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Annals of Economic and Social Measurement, 1/4, 1972 

STABILIZATION POLICY AND LAGS: 

SUMMARY AND EXTENSION* 

BY J. PHILLIP COOPER AND STANLEY FISCHER 

This paper examines the effects of both the length and variability of lags on the effectiveness of counter- 
cyclical stabilization policy. The authors conclude that while the latter are an argument in favor of less 
vigorous use of stabilization policy, the former are not. The longer are lags, the more vigorously should 
stabilization policy be used. They also find that in their models, the constant growth rate value is never 
optimal and that the careful use of feedback controls is bound to be stabilizing. 

INTRODUCTION 

The major aim of this paper is to study the effects of both the length and variability 

of lags on the effectiveness of countercyclical stabilization policy. The chief tool 

of analysis is a simple difference equation, in which the value of a target variable (y) 

is determined as a function of its lagged value and concurrent and lagged values 

of a policy variable (x) as well as an additive stochastic term (u) ; the policy variable 

(x,) is taken to be determined by a closed-loop feedback control rule responding to 

the lagged value of the target, variable (y,_ ,}—proportional control—and the 

change in the value of the target variable (y,_, — y,- }—derivative control. 

The effectiveness of stabilization policy is evaluated by the value of the 

asymptotic variance of the target variable under the rules; various parameters 

of the difference equation determine both the mean length and the variability of 

the lags in the effect of policy. We are thus able to examine the results of changes 

in the length and variability of lags on the effectiveness of policy as policy is 

adjusted optimally (with respect to minimization of asymptotic variance) in 

response to these parameter changes. Our interest is not, however, confined to 

optimal policies and we also :nvestigate other properties of the system, such as 

its stability and sensitivity to nonoptimal choice of control rules, as lags vary. 

In Section 1 below we very briefiy summarize results obtained in our “CC” 

(constant coefficients) model in which all lag parameters are constant. The notion 

of variable lags and our representation of the notion through the randomizing of 

lag coefficients are discussed in Section 2, when our “RC model” is introduced.’ 

The effects of the variability of lags—as measured by the variance of the lag 

coefficients—on the outcome of policy rules is examined in Section 3. There is 

discussion in Sections 2 and 3 of the merits of a completely inactive policy which 

avoids any attempts at “fine tuning”—such policies have been recommended to 

the monetary authorities by Friedman [2] and others. 

* The research described in this paper was supported by NSF Grant GS 29711. This is a much- 
shortened and somewhat changed version of our paper, “Stabilization Policy and Lags’”’ which was 
presented at the NSF-NBER Conference on Control Theory and Economic Systems. “Stabilization 
Policy and Lags” is forthcoming in the Journal of Political Economy. 

' Although the CC model is a special case of the RC model, it is convenient to treat them separately 
so that the effects of the length of lags can be discussed apart from the effects of their variability. In 
addition, there are certain results which we obtain analytically for the CC model but numerically for 
the RC model. 
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This paper is a much-abbreviated summary of the paper presented at the 

NSF-NBER Conference on Control Theory and Economic Systems which is 

forthcoming in the Journal of Political Economy. Aside from the fact that many 

results are summarized but not fully developed here, the other major change 

between the Conference paper and this one is that we here use a different stochastic 

process for the behavior of the random lag coefficients. The process, described here 

as the “random f”’ case, is one which we now regard as a fairer representation of 

the notion of variable lags in the context of discussion of the relative merits of 

active and inactive countercyclical policies than the “random 4” case presented 

in the Conference paper. Our reasons for this view are discussed later. 

1. THE CC MopDeL 

A. Model Description 

The model with constant coefficients is a standard first-order autoregressive 

scheme. 

(1) y, = By,-1 + + A;X,-; + Uy. 

@ 

i=0 

The restriction to a first-order autoregressive process is made for simplicity. 

The variable y, represents deviations of some economic variable from its 

target level in each period and will be referred to as “output”; x, is to be under- 

stood as the deviations of some relevant instrument or policy variable (say, the 

rate of change of the money supply) from that path which would, in the absence 

of disturbances, keep the system on target at all times. Equation (1) may represent 

the reduced form of some structural! model in which there is only one controllable 

exogenous variable. The value of u, is not known at the time the current value of 

the policy variable, x,, is chosen; information available at the time x, is chosen 

consists of past levels of output and of the policy variable itself. The random 

variable u, has mean zero, is serially uncorrelated, and without loss of generality 

has variance unity. It is assumed that |f| < 1 so that the system is stable in the 

absence of an active stabilization policy (i.e. if x, = 0 for all t); generally we assume 

B positive. 

