RIMLOC: A COMPUTER ALGORITHM FOR REGIONAL
INPUT-OUTPUT ANALYSES*

BY LONNIE L. JONES AND GHOLAM MUSTAFA

INTRODUCTION
The use of a regional input-output model for development planning often is
prevented by the extensive data gathering process required in developing a
model from primary data. The development of an input-output transaction table
from primary sources is expensive and time consuming. Consequently, some
leading authors have developed procedures for estimating a regional transaction
table from national or state technical coefficients [3, 7]. The location quotient
approach is one of these procedures [7].
The regional input-output model presented in this article is an inversion
routine designed for use in regional planning and industrial location evaluation.
The unique feature of the RIMLOC (Regional Input-Output Model Using Loca-
tion Quotients) algorithm is that only information from a national or state trans-
action table and total output estimates for each sector are required to estimate all
conventional input-output information including, the regional transaction table,
technical coefficients, interdependence coefficients and sector output multipliers.
Further, income, employment and other resource multipliers may be estimated by
inclusion of appropriate data. Estimation of leakage coefficients and other options
also are incorporated in the algorithm.

DESCRIPTION OF PROGRAM OUTPUT

The mathematical and theoretical basis of estimating a regional input-output
model by use of the location quotient approach is presented elsewhere in the
literature [7]. This concept was translated into a computer algorithm for handling
and solution on the IBM 360/65 [5]. An abbreviated flow chart of the program is
presented in Figure 1. This program provides the following information:

1. Regional flow table
2. Regional technical coefficients
3. Regional interdependence coefficients
4. Regional output multiplier for each sector
5. Regional income multiplier for each sector
6. Regional employment multiplier for each sector
7. Regional resource multiplier for each sector
8. Regional total income effect for each sector
9. Regional total employment effect for each sector
10. Regional total resource effect for each sector

*Technical Article No. 9805 of the Texas Agricultural Experimental Station.
START

Read number of sectors

Read national flow table

Read regional sector totals

Is resource data requested?

YES

Calculate and write location quotients

STOP

NO

Read resource data

Calculate and write regiona l flow table

Calculate and write regional technical coefficients

Calculate and write interdependence coefficients and output multiplier

Is resource multiplier requested?

YES

Calculate resource multiplier

NO

INVERT

STOP

Figure 1 Abbreviated Flow Chart
Also, with a slight modification of the program (one statement) all the above information may be obtained with a no import assumption which ultimately will provide leakage coefficients as developed by Little and Docksen [2].

Operational Use

Data Requirements

The program requires the following data inputs which may be developed from secondary sources (see Figure 1):

1. The national or state transaction table on the basis of the desired sector classification for the base year [6].
2. The regional total output of each sector for the base year.
3. The regional total output of each sector for the current or estimation year.

Options

The user may develop employment or any other resource multipliers by entering the appropriate resource data. Income, employment, environmental factors and other resource effects may be obtained simply by providing appropriate data in the resource technical coefficients matrix. This resource matrix, whose elements are units of resource per dollar of output by sector, contains the same number of columns as the interdependence coefficients matrix and any number of rows—one for each resource. Following the estimation procedure developed by Martin and Carter [3], the functional relationship between sector resource requirements and output is specified such that total resource requirements may be estimated for a specified final demand.

Input Specifications

The program must be modified before each use to specify the size of the input-output model desired and the number of endogenous and exogenous sectors in the model. In addition, the program may be modified to conform to the format of the input data of the user. Details of these changes are published in the program and model documentation [5].

Conclusion

The regional input-output model announced in this article is an inversion routine designed for use in regional planning and industrial location evaluation. Specifically, the model and algorithm provide a method for estimating regional interindustry transactions, technical and interdependence coefficients and sector multipliers from the national input-output model and other secondary data. This algorithm was developed for estimating the interdependencies among 31 sectors of the Texas economy. It may be adapted for use in estimating other regional input-output models for any region, number of sectors, or base year. The base year need not be the same as that of the national input-output table.
The program is written in FORTRAN IV and runs on the IBM 360 65. A publication containing a sample run showing input and output data may be obtained by contacting the authors [5].

Texas A&M University
Bangladesh Agricultural University

REFERENCES

received: July 19, 1972
revised: January 20, 1973