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Annals of Economic and Social Measurement, 2/1, 1973 

A GENERALIZED APPROACH TO ESTIMATION AS 

IMPLEMENTED iN THE TROLL/! SYSTEM* 

BY MAkK EISNER AND ROBERT S. PINDYCKt 

This paper presents the theoretical background of the methods and algorithms used in the estimation 
capability in the TROLL/1 system. The TROLL/1 approach provides the ability to combine most state- 
of-the-art procedures into one estimation process. As a result, a consistent theoretical framework, which 
is presented in this paper, can also serve as a review of estimaticn techniques, taken from a generalized 
point of view. 

I. INTRODUCTION 

The estimation capability in TROLL/i is designed to provide a complete set 

of regression techniques within an effective and usable framework. Over the 

last decade a number of advanced statistical techniques have been explored and 

accepted by the econometric community. However, it has often been difficult 

for the applied econometrician to readily obtain access to computer programs 

which provide these techniques. Even when programs existed for a particular 

procedure, the econometrician could not easily combine several different pro- 

cedures into one estimation. We have tried to solve this problem in TROLL/1 

by not only providing most major state-of-the-art procedures but also by presenting 

them as basic units which can be combined in any chosen manner. 

Since TROLL/1 allows the combination of a variety of statistical procedures 

for the estimation of linear or nonlinear equations, it must, in a sense, be viewed 

as a “user-beware” system. Often combinations of procedures, particularly 

when used in nonlinear estimation, have questionable statistical properties, and 

the statistical interpretation of a great many other procedures has simply not 

been expiored. Our approach to estimation does not attempt to answer all of these 

questions. Rather, we have attempted to devise a coherent and meaningful plan 

for combining regression techniques, and to present a consistent method for 

producing the statistical results of any of these estimation procedures. This paper 

* The design, development, and maintenance of TROLL have been funded by research grants 
GS-2310 and GS-27353 from the National Science Foundation to the Massachusetts Institute of 
Technology. M.LT. supported the development effort with considerable amounts of free computer 
time. Arrangements are being made for the maintenance of TROLL/1I by the National Bureau of 
Economic Research, Computer Research Center for Economics and Management Science. Inquiries 
about the system, comments about these documents, and requests for companion documents may be 
addressed to: : 

Support Staff Coordinator 
NBER Computer Research Center 
545 Technology Square 
Cambridge, Massachusetts 02139 
(telephone 617-661-8788) 

The companion documents that are currently available or in advanced stages of preparation are 
A Researcher’s Overview of the TROLL/1I System; Troll/1 Primer; and Reference Manual for TROLL/1 
(preliminary edition). © 1971 Massachusetts Institute of Technology. 

+ We would like to thank the many people who have contributed directly to this paper, and in- 
directly to it through their work on the development of TROLL/!. Specifically, Alfredo Pastor-Bodmer 
anc Michael Lichstein were involved in the initial development of the approach, and many helpful 
comments were provided by Professors Franklin Fisher, Edwin Kuh, and J. Phillip Cooper. 

29 



will outline the integrated approach to estimation that we have applied to 

TROLL/1. We will also discuss the substantive algorithms and methods used in 

the TROLL/1 estimation capability so that a user can have an authoritative 

source from which he can interpret the results of regressions performed on the 

system. 

II. GENERAL APPROACH 

All of the estimation techniques that have been implemented in TROLL/1 

can be divided into three basic operations: a least squares procedure, sets of data 

transformations, and statistical analyses. These operations, functionally organized 

as separate entities, are combined for each estimation technique. This involves 

determining the correct ordering of the operations as well as producing a scheme 

which would provide meaningful statistics. Procedures and transformations 

have been adopted ior estimating parameters that appear with nonlinearities. 

The following procedures have been implemented: 

(1) An ordinary least squares procedure for either linear or nonlinear 

equations 

(2) distributed lag operators 

(3) instrumental variable substitution 

(4) single equation generalized least squares error correction 

(5) a standard set of statistics based on the observed residuals as well as the 

coefficient covariance matrix 

These procedures can be used as building blocks for almost any standard single- 

equation estimation technique. For example: (a) Two-stage least squares (2SLS) 

can be implemented by applying the instrumental variable transformation on all 

endogenous terms in a regression and then applying the ordinary least squares 

procedure. (b) A first-order autoregressive adjustment can be performed by apply- 

ing the generalized least squares procedure with an appropriate error covariance 

matrix obtained by factoring. 

Procedures may also be combined in a less stylized manner. As an extreme 

example, one could perform a regression on a non-linear equation, in which a 

polynomial distributed lag operator is applied to a term, instrumental variables 

are applied to some or all endogenous terms, and a second order autoregressive 

correction is performed on the whole equation. 

TROLL has been designed so that additional procedures can be added in an 

efficient manner. These could include other single-equation estimation techniques 

besides least squares regression, such as generalized maximum likelihood, special 

small-sample estimators, etc. Plans are also underway to expand the design to 

include multi-equation regression techniques such as full information maximum 

likelihood and three-stage least squares. 

