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Annals of Economic and Social Measurement, 1/4, 1972 

LINEAR DECISION WITH EXPERIMENTATION 

BY ELIZABETH CHASE MACRAE* 

A solution to a structural approximation of the adaptive linear decision problem with unknown parameters 
is derived and given an economic interpretation in terms of the price and stock of information. Numerical 
implementation of the solution indicates that when learning is taken into account, the optimal policy 
paradoxically can employ less experimentation and, thus, cause less to be learned than when learning 
is not taken into account in the derivation of the solution. 

1. INTRODUCTION 

A common procedure for dealing with economic decision making models is first 

to estimate the parameters of the relationships between the policy and endogenous 

variables, and then to carry out policy action based on those estimates. This 

technique can be broadened somewhat to incorporate variances of the estimates 

into the problem as a measure of uncertainty but the basic separation between 

estimation and control remains. Work along these lines has been carried out in the 

context of a linear decision model by Holt, Modigliani and Muth [3] and by 

Theil [9] for the certainty equivalence case, by Brainard [2] for a simple static model 

with uncertainty, and by MacRae and MacRae [7] for a general multivariate 

dynamic model. 

However, if the unknown parameters of the model are assumed to remain 

constant over time, an optimal decision can take advantage of future observations 

as they are received to learn more about the parameters. In addition, the choice of 

values for current policy variables can affect how much is learned next period. 

In other words, current policy decisions have a twofold function in a model with 

unknown parameters ; they can directly control the endogenous variables, albeit 

with some error, and they can be used to learn more about the unknown parameters 

so that future control errors may be reduced. There is no inherent value in learning 

for its own sake in the decision making problem. The only value comes from 

improved future control, and the only costs are those incurred by sacrificing current 

control for experimentation. 

The purpose of this paper is to analyze the interaction between estimation 

and control in the context of a scalar linear decision model with unknown param- 

eters.’ The unknown parameters are modelled as Bayesian random variables with 

means and variances which change as additional observations are received over 

time. Since the mathematical problem is not analytically soluble, an approxima- 

tion is presented which preserves the nature of the interaction between estimation 

and control, but which allows a solution to be derived. The equations character- 

izing the solution can be interpreted in ierms of such economic concepts as price of 

* Part of the work on this paper was done while the author was with the Division of Research 
and Statistics, Board of Governors of the Federal Reserve System. 

' For an analysis of the multivariate model see MacRae [6]. 
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information and value of estimating, and provide some insight into the structure of 

an optimal solution. Finally, several numerical examples are given. 

2. PROBLEM 

The decision maker is assumed to be faced with the problem of choosing 

values for policy or control variables for N periods so as to minimize the expected 

value of a quadratic objective function subject to a stochastic linear difference 

equation of the form 

(2.1) Xj41 = ax; + bu; +c + &;, j=0,....N-—1 

where x, and u, are the values of the endogenous and policy variables respectively 

in period j, and ¢; is a normally distributed noise term with zero mean, known 

contemporaneous variance Q, and zero intertemporal covariances. The parameters 

a, b and c are unknown but are assumed to be constant over time. To capture the 

uncertainty regarding the values of a, b and c they are modelled as Bayesian ran- 

dom variables with conditional means a,, b; and c; and conditional covariance 

matrix I’;, where the subscripts indicate values based on all observations through 

x; and u;_,. 

To simplify the notation, equation (2.1) may be rewritten as 

(2.2) Xj41 = dw; + @; j=0,...,.N-1, 

where d and w, are vectors defined by 

(2.3) d' = (a,b,c) 

and 

(2.4) wi = (x;,u;, 1) 

If a normal prior is assumed for d (now considered a random vector) with mean dy 

and variance I’) then subsequent posterior or conditional distributions will also 

be normal, and it can easily be shown that the conditional means and variances 

can be computed recursively by 

Q5) yd = Ty t+ wma 

and 

(2.6) din, =Vy4s(Tj dj + w3X)4 1/9). 

The inverses of T in (2.5) and (2.6) are understood to be pseudoinverses if I is 

singular because a, b or c are known with certainty. 

The decision maker chooses his control variables over time so as to minimize 

the expected value of a quadratic objective function: 

N 
(2.7) J= Ey >, 4qjx7 + drju7_, + s;x; + i-sP 

j=1 

where qg; andr, are assumed to be such that an optimum exists. It is further assumed 

that the decision maker will have observations available through x; when he is 
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faced with the problem of optimally choosing a value for u;, so that future policy 

variables may be specified in terms of the unknown future values of x. The expected 

value in (2.7) is taken with respect to a, b, and c as well as «. 

