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Annals of Economic and Social Measurement, 2/4, 1973 

A SURVEY OF STOCHASTIC PARAMETER REGRESSION 

BY BARR ROSENBERG! 

Several important models of stochastic parameter variation are described: randomly dispersed parameters, 
sequentially varying parameters, stationary stochastic parameters, cross-section time-series models, and 
the shifting regressions approach. Theories and methods of stochastic parameter regression are surveyed. 

I. STOCHASTIC PARAMETER REGRESSION 

This article is a short survey of some of the more important issues in the theory 

of regression with stochastically varying parameters. The stochastic parameter 

regression problem arises when regression coefficients vary unsystematically in 

the familiar linear regression model: 

M- (1) Ve = Din:Xint + Une = XneDae +H Une n=1;...,N, t=1,...,T 
1 

where n connotes an individual within a cross section, t connotes a time period, 

and where one or the other of the subscripts will be suppressed when inappro- 

priate. The regression parameters or coefficients b,,...,b,, one of which may be 

the intercept, are written with subscripts n and t to permit variation across indi- 

viduals and time periods. Many articles in the literature on stochastic parameters 

have provided arguments for the nonconstancy of coefficients across observa- 

tions, and it would be inappropriate to repeat these here. Suffice it to note that if 

the regression coefficients are to be regarded as the true partial derivatives of y,, 

with respect to the regressors x;,,, then it is improbable that these partial deriva- 

tives will be identical for two different observations. 

Two types of parameter variation must be distinguished: systematic and 

stochastic. In systematic variation, the individual parameter vectors may be 

written as b,, = f(A, Z,,) where the parameters A specify a functional form determin- 

ing b,, as a function of observable variables z,,. These observables may include 

the regressors x,, themselves, if the true regression model is nonlinear, as well as 

other characteristics of the individual. When parameter variation is systematic, 

the regression problem is a (possibly nonlinear) regression on x,, and Z,, to 

estimate the parameters 4, and ordinary regression theory is applicable. For a 

discussion of these matters, see Belsley (1973). 

The stochastic parameter problem arises when parameter variation includes 

a component which is a realization of some stochastic process in addition to 

whatever component is related to observable variables. Thus, stochastic param- 

eter regression is a generalization of ordinary regression. Ideally, a model would 

be so well specified that no stochastic parameter variation would be present, and 

' Assistant Professor of Business Administration, University of California, Berkeley. This research 
was supported by NSF grant GS 3306. This is, of necessity, a brief survey of the theory, and there must 
inevitably be omissions and perhaps errors as well, for which the author offers his apologies. 
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no generalization would be needed, but the world is less than ideal. The distinc- 

tion between stochastic and systematic variation is particularly important, because 

in most models, stochastic parameter variation is assumed to be uncorrelated 

with the explanatory variables. Hence, these models are not intended to account 

for parameter variation resulting from misspecification in a nonlinear model, 

despite frequent assertions to this effect in the literature. Stochastic parameter 

regression should be employed as a supplement to analysis of systematic varia- 

tion, rather than as an alternative. 

All of the stochastic parameter processes that have been considered in 

economics may be written in the general form: 

(2) b,, = A,{0)m + B,,(0m, Se M,. #98 Bscs T 

where m is a(j x 1) vector of unknown parameters, y is a large vector of stochastic 

terms, (p x 1) say, having a proper joint distribution with mean 9(8) and variance 

matrix o7A(@), with o? a scale parameter, and where the notation (8) indicates 

that these terms may depend on a vector of stochastic specification parameters 9. 

When these relations are substituted into the linear regression (1) and all observa- 

tions in the regression are combined, the result is a linear statistical model: 

1 Vai x, Ai 16) x, B, ,(8) (Uy, | 

yi2 X12: Ai28)| x2 B, (8) Ui2 

\Ynr/ Xy7 Ayr(9) Xr By (8) UNT 

or, in matrix form, 

(3) y = 5(0)m + ¥(Oy + u. 

To see that the model differs little from the traditional regression model, 

notice that it may be rewritten as: 

(4) y = =(0)m + cv@):0(") 

Thus, the model is a regression with an augmented vector of stochastic terms 

including both stochastic parameters and disturbances. In contrast to ordinary 

regression, where the disturbances are customarily eliminated as nuisance param- 

eters at the first opportunity, in stochastic parameter regression the estimators 

for the stochastic terms are followed through carefully. However, as Theil has 

shown (1971, Ch. 5), there are implied estimators for the stochastic terms in the 

ordinary regression model, and Theil’s BLUS procedure is an instance of the 

general procedures for optimal estimation of the stochastic terms in a linear 

statistical model such as (4). 