Ill. THE OrpDINARY LEAST SQUARES ALGORITHM 

A. Choice of Method 

The ordinary least squares algorithm implemented in TROLL/1 is generalized 

to handle either linear or non-linear equation forms. The method used is based 

on a procedure by Marquardt [13]. 
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Given an equation of the form 

0 = f(x, B) +e 

oo nw VY or, 

(1) —f(x, B) = e, where x = (x,,...,X,,) and B = (B,,..., B,) 

in which f is a function of a set of data vectors (x) and a set of parameters (B) with 

an implicit additive error vector (e), the problem is to estimate the coefficients 

so that the observed sum of squared residuals is minimized. Letting e represent 

the observed residuals, and B the estimated set of parameters, we must minimize 

the objective function: 

(2) e'e = f(x, BY f(x, B) we UI Ve Eee eli 

There are three standard approaches to the solution of this problem: 

(1) A direct search technique may be used in which the objective function is 

evaluated for sets of values, and that set which results in a minimum is 

chosen as the estimated parameters. However, this method is often 

inordinately expensive in computation. 

(2) A second approach is to form the first c-der conditions of the objective 

function and solve them. However, this may result in complicated non- 

linear equations which will have to be solved. This approach can also be 

computationally expensive. 

A third approach, and the one which we have chosen for TROLL/1, 

involves linearizing the given equation so that it fits the form(Y — XB) = «. 

This results in a quadratic objective function 

—_— — w — 

(3) e’'e = (Y — XB)(Y — XB) 

| whose first order conditions can be expressed as an explicit solution 

for B 

(4) B = (X'X)'X’Y 

This approach has a number of advantages, the first of which is com- 

putational efficiency. If the equation to be estimated is linear to begin 

with, the procedure reduces directly to ordinary linear least squares. 

In the nonlinear case the process provides a clear guideline for incorporat- 

ing statistical techniques which are usually only applied to linear 

regression. 

B. The Iterative Process 

1. The Linearization. We begin by expanding the function 

(5) — f(x, B) = ¢; B = (B,,...,B,) 

where B is a set of parameters, in a Taylor Series expansion around an arbitrary 

set of points B°: 
Bais sl 

(6) _s(B) — ¥ (B- BY) LL] 4... <6 
i=1 OB; |g0 
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Now, using just the first two terms of the expansion, we can rewrite the expanded 

equation so that all of the known (given B® and @f/@B;\g0) values are on the left 

hand side. 

n ‘ of B° fy n of 

is 2 Ble SO) = & Papas +S 

The original equation has now been approximated by a linear equation form in 

which the unknown B can be estimated using an ordinary linear regression 

procedure. 

2. Performing a linear regression. The partial derivative of f(B) with respect to 

a particular B; has been named the “‘co-term”’ of that coefficient. After performing 

the Taylor expansion on an equation, we can examine the resulting set of co-terms 

Of /OB;; i= 1,...,n. If no co-term contains a coefficient a linear regression is 

indicated. The initial values (B°) are automatically set to zero, and a single regres- 

sion is performed. For example, given the linear equation 

y=ax+b+e 

or, 

y-ax-—b=«e 

the expansion results in the following form: 

y — a®x — b° + a®x + Do =ax+bt+e 

which is equivalent to a linear regression on the original equation. 

A benefit of this approach when dealing with linear equations is that one is 

not restricted to expressing the equation in the traditional sum of products form. 

For example, consider the linear equation 

y=(l-—ax+b+e 

or, 

y-—(l-—a)x-—b=e 

After expanding this we have: 

y — (1 — a®)x — b° — a®x + b° = -ax+b+e 

Now, clearing terms, a linear regression on the transformed equation 

y-x=-ax+bt+e 

is actually performed. 

3. Performing a nonlinear estimation. If after the expansion any co-term 

does contain a coefficient, a nonlinear regression is indicated. The initial values 

for B® are arbitrary, but typically a “reasonable guess” is used. (The TROLL/1 

system sets each value of B° to 1 if no first guess is supplied.) The iterative process 

then involves the following steps: 

(a) perform the regression on the linearized equation 

(b) test to see if B is markedly different from B® 

(c) if it is set B° equal to B and go back to a step a. 
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Clearly, this process involves performing a linear regression on the residual 

values derived from subtracting the observed values from the function specified 

by B°, selecting a better fitting function as specified by the new B, and repeating 

the process until B and B® converge.' 

The convergence criterion used to determine if B is close enough to B° is: 

|B — B°| |B — B oF 

y + |B” » + |B 
8) max 

This is a continuous function which acts as a percent change when B » y and a 

straight difference when B « y. In order to insure that scale problems do not 

confuse the results, the ratios computed from both end-points B and B° must 

meet this requirement. 

4. Preventing round-off error. Since the computational process can return 

only a limited number of digits of significance, round-off error can occur. This is 

especially true in the regression process due to the formation of a cross-product 

matrix. 

For each matrix a “condition number”’ can be established which reflects the 

probability of generating round-off error in manipulations involving the matrix. 

The formation of the cross-product (X’X) will result in a matrix whose condition 

number is the square of the condition number of the original data matrix X. Thus, 

if X is poorly conditioned in this-sense, the conditioning of the cross-product 

matrix will be much worse. 

Round-off errors can to a great extent be removed if the conditioning problem 

in the X matrix is reduced before the cross-product matrix is formed. This is 

accomplished in TROLL/1 by transforming the X matrix by a standard Gram- 

Schmidt orthonormalization process. The Gram—Schmidt orthonormalization 

process, although somewhat order-dependent, has been chosen for a number of 

important computational considerations. 

5. Convergence and damping. The nonlinear estimation procedure described 

above has the property of converging rapidly to the solution point if it stays 

within the circle of convergence. However, at times the estimate B can overshoot 

or leave the circle of convergence completely during the iteration process. This 

can result in the method diverging instead of converging, or in oscillations around 

the correct solution. In order to solve this problem, a method for damping the 

computed step in B has been provided. Rather than taking the whole step B — B° 

for the next iteration the following siep is taken instead: 

(9) B, = B° + oB — B°), - whereOQ<a<1 

By applying the damping factor, the algorithm is in fact choosing a step 
somewhere between the one indicated by the Taylor expansion method and one 

which would be indicated if a steepest descent method were being employed.” 

