What is the relationship between a country’s financial development and its economic growth? And how do a country’s financial development and economic growth relate to the extent of its participation in the global economy? In particular, is there a relationship between domestic financial development and participation in global capital markets? Few would doubt that countries with highly developed financial systems might well export capital to other countries. But are there conditions under which having such a system might also promote imports of capital? These are the broad questions that motivate our paper.

To address the questions and attempt to answer them, we draw on insights from two bodies of research that have developed independently of one another, but that in our view are quite related. One includes the work of economic historians on the development of financial systems—especially banking systems—in various countries, and the impact of financial developments on economic growth within those countries. Also included in this historical work is a vast body of literature on aspects of globalization: cross-border financing and capital flows, international banking and financial crises, and the integration of the world’s money and capital markets. Among economic historians, these two strands of literature, one dealing with domestic and the other with international developments, are not al-
ways related to one another. Both, however, are elements of the story of financial globalization.

The other body of research on which we draw is the work of contemporary economists on the relationship between measures of financial development and such variables as the growth of real per capita income and investment. Typically these are cross-country analyses based on models of the finance-growth nexus for the postwar period, when broadly consistent data for a large number of countries at varying levels of economic development became available. They are the economists’ equivalent of the economic historians’ comparative studies of national financial and banking systems and their relationship to economic growth. They do not say much about financial globalization.

Our goal here is to integrate and extend these two bodies of existing research, the historical and the economic, in a longer-term investigation of financial globalization during the past two centuries. Our operating hypothesis is that countries with well-functioning financial systems have one of the conditions, perhaps a key one, conducive to economic growth and also a set of institutions that give confidence to foreign investors and thus promote financial globalization by allocating the world’s capital more efficiently.

We begin with a discussion of what we mean by a good or well-functioning financial system (section 8.1). Next (section 8.2) we develop several historical case studies of countries that built such systems early in their modern economic histories: the Netherlands, Great Britain, the United States, France, Germany, and Japan. For each case, we consider when and how a modern financial system emerged, how it contributed to economic growth, and what relationship it had to the country’s participation in international finance. With some lessons of financial history drawn from the cases in mind, we then investigate, in the context of a larger set of countries for which we have data covering the period from the middle of the nineteenth century to the present, the finance-growth nexus, and the finance-growth-globalization nexus. This one-and-a-half-century period encompasses two eras of economic globalization that others have identified, that of the late nineteenth and early twentieth centuries, and that of the late twentieth century extending now into the twenty-first century. After discussing data sources and methodological considerations (section 8.3), we present and discuss our econometric results (section 8.4), and conclude (section 8.5).

8.1 What is a Good Financial System?

History appears to indicate that a good financial system is one that has five key components. These components are (a) sound public finances and public debt management; (b) stable monetary arrangements; (c) a variety of banks, some with domestic and others with international orientations, and
perhaps some with both orientations; (d) a central bank to stabilize domestic finances and manage international financial relations; and (e) well-functioning securities markets. Such an articulated financial system, once it is in place and functioning, can mobilize capital domestically and thereby promote a country’s economic development and growth. In a financial globalization context, it can also serve, either directly by the facilities it offers or indirectly by enhancing growth prospects, to attract the interest of foreign investors.

To place our vantage point here in perspective, we make two comments. First, academic specialization being what it is, contemporary scholars and those of previous generations often focus their attention on one or a subset of the components. Some economists are public finance experts, whereas others study money, banking, and central banking. Securities markets and company finance are usually the provinces of finance departments in business schools. Even economic historians, who often take a longer and broader view of economic development than economists and finance specialists, tend to concentrate on one component—usually banking—or a subset of them. Our view is that in a well-functioning financial system, there are numerous interactions among all of our five components. Hence, we think that the unit of observation for studying finance’s role in economic modernization should be the financial system as a whole, and not just one or two of its components.

Second, whenever one peels back the layers of the great onion of history and stops at a layer that seems important for later developments, the question inevitably arises, “But what made that layer possible?” In our case, what makes a good financial system possible? What are its prerequisites? Without going into detail, we would say that the prerequisites would likely include a combination of good government, including representative political institutions, an independent judiciary or court system, clearly defined and secure property rights, and financial savvy on the part of leaders—finance ministers, central bankers, and so on—among the components of a good system.

We place sound public finance first in our list of financial-system components largely for historical reasons. In modern history, good financial systems emerged out of the needs of the nation-state for financing, often to

1. Insurance might well be added to our list, as a sixth component. We leave it out here, in part because it involves a function—risk management—similar to that in which another component, banking, engages, and in part because, in a global historical context, it could be and often was supplied by insurers in other countries. Nonetheless, we recognize that the leading economies to be discussed in section 8.2 did develop the insurance component of their financial systems early in their financial and economic modernizations. Insurance is a financial product, and insurance companies invested the premiums they received in other financial assets such as securities. In the context of modern financial systems, it may be useful to think of the bank as the paragon of the institutional lender and the insurance company as the paragon of the institutional investor.
fight its wars with other nation-states. Sound public finance includes setting and controlling public expenditure priorities, raising revenues adequate to fund them efficiently, and if—as is often the case—that involves issuing public debt, then provision must be made for servicing the debt to gain and keep the confidence of the investors who purchase it.

The historical primacy of public finance in the development of financial systems, to be documented below, serves another purpose. It reminds us that much of finance, historically and now, and especially when finance has global dimensions, is inextricably bound up with politics. It is both naive and a misreading of history to assume that capital moved throughout the world solely, or even mostly, in search of the highest available return commensurate with the risks taken. It is equally naive to assume that capital usually moved in response to the demands of users who wanted to make productive economic investments. In a world without governments and foreign policies, that might have been the case. But ours is not such a world. This is a reality that needs to be kept in mind in any discussion of economic globalization. Nonetheless, it should also be kept in mind that the needs of governments to raise and deploy funds internationally for reasons of state (typically, wars) resulted in the creation of financial systems that could mobilize capital and deploy it for productive economic purposes (Ferguson 2001).

Stable money is desirable for the usual textbook reasons. Money is useful as a medium of exchange, a store of value, and a standard of deferred payments. All three uses, but especially the latter two, are harmed if money fluctuates and depreciates in value in unpredictable ways. Banks and banking have played large roles in modern economies. Once a monetary base is specified, banks of deposit, discount, and note issue amplify it into a money stock that consists largely of bank money convertible into the monetary base. They do this by granting credit to entrepreneurs and other users of funds. The credit-granting function turns banks into risk managers, the essence of their role as financial intermediaries. A lot of the risk that banks manage arises from borrowing short and lending long. Individual banks and banking systems become troubled, even fail, when recipients of bank credit are unwilling or unable to repay on schedule (illiquidity and default problems) or at all (insolvency and repudiation problems). If depositors, the holders of bank money from whom the banks borrow short, learn of such problems, they may compound them by attempting en masse to convert their bank money to base money.

Central banks, the fourth of our key components of a modern financial

2. Unless one subscribes to an economic theory of war, the importance of war in shaping financial systems in modern history argues for treating the origins of modern financial systems as economically exogenous rather than endogenous. Later in the chapter, we discuss the debate between those who say real-sector economic changes lead to financial-developmental responses and those who, like us, would give more primacy to financial development as leading to real-sector development.
system, can prevent such problems from arising, or at least alleviate them when they do arise. They do this by monitoring and regulating the operations of individual banks in a banking system with the goal of preventing problems. And they do it to alleviate problems when they do arise by acting as lenders of last resort. Central banks also act in the areas of other financial-system components. For example, they often serve as the government’s bank—that is, as an adjunct of public finance. And they act to stabilize the value of a country’s money, both domestically and internationally.

Securities markets, the last component, facilitate the issuance of public and private debt securities and private equity securities. Specialized banks—investment or merchant banks—serve here as financial intermediaries between the borrowers/issuers (governments and business enterprises) of bonds, stocks, and other forms of securities, and the lenders/investors who purchase securities. Once securities are issued, trading markets provide them with transferability and liquidity that enhance their appeal to investors, be they domestic or foreign.

One could arrive at the above list of key financial-system components as an inference from observing the financial systems of highly developed national economies today. Such financial systems are one of the characteristics of these countries that distinguish them from the far larger number of less developed economies. In that connection, our chapter relates to that of Bordo and Flandreau (ch. 9 in this volume). They argue that core countries with developed economies and mature financial systems, including the wide and deep financial markets as well as sound fiscal and monetary arrangements that are among the components we identify, are now able to function within a framework of flexible exchange rates between countries. In contrast, peripheral developing economies with immature financial systems have a well-justified “fear of floating” and therefore often find it useful, in order to access international capital markets, to anchor their currencies to those of core countries.

Our chapter also is related to that of Obstfeld and Taylor (ch. 3 in this volume). They find, for example, that in the globalization of a century and more ago capital flowed more freely from the core countries to the periphery than it has in the more recent revival of capital-market globalization. Now core countries invest relatively more of the total international flow of capital in each other and relatively less in the periphery than they did a century ago. In our view, this illustrates the importance of mature national financial systems in attracting capital from foreign investors, and the disadvantages of immature systems in doing the same. A century ago, as Obstfeld and Taylor hint, many of the periphery countries were parts of core-country empires. Therefore, the immaturity of their domestic financial systems, which were overseen by imperial authorities, mattered less than it does in today’s world of independent nations.

We turn now to a more detailed account of the historical origins of modern, mature financial systems.
8.2 Good Financial Systems in History: Case Studies

The foregoing discussion of a good financial system in terms of its key components and their connections to one another raises several questions. When, where, and how did such articulated financial systems appear in modern economic history? And did it matter for the countries concerned in terms of their economic growth and their participation and status in the world economy?

Our reading of modern economic history is that countries that developed such good financial systems early in their histories grew rapidly thereafter and often attracted foreign capital inflows that served to enhance their growth. The Netherlands, Great Britain, and the United States are leading examples. In succession, these three countries after their financial emergence went on to become the economic leaders of the past four centuries and also leaders in the export of capital.