The regression may be written in yet another way as: 

(5) y*(®) = y — VOH(O) = =(0)m + v, 

where 

v= c¥@):0)" m “I 
u 
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Assume that E(u) =0, var(u) = o*Z(8), cov(u,n) = 0. Then, E(v) = 0, ° 

var (v) = o7(‘¥(8)A(6)'¥'(8) + £(0)) = o?V(8). Thus, the vector v has the proper- 

ties of a heteroscedastic disturbance vector, and the stochastic parameter regression 

model, insofar as it implies an estimator for m, is seen to be no more than an ordin- 

ary regression with a complicated covariance among the “disturbances.” 

Il. STOCHASTIC PARAMETER MODELS 

Before discussing the several stochastic parameter models that have been 

proposed in the literature. the concept of the Markovian Canonical Form for a 

model, which will be needed in the discussion, will be introduced. 

A. Markovian Canonical Form 

A stochastic parameter regression model is in Markovian Canonical Form 

(MCF), when the (possibly transformed) set of parameter vectors, bf ts 

satisfy the following conditions : 

(i) The observations of the dependent variables appear in linear regressions 

of the form y¥ = ‘¥*(®)b* + u¥, such that for i 4 j, cov (uf, uF) = 0. 

(ii) The joint distribution of the parameters may be represented by prior 

distributions for the parameter vectors, which are uncorrelated across 

different parameter vectors ; and by a set of linear transition relations, each 

linking some pair of parameter vectors in the form b¥ = @,{8)b} + dj;, 

where each stochastic parameter shift vector d;; has a specified mean and 

variance which may depend on 6, and where each shift vector is un- 

correlated with all other shift vectors and with all disturbances. 

A model in MCF may be represented visually by a graph, in which the vertices 

correspond to the parameter vectors, and the links between vertices to the transi- 

tion relations. For instance, in a time series regression in which disturbances are 

serially uncorrelated and parameters follow a first-order Markov process, so that 

successive parameter shifts are uncorrelated, the model is in MCF represented by 

the graph in Figure 1. 

b, b, b, er b, 

Figure | 

A model that is not immediately in MCF may often be transformed into this 

form by adjoining to the parameter vector state variables that transmit the correla- 

tion in the modei. To clarify this, consider the familiar fixed-parameter model 

with first-order autoregressive disturbance process given by u, = pu,_, + @,, 

where E(e,) = 0, var (e,) = 07. By regarding the disturbance u, as the “stochastic 

parameter,” the model is represented in MCF, with graph as in Figure 1, as follows: 

Regression relations: 

y, = (x,:1) 
b 
| t=1,...,T7 

\U, 

E(u,) = 0, var (u,) = o7/((1 — p?) 
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Transition relations: 

Ur+1 = Pu, + e,, t=1,...,T7-—1, 

Efe,)=0, var [e,] = o?. 

This illustration shows two interesting characteristics of stochastic parameter 

regression. For one, the distinction between disturbances and stochastic param- 

eters is purely arbitrary. Secondly, there may, in fact, be no true disturbances at 

all; when u becomes a parameter, no additive disturbance remains. 

The essential characteristic of the MCF is the absence of correlation across 

regression observations and transition relations. The regression observations 

and/or prior distribution for any parameter vector then provide an atom of informa- 

tion about that parameter vector, with random components uncorrelated with 

other stochastic terms in the model, which may be processed by the rules of 

ordinary fixed-parameter regressidn. Since the linear transition relations between 

parameters are uncorreiated with the atoms of information, the atoms may be 

combined by applying, at each transition, the rule for a given linear transforma- 

tion with an uncorrelated adciiive stochastic shift. All information in the regres- 

sion may be combined by recursive application of this procedure of stepwise 

composition, incorporating the information for each parameter vector by ordinary 

regression, and combining information by linear stochastic transformation or 

extrapolation. The process may be visualized as a tracing out of the links in the 

graph representing the MCF, with the step along each link being an extrapolation 

of information collected at the previous vertex, and with the action at each vertex 

being the combination of the atom of regression information for that parameter 

vector with the extrapolated prior information. 

This approach to deriving estimators in the stochastic regression problem 

may be termed atomistic (Rosenberg, 1968b). It contrasts with the alternative 

holistic approach of direct derivation from the general linear form (3). Whatever 

the method by which the estimators are derived, the great significance of the MCF 

lies in the fact that the matrix algebra required for the atomistic regressions and 

for the extrapolations is never of greater dimension than the dimension of the 

parameter vectors b*.? Hence, it follows that an MCF with parameter vectors of 

low dimension is a sufficient condition for estimation in the model to be computa- 

tionally feasible. In addition, when the model cannot be exactly placed in MCF, 

an approximation in MCF often suggests an approximate computational 

procedure. 

B. Randomly Dispersed Parameter Models 

The term “‘random,” as opposed to “‘stochastic,” is reserved for the specific 

model in which regression parameter vectors are random drawings from a 

common multivariate distribution, with mean vector m and variance matrix o7Q. 