Various automatic and semi-automatic heuristics are included in TROLL to 

determine an appropriate damping straiegy 

’ For a discussion and formal proof of the convergence of this algorithm, the reader is referred to 
Marquardt [13]. 

? For discussion, see Marquardt [13]. 
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6. Producing statistics for least squares regression. The general equation form 

for least squares regression has been presented so far as: J Tt 

— f(x, B) =« 3 on 
yy m¢ 

A more standard formulation would be co 

(10) — f(x, B) = 9(x, B) — h(x, B) = « : of 

or, : A. 

f 
(11) g(x, B) = h(x, B) + « ¢ 

where h(x, B) or the right hand side (RHS) represents what are considered the 

“independent” terms of the equation and g(x, B) or the LHS represents the (1. 

“dependent” terms of the equation. Traditionally, the LHS contains no co- 

efficients, but in our generalized approach this need not be the case. TI 

To produce all the standard regression statistics, the following basic in- Is 

formation must be available. 

(a) the number of observations and number of co-terms (1. 

(b) a set of residuals generated from the estimated coefficients (B) 

(c) a covariance matrix for the estimated coefficients Li 

(d) the variance of the LHS of the equation 

For our generalized procedure this information is produced in a straight-forward (1 

manner. The covariance matrix for the estimated coefficients is, of course, based 

on the (X’X)~' matrix which is produced by the final iteration in the convergence | n 

process, and the variance of the LHS is determined by evaluating g(x, B) and 

calculating the variance of the resulting vector. (1 

The results calculated above are used to produce standard statistics, the 

meaning and properties of which are well-defined for the linear case. In the non- | 

linear case these statistics usually have meaning only in terms of the linearized (I 

equation at the solution point. 

7. Combining ordinary least-squares with other techniques. Additional correc- 

tion techniques such as instrumental variables or generalized least squares can (] 

be combined with a linear regression in the standard manner. If the regression is 

nonlinear, these techniques are applied at each iteration to the linear regression is 

ery: on the expanded equation form. In some cases, however, the statistical implication 

of these additional techniques is not clear for the nonlinear case. They should ' C 

always be employed with this in mind, and then only after careful consideration (1 

of the particular regression to be performed. & 
f 3 
i 

IV. DisTRIBUTED LAG OPERATORS 

A common equation form in estimation problems contains a weighted sum_—f 2 

of co-terms lagged over a specified time range. This lag distribution for a co-term i 

can be expressed in summation form as: 
n C 

z P(a,, X; ? y ( 
t=0 , 

Terms expressed in this form are referred to as distributed lag operators. Normal 

regression procedures can be applied directly to equations containing distributed 
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lags but problems with collinearity between the lagged terms can often occur. 

Therefore, a number of methods have been derived to produce estimates of a, 

conditional on some constraint which reduces the problem of collinearity. The 
most popular of these procedures is the Almon process, which restricts the 

coefficients to values of a polynomial of degree less than or equal to the number 
of terms in the lag operator. 

A. The Algorithm 

Consider a lag operator within an equation: 

(12) — ¥ pla,, x,_,.) — f(B, x,) =e 
t=0 

The Almon process constrains the estimates of a, to be on a polynomial of degree 

! such that 

I 
(13) a. = > wt! 

=( 

Linearizing equation (12) by the standard procedure yields 

(14) y ao 2P | 4 y po | _ y pa?) ~ f(B°) = y a 
OC t=0 1, |g0 i=1 CD; \po t=0 t=0 ca 

eh B— 

a? + p> OB| go 

now substituting for a, on the right-hand side: 

n I a) m ova 

(15) ¥ {» wi} +¥ Be 

t=0 j=0 ca a°® i=1 OB B° 
let 

(16) xine — op Op 

da, - 0a, 

(17) yw. of 

oB;°° S OB,, 

Here, X'N“ is the matrix of “included” (lagged) co-terms, and XY the matrix of 

“unincluded”’ (unlagged) co-terms. Then the right hand side of equation (14) 

can be rewritten as: 

(18) ee Oe ee 

or from equation (15) 

Zw + X°NB, where Z = X'S 

and § is an nx/ “scrambling” matrix generated by the double sum 

ro° ot...0'] 

2. ot! 
(19) » 



Note that the elements in this matrix are in effect arbitrarily determined by the 

indexing scheme used to express the polynomial, and therefore, another scrambling 

matrix which represents the same summation range but which avoids problems 

with zero index values can be chosen. An appropriate S matrix can be formed by 

constructing n + 1 rows, the elements of which represent the coefficient of a 

Lagrangian interpolation polynomial. It has the following structure :* 

@ 1 1 7 ‘oF 

n+2 n+2 n+2 

2 

nN 

, att n+1]? n+1'!]! 

n+ n+2 et n+2 

The co-terms included in the lag operator, X'N°, are extracted and multiplied 

by the scrambling matrix S to produce a transformed data matrix Z. 