The Dutch Republic was the first country to develop such a system, early in the seventeenth century. Despite its small size, the country became a leading political and economic power of the seventeenth century, and its economic leadership continued into the eighteenth century.

Great Britain developed such a system at the end of the seventeenth century and in the first decades of the eighteenth century. It went on to have the first industrial revolution later in the century, to build a worldwide empire, and to succeed the Dutch Republic as the leading world economy during the eighteenth and much of the nineteenth century.

At the end of the eighteenth century, the newly independent United States also developed such a system. It was then a small country on the periphery of a world system dominated by Europe, with about half a percent of the world’s population. A century later, with about 5 percent of world population, the United States had become the world’s largest economy, a position it maintains after the elapse of another century.

In each of these three cases, financial innovation led to economic leadership, and then to the Dutch, the British, and the Americans successively becoming world leaders in the export of capital to other countries.

During the second half of the nineteenth century, France and Germany in Europe, and Japan in Asia also became financial innovators, with beneficial results for their economic growth and their ability to become major exporters of capital. In 1914, at the end of the first era of globalization, the four European countries and the United States accounted for about 90 percent of the world’s capital exports. Together with Japan, now the world’s second largest economy, their share in the second era of globalization at the end of the twentieth century has not changed much from what it was nine decades earlier. Even peculiarities of the earlier era remain, with the United States again—as in 1914—being a net importer of capital even as it exports a great deal of it.
We now examine these countries’ early financial development in more detail. There are many similarities among them, but also some differences. The United States and Japan are of special interest because their financial revolutions were far separated in time and space from the European home ground of modern finance and because they have become the two largest national economies.

8.2.1 The Dutch Republic

The Republic or United Provinces was born late in the sixteenth century when the northern provinces of the Spanish Netherlands revolted against Spanish Habsburg rule and, over several decades of protracted warfare extending well into the seventeenth century, established independence from Spain. Even before Dutch independence, provincial governments in the Spanish Netherlands developed a permanent public debt market, likely the world’s first, when annuities were issued as a means of lightening tax burdens in response to the revenue demands of Spanish overlords (Tracy 1985). This would now be termed tax smoothing. At roughly the same time, the Spanish Netherlands perfected a continuing market in negotiable international bills of exchange to finance trade without necessitating large movements of hard money across borders (Van der Wee 1963; Neal 1990).

The Dutch revolt maintained the public-debt and money-market innovations in the United Provinces. When coupled with the new republic’s tolerance of minorities in the southern Netherlands, the revolt also led to an inflow of both capital and financial expertise to Dutch cities, particularly Amsterdam (De Vries and Woude 1997, 669). In 1609 came two additional and major financial innovations. One was the Wisselbank, or Bank of Amsterdam, an exchange bank for merchants and the government whose bank money was better than gold, or at least better than the motley collection of gold and silver coins then in circulation. Similar banks were established in other Dutch cities, as were local private banks (kassiers) and, somewhat later, merchant banks. The other innovation of 1609 was the common stock, created when the Dutch East India Company decided to make its capital permanent and issued dividend-paying, tradable shares to its owners instead of liquidating each of its trading expeditions at its conclusion and distributing all of the proceeds to the owners. As warfare with Spain wound down in the early decades of the seventeenth century, and with the aid and example of Wisselbank money, the Dutch guilder became stable in value and remained so until the end of the eighteenth century (Neal 1990; Hart, Jonker, and van Zanden 1997; De Vries and Woude 1997).

Thus, by the early seventeenth century, the Dutch Republic had established a version of each of the key components of a modern financial system: strong public finances, stable money, banks, a central bank of sorts, and bond and stock markets. There followed an era of great development and prosperity variously described as “the first modern economy” (De
Vries and Woude 1997), “the golden age,” and “the embarrassment of riches” (Schama 1988). The republic could not long keep the dominating political power that by the mid-seventeenth century it had derived from its strong economy. It was too small a country and too decentralized a state to accomplish such a feat in a world increasingly dominated by larger, more centralized states. But Dutch wealth continued to accumulate, Dutch capital sought returns all over the world, and Dutch financial expertise was exported to other countries.

8.2.2 Great Britain

Dutch expertise in finance was introduced directly to England after the Glorious Revolution of 1688, when the Dutch stadhouder, Willem of Orange, was invited to become King William III of England. After generations of erratic financial behavior of previous monarchs, the British, envious of Dutch economic and financial power and hoping to surpass it, passed control of their country’s finances and monetary system from the king to Parliament.

Adopting Dutch finance, the British also improved upon it. The Bank of England was formed in 1694 as a bank of discount, deposit, and note issue capitalized by public debt, and was thus closer to the modern concept of a central bank than the Amsterdam Wisselbank. The metallic currency was recoined, and paper issues such as bank notes were made convertible into the metallic base. England thus achieved a stable money (Capie 2001a, b). In subsequent decades the public finances were also stabilized, in part by the introduction of standardized perpetual annuities that became the basis for a liquid public debt market. A domestic money market in bills of exchange appeared. Even earlier, the British East India Company followed its Dutch counterpart by making its capital permanent and issuing tradable shares against it, and an active equity market in company shares was present by the 1690s (Neal 1990; Chancellor 1998). These developments have been described as an English “financial revolution” (Dickson 1967) and as “the sinews of power” that enabled the British state to win wars and build an empire (Brewer 1990).

After the mid-eighteenth century, note-issuing country banks began to dot the English and Welsh countryside, joining the long-existing private bankers of London and the Bank of England. The banking system was knit together via the London money market, through which capital surpluses of English agriculture could be recycled to finance the capital deficits of areas industrializing in the first industrial revolution (Pressnell 1956). In Scotland, large banking co-partnerships with branches and freedom of note issue joined several corporations chartered with banking privileges earlier in the century (Cameron et al. 1967; Checkland 1975).

Larry Neal’s (1990) study of the eighteenth-century London and Amsterdam capital markets documents the manner in which these develop-
ments promoted a flow of capital to England, mainly from the Dutch Republic but also from other continental financial centers. Foreign holdings of shares in leading British companies (East India, South Sea, and the Bank of England) reached nearly 20 percent of the total by midcentury, and foreigners also held about 14 percent of the English national debt. Neal also demonstrates that the two markets across the North Sea from each other were remarkably integrated, with nearly equivalent prices and price changes for the same securities. Even the famous French and English bubbles of 1720 were synchronized in ways that were probably orchestrated by Dutch investors (Neal 1990, 101–15, 147). At the end of the century, during the French Revolution and the Napoleonic Wars, Neal argues that the ability of these markets and institutions to transfer flight capital from the continent to England enabled the industrial revolution there to proceed. Because of international capital market integration, heavy British government borrowing to finance war efforts did not crowd out private investment.

If one is willing to consider northwestern Europe as the world, the eighteenth century surely was the first era of financial globalization. It was the result of two modern financial systems, most likely the only two such systems existing then, linking up with each other across the North Sea, to the advantage of borrowers and investors in both the Dutch Republic and Great Britain. These systems had a version of each of the five key components of a good financial system.

8.2.3 The United States

If one thinks that true financial globalization must link continents separated perhaps by an ocean, and not merely two countries separated by the North Sea, history does not stand in the way with much of a delay. That is because the United States in the early 1790s engineered a financial revolution quite like the earlier ones of the Dutch Republic and Great Britain (Sylla 1999b). The engineer was Alexander Hamilton, first secretary of the treasury (1789–95) of the new federal government that assembled in 1789 under the Constitution. Hamilton’s earlier writings indicate that he had absorbed many of the key lessons of Dutch, English, and French financial history. In office, with the backing of the president, Congress, and the private sector, he applied them.

First, Hamilton set up a federal revenue collection system based on import tariffs and domestic excise taxes authorized by Congress, as well as hoped-for revenues from land sales that were slow to materialize. While proceeding with that, Hamilton in 1790 proposed and Congress adopted a plan for restructuring the par value of the national debt from the American Revolution. The debt included state debts assumed by the new federal government and arrears of interest on it that the previous government had been unable to pay. The restructuring took the form of three new issues of new federal securities with varying interest rate terms. The new securities were
payable, principal and interest, in hard-money dollars to be collected by the revenue system. These provisions applied to the domestic debt of some $65 million; an additional $12 million owed to foreigners, mainly the French government and Dutch investors, was rolled over with fresh loans from Dutch bankers (Perkins 1994).

Also in 1790, Hamilton proposed a Bank of the United States modeled on the Bank of England, but with several innovative features including a large capital ($10 million), the possibility of branches, and partial (20 percent) government ownership. Like the Bank of England, it was to be the government’s bank and it could also engage in private-sector banking. There were only three other banks, small state institutions, in the country at the time. Congress enacted the bank proposal early in 1791. The bank had its initial public offering in July of that year; it was quickly oversubscribed. The bank opened in Philadelphia at the end of 1791, and branches were established in other cities starting in 1792. Fearing that the federal bank with its branches would dominate U.S. banking, the states moved quickly in the 1790s to charter more banks of their own. A country with no banks prior to 1782 became one a decade later with a rapidly expanding banking system, and one that by 1802 had thirty-five chartered banks (Fenstermaker 1965, 111).

With the bank proposal enacted, Hamilton next produced a report on a mint, which defined a new U.S. dollar in terms of both gold and silver (i.e., a bimetallic monetary base) and proposed establishing a mint to make a variety of coins based on the decimal system, also an innovation, albeit one earlier proposed by Hamilton’s cabinet colleague, Thomas Jefferson. Banknotes convertible into a specie base gradually replaced the early fiat paper issues of state governments.