? For instance, the models proposed by Cooley and Prescott (1973c) and Sarris (1973) are easily 
transformed to have the MCF in Figure 1; with this insight, application of the formulae in Rosenberg 
((1968a), (1973c, Sect. I1)) allow the N-dimensional matrix operations proposed by these authors to be 
avoided entirely. There is a substantial savings in required computations when N is large (more than 4 
orders of magnitude in the “Capital Market Application” mentioned by Cooley and Prescott). 
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Figure 2 

When only the constant term varies, the model becomes the analysis of covariance 

with random effects. If the parameters are represented as b, = m + y,,n = 1,...,.N, 

where m is the population mean vector, the process is in the general form (2). 

When disturbances are uncorrelated across the individual parameter vectors, 

the model falls immediately into the MCF in Figure 2. 

The model is clearly applicable to a random sample of individuals in which 

only one observation is taken on each individual. When there are repeated observa- 

tions on an individual, the model applies if successive parameter vectors for the 

individual are independently drawn, as assumed by Fisk (1967), or if the successive 

realizations for each individual are identical, as assumed by Rao (1965b). 

Several early studies examined the case where only a single observation 

corresponded to each parameter vector. Rubin [1950] wrote down the likelihood 

function, Theil and Mennes (1959) and Hildreth and Houck (1968) studied estima- 

tion of m and Q, assuming 2 to be diagonal, and Fisk (1967) studied this case 

with general Q. Rao (1965a, pp. 192-193; 1965b) and recently Efron and Morris 

(1972) studied the second case where multiple observations are generated by each 

individual parameter vector, but with the assumption that the regressor matrix is 

of rank k and identical for all individuals. Swamy (1970, 1971, and 1973) permitted 

differing X,, but retained the requirement of rank equal to k. Rosenberg (1973a) 

relaxed the rank k assumption. Applications of the model appear in Swamy 

(1971), Rosenberg and McKibben (1973), and Sheiner, Rosenberg, and Melmon 

(1972). In the last, the regressions are nonlinear, and an approximation suggested 

by the MCF is employed. 

C. Sequential or Markov Parameter Models 

In these models, parameters follow a first-order Markov process, or more 

generally, an autoregressive or moving-average process of low order. The model is 

naturally applied to a time series, with the stochastic parameter process intro- 

ducing random drift in the parameters. The process is represented as b,,, = 

@b, + n,, t = 1,..., T. In order to place it in the general form (2), the parameter 

vector in the initial period may be chosen as the unknown vector m, and the 

parameters may be represented as b, = ®'-'m + )'=} @'°*"'y,, ¢ = 1,..., T. 

The MCF was given im Figure 1. This general model was first analyzed by Kalman 

(1960) and Kalman and Bucy (1961), who originated an extensive literature in 

control theory and the applied physical sciences, in which the optimal estimation 

methods are often referred to as the Wiener-Kalman or Kalman-—Bucy filter. 

A range of studies have introduced applications of this model into economics 

and statistics: Rosenberg (1967, 1968a), Terasvirta (1970), Duncan and Horn 

(1972), Bowman and LaPorte (1972). Where only the constant or intercept term 

varies, the special case of the adaptive regression model arises: Cooley (1971) and 
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Cooley and Prescott (1973a, 1973b). The further special case of time series analysis, 

where a time varying constant is the only term present, has been studied exten- 

sively: Swerling (1959), Muth (1960), Parzen (1961), Box and Jenkins (1962, 

1970). Another family of special cases was studied in depth by Brown (1963). See, 

also, the articles in this issue by Cooley and Prescott (1973c), Sarris (1973), and 

Rosenberg (1973c). 

D. Stationary Stochastic Parameter Models 

Burnett and Guthrie (1970) introduced the general model where parameter 

variation over time follows a stationary stochastic process. Although this model 

is of formal interest, it suffers from the defect that it cannot, in general, be trans- 

formed into Markovian Canonical Form with a parameter vector of low dimen- 

sion, so that the computational problems associated with it are horrendous. 

E. Cross-Section Time-Series Models 

Statisticians have perceived the need for responsiveness to parameter varia- 

tion most clearly in cross-section time-series analysis, not necessarily because it is 

intrinsically any more necessary here than in the analysis of a single cross section 

or a single time series, but rather because the greacer number of observations allows 

more degrees of freedom to deal with the problem. The traditional method allows 

the intercept in the regression to vary randomly over time (time effects) and across 

the population (individual effects). An extensive literature on this subject, which is 

an interesting case of stochastic parameter regression, exists. Some important 

recent contributions are Tiao and Tan (1965, 1966), Chetty (1968), Wallace and 

Hussain (1969), Amemiya (1971), Maddala (1971), Swamy (1971, Ch. 3), Swamy 

and Arora (1972). Swamy has applied the random parameter model to a cross 

section of time series, assuming that individual parameters are fixed over time. He 

has also analyzed the case where a random time effect occurs each period ; these 

parameters must be adjoined to the individual parameter vectors to bring the 

model into the MCF in Figure 2. Hsaio (1972, 1973) has proposed an extension, 

in which the parameter vectors are the sum of random individual parameter 

vectors and random time vectors, so that the traditional procedure applied to the 

intercept is generalized to the entire parameter vector (1972a). The MCF for this 

model cannot be fully simplified, and Hsaio’s decomposition of the computational 

formulae requires a matrix inversion of rank Nk (1973, Eq. A.12), an infeasible 

computation in a large cross section. Therefore, an approximation, presumably 

based on approximate decomposition of the model into a randomly dispersed 

process over time, superimposed on another across the population, is required. 