(20) Z = X™*s 

B. The Process 

This constructed Z matrix is combined with the matrix of co-terms of the un- 

included variables: 

(21) F=[z | x”) 
| 

Ordinary least squares is then applied resulting in a coefficient vector which is 

composed of the polynomial weighting coefficients and the coefficients of the 

unincluded variables. This expanded vector is given by: 

Ww 

B 

The correct coefficients, 4,, are produced from the estimated weights W; 

(22) a= SW 

The final coefficient vector is found by concatenating 4 and B, i.e., is given by: 

B 

It is often desirable to apply “‘zero-restrictions” to the polynomial terms of 

the transformation. It is possible to set any weight w; to zero by dropping out the 

corresponding column from the scrambling matrix. For example, to set the first 

3 For an elaboration see Cooper [5]. 
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term Ww, to 0, remove the first column from the S matrix. Similarly, one may force 

the tail of the polynomial to zero by the same procedure. 

Equation forms containing more than one polynomial distributed lag operator 

can be estimated within our generalized framework, and there is, of course, no 

reason why the term within the lag operator need be linear. 

For example, the following equation could be estimated : 

Y =) ax-. + )¢2)-,+8 
t t 

Statistics consistent with ordinary least squares are produced for regressions 

containing a distributed lag. Residuals are generated by evaluating the original 

; a by 
equation with the final coefficient estimates H and the original data. The co- 

variance matrix produced by the regression, however, is generated from the data- 

matrix which contains the constructed variables; i.e., 

(23) C=((Z xy (Z xy" 

To transform this into the correct asymptotic covariance matrix, a transformation 

matrix D is formed from the original scrambling matrix and an identity matrix 

with the rank of the additional co-terms X“™: 

3; 0 
(24) D= Row 

0 | Jun 

The new covariance matrix is produced by 

, (25) C = DCD’ 

V. INSTRUMENTAL VARIABLE TRANSFORMATIONS’ 

A basic assumption when performing a least squares regression is that the 

implicit error term is uncorrelated with any of the co-terms in the equation. If 

this assumption is violated for a particular co-term, an instrument can be created 

which is statistically independent of the error and which can then be used in place 

of the co-term. This instrument can be created by regressing the co-term on a set 

of variables which are assumed to be uncorrelated with the error term but are 

correlated with the co-term. Since this constructed variable is a linear combination 

of terms which are uncorrelated with the error, it too is uncorrelated with the 

error and can be used in the estimation in place of the original co-term. 

A. The Process 

Given an equation: 

— f(x, B) = g(x, B) — h(x, B) = € 

a set of co-terms correlated with «: 



and a set of variables W = (W,,..., W,) which are assumed to be uncorrelated 

with ¢ but correlated with the X;, perform the regression on the equations 

(26) X, = WP, + v; 

where P, are a set of coefficients and v; is an implicit error term. Then 

(27) P, = (W'W)'W'X; 

(28) X,=WP,, and v,;=X;- X; 

where v; are the observed residuals from the regression. This process is repeated 

for all X;. 

Now to perform a regression on — f(x, B), expand the equation: 

of of 
29 aed _ B® —_ } a +e (29) d Bap SB) = LBA te 

and substitute the constructed variables for those co-terms assumed to be correlated 

with ¢ 

If X; = the constructed variables 

X ; = the other co-terms 

and 

(30) Y= BX, + ¥ BX, — f(B°) 
J 

then the equation to be regressed becomes 

(31) Y = ) BX, + BX; + +5 Bo 
j i i 

It should be noticed that the residuals v, = X,; — X¥;, will appear in the error term 

of this equation. Estimates for B are given by: 

(32) B = (X'X)-' XY 

where 

(33) X =[X, | X] 
| 

B. Statistics for Instrumental Variables 

Residuals are obtained by evaluating the original function using the final 

estimates of the coefficients : 

(34) e = —f (x, B) 

Note that the original data and not the constructed co-terms should be used in 

calculating the residuals. This insures that the estimated variance of the regression 

corresponds to the structural disturbances not compounded by first-stage residuals. 

Given the final estimates of the coefficients B the variance-covariance matrix 

is defined as 

(35) cov = E[(B — B)(B — By] 
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where B are the true values of the coefficients. From equations (31) and (32): 

(36) B-— B =(X’X) 'X'Y-B 

= (X’X)'X [XB +e + vB) -B 

= (XX) '[X'XB + Xe + NvB) -— B 

but X is by construction orthogonal to v, so 

(37) B- B=B+(X'X) 'Xe-B 

= (X'X)"' Xe 

and the variance-covariance matrix is 

(38) cov = 0°(X'X)"! 

Notice that the variance o? is based on the residuals from the original equation, é 
and that the (X’X)~' is the inverse of the cross-product matrix of co-terms which 

results from the final regression procedure which includes the instrumental 

variable substitution. 

C. Using Instrumental Variables for Nonlinear Equations 

Instrumental variables should be used in a nonlinear regression if it is believed 

that one or more co-terms are correlated with the implicit error term. 

For example, given the nonlinear equation 

(39) y = abx, + bx, +€ 

the expanded form is 

(40) y—a®b°x, — b®°x, + a%(b°x,) + b%(a°x, + x) = a(b°x,) + b(a®x, + x.) 

or 

(41) y + a%(b°x,) = a(b°x,) + b(a°x, + x2) 

the co-terms are 
ar 

(42) of = b°x, 
Ga 

of : 
(43) ab = (a®x, + X>) 

It may certainly be assumed that the co-term of either a or b is correlated with 

é and that instrumental variables should be used to correct this problem. 

The value of a nonlinear co-term can change during each iteration of the 

solution process, i.e., the co-term b°x, changes for each new value of b° obtained. 