The new federal debt securities appeared late in 1790, followed by the stock of the bank in mid-1791. So many new and putatively high-quality securities energized the informal trading markets of Philadelphia, New York, and Boston. Trading was vigorous, speculative spirits were unleashed, and new private issues joined those of the government. Government debts that had sold at 15 cents on the dollar in 1789 reached par in 1791, and 120 percent of par in early 1792, just before Wall Street’s first crash knocked 20 percent off their value in two months. New York State enacted a law to end speculation in the streets, causing brokers to meet under a buttonwood tree in Wall Street in May 1792 and draw up an agreement to trade indoors. This was the origin of the New York Stock Exchange.

In roughly three years, from 1789 to 1792, the United States was transformed from a bankrupt country with a primitive financial system to a country servicing its debts and equipped with a modern financial system like the ones that the Dutch and the British had developed earlier over many decades. What were the effects of that system? In keeping with the general approach of our paper, we discuss them under growth and globalization.

In an earlier paper (Rousseau and Sylla 1999), we analyzed relationships
between financial developments and real growth in the period 1790 to 1850. Although good data do not become available until late in this period (and show the U.S. economy growing at modern rates), it is the consensus of economic historians that real growth, total and per capita, accelerated over the six-decade period. Our work developed several annual time series measures of financial development (money stock, bank numbers and capital, and the number of securities listed in major securities markets), and measures of real growth and development (investment, imports, and an index of the cumulative stock of business corporations chartered, which we regard as a measure of entrepreneurial activity). A set of vector autoregressive (VAR) models indicated that in general causality ran from the financial to the real variables, with an occasional feedback effect of real developments on finance. These results led us to conjecture that the acceleration of U.S. growth that occurred in the 1790–1850 period was “finance led.”

What does “finance led” mean? The discussion above suggests the possibility that Dutch and British economic growth may also have had roots in financial development. In the Dutch case, a modern financial system was in place before the Golden Age and the rise of the Dutch economy to seventeenth-century preeminence. In the British case, a modern financial system was in place before the first industrial revolution and the rise of the English economy to eighteenth-century preeminence. In the U.S. case, a modern financial system was in place before the U.S. industrial and transportation revolutions and the westward movement of the nineteenth century, by the end of which the United States was the preeminent economy. We see a pattern emerging in this history.

What about globalization? Does having a good financial system mean that foreign capital is more likely to flow to that country? Although residuals from balance-of-payments data indicate only modest net capital inflows during the period from 1790 to 1812 (Davis and Cull 1994, 2000), more detailed data on foreign holdings of U.S. securities tell a different story. Benchmark estimates of such holdings in 1789 and 1803, a period encompassing the financial revolution of the Hamiltonian Federalists, indicate that foreign investors increased their holdings by $48–52 million from a 1789 base of $17–18 million, the majority of which consisted of Revolutionary War debts owed to France and the Dutch (Wilkins 1989, table 3.1, p. 50). The inflow of portfolio capital implied by Wilkins’s data is fairly consistent with U.S. Treasury and other records for 1803 on total U.S. securities issuance and the amounts in domestic and foreign hands. Foreign investors held 53 percent of the U.S. national debt in 1803, and 62 percent of the stock of the Bank of the United States. With shares of state banks, insurance, and transportation companies added in, there was a grand total of $122 million in public and private securities issued, almost all after 1789 as state chartering of corporations took off. Foreign investors held nearly half of these securities, or $59 million (Sylla, Wilson, and Wright 1997, tables 4 and 5).
The modern concept of an emerging market involves the generation of confidence among foreign investors. The ingredients of confidence include fiscally responsible governments, stable money, and sound domestic financial institutions, markets, and instruments. Confidence in a country’s securities increases, we think, when there are domestic stock and bond markets to enhance their liquidity. Two centuries ago the United States was such an emerging market, and, with an occasional slip, it has remained a Mecca for foreign investors ever since. A century earlier, Dutch and other foreign investors saw something similarly attractive in England. A century before that, foreign investors saw it in the Dutch Republic. Emerging markets are not new in history.

8.2.4 France and Germany

After Great Britain, France and Germany were the leading foreign lenders in the era of globalization during the late nineteenth and early twentieth centuries. Even then, however, these two large and relatively prosperous European countries lagged well behind Great Britain, another large country, in international lending, and, on a per capita basis, even behind the Netherlands. Moreover, the Dutch and the British became foreign lenders and international investors long before the French and the Germans. This raises two questions. What accounts for the French and German lag? And why did the two countries then play major roles in the financial globalization of the late nineteenth century?

We would answer both questions by saying that until the middle of the nineteenth century neither France nor Germany had developed all of the components of a good financial system that the Netherlands developed two centuries earlier, Great Britain a century earlier, and the United States half a century earlier. In the case of France, while England was having its financial revolution in the decades around 1700, the country’s public finances were chaotic, and the collapse of John Law’s scheme in 1720 made the French public suspicious of paper money and banking for a century or more (White 2001; Murphy 1997). Nonetheless, after the end of the Napoleonic Wars in 1815, France’s public finances and currency were stabilized, and the central Bank of France had been present since 1800. There were also a variety of bankers, but nothing like the extensive banking systems that existed in the United States and Great Britain. Paris had a stock exchange, but it listed just a few securities, mostly government debt. France’s relative financial backwardness during the early nineteenth century resulted from the state’s strict controls on, and limitations of, banking and securities market development (Cameron et al. 1967). Kindleberger (1984, 114–15) provides an extensive list of reasons for concluding that “France lagged a hundred years behind Britain in money, banking, and finance. . . . [T]his was both a reflection and a cause of its economic retardation.” More recent research drawing attention to loan-market substitutes,
such as loans arranged by notaries that France developed to compensate for its lag, serves to confirm the country’s relative backwardness in financial development (Hoffman, Postel-Vinay, and Rosenthal 2000). The substitutes gradually gave way to modern forms of finance in the nineteenth century.

In the case of Germany, the country was of course not unified in fact until the middle of the nineteenth century, or in law until 1871. When the United States began its financial revolution in 1790, there were hundreds of separate German states, each with its own ruler. By the early nineteenth century (if not before), the major German states had stable public finances and stable money, but in other financial-system components respects they lagged even behind France. The Prussian Bank, forerunner of the central Reichsbank that came in 1875, was not founded until 1846. There were a variety of private bankers, including such famous houses as the Rothschilds, that began in Germany, and other public and private financial institutions. But as in France, state controls limited banking development. Securities markets were slow to develop, and those of the early decades of the nineteenth century were more adjuncts of the private bankers’ businesses than independent sources of finance.

In both France and Germany financial systems began to take on a more modern form around 1850. The capital needs of large enterprises such as railways, and the growing perception that the two countries were lagging behind Great Britain, provided reasons for change. Change came in more liberal state approaches to banking development; in particular the innovation (for these countries, although it had existed in the United States for six to seven decades and in England for two to three decades) was joint-stock banking. The French leader Louis Bonaparte, after declaring himself Emperor Napoleon III in 1851, sought to justify his authoritarian regime by fostering rapid economic development. With his backing, the joint-stock Credit Mobilier bank was formed in 1852; it combined commercial and investment banking. Although the Credit Mobilier failed in 1868, it had an impact in and outside of France. With the French Credit Mobilier as an example, the Germans founded similar institutions (Landes 1965; Cameron et al. 1967; Born 1983; Kindleberger 1984). During the middle decades of the nineteenth century, France and Germany thus added missing elements of a good financial system. As their financial systems mobilized capital more effectively, the two economies grew faster and their financiers began to invest large sums of capital in other countries.

8.2.5 Japan

Japan until the 1850s was almost totally out of the loop of western economic development. Yet it quickly became a major economic and political power during the era of globalization a century ago, and then within a century became the world’s second largest national economy. That makes Japan perhaps the most interesting of the cases studied here. How did it happen?
Among the important reasons is that Japan, like the other cases here but unlike so many of the world’s countries, had a financial revolution that resulted in a good financial system. After the Meiji revolution toppled the isolationist shogun regime in 1868, there were in the 1870s both bold initiatives and false starts in building a modern financial system. The bold initiative included commuting feudal dues paid in rice to government bonds paid in money. This created a securities market, and the Tokyo and Osaka stock exchanges formed in 1878 to trade the new issues. The false starts included excessive issues of fiat currency and an attempt to copy the U.S. national banking system with bank notes backed by government bonds. The banks purchased large amounts of government bonds and issued large amounts of bank notes against them, without much attention to the specie reserves they were supposed to maintain. Fiat money and bank-created money led to rampant inflation from 1876 to 1881 (Tamaki 1995).

Financially, Japan turned the corner during the 1880s. The Yokohama Specie Bank was founded in 1880 and given the task of accumulating specie through financing the country’s exports so that a currency convertible to specie could in time be established. The alternative of gaining specie by means of a foreign loan was rejected on grounds that foreign lenders could not be trusted or given influence in Japanese affairs. The Specie Bank’s operations were clever. It paid Japanese exporters in Japanese currency advanced from the government when goods were exported, then drew bills of exchange collectible in specie on the foreign purchasers and collected them at branches it established in foreign cities, and finally remitted the specie to the government to repay the government’s advance (Tamaki 1995; Sylla 1999a). Financial innovation thus encouraged exports and the government’s accumulation of specie.

In 1881, Masayoshi Matsukata became Japan’s finance minister, an office he held for many years. Matsukata played a role in Japan’s financial revolution comparable to that of Hamilton in the United States (Rosovsky 1966; Sylla 1999a). In 1882, he established the central Bank of Japan. He also instituted a regime of fiscal austerity and deflation to end the inflationary excesses of the 1870s. By 1885, paper money circulation was reduced enough, and the government’s specie accumulations had increased enough, for the Bank of Japan to introduce silver-convertible bank notes. Private bank note issue rights were taken away in 1883, and the government’s fiat issues were gradually retired. Bank of Japan notes were 2 percent of Japan’s note circulation when they were introduced in 1885; by 1897 they had increased to 75 percent. Along with these changes, Matsukata instituted reforms of Japan’s banking system (Sylla 1999a).