Another article in this issue proposes a convergent parameter model, in which 

individual parameter vectors follow first-order Markov processes subordinated 

to a tendency to converge to the population norm. The MCF for this model, given 

in Rosenberg (1973c, Figure 1) in terms of parameter vectors of order Nk, can be 

accurately approximated by a simplified MCF of order k, thereby rendering the 

computations feasible. 
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F. Switching Parameter Models 

Quandt and Goldfeld (1973) have continued Quandt’s earlier study (1958) of 

the model where a parameter vector switches stochastically between two values. 

The model is applicable, for instance, if supply and demand functions alternately 

dominate in a market. Any of the parameter processes introduced thus far could 

be formulated as a switching parameter model. However, the estimation methods 

generally considered for these processes are intended for parameter variation with 

a continuous distribution, and are less efficient in the switching parameter problem 

than the methods developed by Quandt and Goldfeld to exploit the binary distribu- 

tion. 

III. THE IMPORTANCE OF RESPONSIVENESS TO STOCHASTIC PARAMETER 

VARIATION 

In the general stochastic parameter model (2), the estimation problem can be 

viewed as consisting of three parts : (i) estimation of the unknown parameter vector 

m, (ii) estimation of the stochastic parameter vector , and (iii) estimation of the 

stochastic specification, ¢? and @. For instance, in the random parameter model, 

(i) corresponds to estimation of the population mean parameter vector, (ii) to 

estimation of the individual parameter vectors, and (iii) to estimation of the dis- 

persion of the individual parameter vectors. In the sequential parameter model, (i) 

corresponds to estimating the initial value of the parameter vector (or, by a trans- 

formation, to estimation of the current value), (ii) corresponds to estimating the 

history of parameter realizations, and (iii) to estimating the Markov parameter 

process. 

It is clear that (tii) can only be accomplished in the context of a random 

parameter model. Thus, when the process of parameter variation is of interest (as, 

for instance, if stochastic variation in corporate return on equity reflects competi- 

tive forces and the magnitude of these forces is to be determined), a random 

parameter model is essential. 

With regard to estimating m, it is clear from (5) that, so long as any nonzero 

mean in the stochastic parameters is adjusted for, an ordinary least squares 

(OLS) regression for m will be defective only insofar as it ignores heteroscedasti- 

city: thus, OLS will be unbiased but inefficient, and the advantage of a random 

parameter context consists in allowing the heteroscedasticity to be identified so 

that Aitken’s Generalized Least Squares may be applied. This improvement in 

efficiency appears to be substantial in simulations (e.g., Cooley and Prescott 

(1973a), Rosenberg (1973c)). Equally important, in the presence of parameter 

variation, OLS sampling theory severely understates parameter estimation error 

variance. Thus, recognition of the correct specification removes a downward 

bias in estimated error variance, just as in the use of the familiar Cochrane—Orcutt 

transformation when disturbances are serially correlated. 

Inappropriate use of a fixed-parameter model causes even more severe prob- 

lems in estimating the individual parameter vectors, because stochastic param- 

eter variation introduces random components in these vectors. Because the 

fixed-parameter model ignores these random components, the inefficiency and 
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invalidity of OLS are severe; in the simulations reported in Rosenberg (1973c), 

OLS error variance rises to five times the efficient variance, and OLS sampling 

theory underestimates OLS error variance by a factor of twenty or more. In the 

stochastic parameter model, minimum mean square estimation is achieved by 

attributing a proportion of the residuals y — =(0)m to the stochastic parameters : 

familiar econometric methods such as Theil’s BLUS procedure and the estima- 

tion of the latest residual in the autoregressive disturbance model preparatory to 

forecasting, are special cases of this method. 

if parameter variation is ignored in estimation, the estimate for m will tend 

to be an average of the realized individual parameter vectors. From this perspec- 
tive, responsiveness to parameter variation is seen to be (i) valuable in achieving a 

more efficient estimator for this average, with more valid sampling theory; (ii) 

critically important in estimating the realized values of the individual parameters 

as distinct from the average, and (iii) essential in analyzing the stochastic parameter 

process. : 

As an illustration, consider th= medical problem of estimating the physio- 

logical parameters describing an individual’s response to a drug, with the purpose 

of recommending a correct dosage. These parameters will vary systematically 

across the patient population in relation tc measurable patient characteristics 

such as weight, and will, in addition, vary stochastically about these systematic 

predictions in a manner that can be modeled, at a first approximation, by the 

random parameter model, assuming individual stochastic parameters to be fixed 

over time. Then one or more observations on the individual’s response to the drug 

allow this random component to be estimated, thereby allowing dosages more 

appropriate to the individual to be prescribed. This approach has been applied 

with substantial success in a program under way at the University of California 

Medical Center, San Francisco (Sheiner, et al. (1972)). The method provides 

superior estimates of the population mean parameters and of the systematic 

parameter variation,’ improved predictions of individual parameters, and 

medically useful descriptions of the extent of stochastic parameter variation. 

