this com- 

pares equally well with all other estimators. 

5. CONCLUSION 

In this paper, we have developed an operational method for estimating error 

components regression models when the variance-covariance matrix of the 

disturbance terms is unknown. Monte Carlo studies were conducted to compare 

the relative efficiency of the pooled estimator obtained by this procedure to (a) an 

ordinary least squares estimator based on data aggregated over time, (b) the 

covariance estimator, (c) the ordinary least squares estimator, and (d) a generalized 

least squares estimator based on a known variance-covariance matrix. For T 

small and large p, this estimator definitely performs better than the other estimators 

which are also based on an estimated value of the variance-covariance matrix of 

the disturbances. For p small and large T it compares equally well with the other 

estimators. In this instance, therefore, we are able to give a definite unconditional 

answer to the question posed to Nerlove’s Dodo, “But who has won?’’—the 

pooled estimator, of course! 

National Bureau of Economic Research, and 

The University of Wisconsin—M ilwaukee 

APPENDIX A-! 

TABLE | 

MEAN AND MEAN SQUARE ERROR OF THE COEFFICIENTS FOR VARIOUS ESTIMATING PROCEDURES 
FOR T = 6, -N = 25, AND o” = 10 

Method Mean (f,) m.s.€. (Bo) Mean (f;,) 

p=0.0: True Value 5 0 0.80 
OLS—Agg. 5.20645 0.286728 0.798293 6.564E-05 
Covariance 0.806431 3.370E-04 
OLS 5.14152 0.216076 0.799298 5.342E-05 
Pooled 5.12310 0.200142 0.799582 5.227E-05 
GLS 5.14149 0.21606! 0.799297 5.342E-05 

True Value 5 0 0.80 0 
OLS—-Agg. 5.34402 . 0.839164 0.794023 1.970E-04 
Covariance 0.800825 2.190E-04 
OLS 5.28975 0.673243 0.794863 1.900E-04 
Pooled 5.18582 0.544211 0.796471 9.108E-05 
GLS 5.16231 0.538673 0.796834 8.246E-05 

True Value 5 0 0.50 0 
OLS—Agg. 4.99184 0.70300. 0.499717 7.725E-05 
Covariance - 0.499688 5.221E-05 
OLS 4.99208 0.594746 0.499714 5.540E-05 
Pooled 5.00708 0.400888 0.499682 2.731E-05 
GLS 4.99329 0.386660 0.499695 2.788E-05 
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TABLE 2 

MEAN AND MEAN SQUARE ERROR OF THE COEFFICIENTS FOR VARIOUS ESTIMATING PROCEDURES 
FOR T = 15, N = 25, AND o” = 10 

Method Mean (fo) m.s.e. (Bo) Mean (f,) m.s.e. (B;) 

p=0.0; True Value 5.0 0 0.80 0 
OLS—Agg. $.04207 0.214164 0.800005 1.527E-05 
Covariance = _ 0.800616 1.241E-05 
OLS 5.00136 0.074410 0.800355 4.829E-06 
Pooled 5.00143 0.074891 0.800353 4.721E-06 
GLS 5.00150 0.074409 0.800352 4.827E-06 

p=04: True Value 5.0 0 0.80 0 
OLS—Agg. 4.88203 1.03832 0.800393 6.816E-05 
Covariance _ - 0.799514 6.300E-06 
OLS 4.94057 0.346083 0.799890 1.593E-05 
Pooled 4.97141 ~ 0.217877 0.799625 6.210E-06 
GLS 4.97792 0.222983 0.799570 6.135E-06 

p =0.8: True Value 5.0 0 0.80 0 
OLS—Agg. 5.57304 2.61798 0.793599 2.010E-04 
Covariance _ 0.799879 1.413E-06 
OLS 5.15513 0.639253 0.797190 3.645E-05 
Pooled 4.85477 0.341444 0.799771 1.381E-06 
GLS 4.85116 0.344148 0.799802 1.368E-06 

APPENDIX A-2 

RANDOM NUMBER GENERATING PROCEDURES 

A desired sequence of random numbers X,, is obtained by setting 

Xn+1 = (aX, + c)modm m>=0 

where a is the multiplier, c is the increment and m is the modulus, a > 0, c > 0, 

m>c,m>a,andm> Xo, where Xo is the starting value. This method is called 

linear congruential sequence. When c = 0, the random generation process is 

slightly faster, but the maximum period length (length after which sequence starts 

repeating itself) can not be achieved. Nerlove (11) in order to avoid this problem, 

suggests mixing two random sequences into a third, so that the third one is 

extremely random. We use a method suggested by Maclaren and Marsaglia as 

described below." 

A quite random sequence. Given methods for generating two sequences X,, 

and Y,, this method produces a “considerably more random” sequence. We use 

an auxiliary table V(0), V(1),...,V(k — 1), where k is some number chosen for 

convenience, usually in the neighborhood of 100. Initially, the V-table is filled 

with the first k values of the X-sequence. 

Step 1: [Generate X, Y] Set X, Y equal to the next number of the sequence 

(X,,, Y,,) respectively. 

Step 2: [Extract j]Set j — [k Y/m], where m is the modulus used in the sequence 

Y,; Le., j is a random value, 0 < j < k determined by Y. 

1 See Knuth (8), pp. 25-31. 



Step 3: [Exchange] Output V(j) and then set V(j) — X. 

This method gives an incredibly long period if the periods of (X,) and (Y,) 

are relatively prime; and even if the period is of no consequence, there is very 

little relation between the nearby terms of the sequence. To generate inde- 

pendently normal variates we follow the Polar Method, which consists of generat- 

ing two independent random variables (u, and u,) uniformly distributed between 

zero and one.” A set of independent normal variates with mean zero and variance 

one is obtained by the transformation 
> 

w, = (—2 log u,)'? cos (2u,) 

w, = (—2 logu,)'/? cos (2nu,). 
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? To generate variable uniformly distributed between zero and one, we first generate some random 
number X,, between zero and m as described above, and then the fraction u, = X,,/m will lie between 
zero and one. 

3 For a comprehensive discussion of this met! od see Knuth (8), pp. 103-105 ; also see Nerlove (11), 
p. 368, footnote 11. 
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