With fiscal and currency stability achieved by the mid-1880s, Japan recovered quickly from the deflation of the decade’s first years. Company formation tripled between 1885 and 1890. During a credit crisis in 1889, the Bank of Japan found a way to aid these companies and the Japanese secu-
rities markets. The bylaws of the bank forbade lending on securities, but it could increase market liquidity by “special discounting” of bills covered by high-quality public and private securities. The innovation allowed companies to repay the banks during the credit crunch, and it thus cemented ties between companies, banks, and the Bank of Japan by encouraging the banks to hold company shares (Morikawa 1992). Although this might seem to indicate the origins of modern Japan’s strong bank-firm relationships, we now know that securities markets and equity finance were important independent sources of firm financing from the 1880s to the 1920s (Miwa and Ramseyer 2000a,b, 2001).

In 1897, aided by an indemnity in gold paid by China after the Sino-Japanese War of 1894–95, Japan adopted the gold standard and started the system of long-term credit banks. These banks were joint stock companies, although under the supervision of the ministry of finance. Issuing debentures, most of which were purchased by the ministry with surplus government funds and postal savings deposits, the new banks invested the proceeds in infrastructure and other investments (Cameron et al. 1967).

Once on the gold standard maintained by the world’s leading economies, Japan lost its earlier aversion to borrowing abroad and quickly became an emerging market for foreign investors. Ten Japanese government loans totaling more than 80 million British pounds were raised on the London capital market between 1897 and 1910; a similar total was raised in the markets of Paris, New York, and Germany in these years (Suzuki 1994; Tamaki 1995). Sussman and Yafeh (2000) show that adoption of the gold standard dramatically improved the terms on which Japan could borrow in foreign markets. Our interpretation of this gain is that it was Japan’s financial (and economic) development during the three decades prior to 1897 that made the adoption of the gold standard possible, and successful.

It is often wondered why, of all the possible candidates, Japan was the one non-Western country to modernize its economy and join the ranks of the wealthy Western countries. We think an important part of the answer, and one supported by Rousseau (1999) with time series evidence, is that early in its history, during the Meiji era, Japan developed a sophisticated financial system like that of the Western leaders. As in the other cases essayed here, that financial system included stable public finances, sound money, banks, a central bank, and securities markets. It enabled Japan, a poor and relatively isolated country in 1870, to become an emerging market and a rapidly growing economic and political power by the early twentieth century. As Herbert Feis long ago put it,

Japan, of all the countries of the Orient, proved itself capable of using to good advantage the capital of Europe. Its government succeeded in the threefold task of promoting internal industrial development, extending and reinforcing Japanese economic interests in Korea and China, and adjusting its plans to the political rivalries of the European continent. . . .
The growing strength obtained from the use of that capital made Japan a better credit risk for investors and a more important ally. By 1914 the small island empire had become a great power in its own right and might. (Feis 1965, 429)

Japan had learned an important lesson of history, namely that financial development can be the basis of economic growth and participation as a major player in the global economy. With all the elements of a good financial system in place before the twentieth century, Japan’s economic success seems less an exception to the rule of West-dominated economic modernization and more a confirmation the key role of financial development in promoting economic modernization.

8.3 Data and Methodology

8.3.1 Overview

In section 8.2, we identify a well-functioning financial system as central to the economic growth of five Atlantic economies and Japan at various times over the past three centuries. We next ask whether the available data support a leading role for finance in the growth of incomes for a broader set of countries, and whether financial development promoted globalization by facilitating trade and reducing international dispersion in long-term interest rates. We do this using the cross-country regression framework of Barro (1991), with the availability of appropriate data over a long historical period limiting our sample to seventeen countries from 1850 to the present. The study is to our knowledge the first to apply recent cross-country regression techniques in a systematic study of the finance-growth nexus that includes the period before 1960.3 The results, which we describe later, support the view that finance affects growth most emphatically in the earlier stages of economic development. In this respect, they are consistent with Cameron et al. (1967) and Rousseau and Wachtel (1998), who conducted comparative analyses on smaller sets of countries. We also find a role for both financial development and trade in reducing interest rates and promoting their convergence across the Atlantic economies in the pre-1914 period.

Before presenting these findings, however, we observe that macroeconomic theory has made much progress over the past decade in laying the analytical foundations for scientific discussion of the finance-growth nexus.4 Greenwood and Jovanovic (1990) and King and Levine (1993b), for example, formulate general equilibrium models in which banks and other financial intermediaries arise endogenously to improve the allocation of

3. This part of our study can thus be viewed as the historical analogue to the cross-country analysis of King and Levine (1993a).

4. Earlier, more descriptive studies of the relationship between financial factors and growth include, among others, Gurley and Shaw (1955), Goldsmith (1969), and McKinnon (1973).
available credit. This so-called total factor productivity (or TFP) channel thus operates through the selection and funding of projects with high private and social returns. Other models, such as those of Bencivenga and Smith (1991) and Rousseau (1998), emphasize “debt accumulation” or the ability of a well-functioning financial system to mobilize resources for projects that would otherwise have remained in the drawer. Empirical investigations, including Levine and Zervos (1998) and Bell and Rousseau (2001), offer evidence on the TFP and debt accumulation channels, respectively, with the latter suggesting accumulation as even a precondition for improved allocation in developing countries. If this is indeed the case, the confidence of potential market participants, as enhanced by the first four characteristics of a good financial system that we describe in section 8.2, is critical to achieving a threshold level of lending activity from which a fuller menu of financial institutions can emerge.

Our study does not distinguish empirically between these complementary yet distinct channels of finance-led growth due to the limited nature of measures of financial development that are available over the past century and a half for the broad set of countries that we consider. Since emerging financial institutions are likely to have affected both the accumulation and the allocation of resources in the economies that we study, however, we do not view our joint tests for both channels as particularly limiting.

Finance, some would argue, perhaps should not be considered a truly exogenous component in the growth process. Indeed, the consensus view of economists some fifty years ago, and which to some degree persists, can be summarized by Joan Robinson’s (1952) assertion that “By and large, . . . where enterprise leads, finance follows.” In the long run, increases in economic activity will undoubtedly generate demand for financial services and lead to a larger intermediating sector. This channel might be important in the later stages of development when financial systems have matured, and possibly in providing one of the impulses needed to develop a financial system in the first place. In contrast, the TFP and debt accumulation channels are likely to operate most emphatically in the early to middle stages of a country’s economic modernization, with the TFP channel retaining importance as the economy matures. In the formal analysis, we will address the endogeneity of financial institutions by using instruments and predetermined variables in our cross-country regression models.

8.3.2 The Data

To study relationships between the financial and real sectors, we first identify measures of financial development, outward orientation, and real-sector performance that can be constructed with the available historical

5. Our historical survey of financial system development in section 8.2 indicates that the politics of war, if anything, was more important than the economics of enterprise and growth as an impulse for financial modernization.
data. To this end, we build a panel using annual data for 1850–1997 from three main sources. From 1960, we use the World Bank’s *World Development Indicators* database. For earlier years we use data from worksheets underlying Bordo and Jonung (1987, 2001) and Obstfeld and Taylor (2000), and supplement with financial, trade, and public-sector aggregates from Mitchell’s (1998a–c) volumes of *International Historical Statistics*. The resulting data set includes seventeen countries. The appendix describes the sources in detail.

Table 8.1 lists the seventeen countries along with their average annual growth rates of real per capita income and financial depth (as measured by the ratio of the broadest available monetary aggregate to output) for the 1850–89, 1890–1929, and 1945–94 periods. It also includes the level of real per capita income measured in 1960 U.S. dollars at the midpoints of these periods (i.e., 1870, 1910, and 1970). The remarkable feature of the table is the growth in the ratios of the broad money stock to gross domestic product (GDP) in all but three of the seventeen economies between the 1850–89 and 1890–1929 periods, with the ratio rising by more than 50 percent in nine of the countries. In contrast, financial depth grew in only ten of our countries between the 1890–1929 and 1945–94 periods, and only three countries experienced growth in the ratio of more than 50 percent.

Bordo and Jonung (1987) examine the behavior of the velocity of circulation, which is roughly the inverse of our measure of financial depth, for five of the countries in our study (Canada, Norway, Sweden, the United Kingdom, and the United States) and observe a U-shaped pattern from 1870 to 1975. They then show that the downward portion of the U-curve can be explained by financial development in the form of monetization, as measured by the changes in the agricultural/industrial mix of the economy and the ratio of financial assets to total assets, and that the upward portion may reflect an availability of substitutes for money as an asset. The evidence in table 8.1 is consistent with this interpretation for our broader sample in the pre-1930 period. The ratio of the money stock to output may thus be a

6. The starting years of the averages that appear in table 8.1 under the column headings “1850–1889” are as follows: Argentina, 1884; Australia GDP growth, 1870; Australia money/GDP, 1880; Brazil, 1880; Canada, 1870; Denmark, 1850; Finland, 1860; France, 1850; Germany, 1850; Italy GDP growth, 1862; Italy money/GDP, 1872; Japan, 1878; the Netherlands, 1850; Norway, 1865; Portugal, 1880; Sweden GDP growth, 1861; Spain GDP growth, 1858; Spain money/GDP, 1875; Sweden money/GDP, 1870; United Kingdom GDP growth, 1850; United Kingdom money/GDP, 1870; United States, 1850. Data from 1914–24 and 1945–48 are unavailable for Germany and thus are not included in the relevant averages. The same applies to France for 1914–20 and 1945–48.

7. When computing output growth rates, we use GDP in real local currency units. When computing levels in 1960 U.S. dollars, we use the U.S. dollar equivalents from the *World Development Indicators* database for 1960–1997. For earlier years, we use official exchange rates to convert local currency output into U.S. dollars and then deflate the result using the U.S. implicit price deflator.