IV. ESTIMATION OF THE STOCHASTIC SPECIFICATION 

The estimation problem in a linear stochastic parameter regression breaks 

naturally into two stages: (i) estimation of the stochastic specification parameters, 

0: and (ii) estimation of the scale parameter o”, of the unknown parameters m, 

and of the stochastic parameters y. The break occurs because the estimators for the 

latter parameters, conditional on 8, can be expressed analytically, whereas most 

estimators for @ must be computed by iterative procedures. Note that o? is treated 

as a scale parameter for all second moments (those of the parameter distribution 

as well as those of the disturbances), so that @ specifies only the relative magni- 

tudes of these moments. This allows the problem of estimating @ to be reduced by 

one dimension and is therefore convenient. Estimation of o*, conditional on 9, is 

always a straightforward matter, exactly analogous to the methods for an ordin- 

ary regression; moreover, this computation is always implicit in calculation of 

* Inappropriate use of the fixed-parameter assumption in this case yields biased as well as ineffi- 
cient estimators, because the regression models are nonlinear. 
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the sample likelihood or posterior distribution for 8, so that it need not be treated 

separately. (It is a natural alternative to include o? in an expanded 8 vector, and 

the analysis could be carried out in this way if desired.) 

In this section, the problem of estimating @ will be discussed. Let R, be the 

region of admissible values. Notice that there are two classes of criteria for optimal 

estimation of 8: those which are specific to 6, and those which refer to the proper- 

ties of the estimators for m, y implied by the estimator of 0. 

When stochastic terms are normally distributed, two natural estimators to 

consider are the Maximum Likelihood estimator (MLE) and the Bayesian. In 

Rosenberg (1973b), the likelihood function and Bayesian posterior for @ are derived 

for the general model (3). The formulae to compute these for each @ also yield the 

MLE and Bayes posterior distributions for o*, m, and 9, conditional on 6. Maxi- 

mum Likelihood estimation may be accomplished by a search over R,, evaluating 

the likelihood function at each point. Bayes estimation is accomplished by 

numerical integration, with respect to the posterior distribution for 8, again by an 

iteration over R,. Computations at each step of the iteration are of the same order 

as required for estimation of m, conditional on @. Therefore, if the latter computa- 

tion is feasible, as will be discussed in Section V, then the only computational 

problem arising is the need for repeated computation of the formulae for many 8 

values in R,. For an application of these methods to the sequential parameter 

problem, in which the MCF is exploited to simplify the computations for any 9, 

see Rosenberg (1973c, Sections ITA, IIB). Cooley and Prescott have taken the same 

approach to the special case of the Adaptive Regression Problem (1973a, 1973b).* 

For the randomly dispersed parameter problem, see Fisk (1967, Sections, 5, 6), 

Swamy (1971, p. 111), Rosenberg (1973a). 

The author’s experience with these methods is quite favorable. In both the 

sequential and the random parameter models, the likelihood function has been 

well behaved, without extrema other than the global maximum, and convergence 

has been achieved without difficulty. The computations are quite feasible on third- 

generation computers ; convergence in a nonlinear random parameter model with 

seven elements in 8 and roughly 500 observations is routinely accomplished in less 

than a minute on the CDC 7600, using a modified Fletcher—Powell algorithm. 

Moreover, the estimates for the stochastic specification parameters and for the 

regression parameters in several empirical applications have been consistent with 

a priori expectations, although the latter were not included in the estimation 

procedure in any way. This is perhaps the most robust test of any method. 

The optimal properties of Bayesian methods, given that the prior distribution 

is appropriate, are well known. The asymptotic optimality of some Maximum 

Likelihood estimators is also well.known, and Anderson (1970) extends these 

optimal properties to the case where the variance matrix V(@) is linear in 8. He also 

notes that if a consistent initial estimator of @ is available in this case, a single 

iteration of the Newton—Raphson procedure applied with these initial estimates 

* However, in Cooley and Prescott (1973c) there appears to be a misunderstanding as to the 
existence of a general solution. CP appear to assert that their model is not a member of the family of 
models with sequential MCF as in Figure 1. As a matter of fact, the model is easily transformed to have 
the MCF in Figure 1, and the likelihood function for the model in this form is given in Rosenberg 
(1973¢c, Sect. II). 
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as a Starting point will then provide asymptotically efficient estimators. Cooley 

(1971) and Cooley and Prescott (1972b) derive the asymptotic properties of the 

parameter shift variance estimator in the adaptive regression, which is a special 

case of Anderson’s problem. Notice, however, that the transition matrices in the 

MCF enter nonlinearly into the matrix V(®); asymptotic efficiency when V is 

nonlinear in 8 has not been demonstrated, to the author’s knowledge, although the 

demonstration should be relatively straightforward. See Kushner (1967) and 

Kashyap (1970) in this context. The asymptotic sampling properties of the Bayesian 

estimators are essentially equivalent to those of the Maximum Likelihood estima- 

tor (see, e.g., Johnson (1967) and Zellner (1971, p. 31)). 