The time form of the lag coefficients for the effects of policy, that is the «; 

of (1), is assumed proportional to a density function belonging to the Pascal 

family [5]. 

r+i-1 r= 123,4,... 
(2) a; = | \ — Ayn 

i 0 < sxc 4, 

The parameters r and A determine the structure of the coefficients a; ; we concentrate 

on the cases r = 1 and r = 2, particularly in the RC model below, but results 

holding for all members of the Pascal family are given in this section. 

To standardize the long-run multiplier for monetary policy at unity, we set « 

in (2) equal to (1 — f). It may be confirmed that then the ultimate effect on the 

level of y obtained by increasing x by one unit and holding x at its higher level 

forever, is to increase y by one unit, independent of the values of A and B. We are 
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thus assured that the “bang per buck” of policy stays constant for any permanently 

held values of A and f. 

Two comments: first, the «—which we call the “direct” (or “policy’’) lag 

coefficients—do not give the total effects on y, of a unit input of x at time t — i, 

for changes in x at t — i change output at time ¢ through the autoregressive 

parameter f as well as directly. The level of output as a function of past levels of 

the policy variable and the random variable is - 

(3) ie Y &;X,-; = > Biu,_; 
i=0 i=0 

where , 

(4) a= 5 Pa,_,. 
j=0 

This is a convolution of the previous lag coefficients and we refer to the @; as the 

“final form” lag distribution. For B = A, the final form lag coefficients are simply 

Pascal of order one higher than the order of the distribution for the «; themselves. 

Second, we use a particular structure for the «; and a particular autoregressive 

structure in order to study the effects of the length of lags on stabilization policy ; 

the mean final form lag of the effect of x on y is B/(1 — B) + (rd) — A). The 

length of lag is thus an increasing function of r, A and B. 

The mean final form lag is the sum of the lag due to the autoregressive 

structure (the “‘system’”’ lag) and that due to the policy lag. Thus, by distinguishing 

B from A, we can discuss separately the effects of lags which are inherent in the 

economy (f) from those due to policy (A and r). A long system lag (large £) auto- 

matically implies a long final form lag though policy may work slowly even if B 

is small. 

B. The Constant Growth Rate Rule (CGRR) 

We describe the policy x, = 0 for all tas CGRR, i.e. a policy where no attempt 

is made to respond to deviations of y from trend. The asymptotic variance of 

output under a constant growth rate rule is 

1 
(5) oy = lim Elyse] = 7p 

The minimal attainable variance of y, is unity, obtained under any policy which 

succeeds in making y, = u, for all t. Thus if B = 0, the optimal policy is CGRR. 

If 2 is not zero, there is room for improvement by use of some policy other than 

CGRR—the potential improvement increasing with ||. It is useful to interpret B 

as a measure of the instability of the system in the absence of stabilization policy 

in much of what follows, the instability increasing as the system lag increases. 

We shall refer to any policy which produces y, = u, as perfect control. All 

other policies are imperfect control. 

C. Policy Rules 

The policy rules used are of the form 

(6) x, = I(B)- By, 
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where B is the backshift operator, and I'(B) is a polynomial in B of order n. For 

instance, one such rule with n = 1 is 

(7) Xp = ViYe-1 + YaYe-2 = BiYi-1 + BAM-1 — Ve-2) 

where g, is a proportional control and g, a derivative control. 

Substituting (6), (5) and (2) in (1), and using the operator B, one obtains for 

the general Pascal distribution: 

Hs (1 —ABYu, 

(1 — ABY(1 — BB) — (1 — Ay(1 — BT (B)B 
(8) Ve 

which is an autoregressive moving-average model of order (r + 1,r) when r > n. 

By setting n = r and choosing the coefficients in I'(B) appropriately it is always 

possible to obtain 

(9) ve 4, 

which minimizes asymptotic variance—and also, any criterion function including 

only variances of output in each period. Thus optimal policies in the CC model 

are straightforward to obtain.” 

To have a better idea of the properties of such policies, we turn for simplicity 

to the case r = 1, although similar results apply also for other values of r. The 

optimal policy for r = 1 is to use rule (7) with 

ae 
1-8 

oc 
(1 — Bl — A) 

There are a number of interesting features of the rule (10). 

(i) In this model, with perfect control, the proportional control depends 

only on the autoregressive parameter, and, in a sense, offsets the autoregressive 

component of the model, while the derivative control deals also with the direct 

lagged effects of policy. 