8. Bordo and Jonung extend their study of velocity to more than eighty countries after 1950.
Table 8.1 Selected Macroeconomic Indicators

<table>
<thead>
<tr>
<th>Country</th>
<th>Per Capita Income (1960 US$)</th>
<th>% Growth Real per Capita Income</th>
<th>Broad Money (% of GDP)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Argentina</td>
<td>n.a.</td>
<td>516</td>
<td>977</td>
</tr>
<tr>
<td>Australia</td>
<td>684</td>
<td>1,067</td>
<td>2,284</td>
</tr>
<tr>
<td>Brazil</td>
<td>n.a.</td>
<td>93</td>
<td>529</td>
</tr>
<tr>
<td>Canada</td>
<td>417</td>
<td>976</td>
<td>2,427</td>
</tr>
<tr>
<td>Denmark</td>
<td>319</td>
<td>608</td>
<td>1,953</td>
</tr>
<tr>
<td>Finland</td>
<td>274</td>
<td>368</td>
<td>1,751</td>
</tr>
<tr>
<td>France</td>
<td>388</td>
<td>560</td>
<td>2,062</td>
</tr>
<tr>
<td>Germany</td>
<td>98</td>
<td>176</td>
<td>4,474</td>
</tr>
<tr>
<td>Italy</td>
<td>207</td>
<td>236</td>
<td>1,285</td>
</tr>
<tr>
<td>Japan</td>
<td>n.a.</td>
<td>156</td>
<td>1,152</td>
</tr>
<tr>
<td>The Netherlands</td>
<td>280</td>
<td>451</td>
<td>1,501</td>
</tr>
<tr>
<td>Norway</td>
<td>170</td>
<td>273</td>
<td>2,022</td>
</tr>
<tr>
<td>Portugal</td>
<td>n.a.</td>
<td>153</td>
<td>582</td>
</tr>
<tr>
<td>Spain</td>
<td>188</td>
<td>243</td>
<td>689</td>
</tr>
<tr>
<td>Sweden</td>
<td>203</td>
<td>486</td>
<td>2,759</td>
</tr>
<tr>
<td>United Kingdom</td>
<td>607</td>
<td>747</td>
<td>1,725</td>
</tr>
<tr>
<td>United States</td>
<td>413</td>
<td>1,087</td>
<td>3,641</td>
</tr>
</tbody>
</table>

Source: See appendix.

Notes: Per capita incomes are reported for 1870, 1910, and 1970. Income growth rates and the ratio of broad money to GDP are averages of the available annual observations over the 1850–89, 1890–1929, and 1945–97 periods. n.a. = not available.
particularly useful proxy for financial development in the earlier decades of our study in that it reflects industrialization as well as an increased use of financial assets.

Turning to the potential real effects of finance, for which we are most interested, we observe that among the nine countries in table 8.1 that saw financial depth rise by 50 percent or more, six of them saw real per capita GDP also rise by more than 50 percent. Interestingly, all three of the countries that saw financial depth rise by more than 50 percent in the postwar period also had income growth of more than 50 percent. The data thus indicate wide disparities in the growth experiences of the economies in our sample but also suggest a correlation between financial depth and real incomes. We now proceed to investigate these relationships more formally.

8.3.3 Methodology

Our examination of links between financial development, trade, and income focuses on the broad implications that can arise in a cross-country framework. This type of analysis has become a near tradition in the empirical study of growth and its determinants since Barro (1991) isolated key variables, such as education and political stability, as members of a benchmark set of robust correlates. Given that most studies of financial factors in growth are extensions of this framework (see, e.g., King and Levine 1993a and Levine and Zervos 1998), we begin by exploring partial correlations between growth and the ratios of broadly defined money and international trade to output from 1850 to the present and over two subperiods covering 1850–1929 and 1945–94.

The ratio of the liquid liabilities to output is a common measure of the size and possibly the sophistication of the financial sector in an individual country, yet it is imprecise because of nonbank intermediaries such as insurance and investment companies, whose liabilities do not wind up in the broad money aggregate. These omissions are likely to be far less important in the prewar period, but quite substantial in recent years. Further, a financial system should be characterized by all of the institutions that promote the accumulation of capital, including securities markets. Rousseau and Sylla (1999) show that securities markets played an important role in early U.S. growth presumably because they attracted foreign capital, whereas Levine and Zervos (1998) and Rousseau and Wachtel (2000) present evidence of their importance in cross-country models that use recent data. Unfortunately, we do not yet know the extent of securities market development in the prewar period for most of the countries in our sample, and so to conduct an analysis that allows for consistent comparisons across time periods we must for now be satisfied with the ratio of broad money to GDP.

A reasonable way to measure economic performance is through growth in real per capita incomes. Although such a measure ignores the impact of the distribution of income on welfare, it nevertheless provides a convenient summary of economic conditions in a given country and has the important
advantage of being readily available for a fairly large set of countries as far back as the mid-nineteenth century. We use it here as the primary measure of economic outcomes.

Measures of economic “globalization” are even more difficult to identify for a large set of countries. It is clear, however, that the degree to which a country has an “outward orientation” is related to the extent of its integration with other markets, and trade data are readily available for most of the counties in our sample—in most cases even farther back in time than output. To participate in trade arrangements, short-term finance is critical, and much of this financing is provided through the banking sector in the form of credits and acceptances. When seen in this light, banks can contribute to economic globalization by providing the credits needed to promote trade. To examine the importance of these effects, we also consider models in which the ratio of trade (the sum of imports and exports) to GDP enters either as a regressor or as the dependent variable.

Existing empirical studies of the relationship between trade and growth have reached mixed conclusions, presumably because most measures of openness are themselves endogenous and influenced by nonpolicy factors (see Edwards 1998 for a useful survey). This has led to sensitivity of trade effects in cross-country regressions to the choice of conditioning variables. Frankel and Romer (1999) have recently shown, however, that geographic characteristics are good instruments for isolating the impact of the predetermined component of trade on the level of real income, and that this effect is large but not always significant statistically. Such an effect is likely to be more elusive in our study, where the focus is on growth rather than levels. We nevertheless attempt to extract the predetermined component of the ratio of trade to output with instruments and then examine its explanatory power when added to our cross-country specifications.

The tendency for real interest rates to converge in the Atlantic economies before 1914 and again more recently is documented by Obstfeld and Taylor (1998) and has been interpreted by them as an indicator of the extent of economic integration. What remains unstudied is the role of financial institutions, and primarily banks, in promoting interest rate convergence. Since Homer and Sylla (1996) and Obstfeld and Taylor (2000) together make annual interest rate series for long-term debt available for twelve of the countries in our study well into the nineteenth century, we conclude by examining the roles of finance and trade in the process of convergence in the pre-1914 period.

8.4 Results and Discussion

8.4.1 Finance, Trade, and Growth

Our first set of specifications uses decadal average growth rates of real per capita GDP from 1850 to 1997 as the dependent variable and conditions
on the level of real per capita income (in 1960 U.S. dollars) at the start of each decade. The “convergence” or “catch-up” effect, as manifested by a negative sign for the coefficient on initial income, has been shown to be quite strong in cross-country regressions for the post-1960 period. By including initial income in our baseline specification, we can determine if it is important in the pre-Depression period as well. Placing the ratio of broad money to GDP on the right-hand side allows us to evaluate the role, if any, that finance plays in the conditional growth process. Since the levels variables are trending in nature and we would like to control for other business-cycle related effects, we include (but do not report coefficients on) dummy variables for each decade.

Table 8.2 presents the regressions, which use the first observations of each decade as regressors to ameliorate the impact of possible reverse causality from growth to additional finance. This technique cannot fully eliminate the simultaneity problem due to autocorrelation in the time series for financial depth, but it does ensure that all regressors are predetermined and thus plausible determinants of subsequent growth. The first column of table 8.2 presents our baseline, which includes only initial income, financial

| Table 8.2 Cross-Country OLS Growth Regressions, 1850–1997 |
|---------------------------------|-----------------|-----------------|-----------------|-----------------|
| Dependent Variable: % Growth of Per Capita Real GDP | (1) | (2) | (3) | (4) |
| Constant | 6.113** | 6.279** | 7.463** | 7.542** |
| (1.434) | (1.471) | (1.500) | (1.507) |
| Log of initial real per capita GDP | –0.672** | –0.699* | –0.706** | –0.718** |
| (0.178) | (0.183) | (0.179) | (0.180) |
| Initial ratio of broad money to GDP | 1.293** | 1.245** | 0.949* | 0.899* |
| (0.557) | (0.567) | (0.541) | (0.547) |
| Initial ratio of trade to GDP | 0.161 | 0.213 | (0.318) |
| (0.330) | | |
| Initial ratio of government expenditure to GDP | | | –5.280** | –5.591** |
| | | | (2.299) | (2.349) |
| R² | 0.336 | 0.339 | 0.359 | 0.361 |
| N | 214 | 211 | 200 | 200 |

Notes: The table reports coefficients from OLS regressions with standard errors in parentheses. The dependent variable is the growth rate of real per capita GDP averaged for each decade from 1850 to the 1990s. Initial values are taken from the first year of each decade. Decade dummies are included in the regression but are not reported.

**Significant at the 5 percent level.

*Significant at the 10 percent level.