3. METHOD 

It is well known that the problem as stated in Section 2 is not analytically 

soluble in general.? This is because of the interaction between the random vari- 

ables a, b and c and their means and variances, which are also random since from 

(2.5) and (2.6) they can be seen to depend upon future, unobserved values of w and x. 

Because the problem cannot be solved directly, some sort of approximation must 

be used. 

There are two general types of approximations which are generally used, which 

may be called numerical and structural. In a numerical approximation, the 

intractable functions are replaced by a finite set of points on the functions, cal- 

culated for a specific set of parameter values and initial conditions, while in a struc- 

tural approximation the intractable functions are replaced by analytic functions 

which are similar in form. Although numerical approximations are often incor- 

rectly thought of as producing a “‘true”’ optimal solution, it should be borne in 

mind that both types involve an alteration of part of the problem.* In this paper a 

structural approximation will be used to produce a framework which can be used 

to gain insights into the behavior of an optimal solution. 

As was noted above, the mathematical difficulty in the problem arises from 

the fact that not only are the parameters, a, b and c random, but their future means 

and variances are also random. Previous work has dealt with this problem by 

constructing a sequence of open loop subproblems, starting in different periods, of 

which only the initial policy values are actually implemented. In each subproblem 

some of the randomness of the original is ignored so that a solution may be 

derived, but once the initial policy for that subproblem has been applied, complete 

updating of the parameter means and variances is carried out to provide the prior 

information for the next open-loop subproblem. Murphy [8], in each open loop, 

assumes that optimal future policy variables are linear functions of predicted 

endogenous variables, with the prior values for the parameters being used in the 

prediction. This assumption reduces the open loop problem to a deterministic 

problem with a changing but nonrandom parameter variance. Another quite 

different approach is given by Tse and Athans [10]. They update neither the means 

nor the variances of the parameters in each open loop, but incorporate an indirect 

learning feature by explicitly using the fact that the unknown parameters are con- 

stant over time, which affects the variance of future predictions for the endogenous 

variables. 

In both of the above papers the open-loop problems are designed to produce 

deterministic values for the policy variables, based on predicted average behavior 

of the system. This paper preserves the basic stochastic nature of the open-loop 

2 See Aoki [1]. 
3 The optimal solution calculated by Prescott elsewhere in this volume is an example of a numerical 

approximation. 
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problems by using predicted future variables only in the update equations for the 

means and variances. For the open-loop problem beginning in period 1 (with prior 

information available in period 0), the modified update rules become 

(3.1) Ps = he + E{wwixo}/Q 

and 

(3.2) aj,, =T,4,10; ‘d; + E{w;x;, 1Xo}/Q). 

One implication of this approximation is tnat the updated value of d;,, is equal to 

the preceding value, d;. For, 

(3.3) E{wxj411Xo} = E{wjE(x;+ 11x,}l0}. 

= E{w,djw|xo} = E{wjwid xo} = E{wjwixo}d; 

and thus (3.2) becomes . 

(3.4) dja, =Tj4,(0j * + E{wiwxo}/Q)d; 

=1T4,0 14, =; 

so that the update rule for the means may be dropped from the problem. The 

expected value term, E{w,wi|xo} is evaluated using the modified, nonrandom 

means and variances of d. 

The approximation described above can be used to convert the original prob- 

lem into a sequence of stochastic open-loop problems, each of which involves 

minimization of the expected value of a quadratic objective function subject to 

a stochastic difference equation in x and to a deterministic variance update 

equation. The interaction between estimation and control is still present, how- 

ever, in the modified problem since policy variables affect future values of both 

T and x. 

4. RESULTS 

Using the approximation described in Section 3, the mathematical statement 

of the open-loop problem beginning in the first period is as follows. Choose 

strategy rules for policy variables uo, u,,...uy_, SO as to minimize 

N 
(4.1) J=zE » qj} + 4rjuj_, + jx; + i-8op 

= 

subject to 

(4.2) Xj-1 = ax; + bu; +e + 6; = dw, + e,, j=0,...,.N-1 

and 

(4.3) Dj, =T;* + E{wwixo}/Q, 

where a, b, c, (and d) are random variables with nonrandom means a, b, c (and d) 

and conditional covariance matrix I';, and x, and I’, are given. 