On the other hand, the small sample properties of Maximum Likelihood 

estimators are not «ecessarily optimal, nor are the Bayesian estimators’ properties 

necessarily optimal, in a sampling theory sense, if the prior distribution is not 

believed. Efron and Morris (1972, 1973) approach this problem. For the randomly 

dispersed parameter model, with identical regressor matrices for all individuals, 

they are able to deduce the sampling properties of the regression parameter 

estimators implied by a class of estimators for the dispersion matrix Q(8), and to 

deduce from this the implications of alternative prior distributions for elements of 

8. Although substantial generalizations will be needed before these results can be 

brought to bear on the complex regression problems usually encountered in 

econometrics, this approach is promising. 

Within the class of estimators considered by EM are some estimators of 8 

that are simple quadratic functions of the dependent variables, possibly truncated 

by setting to zero any negative estimated variances. These estimators fall within 

a general category of possibly truncated quadratic or iterative quadratic estima- 

tors of the variances in 8, with the number of iterations, if there are any, being 
small. Within this general category, the simplest estimators are regressions of the 

form é = X@, where é represents the squared values of residuals (or a transforma- 

tion of these residuals) from (5), and X represents the squares and cross products 

of the regressors in (5). Fisk (1967) pioneered this method and Hildreth and Houck 

(1968) developed it independently. Where only a single observation on each 

parameter vector arises in the random model with normally distributed stochastic 

terms, a single iteration of this method is asymptotically efficient, as Hildreth 

and Houck have shown, and as follows from Amemiya’s general results on 

regression where the variance of the dependent variable is proportional to the 

square of its expectation, with the dependent variable following a gamma distribu- 

tion (1973). In more complicated stochastic parameter regression models, how- 

ever, a complicated heteroscedasticity in this “second moment regression” 

appears, and the method can no longer be made asymptotically efficient without 

arduous computations. Nevertheless, because of its computational simplicity, it 

may be proposed as a quick initial estimator for a subsequent Maximum Likeli- 

hood procedure, as in Rosenberg (1973c, Section IIc). 

Analogous to these “‘second moment regression”’ estimators are a set of 

quadratic estimators for variances that have been conceived for various models, 

which have the virtue of unbiasedness but not necessarily any virtue of small- 

sample or even asymptotic optimality. Among these are Swamy’s suggested 

estimator of Q for the randomly dispersed model with differing individual regres- 
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sor matrices of full rank (1970), and Anderson’s suggested initial estimator for . 

the general covariance matrix V(9) that is linear in 8 (1970, Eq. (2.16)). See also 

Arora (1973). 

Rao (1970, 1971, 1972) has investigated quadratic estimators that are un- 

biased and optimal, either in the sense of minimum variance (MIVQUE) or in the 

weaker but computationally more accessible sense of minimum norm (MINQUE). 

For both classes, optimality is defined with respect to a norm depending on 8, 

so that construction of the optimal estimator for ® requires, in principle, that 0 

be known. If a guess at @ is used to define the estimator, the estimator will be 

unbiased but not efficient. If 6 yielded by the first iteration is used to define the 

optimal estimator for a second iteration, the estimator may become more efficient, 

but the property of unbiasedness is lost. Rao’s approach is presumably best 

carried out as an iterative estimator. Rao (1972) has provided some general 

lemmas to aid in deriving the MINQUE estimators for a general linear model. 

MINQUE is very closely related to Anderson’s iterative estimator.° Anderson's 

problem where V(8) is linear in 8 is equivalent to Rao’s problem of variance and 

covariance components. Let (8) denote the classical likclihood function for this 

problem, and let #*(®) denote the Bayesian posterior distribution for 9 conditional 

on the sample information, given diffuse prior densities for ¢* and m (see Zellner 

(1971; Ch. 2)). Then #*(®) oc Y(8)|W(8)|'/?, where W(®) is the variance matrix for 

the estimator of m, given 9. It may be shown (Rosenberg (1973b)) that the MINQUE 

equations bear the same relationship to maximization of #* as Anderson’s 

iterative procedure does to maximization of Y. Since Y and #* differ by a factor 

of order equal to the number of unknown parameters, MINQUE coincides with 

Anderson’s procedure when no parameters are unknown, and for any vector m, 

the two methods coincide asymptotically as the number of observations approaches 

infinity. The adjustment |W(@)|'/? serves to achieve unbiasedness in small-sample 

estimators of variance components. 