9. We compute a “decadal” average for a country in any decade for which observations are available for seven or more years. When we divide the sample and work with five-year subperiods, observations must be available in at least three years before we compute a five-year average.
Table 8.3 Cross-Country Instrumental Variables Growth Regressions, 1850–1997

<table>
<thead>
<tr>
<th>Dependent Variable: % Growth of Per Capita Real GDP</th>
<th>(1)</th>
<th>(2)</th>
<th>(3)</th>
<th>(4)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>6.424**</td>
<td>6.427**</td>
<td>6.776**</td>
<td>6.821**</td>
</tr>
<tr>
<td></td>
<td>(1.457)</td>
<td>(1.462)</td>
<td>(1.477)</td>
<td>(1.985)</td>
</tr>
<tr>
<td>Log of initial real per capita GDP</td>
<td>–0.697**</td>
<td>–0.700**</td>
<td>–0.603**</td>
<td>–0.610**</td>
</tr>
<tr>
<td></td>
<td>(0.179)</td>
<td>(0.180)</td>
<td>(0.179)</td>
<td>(0.180)</td>
</tr>
<tr>
<td>Ratio of broad money to GDP</td>
<td>1.056**</td>
<td>1.042**</td>
<td>0.956*</td>
<td>0.903*</td>
</tr>
<tr>
<td></td>
<td>(0.542)</td>
<td>(0.549)</td>
<td>(0.540)</td>
<td>(0.548)</td>
</tr>
<tr>
<td>Ratio of trade to GDP</td>
<td>0.071</td>
<td>0.234</td>
<td>0.368</td>
<td>0.368</td>
</tr>
<tr>
<td></td>
<td>(0.364)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ratio of government expenditure to GDP</td>
<td>–5.915**</td>
<td>–6.286**</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>(2.583)</td>
<td>(2.658)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>R^2</td>
<td>0.355</td>
<td>0.355</td>
<td>0.372</td>
<td>0.370</td>
</tr>
<tr>
<td>N</td>
<td>199</td>
<td>199</td>
<td>197</td>
<td>197</td>
</tr>
</tbody>
</table>

Notes: The table reports coefficients from two-stage least squares regressions with standard errors in parentheses. All data items are decadal averages covering the 1850s through the 1990s. Instruments include initial values of the full set of regressors as well as the inflation rate, with initial values taken as the first observation of each decade. Decade dummies are included in all regressions but are not reported.

**Significant at the 5 percent level.

*Significant at the 10 percent level.

A strong convergence effect, as indicated by negative and significant coefficients on initial income, and a positive and significant role of financial depth in subsequent growth are common to all four regressions that we report in table 8.2. When included with financial depth on the right-hand side, trade is not significant, and government expenditure, as expected, is negative and significant. The inclusion of the conditioning variables in equations (2)–(4) tends to reduce the measured effect of finance on growth, yet significance of the broad financial aggregate persists. The R^2 from the regressions suggests that a large portion of the cross-sectional variation in output growth can be explained by our simple models.

Table 8.3 presents a similar set of specifications, but instead of using initial values of the data in each period as regressors, we use contemporaneous averages and control for simultaneity with instruments. By including
the initial values of the complete set of regressors as well as initial inflation as instruments, these two-stage least squares regressions extract the predetermined (i.e., explainable through information in the initial information set for each period) components of the right-hand-side variables and use them in place of the actual regressors in the estimation. This alternative yields results that are quantitatively very similar to those presented in table 8.2. As a group, the regressions reported in tables 8.2 and 8.3 are thus consistent with a leading role for financial factors in growth for our seventeen-country sample over a 150-year period.\footnote{Our findings are consistent with growth being “finance-led” but do not preclude the possibility that growth may also be promoting further financial development. In fact, when we momentarily set the relevant growth theory aside by moving finance to the left-hand side of our regressions and placing the growth rate of output on the right, we find that output growth enters with a positive and significant sign in the pre-1930 period, though not over the full sample or in the postwar period. This result is consistent with, though not overwhelmingly supportive of, the priors of generations of economists who have stressed what we would call “reverse causality” in the finance-growth nexus. Indeed, in time series analyses of five countries in our sample (Canada, Norway, Sweden, the United Kingdom, and the United States) from 1870 to 1929, Rousseau and Wachtel (1998) do not find a role for growth in promoting additional finance in the short to medium term. Our main cross-sectional results, which reduce simultaneity problems by using initial values of finance as regressors in OLS specifications and as instruments in IV specifications, are meant to suggest that finance plays an important leading role in the growth process—a role that is likely to be central.}

Tables 8.4 and 8.5 evaluate the robustness of the ordinary least squares (OLS) and instrumental variables (IV) results in subperiods covering 1850–1929 and 1945–94. To make more observations available for each estimation, we work with five-year rather than decadal averages of the data. In the pre-1929 period, we note again the significance of the convergence and finance effects on growth and the robustness of the results to the choice of estimation technique. Government expenditure remains negative but less significant in the pre-Depression period, perhaps because the government, in the absence of a less sophisticated financial system, must play a more central role in delivering resources to productive projects.

A less prominent role for finance in the postwar period is the striking feature of table 8.5. Financial depth retains significance when appearing alone on the right-hand side, but this effect vanishes when trade is included in the regressions either explicitly or in the instrument set. King and Levine (1993a) find the effects of finance on growth robust to the inclusion of trade using post-1960 data for a wider group of industrialized and emerging economies, and that the trade variable itself is not statistically significant. We attribute this difference to the industrialized nature of nearly all of the countries in our sample by 1960. Indeed, the rise of money substitutes in more mature economies weakens the effectiveness of broad money to GDP as a measure of financial sophistication.

It is difficult to draw strong conclusions about the nonrobustness of the
result of financial development on growth in the postwar period once trade is added to the specification or the instrument set due to potential problems of collinearity between trade and the other regressors. For example, it is also possible that the trade aggregate in recent decades has proxied for a concept much broader than trading volume, namely the degree to which an economy is integrated internationally. In mature economies, a banking system, which is the essence of our financial development measure, may be a less important factor in such integration.

We move toward disentangling these effects by exploring the degree to which finance affects trading volume across sample periods in table 8.6. In these regressions, the ratio of trade to output serves as dependent variable, and we again control for initial income. The financial variables are significant over the full sample and the 1850–1929 period but are not significant in the postwar period. These results suggest that financial systems do play a role in promoting trade in the earlier stages of financial and economic development. To the extent that trade in turn also promoted growth, finance may be even more important to long-run growth than our regressions suggest.

Table 8.4 Cross-Country Growth Regressions, 1850–1929

<table>
<thead>
<tr>
<th></th>
<th>OLS (initial values)</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Constant</td>
<td>4.829**</td>
<td>6.506**</td>
</tr>
<tr>
<td></td>
<td>(1.728)</td>
<td>(2.060)</td>
</tr>
<tr>
<td>Log of initial real per capita GDP</td>
<td>–0.587**</td>
<td>–0.755**</td>
</tr>
<tr>
<td></td>
<td>(0.275)</td>
<td>(0.311)</td>
</tr>
<tr>
<td>Ratio of broad money to GDP</td>
<td>2.593**</td>
<td>2.158*</td>
</tr>
<tr>
<td></td>
<td>(1.067)</td>
<td>(1.104)</td>
</tr>
<tr>
<td>Ratio of trade to GDP</td>
<td>0.113</td>
<td>0.120</td>
</tr>
<tr>
<td></td>
<td>(0.386)</td>
<td>(0.403)</td>
</tr>
<tr>
<td>Ratio of government expenditure to GDP</td>
<td>–6.713*</td>
<td>–6.595</td>
</tr>
<tr>
<td></td>
<td>(3.919)</td>
<td>(4.216)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.136</td>
<td>0.136</td>
</tr>
<tr>
<td>N</td>
<td>208</td>
<td>185</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the growth rate of real per capita GDP averaged for each five-year period from 1850–54 through 1925–29. Initial values are taken from the first year of each five-year period. Standard errors are reported in parentheses. Period dummies are included in the regressions but not reported. The left panel of the table reports coefficients and standard errors from OLS regressions using initial values as regressors. The right panel reports coefficients and standard errors from two-stage least squares regressions. The IV regressions use the five-year averages of the data as regressors. Instruments include initial values of the full set of regressors as well as the inflation rate.

**Significant at the 5 percent level.
*Significant at the 10 percent level.
Table 8.5 Cross-Country Growth Regressions, 1945–94

<table>
<thead>
<tr>
<th>Dependent Variable: % Growth of Per Capita Real GDP</th>
<th>OLS (initial values)</th>
<th>IV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(1)</td>
<td>(2)</td>
</tr>
<tr>
<td>Constant</td>
<td>9.941**</td>
<td>9.275**</td>
</tr>
<tr>
<td></td>
<td>(2.316)</td>
<td>(1.821)</td>
</tr>
<tr>
<td>Log of initial real per capita GDP</td>
<td>−1.404**</td>
<td>−0.968**</td>
</tr>
<tr>
<td></td>
<td>(0.283)</td>
<td>(0.247)</td>
</tr>
<tr>
<td>Ratio of liquid liabilities (M3) to GDP</td>
<td>3.570**</td>
<td>0.372</td>
</tr>
<tr>
<td></td>
<td>(0.663)</td>
<td>(0.591)</td>
</tr>
<tr>
<td>Ratio of trade to GDP</td>
<td>−0.089</td>
<td>−0.045</td>
</tr>
<tr>
<td></td>
<td>(0.723)</td>
<td>(0.765)</td>
</tr>
<tr>
<td>Ratio of government expenditure to GDP</td>
<td>−3.794</td>
<td>−4.348</td>
</tr>
<tr>
<td></td>
<td>(2.860)</td>
<td>(4.108)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.416</td>
<td>0.370</td>
</tr>
<tr>
<td>N</td>
<td>166</td>
<td>162</td>
</tr>
</tbody>
</table>

Notes: See notes for table 8.4. The dependent variable is the growth rate of real per capita GDP averaged for each five-year period from 1945–49 through 1990–94.