Therefore, a new constructed variable for that co-term must be evaluated at each 

iteration of the solution process. This process can, of course, be computationally 

expensive. 
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D. Principal Component Transformation of a Set of Instruments 

The set of variables which are used to construct instruments can often be 

quite large, especially when a two-stage least squares procedure is followed. For 

example, the entire set of exogenous variables as well as some lagged endogenous 

variables may be chosen. A large set of variables greatly increases the complexity 

and cost of the process, or can even result in a negative number of degrees of 
freedom in the first stage. 

The principal components transformation produces a new set of variables 

which are orthogonal linear combinations of the original variables. These new 

variables are ordered so that each variabie explains as much of the remaining 

variance of the original variables as possible. As a result, it is often possible to use 

a much smaller set of variables while still accounting for the major fraction of the 

variance explained by the original variables. 
Given a matrix of the original variables W which is n x s where n = number 

of observations and s = number of predetermined variables, to create the principal 

components form the (s x s) correlation matrix r = (r'’), where 

Um, HW, - W) 
ij Jin) ¥ 1 W,)?,/(1/n) >, (Wy pa Ww, 

Find the characteristic roots, and the characteristic vectors of the matrix R. 

(44) 

pizl,...,s é,,i=1,...,8 

Then order these roots and vectors such that 

Page ...>A m 

The factor loadings for the first principal component are then found by normalizing 

the eigenvectors 

(45) a, = e/d; 

for the desired set of principal components. 

Form the s x r matrix A, where 

A [a ,,@2,...,@,] 

s = number of original instruments 

r = number of desired instruments 

The new set of instruments is created from 

(46) W=WA 

Note that this new set of instruments can be significantly smaller than the original 
set of instruments W. 

VI. GENERALIZED LEAST SQUARES FOR A SINGLE EQUATION 

A basic assumption of least-squares regression is that each implicit error 
term comes from a population with a constant variance, and that each error is 
independent of any other error. 
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Thus the variance-covariance matrix of the errors must be 

(47) E{ee’] = o7I 

If this is not the case, ordinary least squares will result in estimates that are un- 

biased and consistent, but that are not efficient. It is not unusual, however, for this 

assumption to be violated. If one’ is performing regressions on cross-sectional 

data related to a set of firms, the error variance for each observation may be 

related to the size of the firm, and the diagonal elements of the error covariance 

matrix will not be constant. Often in regressions on time-series data it is reasonable 
to assume that errors occurring in previous time periods will be correlated with 

errors in the current time period, since the arbitrary time divisions used in the 

analysis do not correspond to the actual continuous process being analyzed. 

This relation between the current and previous error terms will result in non-zero 

off-diagonal terms in the variance-covariance matrix. 

(48) E{ee’] = o?V 

A. Generalized Least Squares Correction 

In order to provide an efficient estimate using least squares, it is necessary 

to transform the error term ¢ so that its 2rror covariance matrix is of the correct 

sa transformation matrix A can be constructed such that 

(49) & = Ag 

and 

(50) E[é’] = o7i 

If the covariance of the error process is known, the matrix A is determined as 

follows : 

(51) E[éé’] = E(Aee’A’) = 071 

= AE(ee’)A’ = a7 I 

= Ao*VA' = o7] 

= AVA’ =! 

premultiply by A~ ‘ and postmultiply by (A’)~' 

(52) V=A4°'A’™! 

V =(A’A)"' 

and 

(A'A) = V~ 

Therefore the correct transformation matrix is constructed by factoring* the 

inverse of the variance-covariance matrix of the error term «. 

* A Choleski triangular factoring procedure is used. See Faddeev [7], p. 144. 
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A regression on this transformed error term will minimize the following 

objective function 

(53) ® = @@ =e'A'Ae=e'V'e 

This approach also maximizes the likelihood function, i.e., given an error term ¢ 

with an assumed multivariate normal distribution and a known covariance 

matrix V the likelihood function 

1 oe 4 B) = _ (1/2)e’'V -'e 
(5 ) L( ) (2n)"/?|V| 1/2 e 

is maximized when the negative exponent is minimized, or when the objective 

function 

(55) - @=eV~'e 

is minimized. 

B. The Process 

Given an equation form 

(56) — f(x, B) =« 

in which the covariance matrix of ¢ is known 

(57) E(ee’) = o7V 

A transformation matrix A is constructed by factoring V~', ie., A is formed 

such that 

(58) AA=V™! 

The equation is linearized, and the linearized equation is then premultiplied by the 

transformation matrix A: 

of ‘ of he en 0) | _ J (59) 45 B OB, S(B | Pal act 

The ordinary least squares procedure is then invoked on this transformed equation. 

+ Aé 

C. Generalized Least Squares with a Symbolic Error Covariance Matrix 

The preceding discussion assumed that the error covariance matrix was 

known, i.e., it could be numerically specified. However, when dealing with time- 

series analysis, the error process is often expressed as a function of a set of 

parameters. For example, the user may hypothesize that the error term follows a 

second-order autoregressive process of the form 

(60) & = Pre -1 + P2&,-2 + er 

or that it follows a first-order moving average process of the form: 

(61) &, = pier_, + ef 
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In these cases the error covariance matrix and its inverse will be a function of the 

parameters p;. 

To perform generalized least squares we must determine the values of the 

parameters p; which minimize the least squares objective function 

(62) ®=e'V;'e 

(63) ® = (A, f(x, B)(A, f(x, B) 

The standard procedure for minimizing this function would be to derive the 

first order conditions, and solve the resulting set of simultaneous equations. These 

conditions are: 

o® of 
64 — = 2A f(x, B)—— =0; fw f,..., (64) OB, pd (x aR, i n 

and 

30 3 Al 
(65) oe te Ae mee ae beh ti ee 

Op; Op; 

It is normally difficult to solve these first order conditions directly, but, by 

partitioning the system, the problem can be greatly simplified. If an initial guess 

is made for p the first set of equations (64) reduces to a standard generalized least 

squares regression with a given transformation matrix A. This regression will 

produce a set of B’s which can be used in the second set of equations to produce 

new values for p. 