Since the variance constraint is deterministic, it will be handled by introducing 

matrices of Lagrangean multipliers, M;, and forming the augmented objective 
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function. 
1 N 

(4.4) V=J +5 Y tr [MAT * — Tj * — E{w,_,wj_4|xo}/Q), 
j=1 

which may be rewritten as 

N 

(4.5) V = ¥ (E{Wjxo} + 4tr[(M,_, — M)I'74,)) + 4tr(MyP'e! — MIo", 
j=1 

where 

(4.6) W = 4q;x7 + 4rjuj_, + sjw, + tjuj_, — 4 tr (Myw,_,wj-, VQ. 

The constraint (4.2) is stochastic and cannot be handled through Lagrangean 

multipliers. Instead, it will be incorporated into the solution through the use of 

dynamic programming. The algorithm to minimize J subject to (4.2) and (4.3) is 

represented by 

(4.7) Vy =4tr([M,T,' — Molo") = Vi, 

(4.8) Vj = E{V#L, + Wis lx} + $tr[(M; _ M j4,)0 7‘) j=N-1,...,9, 

(4.9) V# = minimum of V; with respect to u,;, subject to (4.2) ih ae 

(4.10) év/ar;* =0 j=N,...,1, 

and 

(4.11) 6V/0M, = 0 j =N,,...,9. 

The form of the expressions V;, is the same for all j . That is, 

(4.12) Vi = Efdk ya sXFo. + bry U7 + 8j4 iXjar + thai 

— Ftr[M,, ,ww))/Q|xo} 

+ 4tr[(M; — Mj, 7") 

+ (terms not involving x, u or T’;), 

for appropriate choice of k;, , and g;,,. To see this note that the form of (4.12) is 

certainly true for j = N — 1, with ky = qx and gy = Sy. By induction, (4.12) can 

be shown to be correct for all j. For V; can be rewritten as 

(4.13) V, = 4{k;, (a? + 15%) — M4 »/Q)x? 

+ 4[kj4,(b? + 19°) — MM ,/Q2 + ra )G 

+ H{kj+i(c? + 13) — M§, ,/Q) 

+ [k;, (ab + 14") — M3, ,/Q)x ju; 

+ [kjss(be + 3) — MB, /Q)u, 

+ [kj4 (ac + 13) — M%, ,/Q)x; 

+ 48 54:X; + [b8j41 + tis]; + CBi44 

+ 4tr((M; — Mj,,)T;"] 

+ (terms not involving x, u or I’). 
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The superscript letters on I and M specify particular elements of those matrices, 

e.g., I is the covariance between b and c. 

Differentiating (4.13) with respect to u; and setting the result equal to zero 

yields. 

(4.14) 6V;,/Ou; = [kj + (b? + rr) = M*. /Q+ ri41)u; 

+ [kj4s(ab + 19?) — M¥, /Q)x; 

+ [kj+i(be + TY) — M5, ,/Q) 

+ bgjg4 + tj41- 

= 0, 

whence the optimal u; is given by the feedback rule 

(4.15) ut = —(F,x, + f)/H,, 

where 

(4.16) H, = kj, ,(b? + 13) — Mj. /Q 4+ ry41, 

(4.17) F, = kj, ,(ab + 19’) — M3? ,/Q, 

and 

(4.18) Fj = kj slbe + TH) — MY, /Q + baja s + that 

Substituting the optimal u¥ back into V; gives V}: 

(4.19) V* = 4{kj4 (a? + 1941) — M94 ,/Q — F7/H,)x} 

+ [agj4, + kj, ,(ac + 15) — Mi ,/Q — F,f,/H,)x; 

+ (terms not involving x or u). 

The derivative, 0V/6;>', which is called for by (4.10), is identical with the 

derivative, OE{V|x}/0T; ', since V, is the only portion of V involving I’;. The 

expected value of V; is 

(4.20) E{ V|xo} = str [kj4 ,E{wwilxo}T; a (M ; ~ M 34,05] 

+ (terms not involving I’}). 

Hence, setting the derivative of V with respect to I’; * equal to zero* and noting 

that for any scalar-valued function /. 

(4.21) of/or;* = —Tof/or IT ;, 

yields the following difference equation in M: 

(4.22) M,; = Mya, + Pky. E{wwilxop Tj, 

with My, = 0. 