Table 8.6 Cross-Country Trade Regressions

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Constant</td>
<td>−0.077</td>
<td>−0.054</td>
<td>0.100</td>
<td>−0.102</td>
</tr>
<tr>
<td></td>
<td>(0.291)</td>
<td>(0.316)</td>
<td>(0.360)</td>
<td>(0.203)</td>
</tr>
<tr>
<td>Log of initial real per capita GDP</td>
<td>0.050</td>
<td>0.049</td>
<td>0.004</td>
<td>0.064**</td>
</tr>
<tr>
<td></td>
<td>(0.036)</td>
<td>(0.039)</td>
<td>(0.057)</td>
<td>(0.025)</td>
</tr>
<tr>
<td>Ratio of broad money to GDP</td>
<td>0.247**</td>
<td>0.214*</td>
<td>0.605**</td>
<td>0.096</td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td>(0.118)</td>
<td>(0.207)</td>
<td>(0.071)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.100</td>
<td>0.093</td>
<td>0.055</td>
<td>0.128</td>
</tr>
<tr>
<td>N</td>
<td>211</td>
<td>199</td>
<td>185</td>
<td>164</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is ratio of trade (exports plus imports) to gross domestic product averaged for decades from the 1850s through the 1990s (cols. [1] and [2]) and for five-year periods for 1850–1929 (col. [3]) and 1945–94 (col. [4]). Initial values are from the first year of each period. Period dummies are included in the regressions but not reported. Standard errors are in parentheses. The first column reports results from OLS regressions that use initial values as regressors. The others report results from two-stage least squares regressions that use the periodic data averages as regressors. Instruments include initial values of the ratio of government expenditure to output, the inflation rate, and the full set of regressors. **Significant at the 5 percent level. *Significant at the 10 percent level.
8.4.2 Finance and Interest-Rate Convergence

In this section, we examine the possible roles of finance and international trade in promoting the decline and convergence of long-term interest rates among the economies in our sample over the 1850–1914 period. Figure 8.1, which presents nominal interest rates for ten of the truly “Atlantic” economies in our sample, indicates that decline and convergence is indeed the general pattern of long-term rates. The convergence is most striking among the European and North American countries, whose capital flows as a share of GDP over this period exceeded those achieved at any point in the postwar period, and for which financial deepening over the period was particularly vigorous. To examine more explicitly whether these factors contributed importantly to the pattern in figure 8.1, we turn again to cross-country regression analysis.

In our first specification, for which we report results in table 8.7, the dependent variable is the nominal interest rate averaged over five-year periods for each country. Such a regression allows us to test for the role of finance and openness in one of the characteristics that is clear from figure 8.1, namely the decline in interest rates. To control for Fisher-type effects, we include current period inflation on the right-hand side. Since economic the-

11. Figure 8.1 includes interest rates for ten countries, including Argentina 1884–1913, Brazil 1899–1912, Canada 1870–1914, Germany 1870–1914, France 1850–1914, Italy 1880–1914, the Netherlands 1850–1914, Sweden 1880–1914, the United Kingdom 1850–1914, and the United States 1857–1914.

ory also suggests a long-run link between the growth rate of the economy and the real rate of interest, we include, as in cross-country growth regressions, the initial log level of per capita real GDP on the right-hand side. The left panel of table 8.7 presents regression results for all twelve countries for which we have interest rate data (i.e., the ten countries from figure 8.1 plus Japan and Australia), while the right panel excludes the non-“Atlantic” economies. We use initial values of financial development as regressors for the OLS regressions, and contemporaneous averages of finance and trade for the IV models, with initial values of all regressors and the ratio of government expenditure to output as instruments.

The results indicate a negative partial correlation between initial financial depth and subsequent interest rates, but the results for trade and initial income (right panel) are larger when we exclude Japan and Australia. These countries were far more isolated both economically and geographically from the others, and it is thus likely that convergence would have been slower for them. The regressions in the right-hand panel seem to fit the conditional convergence model more snugly, with initial income entering with the expected negative and significant coefficient, and inflation entering with an expected positive coefficient that is significant at the 10 percent level. The

Table 8.7 Interest Rate Regressions, 1850–1914

<table>
<thead>
<tr>
<th>Dependent Variable: Long-Term Interest Rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 Countries</td>
</tr>
<tr>
<td>Exclude Australia and Japan</td>
</tr>
<tr>
<td>OLS</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>Constant</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Log of initial real per capita GDP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ratio of broad money to GDP</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Ratio of trade to GDP</td>
</tr>
<tr>
<td>Inflation rate</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>R^2</td>
</tr>
<tr>
<td>N</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the average nominal long-term interest rate over a five-year period. Period dummies are included in the regressions but not reported. Standard errors are in parentheses. The OLS regressions use initial values in each five-year period as regressors. The IV regressions use the periodic data averages as regressors, and the initial values of the ratio of government expenditure to output and the full set of regressors (except inflation, which enters as a period average) as instruments.

**Significant at the 5 percent level.

*Significant at the 10 percent level.
final IV specification reveals a partial correlation between trade and subsequent interest rates that is negative and significant at the 5 percent level. These results are consistent with roles for finance and trade in the regressions, and it is likely that they also reflect a combination of decreasing returns to capital as globalization succeeded in directing resources to the most productive uses and reductions in risk premiums that were made possible by the improved risk-sharing arrangements that accompany increasingly sophisticated financial systems.

In table 8.8, we present regressions that examine the other key feature of figure 8.1—absolute convergence in nominal long-term rates. To do this, we subtract the mean of the average interest rates of countries with observations in a given five-year period from the individual country average, and use it as the dependent variable. The right-hand sides, estimation techniques, instrument sets, and country samples are the same as in table 8.7. These results show that, controlling for time, initial income, and inflation, countries with greater financial depth at the start of a five-year period had long-term interest rates over that period that were closer to the periodic mean

Table 8.8 Interest Rate Convergence Regressions, 1850–1914

<table>
<thead>
<tr>
<th>Dependent Variable: Absolute Value of Long-Term Interest Rate Less Cross-Country Average</th>
<th>12 Countries</th>
<th>Exclude Australia and Japan</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>OLS</td>
<td>IV</td>
</tr>
<tr>
<td>Constant</td>
<td>1.818**</td>
<td>1.914**</td>
</tr>
<tr>
<td></td>
<td>(0.610)</td>
<td>(0.671)</td>
</tr>
<tr>
<td>Log of initial real per capita GDP</td>
<td>−0.145</td>
<td>−0.151</td>
</tr>
<tr>
<td></td>
<td>(0.097)</td>
<td>(0.107)</td>
</tr>
<tr>
<td>Ratio of broad money to GDP</td>
<td>−1.022*</td>
<td>−1.136*</td>
</tr>
<tr>
<td></td>
<td>(0.577)</td>
<td>(0.617)</td>
</tr>
<tr>
<td>Ratio of trade to GDP</td>
<td>−0.100</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(0.111)</td>
<td></td>
</tr>
<tr>
<td>Inflation rate</td>
<td>0.030</td>
<td>0.027</td>
</tr>
<tr>
<td></td>
<td>(0.023)</td>
<td>(0.024)</td>
</tr>
<tr>
<td>R^2</td>
<td>0.122</td>
<td>0.156</td>
</tr>
<tr>
<td>N</td>
<td>101</td>
<td>93</td>
</tr>
</tbody>
</table>

Notes: The dependent variable is the absolute value of the difference of the average nominal long-term interest rate for a country over a five-year period and the cross-country average for that period. Period dummies are included in the regressions but not reported. Standard errors are in parentheses. The OLS regressions use initial values in each five-year period as regressors. The IV regressions use the periodic data averages as regressors, and the initial values of the ratio of government expenditure to output and the full set of regressors (except inflation, which enters as a periodic average) as instruments.

**Significant at the 5 percent level.
*Significant at the 10 percent level.
of the sample than those that were less financially developed by our measure. Trade effects, though important in reducing the level of interest rates, do not appear to contribute to their convergence over the 1850–1914 period.

8.5 Conclusion

Our paper brings together two strands of the economic literature—that on the finance-growth nexus and that on capital market integration—and explores the key issues surrounding each strand through both institutional or country histories and formal quantitative analysis. We find a robust correlation between financial factors and economic growth that is consistent with a leading role for finance in a broad cross-section of seventeen economies over the 1850–1997 period, with the effects of finance strongest prior to the Great Depression. This result suggests that our earlier findings for the United States between 1790 and 1850 (Rousseau and Sylla 1999) may have broader implications in other parts of the nineteenth- and early twentieth-century world.

We next showed that countries with more sophisticated financial systems engage in more trade and appear to be better integrated with other economies by econometrically identifying roles for both finance and trade in the absolute convergence in long-term interest rates that is observed among the Atlantic economies between 1850 and the start of the First World War. The results, when combined with the evidence presented from historical case studies of the Dutch Republic, England, the United States, France, Germany, and Japan over the past three centuries, suggest that the economic growth and increasing globalization of the Atlantic economies might indeed have been finance-led. In short, our reading of the evidence is that domestic financial development promotes the capital inflows from abroad that are associated with emerging markets and capital-market globalization. The two are complementary. For short historical periods, inflows of foreign capital may seem to substitute for domestic financial development. Absent the latter, however, they come to an end, usually in what are termed “financial crises.” For the flow of foreign capital to be sustained over long periods, a country needs to have what we have described as a good domestic financial system.

Our broad view of such a financial system, encompassing public finance, money, banking, a central bank, and securities markets, can incorporate within it a number of issues of financial history. Did adoption and adherence to the gold standard give credibility to a country’s commitments and make it easier to access international capital markets? Most likely it did, but adoption of the gold standard itself depended on other financial-system components’ functioning well. Did banking promote industrialization and economic modernization? It often did, but not always all by itself. The issue is sometimes phrased in terms of whether banks made long-term loans
to industrial companies. Whether that was important might depend on the presence or absence of securities markets. Moreover, the presence of securities markets is a definite advantage for banks, particularly joint stock and incorporated banks, in raising their own capitals and providing market instruments of varying degrees of liquidity in which banks could invest funds not employed in traditional bank lending. Are central banks necessary? Do they do more harm than good? These issues are complicated by the fact that most central banks evolved from public or national banks that were originally founded to serve as adjuncts of public finance. The lender of last resort and other modern central banking functions emerged later in time. So issues involving the utility of central banks cannot be separated from issues of public finance, money, banking, and even securities markets.

These issues, and others like them, indicate that one can get only so far by studying individual components of a financial system without relating them to the larger system of which they are a part and in which they function. Context matters when we study banking, central banking, money (and exchange rate regimes), securities markets, and public finance.

Questions raised by our work here remain to be explored. Are there cases in history, or in the world today, where ostensibly good financial systems did not lead to economic growth and globalization? Or are there cases in which one or both of these occurred in the absence of good financial systems? We tend to doubt it, but we recognize that more investigation is needed before we can be highly confident that good financial systems are a key ingredient of both sustained economic growth and effective participation in the global economy.