(ii) Perhaps most interesting, the strength of the controls is an increasing 

function of the average length of lag, but increases in the length of lag do not 

increase the variance of output.* 

(iii) The use of negative feedback controls cannot lead to the minimum 

variance policy if B < 0, that is, if the model itself, in the absence of control, 

contains only negative feedback. 

Weare also interested in the behavior of the system when policy is nonoptimal. 

Accordingly, we solved analytically for the value of the asymptotic variance of 

the system as a function of B, A and the parameters in the control rule, for values 

i 

(10) 

Nl 

2 It is easy to show that for perfect control, 

rw = - p (1 — By 

1-6 (1-Aay 

3 Obviously the second half of this sentence must be true if perfect control can be attained. A 
stronger result is obtained in Howrey [3]. 
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of r = 1 and r = 2. This expression is used in defining the stability conditions 

—in terms of f, A and the control parameters—for the system; it is also used to 

define a region containing pairs of values of g, and g, which improve upon 

CGRR. For the casesr = l andr = 2 the following additional results are obtained. 

(iv) The longer are both policy and system lags, the more likely is the system 

to be stable for given values of the control parameters. 

(v) Weak negative feedback controls are bound to be stabilizing relative to 

CGRR (for B > 0). 

(vi) The longer are both system and policy lags, the more likely is any 

choice of control parameters to be stabilizing relative to CGRR. 

(vii) In cases where insufficient control parameters are used, long lags reduce 

the potential gains from an active stabilization policy relative to CGRR ; however, 

they increase the likelihood that any given policy will be stabilizing relative to 

CGRR. 

2. VARIABLE LAGS AND THE RC MODEL 

Equation (1), the basic difference equation, can be rewritten as 

(11) y, = By,-1 + Ww, + U, 

where w, represents the total direct effects of policy, past and present. For the 

Pascal distribution with r = 1, the case on which we concentrate in this section, 

(12) w, = (1 — B)(1 — A) Y A'x,_; = (1 — B)(1 — A)x, + Aw,-1. 
i=0 

In our random coefficients model, we continue to use (11) and (12) but modify 

them by making f a random variable. This has the effect of making both the 

autoregressive component and the effects of policy random. Specifically, we write 

B, instead of B in both (11) and (12), and assume 

(13) B, = B + & 

where ¢, has mean zero, variance o”, is serially uncorrelated and has zero covariance 

with all u,. Substituting 8, for B in (11) and (12), the final form lag coefficients, 

&;,, which give the total effects on the level of output in period t of a unit change 

in x at time t — i, are 

(14) @, =(1-—B,-)(1—- a) > # TT] Bema: 
_ j=0 m=1 

In Figure 1 we present final form lag distributions generated for the RC 

model with 4 = 0.8, B (now the mean of the distribution of B,) = 0.5, and r = 1. 

The 8, used in Figure 1 were drawn from a beta distribution—for which the 

domain is {0, 1]— with the variance o? stated on the diagram. The three cases 

shown were chosen from a set of ten distributions generated and represent the 

range of examples produced. 

The formulation described above is for obvious reasons called the “random p” 

case. In the Conference paper we used the “random 4” case in which A in (12) 
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Figure i Three Realizations of Final Form Lag Distributions (r = 1, 4 = 0.8, B = 0.5, a? = 0.0278) 

is a random variable. In the random 4A case, randomness of the lag coefficients 

affects in the current period only the results of active countercyclical policy and 

not CGRR;; in the random f case the results of both types of policy are affected. © 

It can be shown that under CGRR 
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We believe it fairer to active policy to use the random 8 model since we do not 

believe that CGRR would lead to any less variability of behavioral parameters 

than other rules. 

We believe that the lag formulations of (14), as shown in Figure 1, reflect 

the notion of “variable lags.”” The time pattern of the effects of any particular 

policy action is not likely to be the same as those of any other policy action; 

the consequences of any particular policy action are known with certainty neither 

in the period in which they are taken, nor in subsequent periods. 

Our representation of variable lags treats these lags as stochastic, but 

variability of lags is possible in a deterministic model. For instance, the lags of 

monetary policy could vary systematically with the behavior of other exogenous 

variables in the economy, as they do in the FRB-MIT-Penn Econometric model. 

One might want to model variable lags by, say, having B, be a function of a variable, 

the time path of which is specified in some suitable way. This is another possible 

route, but it is not one we have so far taken. 