* See [5] for a more detailed discussion of matrix derivatives. 
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Finally, the expression for V} given by (4.19) is used to derive V,_,: 

(4.23) Vj, = E{V} + Wi\x;_.} + 4te(M,_, — MJT j~1) 

= E{gk;x} + drjuj_, + gx; + tuj_, — tr [Mjw;_,wj_ ,V/Q)xo} 

+4tr (Mj, — MI", 

+ (terms not involving x, u or T’j_,), 

where 

(4.24) k; = qj + kjs (a? + 14) — M# ,/Q — F3/H,, 

(4.25) 8) = 8; + aja + kjys(ac + TH) — M¥, ,/Q — F,f/H,;, 

The system of equations, (4.15)}{4.18), (4.22), (4.24) and (4.25), along with the 

two constraints, (4.2) and (4.3), characterize an optimal solution for the open-loop 

problem beginning in period 1. The quantities k; and g;, together with r; and t,, 

comprise the coefficients of an intertemporal objective function, in which the 

evaluation of various values for the current policy variable reflects not only the 

current impact but also the future impact through the difference equation in x, 

(4.2). Like k; and g,, the matrix M , also reflects the future, but through the dynamic 

variance update equation (4.3). If equation (4.2) is not dynamic, that is, ifthe param- 

eter a is known to be equal to zero, then k; = q; and g; = s;, so that the inter- 

temporal objective function reflects only the current impact of current policies. 

Similarly, if the variance update equation ceases to be dynamic because the prior 

variance matrix is identically zero, then M ; will also be zero and current policies 

will have no future impact through learning. 

The matrix M ; is, by the theory of Lagrangean multipliers, the imputed price 

of 5 ‘which may be thought of as the stock of information available at period j. 

Since M ; is equal to the sum of positive semidefinite terms, it will also be positive 

semi-definite, and will be smaller (i.e., less positive definite) for larger stocks of 

information of equivalently for larger values of I}, representing diminishing 

marginal returns to increased information. The price of information is also larger 

for larger values of k;,,, the cost in the intertemporal objective function of im- 

perfect knowledge about a, b and c, and consequently about x;, ,. 

Except for equation (4.21), matrix M never appears alone in the equations 

characterizing an optimal solution, but is always multiplied by 1/Q, a quantity 

which may be interpreted as the amount of information ultimately available from 

the basic dynamic equation, (4.2). A large Q, and consequently small value for 1/Q, 

indicates that equation (4.2) is so noisy that additional observations on x and u can 

provide very little improvement in the estimates of a, b and c. The expression M/Q, 

therefore, may be looked upon as the value of estimating. This value-of-estimating 

term appears with a negative coefficient in V;, the expression which is minimized 

by appropriate choice of u;. A large value of M/Q will offset costs incurred by 

choosing a policy which is non-optimal from a purely control point of view. 

Models in which the parameters are treated as known quantities and models 

where uncertainty is present but learning is ignored have solutions which are 

special cases of the adaptive learning solution presented above. In a certainty 

equivalence model, where the parameters a, b and c are considered fixed numbers, 
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the optimal sequence of strategy rules are identical to those given above, except 

that [ and M are identically zero. For the model where the uncertain parameters 

are modelled as independently and identically distributed in each period, I in every 

period equals the prior variance matrix and M is zero. 

A comparison of the optimal first period policy rules of the three different 

types is quite straightforward from a short-run or static point of view. That is, 

assuming k, and g, to be the same for all three cases, the difference between the 

uncertainty aversion rule (unknown parameters but no learning) and the certainty 

equivalence rule lies merely in the addition of a variance term to Ho, Fy, and fo, 

the quantities which comprise the strategy rule for u,. The rule for the adaptive 

learning case includes a further term subtracted from Hy, Fy, and f,, which 

counteracts, to some extent, the effect of uncertainty. At first glance then, and for 

simplicity assuming that only the parameter b is uncertain, it appears that the 

uncertainty aversion policy rule is more conservative (since 1/H is smaller) than 

the certainty equivalence rule, and the adaptive learning rule is more aggressive and 

does more learning than the latter. 

A short-run evaluation, however, of the differences among the three cases is 

misleading. If the model is dynamic then, as pointed out earlier, k, and g, will 

reflect future behavior of the model, and in general this will differ for the three 

different cases. Thus it is possible, and indeed is borne out by the numerical 

example which follows, that the first period adaptive learning policy will actually be 

more conservative than the uncertainty aversion policy. That is, since k, and g, in 

the adaptive learning case reflect the fact that more will be known later even with 

no active experimentation, the optimal first period policy may be to do almost 

nothing, then make up for it later when the effect of control action is better known. 