Given a first guess for p, which we will call p°, the standard generalized least 

squares procedure will produce an estimate of B and as a result a set of observed 

residuals é. 

Given this set of residuals é, the objective function 

(66) ® = (A,2)(A,2) 

can be minimized via a simple direct search procedure.* This results in a new set 

of parameters f which are then used in the generalized least squares procedure to 

produce a new set of B. The process is continued until no significant change can 

be made in either the p’s or the B’s. 

The process described above is similar in some ways to the familiar 

Hildreth—Lu [10] procedure for correcting for first-order Markov serial correlation. 

In this case, a single p needs to be estimated such that: 

-l<psl 

The solution process is again partitioned into two steps but instead of 

evaluating a new p from a previous guess the domain of p is divided into an equally 

partitioned grid. The grid point which produces the smallest sum of squared 

residuals is considered the solution point. A grid search has the advantage of more 

certainly finding the neighborhood of a global minimum as compared to the 

direct search which may resu!t in a local minimum. However, when the number of 

p’s to be estimated is greater than one, the process can be prohibitively expensive. 

° See Hildreth—Lu [10] or Box [2], Chapter 3. 
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For example, assume that a grid of twenty points is used for the first order 

Hildreth—Lu process. To achieve the same accuracy with a second-order process, 

four hundred grid points would have to be evaluated. One can achieve a com- 

promise between the two methods by performing a thin grid with a small number 

of distinct regressions in which the # is fixed. The regression with the smallest sum 

of squares can be considered to be at a relatively “global” minimum. Then a 

direct search can be undertaken to improve the estimate of this minimum point. 

D. Use of Generalized Least Squares 

The generalized least squares procedure described above can be applied either 

to linear or nonlinear equations. However, if a symbolic transformation matrix 

A is used in conjunction with a nonlinear equation, two iterative processes are 

involved and extensive computation may be required to reach a solution. The 

process is well defined if a symbolic form is provided for the matrices A, V, or 

V~'. However, it is only computationally efficient if the symbolic matrix A is 

supplied directly. Symbolic A matrices are available for example, for autoregressive 

and moving average error processes. 

E. Statistics for Generalized Least Squares 

When applying generalized least squares, the standard procedure for deriving 

statistics must be slightly modified. 

If we return to the original equation and evaluate it to obtain the residuals, 

values for the untransformed error term will be produced. However, the statistics 

generated for least-squares are valid only if the error terms satisfy the least-squares 

assumptions, i.e., is serially uncorrelated and is homoscedastic. Therefore, these 

residuals must be transformed to reflect the transformed errors. This is accomp- 

lished by multiplying the resulting residuals by the specified transformation matrix, 

i.e., forming 

(67) é = Ae 

It is these transformed residuals, é, that are used in deriving all statistics for general- 

ized least squares. 

The correct matrix to use in producing the variance-covariance matrix of 

the coefficients when performing generalized least squares is the inverse of the cross- 

products matrix generated in the regression at solution.® This can be seen clearly 

by substituting the following transformed variables in the standard derivation of 

the covariance matrix of the coefficients : 

(68) X = Ax 

(69) é = Ae 

(70) Y= AY 

© We assume here that there are no lagged dependent variables in the equation. 
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E((B — B)(B — BY] = E{(X'X)~' Xe X(X'X)-") 

(X'X)~ 'X’ E[ee’] (XX)! 

o*(X’X)-! 

o*((AX)(AX))"! 

o*(X'V~!x)7! 

The calculation of the variance of the dependent term (i.e., the LHS) also 

requires a variable transformation, i.e., given w = g(x, B) as the LHS, the trans- 

formed variable o = Aw 

is used in constructing the LHS covariance. 

VII. COMBINING STATISTICAL PROCEDURES 

It would not be unusual for an econometrician to want to combine two or 

more of the statistical techniques that have been described in the previous sections 

of this paper. For example, one might want to apply both generalized least squares 

and instrumental variables to a nonlinear equation with a polynomial distributed 

lag operator on one or more of its co-terms. One of the greatest strengths of a 

system such as TROLL/1 is, in fact, that it allows one to freely combine statistical 

techniques in this way. 

Questions arise, however, as to how these techniques should be combined, 

and in particular, in what order they should be combined. For example, should a 

generalized least squares transformation be made before or after an instrumental 

variable substitution is made? These ordering questions must be resolved so as io 

best insure consistency and efficiency in the estimates—directly in the case of a 

linear estimation, and for each iterative linearization in the case of a nonlinear 

estimation. 

After the proper ordering of techniques is resolved, questions still remain as 

to the method of obtaining statistics when techniques are combined within a 

single estimation. How, for example, should residuals be calculated when general- 

ized least squares is combined with instrumental variables, and what is the proper 

asymptotic variance-covariance of the estimated coefficients? 

It may be that some of the standard statistics that econometricians are used 

to looking at have no meaning in estimation problems such as the one mentioned 

above. It is not a goal in this paper, however, to attempt to prove or even demon- 

strate when this is or is not the case. In the end the econometrician will have to 

make this decision for himself, based on considerations of his particular estimation 

problem. 
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It is our goal to set forth what we believe is a sensible way to order procedures 

and calculate standard statistics. Unfortunately, even large-sample statistical 

properties are unknown for many of the estimation problems that we will be faced 

with. As a result, our arguments and approach will be iargely heuristic, and un- 

doubtedly some questions will remain unresolved. 