For the case r = 2, which we have also examined we have instead of (12) 

(16) w, = (1 — Bi - Ayx, + 2dw,_, — Aw, 2 

and then both the £ in (11) and that in (16) become £,, with B, determined as 

in (13). 

Finally, we note an important point : our basic assumption for the RC model 

is that the lags are “‘truly”’ stochastic—the distribution of the B, is specified for 

all time. 

3. RULES AND THE VARIANCE OF OUTPUT IN THE RC MODEL 

For the case r = 1, using (11) and (12) and the policy rule(7), with B, = 8 + «,, 

we obtain . 

(17) ne (B, +A+ (1 ag BA = Ayn \i-1 + (AB, 1 int (1 me: BC Fa Ayya\y-2 

cal, Ri Au,-; 

or 

(18) y, — by,-; + cy,-2 — (1 — (1 — Ae y-a + Aes Me-2 + (CL — Ae -2 

> Au, ; 

where 

b=B+A+(1-— Bl — Ay, 

c = AB — (1 — Bl — Aj). 

The question of the stability conditions for equation (18) now arises. There 

are a number of concepts of stochastic stability,* and we shall use the finiteness 

of the asymptotic variance of output as our criterion; for o? = 0 this gives the 

same stability conditions as those for the CC model. This is a convenient definition 

in view of the fact that we evaluate policies by this same criterion. 

* See Kozin [4] for discussion of some of these concepts. 
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Deriving the asymptotic variance of y, from (18), we obtain 

(1 + c)(l + A2) — 2ab — 6{a,,(1 — Ab — A) — 24] 

(1 — c)[(1 + c)? — b?] — o7[(1 + c)a,, — ba, — (1 — c)a2, 

+ (1 — ¢?)az. — 67 [41422 — 424442)] 

(19) of = 

where 

ay, = (1 — (1 — Apy)(A — (1 — ayy — Ab) + (1 — A793 + 2? 

ay. = (1 — Ayal — (1 — ys) — 2B, ay = AL - (1 = ys], 

az. = Al — A)y. 

It is possible—though very tedious—to show that 

o dot 
Osi 2.0 me! >0 
do o2=0 fared o2=0 

(20) for B > 0 
Ogt/g} 

; >0 
do o2=0 

where g*¥ and g% are the optimal proportional and derivative controls. Thus, 

the presence of slight variability of the lag coefficients leads to weaker derivative 

and relatively stronger proportional controls than would be optimal in the 

absence of the variability. (The proportional control may actually increase 

absolutely.) Basically, feedback controls use the level of output and changes in 

output as guides to the behavior of the additive error term. When lag coefficients 

become variable, the level of output becomes a less safe guide to the behavior of 

the additive error—but the change in output is doubly less safe.* Thus, relatively 

more weight is thrown on the proportional control. 

It is clear that, in the RC model, we do not obtain certainty equivalence 

results. This is a consequence of the fact that the current policy variable, x,, 

affects current income subject to a multiplicative error.° 

it can also be shown—once more at some length—that 

da; B 

og m =e 

(21) 302 pats where ~ means “‘of the same sign as.” 
o 

=| ~B 
022 g1=0 

g2=0 

That is, the use of weak proportional or derivative controls is bound to be 

stabilizing relative to CGRR if B is positive—whatever the variability and length 

of the lags. 

* This explanation requires the first autocovariance of income to be small, which it is at ¢? = 0. 
and with optimal control. (In fact, there is zero autocovariance at this point.) 

® See Brainard [1] for a fuller discussion of circumstances under which certainty equivalence is 
obtained. Our rules which give perfect control in the CC model are certainly equivalence rules. Also, 
if in (11), we had made the first B (that multiplying y,_ ,) stochastic, and had otherwise had constant 
coefficients, we would have obtained the same rules for the RC model as for the CC—which illustrates 
the certainty equivalence principle. 
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It is, unfortunately, difficult to minimize (19) analytically with respect to 

y,; and y, to study the behavior of the system. Accordingly, we have used (19) 

to compute optimal rules, stability regions and isovariance loci numerically for 

a number of combinations of A, 8 and o?. In Figure 2 we present a typical diagram 

—for the case A = 0.8, B = 0.5, 0? = 0.0278—produced in our numerical analysis ; 

the large shaded area is the stability region in that values of g, and g, outside 

that area make the system completely unstable; the inner drawn locus is the 

CGRR isovariance locus—values of g, and g, within this region reduce variance 

° > t. ‘ i 
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below that obtained under CGRR;; plus signs (+) and asterisks (*) trace the loci 

on which the first-order conditions for g, and g,, respectively, are satisfied ; the 

optimal values of g, and g, are, of course, at the intersection of these two loci. 