5. EXAMPLE 

To illustrate the behavior of the adaptive learning model optimal first period 

policies are calculated for a simple dynamic model. To simplify matters, only 

parameter b is considered to be unknown, with prior mean of —0.5 and varying 

prior variances. Parameters a and c are known to be 0.7 and 3.5 respectively,° and 

the noise variance, Q, is 0.2. The objective function is written as a sum of squared 

deviations from goals on x and u, 
N 

j=1 

where the values of q, r, x and u are the same for all periods. Note that this form of 

the objective function can be rewritten to have the same form as (2.9), except for a 

constant term. 

The certainty equivalence, uncertainty aversion and adaptive learning policies 

for the first period of a four period problem are shown in Table 1 for various goals, 

prior variances and q:r ratios. As can be seen, there are clearly some combinations 

of parameters, variances, and objective functions which cause the adaptive policy 

to be less aggressive and do less learning than the uncertainty aversion policy. 

5 See [4] for an application to the problem of optimally controlling inflation and unemployment 
where a, b, and c are all unknown. 
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These instances are marked with asterisks in the tables. From casual inspection it 

is clear that some sort of pattern prevails in the location of these paradoxical 

results. Since none of them appear when the prior variance equals 2.0, it seems that 

if the initial uncertainty is relatively great, some active learning must be carried out 

immediately. It also seems from Table 1 that the strength of the paradoxical 

behavior of the adaptive policy is related to the relative weights on x and u. That is, 

higher q:r ratios lead to relatively less aggressive initial policies. One possible 

reason for this is that the higher the level of q relative to r, the greater will be the 

intertemporal ratio k:r in early periods as compared with later. This means that 

the unknown effect of policy action on x is relatively more costly at the beginning 

of the planning period than at the end when both the k :r ratio and the variance will 

be lower, so the initial policy tends closer to a do-nothing policy. 

The longer is the planning horizon the more learning can occur. This suggests 

that the optimal first period policy for long planning horizon would be relatively 

more conservative than for short horizons. The results shown in Table 2, which 

shows first period policies for the uncertainty aversion and adaptive learning cases 

with varying lengths of the planning period, seem to bear this out. 

TABLE 1 

First PERIOD POLICIES FOR DIFFERENT GOALS AND PRIOR 5 VARIANCES 
Horizon = 4 
a=0.7 b= —0.5 c = 3.5 
Q=0.2 rm =Fr"=00 

re = 0.5 re = 1.0 re? = 2.0 
Cert. Uncert. Uncert. Uncert. 

q:r Equiv. Averse Adaptive Averse Adaptive Averse Adaptive 

Goals: = 0,8 =0 
0:5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
ce 1.201 1.046 1.082 0.925 0.973 - 0.751 0.820 
*5 3.562 2.524 2.449* 1.929 1.923* 1.302 1.446 
$24 5.821 3.578 3.056* 2.489 2.316* 1.530 1.759 
5:0 7.000 4.017 3.146* 2.688 2.427* 1.601 1.880 

Goals: = 1,8 =0 
0:5 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
1:5 0.985 0.858 0.898 0.760 0.815 0.617 0.695 
$:3 2.869 2.051 2.033* 1.574 1.626 1.066 1.249 
5:1 4.472 2.874 2.528* 2.020 1.973* 1.251 1.529 
5:0 5.000 3.206 2.596* 2.178 2.060* 1.308 1.618 

Goals: & = 0,2 = 1 
0:5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 
1:33 2.029 1.767 1.788 1.564 1.586 1.269 1.307 
$:3 4.053 2.871 2.751*. 2.194 2.141* 1.480 1.592 
$38 5.989 3.676 3.124* 2.557 2.361* 1.572 1.789 
5:0 7.000 4.017 3.146* 2.688 2.427* 1.601 1.880 

Goals: = 1,8=1 
0:5 1.000 1.000 1.000 1,000 1.000 1,000 1.000 
1:5 1.814 1.580 1.606 1.398 1.429 1.135 1.182 
$:3 3.360 2.397 2.332* 1.839 1.842 1.245 1.397 
$34 4.640 2.972 2.595* 2.088 © 2.018* 1.293 1.560 
5:0 5.000 3.206 2.596* 2.178 2.060* 1.308 1.618 

* indicates examples where the adaptive policy initially learns less than the uncertainty aversion 
policy 
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TABLE 2 

First PerRiop POLICIES FOR DIFFERENT HORIZON LENGTHS 

N = Horizon 
Goals = 0 
a=0.7 b= -—05 c = 3.5 
Q=0.2 > — 0.5 Xo = 0.0 

N=2 N=4 N=8 N = 16 
q:r Uncert. Adapt. Uncert. Adapt. Uncert. Adapt. Uncert. Adapt. 