Another desirable property of “#*—and therefore of MINQUE— is that it is 

invariant with respect to a linear transformation of the parameters m and 4, 

whereas ¥ is not. For example, MINQUE and Bayesian estimation are not 

affected, and Anderson’s procedure and Maximum Likelihood estimation are 

affected, by Cooley and Prescott’s decision to use the current parameter (which is 

a linear transformation of the initial parameter and of the stochastic parameter 

shifts in the sample history) as the unknown parameter in the adaptive regression 

model in place of the initial parameter. 

Monte Carlo explorations of small-sample properties are necessary to 

compare these alternative estimators. A recent study by Froelich (1973), while a 

welcome step in this direction, ‘is somewhat confusing in that it identifies 

“MINQUE?” with one initial guess for 8 (corresponding to homoscedastic dis- 

turbances), without noting that other MINQUE estimators exist. It is important 

to note that in all but the simplest stochastic parameter models, iterative procedures 

such as Anderson’s and MINQUE are crucially dependent on the initial guess for @. 

If the initial guess is good, one iteration may yield better small-sample properties 

>] am indebted to Cheng Hsaio for several useful conjectures as to the general relationship 
between MINQUE and maximum likelihood estimation. 
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than continuation of the iterative procedure to the point of convergence, but if the 

initial guess is poor, the method may perform poorly. 

There is a substantial applied physical sciences literature on “identification” 

of @ in the sequential parameter model, e.g., Astrom and Eykhoff (1971), Kashyap 

(1970), Mehra (1970, 1972), Sage and Melsa (i971). Much of the literature on the 

cross-section, time-series model with random time and individual effects cited in 

Section II.E, is also interesting in that it provides a detailed exploration of a 
special case. 

All of the theory presented here is no more than a specialization of the theory 

for the general linear model, and the foundations for most of the results were 

originally derived on thai more general level. An unfortunate limitation is that all 

the estimators are either optimal with respect to the normal distribution or else 

are quadratic functions of the stochastic terms, and in neither case are the methods 

robust against stochastic distributions with massive tails. This implies that, regard- 

less of the method used, the experimenter w~’’'d be wise to examine the outliers 

in the sample, to check the robustness of the ¢. imated parameters against dele- 

tion of these outliers, and, quite possibly, to delete the outliers if the results are 

sensitive to their presence. 

V. ESTIMATION OF THE UNKNOWN AND STOCHASTIC REGRESSION PARAMETERS 

For the general linear stochastic parameter regression model, (3), with 

stochastic terms assumed normally distributed for Maximum Likelihood and 

Bayes purposes, Rosenberg (1968, 1973b) has derived Maximum Likelihood, 

Bayesian, and Minimum Mean Square Error Linear Unbiased Estimators 

(MMSLUE) conditional on 8, and Duncan and Horn (1972) and Sarris (1973) 

have derived MMSLUE and Bayesian estimators, respectively, under the addi- 

tional assumption that a proper prior distribution for the unknown vector m 

exists. It turns out that, conditional on 8, these three types of estimators (MLE, 

Bayesian, and MMSLUE) coincide, provided that careful attention is given to the 

concept of unbiasedness. 

The problem with bias arises because there are several natural expectation 

operators to use in discussing the bias in an estimate of a stochastic parameter 

vector. Let b, = A,m + B,n, where A,, is nonsingular, as is usually the case. Then 

three possible expectation operators, with respect to which an estimator b, might 

be defined as unbiased, are: 

E,,(-) = E(- |m) 

E,(-) = E(-|b,) = E(E(- |m, b,)\b,) 

Ennl j= E( : \m, b,,). 

The first “unconditional expectation,” written as ““E,”” by Duncan and Horn, is 

the familiar expectation in a linear regression model of form (5). The second 

expectation is conditional on the realized value of the parameter vector b,,, with 

the distribution for m being taken as conditional on b,. The third expectation, 

conditioned on both vectors, is important in discussing the behavior of 6, when 

b,, differs from m. An estimator 4, will be called m—[n—, mn—] unbiased 

if E,[E,, Emn)(@,) = EnlE,,Emnj(a,). For applications of these concepts, see 

Rosenberg (1972, 1973a). 
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It may be shown that the expectations E,,, and E,, are essentially equivalent, in 

that any estimator that is m-unbiased is also n-unbiased. However, it turns out 

that the choice of expectation does affect the minimum variance linear unbiased 

estimator (MVLUE) for a stochastic parameter. Specifically, if a subscript denotes 

the expectation operator with respect to which the estimator is defined, then in 

estimating b,, MMSLUE, = MMSLUE,, = MVLUE,, but these three estima- 

tors are not equal to MVLUE,,. In fact, it is easily seen that if A, = I, then the 

MVLUE,, for b, is identical to the MVLUE,, for m, regardless of the stochastic 

variation in b,. Since MMSLUE, = MMSLUE,,, but MVLUE, # MVLUE,,, it 

is preferable to speak of a minimum mean square error property for an estimator 

of a stochastic parameter rather than a minimum variance property.® It may 

now be asserted that the MLE and the Bayesian posterior means (with diffuse 

prior for m), for m and 9, conditional on 9, coincide and are also MMSLUE when 

8 is known. Since these three estimators conditional on 8 do coincide, they will 

be referred to hereafter as “‘the optimal estimators.” 