A. The Basic Ordering of Statistical Procedures 

We outline below the basic ordering which is used for the procedures discussed 

in previous sections of this paper. For single equation estimation: 

(1) Generalized least squares transformation 

(2) Instrumental variable substitution (including two-stage least squares) 

(3) Polynomial distributed lag operators 

(4) Ordinary least squares procedure (as applied to linear or nonlinear 

equations) 

If, for example, a set of three equations was to be estimated by using all four 

of the above procedures, the method would be as follows. First, each equation 

would be transformed by its corresponding GLS A matrix. The A matrices might 

be known, or they might be in symbolic form. 

Next, the instrumental variable substitution will be made. Note that the first- ; 

stage regression will be run on the transformed (by A) variables of the original 

equation. 

Finally, one or more polynomial distributed lag constraints can be imposed. 

This is done by transforming the data with the scrambling matrix S described in 

section IV. If one or more of the equations happened to be nonlinear or if the 

GLS A matrix was symbolic, then steps (1) to (4) would be repeated iteratively 

until convergence. 

The following pages describe the logic behind this ordering approach, as 

well as the methods for calculating standard statistics. 

oar 

B. Combining Generalized Least Squares with Instrumental Variables 

The method described in this section is a more general alternative to the one 

proposed by Fair [6] for combining GLS and Two-Stage Least Squares for the 

case of an autoregressive error process. 

We begin by considering the case of a regression on a linear equation, i.e., 

an equation of the form 

(73) y=xb+e 

Assume that x is correlated with ¢, and that ¢ has a known variance-covariance 

matrix: 

(74) 

it is easy to see that an application of instrumental variables first and then general- 

ized least squares will result in an estimate of b for which there is no guarantee of 

consistency. 
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Suppose W, for example, is a set of instruments, and we performed the first- 

stage regression : 

(75) x= WP+y 

resulting in 

(76) x= WP 4+ 

(77) & = WP 

If we then substituted & into the original equation we would have: 

(78) Y = Xb + (e + vb) 

Now to estimate b by generalized least squares we would have to find the matrix 

A such that 

(79) A'A=V™! 

and then transform our equation to yield: 

(80) AY = Axb + (Ae + Avb) 

Note that we have no guarantee that AX will be uncorrelated with (Ae + Avb) 

and, therefore, no guarantee of consistency. Also, consider the variance-covariance 

matrix of the error term in this transformed equation: 

(81) E[lAe + Avb)(Ae + Avb)] = E{Aee' A’) + [Asb’v' A’) + El Avbe' A’) 

+ E[Avbb’A’) 

While the probability limit of the second and third terms in the above equation is 

zero, the fourth term might introduce heteroscedasity, which is exactly what we 

had hoped to eliminate by using generalized least squares. — 

The solution is simply to reverse the order in which these procedures are 

applied. In other words, begin by applying the GLS transformation to the original 

equation: 

Ay = Axb + Aé 

Next, if W is the set of instruments, regress: 

(83) Ax =WP+vy 

giving us 

Ax = WP 

Now perform ordinary least squares on the equation: 

(84) Ay = Axb + (Ag +- vb) 

If the instruments were chosen properly, Ax will be uncorrelated with both Ae 

and vb and a consistent estimate will result. This is essential for the use of the com- 

bined procedures. 

In addition, the procedure also preserves the efficiency of the estimate by 

maintaining a homoscedastic variance-covariance matrix. Consider the variance 
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covariance matrix of the new error term 

(85) E[(Ae + vb)(Ae + vb)'] = E[ Ae’ A’] + [Asb’v'A’] + El Aube’ A’) 

+ E{vbb'v’) 

Again the probability limit of the second and third terms is zero, but the expected 

value of the fourth term is a scalar diagonal. 

If the original equation happened to be nonlinear, the same procedure would 

hold, but would be repeated at each iteration. In other words, if the equation was 

of the general form, 

(86) — f(x, B) =e 

it would be linearized, and then be premultiplied by the transformation matrix A: 

+ Aé (87) be B= — fx B»)| = ya (at 

An instrumental variable substitution could then be applied to the co-terms. If W 

was the set of instruments, we re obtain: 

“ay pa 
(88) AaB = wP 

Ordinary least squares would then be applied to the following equation: 

+ Aé 

“N 

(89) al a f(x, B)| ~ y Bact of 

If the variance-covariance matrix V of the error term was in symbolic form 

(i.e., a function of one or more unknown parameters) the same ordering of proce- 

dures would apply. The estimation, however, would now also involve an iterative 

process over the unknown parameters in the V matrix, and the instrumental 

variable substitution would have to be repeated for each iteration. 

Consider the case of a second-order autoregressive error process, i.e., error 

terms of the form 

(90) E&, = Px&- 1 + P2&-2 +e 

We would begin by using a “first guess” for p, and p, to calculate the V° 

matrix and the resulting transformation matrix A°®. (If no “first guess” could be 

supplied, the initial values of p, and p, could be set to zero, making A° = I.) The 

equation to be estimated would then be linearized around B° and premultiplied 

by the transformation matrix A°. The instrument variable substitution would then 

be applied, and the resulting equation will be of woe form 

0 f 0) (91) A o| pF - fs, B)} = ra (ae% ° OB, 

Ordinary least squares would be applied to (91), and the resulting residuals would 

be used to calculate new estimates for p, and p, using the search procedure 
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described previously. A new transformation matrix, A , would result. This process 

would be repeated until p, and p, converged. Note, however, that at each iteration 

a new instrumental variable regression and substitution must be performed, 

and the computational cost of this procedure could therefore be considerable 
if the equations are nonlinear. 