0:5 9.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
3 0.613 0.622 1.046 1.082 1.362 1.394 1.434 1.460 
5:5 1.712 1.740 2.524 2.449* 2.959 2.688* 3.016 2.705* 
5:1 2.691 2.682* 3.578 3.056* 3.957 3.083* 3.987 3.084* 
5:0 3.154 3.138* 4.017 3.146* 4.354 3.147* 4.375 3.147* 

Finally, Table 3 compares the results obtained through the structural approxi- 

mation described in this paper to those obtained in Prescott’s paper® through a 

numerical approximation. The model for which the policies are computed is static, 

with a and c both equal to zero, and the objective function has goals and weights 

only on x. From the table it appears that the adaptive approximation is reasonable 

when the ratio of prior standard deviation to prior means is less than about 1.5. 

This suggests that the paradoxical results shown in Tables 1 and 2 would also be 

valid for a true optimal solution, since the prior variances are relatively small com- 

pared with the prior mean of the unknown parameters. 

6. CONCLUSIONS 

The general linear decision model with unknown parameters in which learning 

is explicitly incorporated is in general insolvable because of the interaction between 

the control and estimation roles of the policy variables. The approximation 

TABLE 3 

COMPARISON OF STRUCTURAL AND NUMERICAL APPROXIMATIONS FOR STATIC PROBLEM 

Horizon = 4 
qr=1:0 Q,=10 
a=c=00 F?=10 

Goals: = 1,8 =0 Goals: 8 = 4,8 = 0 
Uncert. Adapt. Numer. Uncert. Adapt. Numer. 

b Averse Approx. Approx. Averse Approx. Approx. 

0.0 0.00 0.00 0.56 0.00 0.00 2.00 
0.2 0.19 0.22 0.69 0.77 1.63 2.30 
0.4 0.34 0.54 0.72 1.38 2.83 2.55 
0.7 0.47 0.70 0.68 1.88 2.62 2.63 
1.0 0.50 0.65 0.58 2.00 2.41 2.54 
1.4 0.47 0.54 0.50 1.89 2.11 2.20 
2.0 0.40 0.42 0.41 1.60 1.72 1.76 
3.0 0.30 0.30 0.30 1.20 1.25 1.25 
4.0 0.24 0.24 0.24 0.94 0.97 0.97 
5.0 0.19 0.19 0.19 0.77 0.78 0.78 

® See Table 2 in Edward Prescott’s paper, “The Multiperiod Control Problem Under Uncertainty,” 
Econometrica, forthcoming. 
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developed in this paper is designed to retain some of the stochastic nature of the 

original problem along with the interaction between estimation and control, but to 

permit an actual solution to be derived. The approach developed in this paper 

treats a general linear dynamic model where any or all of the parameters may be 

unknown. Although the discussion in this paper is confined to a model consisting 

of a single equation, the extension to multiequation models is perfectly straight- 

forward with appropriate notation. . 

One advantage of the approach used is that the solution involves Lagrangean 

multipliers which can readily be interpreted in terms of such economic concepts as 

price of information and value of estimating. Furthermore, the mathematical form 

of the solution is a straightforward generalization of the solutions for the certainty 

equivalence problem where all parameters are considered known, and the un- 

certainty aversion problem where the parameters are unknown but learning is 

ignored. Lastly, although the comparisons given in this paper are rather limited, it 

appears that the approximation compares favorably with numerical results when 

the prior variances are not too large. 

A common feeling with regard to adaptive models of this type is that if it is 

possible to learn, i.e., to experiment so as to improve future estimates, the optimal 

policy will indeed be more aggressive and learn more than a policy based on a 

model where the level of uncertainty about the parameters is the same for all 

periods. One of the results of this paper, however, is that the adaptive policy is often 

more conservative than the non-adaptive policy. That is, the future gains from 

actively experimenting may not offset the cost incurred by the uncertain current 

effect of such a choice of policy variables. The optimal policy may well be to do very 

little initially, thus insuring that whatever the unknown effect is it is quite small, and 

do all necessary control action later when more will be known. 

University of Maryland 
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