These estimators are not mn-unbiased. For instance, in the randomly dis- 

persed parameter model, the population mean estimator mi is slightly mn-biased 

toward b, and the individual parameter estimator 6, is mn-biased toward m, if 

b, #~ m. 

Since the three optimal estimators coincide, it is a matter of indifference by 

which criterion the estimation formulae are derived for any special case, except 

that it is preferable to use an approach which also allows the likelihood function 

and posterior distribution for @ to be computed. The history of the derivations of 

the optimal estimators for the special models described in Section II will now be 

surveyed briefly. 

For the randomly dispersed parameter model, Rao (1965) originally derived 

the optimal estimators for the population mean parameter vector by a holistic 

approach, and also the optimal estimators (predictors) for the individual param- 

eter vectors, with the population mean assumed known. More recently, Efron 

and Morris (1972) and Rosenberg (i1973a) derived the optimal estimators for the 

individual parameters with the population mean being unknown, the latter for 

the general case. 

For the sequential parameter model, Kalman (1960) and Kalman and Bucy 

(1961) originally derived the optimal estimators for the current parameter vector 

(the Kalman-—Bucy filter). The optimal estimators for the parameter vectors in the 

interior of the sample period (the smoothed estimators) and their variances were 

derived by Bryson and Frazier (1962), Lee (1964), Rauch (1963), Rauch, Tung, and 

Striebel (1965), and Meditch (1967). Other important early contributions were by 

Battin (1962), by Ho and Lee (1964).in expositing the Bayesian approach, and by 

Schweppe (1965) and Kushner (1964, 1967) in exhibiting the likelihood function. 

All of these works were atomistic in approach; the first holistic approach was by 

Fagin (1964). All of the above articles assumed that there was a proper prior 

© Duncan and Horn avoid this difficulty in a rather confusing way by defining a minimum variance 
estimator as that estimator with: \1imum error variance, a violation of the tradition that the “variance” 
of an estimator is its own variance, not the variance of the estimation error. The theorems in Duncan and 
Horn hold only if “minimum variance” is defined in this unusual way; otherwise, the term “minimum 
mean square error’ must be substituted. 
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distribution for the initial parameter vector, so that no unknown parameter vector 

was present. This “starting problem” or inability to deal with an unknown 

parameter vector was quite troublesome. As late as 1967, Aoki, in an otherwise 

excellent survey, proposed a solution to the starting problem that was erroneous, 

because it was based on false generalized matrix inversion “identities” (1967, 

p. 80). Duncan and Horn (1972) and Sarris (1973) in their recent treatments of the 

problem continue to assume a proper prior distribution for m, independent of the 

data, in discussing estimation of the stochastic parameters. The first solutions to 

the starting problem were found independently by Fraser (1967) and Rosenberg 

(1967), and what is apparently the first general solution to this problem which 

permits computation of the sample likelihood is published in this issue (Rosenberg 

(1973c, Section IIB)). ihe formulae for the covariances between estimation errors 

in different periods, together with an analysis of the relationship between the 

atomistic and holistic approaches, appear in Rosenberg (1968a, 1968b). 

For the stationary stochastic parameter model, Burnett and Guthrie (1970) 

derived the optimal estimators conditional on the mean parameter m being 

known, and Rosenberg (1972) generalized these to the case where m was unknown. 

With regard to cross-section time-series models and switching regressions, the 

reader is referred to the articles already cited in these contexts. 

VI. CONCLUSION 

On the whole, the theory of stochastic parameter regression is one of the 

most exciting areas of statistical investigation. Moreover, the theory seems to 

have already reached the point where it promises fruitful applications. The most 

productive applications in econometrics are likely to come in cross-section time- 

series analysis, where the wealth of data offers a real opportunity to identify the 

pattern of parameter variation; stochastic parameter methods are especially 

needed when estimation of the individual parameters, as distinct from the popula- 

tion mean alone, is of great importance, since fixed-parameter methods are 

relatively less efficient in estimating these parameters. Potential applications also 

arise whenever it is desired to analyze the process of parameter variation itself, 

an aspect of economic events that has been studied all too little. To cite just one 

example, of what strength are the competitive forces that cause corporate rates of 

return on equity to converge toward the norm for the economy, and of what 

magnitude are the stochastic shocks that allow corporations to achieve above- 

average returns. A third promising area of application is in short-term forecasting 

(Rosenberg (1968, Ch. 8), Cooley (1971)), where adaptation to sequential param- 

eter shifts is essential. 

University of California, Berkeley 
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