We remind the reader again that in the case of a nonlinear estimation, all 

statistics (e.g., standard error, t’s, etc.) relate to the linearized regression in the last 

iteration of the process. We can thus discuss the calculation of statistics by con- 

sidering the linearized regression : 

(92) Y= Xb+e 

where X is the matrix of co-terms (0//0B;) and Y is the constant term: 

OB; 

We now consider the problem of calculating the residuals. We explained 

in section VI that when generalized least squares is used, the only relevant residuals 

for use in calculating statistics are the transformed residuals: 

(93) é= Ae 

where A is the GLS transformation matrix and e is the residual vector from the 

original equation. 

When generalized least squares and instrumental variables are combined 

in the linear regression above, the question arises as to whether the transformed 

residuals should be calculated with or without the instrumental variable substitu- 

tion. As explained in section V, residuals should be calculated without the sub- 

stitution. In other words, the residuals 

(94) é= AY — AXb 

should be used, and not the residuals 

(95) é, = AY — AXb 

Finally, note that the proper asymptotic variance-covariance matrix must 

contain the instrumental variable substitution. For a linear regression, 

(96) § = ((AX)(AX)]~ (AXYAY 

= [(AX)(AX)]~ (AX)[(AX)b + Ae + vb] 

where v are the residuals in the instrumental variable regression. Since AX is 

orthogonal to v, 

(97) b = b + [(AX)(AX)]~ (AX)Y Ae 

Then the variance-covariance matrix of the estimated coefficient 6 is given by: 

(98) E{(6 — b)(b — by] = 04,{(AX)(AX)}"' 

Here we use the estimated value of the error variance which is calculated exactly 

as it is in the simple GLS case, i.e., using the transformed residuals @. 
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C. Combining Polynomial Distributed Lags with Generalized Least Squares and 

Instrumental Variables 

This section discusses the application of a polynomial distributed lag (PDL) 

operator to a regression that also involves a generalized least squares transfor- 

mation and an instrumental variable substitution. As mentioned before, the PDL 

operation can be viewed as simply a constrained estimation in which the included 

co-terms X'N© are postmultiplied vy the constraining “scrambling” matrix S 

before the ordinary least squares procedure is applied. Now, if a GLS transfor- 

mation and an instrumental variable substitution are also to be applied, the only 

question is at what point should the PDL constraint (i.e., posimultiplication by S) 

be imposed. 

Our approach (and we offer no formal proof of its validity at this time) is to 

include the lagged data in the original data matrix but to apply the PDL constraint 

after the GLS transformation and the instrumental variable substitution has been 

made. In other words, we apply the constraint after the data has been “‘cleaned 

up,” i.e., after problems of heteroscedasticity, serial correlation, and correlations 

between co-terms and error terms have bcen removed. Our method is outlined 

below. We begin with a linearization of the basic regression equation: 

(99) a? of oN » Bis SS _ ¢(B°, a2) = 
OB; 

(a) We obtain an estimate (or first-guess) of the error variance-covariance 

matrix V,, and factor this to get the transformation matrix A,. We then premultiply 

the linearized equation by A,. 

(b) We next perform the instrumental variable regression and make the sub- 

stitution into the linearized equation. We then have: 
“~» A» 

(00) ,] So a + DBE f(B°, at)| = Dal a + Dal 4 Aye + Ae 

(c) At this point the PDL constraining transformation is applied. Those 

co-terms which have been expanded in a sum of lags and are to be included in the 

PDL operation are postmultiplied by the scrambling matrix S. Note that these 

are no longer the same co-terms that appeared in the regression equation—they 

have already undergone a GLS transformation and may also have undergone an 

instrumental variable substitution. 

(d) Ordinary least squares is applied 

(e) The results are unscrambled, i.e., transformed back into the unconstrained 

data space. Residuals are calculated and a new estimate of V, is obtained. We can 

then go back to step (a), and repeat the process until convergence is reached. 

As before, in producing regression statistics we must be concerned with the 

method of calculating the residuals, and the method of calculating the variance- 

covariance matrix of the coefficients. 

The residuals should be calculated exactly as they were when GLS and 

instrumental variables were combined without a PDL operation. In other words, 

simply take the residuals from the original equation (without the instrumental 

variable substitution), and multiply them by the transformation matrix A, as 
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before. The PDL operation is simply a constraint on the ordinary least squares 

regression, and does not imply a transformation of the error term (as does, for 

example, GLS). As a result, it does not affect our calculation of the residuals. 

In calculating the variance-covariance matrix of the coefficients, we must 

apply an “unscrambling” process. Recall that the PDL constraining transfor- 

mation took the form 

(101) Z = XiNcg 

with the rank of Z less than the rank of X'N©. Combining those variables XU 

that are not included in the PDL operation, we wrote the constrained (scrambled) 

data matrix X as 

(102) X=(Z: xX) 

Then the constrained variance-covariance matrix will be 

(103) C = 0 (XX)! 

As discussed in section IV, the unconstrained variance-covariance matrix C 

can be found from the transformation C = DCD’. It is important to keep in mind 

here that the matrices X'N© and X°™ have been transformed by the GLS trans- 

formation matrix A, and contain the instrumental variable substitutions. 
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