Appendix

Data Sources

In this section, we list the data sources for the series used in our regression analysis. The data draw from six sources: World Bank’s *World Development Indicators 1999* database, worksheets underlying Obstfeld and Taylor (2000), Bordo and Jonung (1987), Rousseau and Wachtel (1998), and Rousseau (1999), and published interest rates from Homer and Sylla (1996). Of course, these sources themselves draw upon a vast body of government documents and the collective work of generations of economic historians whose efforts have made it possible to consolidate key macroeconomic and financial aggregates into a database that covers the Atlantic economies for the past century and a half. We do not list the primary sources here, but refer the interested reader to the materials listed above for details.
In nearly all cases, data for a given series are from more than one source. Further, the definitions across sources of a given data item are not always consistent. For example, we use the broad M3 aggregate as a measure of financial development for the later years of our sample, but in many cases have only a narrower aggregate such as M2 for earlier years. When the data are obtained from multiple sources and differ in value at the point of joining, we always use the most recent data as they appear and adjust earlier data with a ratio-splice.

We present the data sources below by country.

Argentina, 1884–1997

GDP, GDP deflator, population, money stock. 1960–97 from World Development Indicators; 1884–1959 from worksheets underlying Obstfeld and Taylor (2000).

Australia, 1870–1997

GDP, GDP deflator, population. 1960–97 from World Development Indicators; 1870–1959 from worksheets underlying Obstfeld and Taylor (2000).

Money stock. 1960–97 is M3 from World Development Indicators; 1870–1959 is M2 from worksheets underlying Bordo and Jonung (1987).

Brazil, 1880–1997

GDP, GDP deflator, population, money stock. 1960–97 from World Development Indicators; 1880–1959 from worksheets underlying Obstfeld and Taylor (2000).

Canada, 1870–1997

GDP, GDP deflator, population. 1960–97 from *World Development Indicators*; 1870–1959 from worksheets underlying Obstfeld and Taylor (2000).

Money stock. 1960–97 is M3 from *World Development Indicators*; 1870–1959 is M2 from worksheets underlying Bordo and Jonung (1987).

Long-term interest rate. 1870–1914 from worksheets underlying Obstfeld and Taylor (2000).

Denmark, 1850–1997

GDP, GDP deflator, population. 1960–97 from *World Development Indicators*; 1850–1959 from worksheets underlying Obstfeld and Taylor (2000).

Money stock. 1960–97 is M3 from *World Development Indicators*; 1880–1959 is M2 from worksheets underlying Bordo and Jonung (1987); 1850–79 is liquid liabilities of the banking system from worksheets underlying Obstfeld and Taylor (2000).

France, 1850–1997

Money stock. 1960–97 is M3 from *World Development Indicators*; 1900–59 is the sum of banknote circulation from Mitchell (1998c), table G1, pp. 788–92, commercial bank deposits from Mitchell, table G2, pp. 793–99, and savings bank deposits from Mitchell, table G3, pp. 800–10; 1880–99 is banknote circulation from Mitchell, savings bank deposits from Mitchell, and M1 less circulation in the hands of the public from worksheets underlying Bordo and Jonung (1987); 1850–79 is the sum of banknote circulation and savings deposits from Mitchell.

Finland, 1862–1997

Germany, 1850–1989

Money stock. 1960–97 is M3 from World Development Indicators; 1850–1944, 1948–59 is liquid liabilities in the financial system from worksheets underlying Obstfeld and Taylor (2000).

Italy, 1862–1997

Japan, 1885–1997

The Netherlands, 1850–1997

GDP, GDP deflator, population. 1960–97 from *World Development Indicators*; 1850–1959 from worksheets underlying Obstfeld and Taylor (2000).

Long-term interest rate. 1850–1914 from worksheets underlying Obstfeld and Taylor (2000).
Norway, 1865–1997

Portugal, 1880–1997

GDP, GDP deflator, population. 1960–97 from World Development Indicators; 1880–1959 from worksheets underlying Obstfeld and Taylor (2000).
Money stock. 1960–97 is M3 from World Development Indicators; 1880–1959 from worksheets underlying Obstfeld and Taylor (2000).

Spain, 1850–1997

GDP, GDP deflator, population. 1960–97 from World Development Indicators; 1875–1959 from worksheets underlying Obstfeld and Taylor (2000).

Sweden, 1861–1997

GDP, GDP deflator, population. 1960–97 from World Development Indicators; 1861–1959 from worksheets underlying Obstfeld and Taylor (2000).
Money stock. 1960–97 is M3 from World Development Indicators; 1870–1959 is the sum of banknote circulation from Mitchell (1998c), table G1,

United Kingdom, 1850–1997

United States, 1870–1997

References

White, Eugene N. 2001. France and the failure to modernize macroeconomic institutions. In The legacy of western European fiscal and monetary institutions for the
Comment Charles W. Calomiris

Do good financial institutions promote economic growth? To what extent are the gains from international linkages contingent on the prior establishment of a robust domestic financial system? These questions, posed by Rousseau and Sylla, are important, and the contributions they make toward answering them are significant. In no other paper of which I am aware have the methodologies of narrative economic history and econometrics been combined so well to analyze the nexus among finance, growth, and international openness over a long stretch of time for so many countries. The careful assembly and use of pertinent data is impressive. The empirical evidence and narrative lend support to the authors’ working hypotheses that (a) a robust domestic financial system is conducive to growth, and (b) a robust domestic financial system attracts foreign capital, thus magnifying both the gains from good domestic financial institutions and the gains from participating in global commodity and factor markets.

The authors begin by defining what constitutes a good domestic financial system. They provide narrative historical case studies of the development of such systems in Great Britain, the Netherlands, the United States, France, Germany, and Japan, and show that the development of a good financial system, in each of these important cases, predates periods of rapid economic growth. In the formal econometric analysis in the paper, the authors show, more generally, that the establishment of a proper domestic financial system (indicated by the ratio of M3 to GDP) predates growth in per capita income, growth in trade, and interest rate convergence to the international norm. The case studies are authoritative and fairly convincing, and the cases are historically important, involving large countries and important turning points in global economic development. The stories are told well. The regression evidence is new and interesting, and is consistent with a growing empirical literature that suggests strong causal links from domestic finance to economic growth in the post–World War II era (for reviews, see Beim and Calomiris 2001, ch. 2–4, and World Bank 2001).

Not surprisingly in a paper of this scope, the analysis raises interesting
questions that the paper does not fully answer. Two of the most important questions that arise in the paper are (a) can one be sure that the statistical measures of financial progress are exogenous with respect to economic growth, and (b) which element of domestic financial progress is most important for producing economic growth?

A convincing econometric demonstration of exogeneity of M3-GDP would require the identification of instruments—variables that are clearly correlated with financial development and not with economic development. Lagged M3-GDP or lagged inflation (which the authors employ) are not satisfactory in this regard, since both are endogenous to economic growth, which is itself serially correlated. Of course, part of the appeal to combining historical case studies and statistical evidence is that the case studies help to establish the exogeneity of financial institutions by describing the importance of historical forces other than prior economic growth in establishing good financial institutions.

Another empirical question relevant for determining the direction of causality is whether M3-GDP proxies for investment (because bank credit responds passively to investment-related demands for funds), given that investment is not included in the system of equations. In other words, one could argue that M3-GDP plays a passive role in economic growth but appears to be important in causing growth because of the exclusion of investment from the system of equations.

Even if one accepts the causal interpretation of the authors—that a good financial system promotes growth—there is still the intractable problem of determining which element of financial development discussed by the authors matters most for promoting economic growth, trade, and financial integration. I am not very troubled by the authors’ choice of M3-GDP as a measure of financial development, despite the exclusion of securities market depth from the measurement of financial development. In a single number M3-GDP captures reasonably well the two basic building blocks of any financial system—a transacting system and a credit system—because M3 combines currency (whether provided by banks or the government) with bank deposits (an indicator of bank credit and liquidity). Liquidity and credit are crucial prerequisites to the development of securities markets. Indeed, banking system depth and securities market depth tend to be positively correlated across countries precisely because the two go hand in hand. This should not be surprising. Bank lending is an early form of finance for firms that eventually move to securities markets, and banks provide important sources of credit to securities market dealers.

Despite M3’s appeal as a measure of financial system activity, the M3 aggregate does not distinguish among the various aspects of financial development. Good monetary policy raises money demand, which can raise M3 and contribute to economic growth. By establishing a reliable hard money standard, a country may encourage foreign capital inflows (what Bordo and
Rockoff [1996] have termed the “Good Housekeeping Seal of Approval” from adopting the gold standard), which can also raise M3 and promote growth. Good banking policy can increase private bank chartering, which can raise credit supply, which is also reflected in M3, and which also can contribute to growth. Which is the more important influence, sound money or abundant bank credit?

Nor does the M3 measure distinguish between the activities of private and public banks, both of which contribute to deposit and credit creation. The authors’ stories revolve mainly, but not entirely, around the role of private bank finance in domestic economic development, but they also recognize the importance of stable money and of developed public financial institutions (central banks or public banks). In some of the early episodes of financial development the authors discuss (the early British and Dutch experiences) it is even difficult to separate the private from the public character of banking enterprises. Was government policy (e.g., empire building via the creation of joint stock companies, including banks) more or less important than the supply of domestic credit for spurring Dutch and British growth? Was the effect of banks on the fiscal health of the government relatively important or unimportant? All these influences—private credit supply, fiscal health, stable money, mercantilist financing of empire—are mixed in the “black box” of M3.

In summary, the excellent paper by Rousseau and Sylla charts an ambitious course and, not surprisingly, poses more questions than it resolves. We can look forward to future work by these and other authors that will investigate further the directions of causation between real and financial growth, and the relative importance of the various parts of financial development for economic development.

References