We produced such diagrams for values of A and £ of 0.2, 0.5, and 0.8, and 

six values of o? for each of the nine combinations of 4 and f. In each case we took 

B, as belonging to the beta distribution, and computed the variance of 8, for a 

number of integer-valued parameters of that distribution.’ It is perhaps worth 

emphasizing that the results presented below are not simulation results—we use 

the analytical expression (19) for the asymptotic variance of output to compute 

optimal rules numerically. 

Our major results are presented in Tables 1 and 2. Table 1 contains results 

for r = 1, Table 2 results for r = 2. The four entries in a row for each combination 

of A, B and o? are, in order, the optimal g, (g*), the optimal g, (g¥), the value of 

the variance of output at the optimum (¢2), and the value of the variance under 

CGRR (03). In addition to the results of the tables, we shall mention results 

based on examination of the diagrams such as Figure 2 for the cases presented. 

We consider now in turn the effects of changes in (A) the variability of lags, (B) the 

length of the policy lag, (C) the length of the system lag. 

TABLE 2 

OPTIMAL CONTROLS AND VARIANCES FOR r = 2, A = 0.8, B = 0.5 

A=08 

st a o a3 

pB =0.5 o? = 0.0278 —0.5 —2.75 1.32 1.39 
0.0147 —0.6 --4.5 1.26 1.36 
0.0076 —0.7 — 6.75 1.21 1.35 
0.0035 — 0.6 —9.0 1.17 ; 1.34 
0.00031 —0.4 — 13.5 1.12 1.34 
0 — 0.36 —14.4 1.11 1.33 

A. Variability of Lags 

Most of these results are in accord with intuition. 

(i) The minimal attainable variance increases with o?. 

(ii) For small o7, increases in o? increase the relative strength of the propor- 

tional control and decrease absolutely that of the derivative control; as o” 

continues to increase both controls are reduced absolutely. This result has been 

explained above. Note that the controls y, and y, (equation (7)) both decrease in 

strength with o?. 

(iii) The area of the outer stability region shrinks with o?—the larger is o” 

the more likely is any particular pair of controls to destabilize the system. 

7 We used those integer parameters of the beta distribution which produced the maximum 
variance for each value of the mean (8 = 0.2 and 0.8), and then increased these parameters to reduce 
the variance of £,. The maximum variance for 8 = 0.5 is much larger than that for the other two cases; 
this larger variance, 0.0833, results from the degeneration of the beta distribution into the uniform 
distribution. We do not present this case in Table 1 or Table 2. 
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(iv) Similarly, the area contained within the CGRR locus shrinks with o? 

—the more variable the lags, the less likely is any arbitrary pair of controls to 

outperform CGRR. But recall that-—from (21)—the use of weak controls is bound 

to be stabilizing. 

B. The Length of the Policy Lag, A and r 

(i) For given o? and f?, the minimal attainable variance increases with 4 

and r ; thus the longer the lag of policy, for given f and o”, the smaller the potential 

gains from the use of active stabilization policy relative to CGRR. 

(ii) The optimal controls increase with /; thus the longer are policy lags 

the more vigorous should policy be—although the potential gains from attaining 

the optimal policy fall with 4. For r = 2, proportional control is weaker than for 

r = 1 while derivative control is stronger. 

(iii) The area contained within the outer stability region increases with A and 

r, for given B and o?. 

(iv) The area contained within the CGRR locus increases with A and r, for 

given B and o?. 

C. The Length of the System Lag 

(i) The minimal variance attainable increases with f. But note that, 

surprisingly, the ratio of the minimal attainable variance to the variance under 

CGRR decreases with f: the longer the system lag, the greater the potential gain 

from the use of active stabilization policy. 

(ii) Each optimal control is an increasing function of the length of lag. 

(iii) The areas contained within the stability region and the CGRR locus 

increase with B—the longer the system lag, the less likely is any given policy to be 

destabilizing, either absolutely or relative to CGRR. 

In brief, our conclusions are that while variability of lags is an argument in 

favur of the less vigorous use of stabilization policy, the length of lags is not. 

Indeed, generally the longer are both policy and system lags, the more vigorously 

should stabilization policy be used. Further, we nowhere found CGRR optimal 

and we have shown that, in our models, the careful use of negative feedback 

controls is bound to be stabilizing. 

University of Chicago 
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