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Annals of Economic and Social Measurement, 1/4, 1972 

HOW MUCH COULD BE GAINED BY OPTIMAL STOCHASTIC 

CONTROL POLICIES 

BY GREGORY C. Chow! 

After an exposition of stochastic control theory for quadratic welfare and linear system with known 
parameters, this paper decomposes the gain from the optimal policy over the suboptimal policy of setting 
a constant growth rate for each policy variabie into two parts, and measures them using a simple macro- 
econometric model of the United States. The first part, the gain of the optimal deterministic control policy 
over the suboptimal policy, is much smaller than the second, the gain from optimal stochastic control over 
optimal deterministic control. Total gains of 30 to 40 percent, using first differences of the variables, 
and of 40 to 80 percent, using levels of the variables, have been found. Sensitivities of these results are 
also studied. 

1. INTRODUCTION 

The main purpose of this paper is to measure the possible gain by applying optimal 

stochastic control policies using an econometric model, as compared with policies 

that maintain a smooth growth path for each policy variable. At the outset, it 

should be admitted that our measures will depend on the econometric model used, 

as do conclusions from quantitative economic studies in general. A pertinent 

argument by proponents of a nondiscretionary rule is that we do not know the 

dynamic structure of the economy. The viewpoint of this paper is: if we do know 

the dynamic structure, and if it resembles the one used, how much can be gained 

by applying an optimal discretionary policy? For those who believe that our 

present knowledge is meager, this paper provides an estimate .of the potential 

value of acquiring knowledge of the dynamic structure of our economy. Further- 

more, the method outlined here can be applied to other econometric models, 

and it would be of interest to study the sensitivities of our measures of gain, and 

of the optimal policies implied, to variations in the models. 

In order to proceed, we have adopted the following three assumptions. (1) The 

welfare cost associated with a policy can be measured by the expected value, 

as of the beginning of a planning period, of a weighted sum of squared deviations 

of the economic variables from their specified targets. In other words, the welfare 

function is quadratic. (2) The relevant econometric model is linear. (3) The param- 

eters of the model are known for certain. Discussion of the possibility of relaxing 

one or more of these assumptions will be postponed to the last section. It is 

believed that these assumptions, though restrictive, are good enough approxima- 

tions to make our quantitative results useful. 

' For valuable suggestions and comments I would like to thank George de Menil, Ray C. Fair, 
Stephen Goldfeld, Edwin Mills, Richard E. Quandt, and many other colleagues and students attending 
the Econometric Ressarch Program Seminar in Princeton at which an earlier version of this paper 
was presented. Douglas R. Chapman has been extremely helpful not only in programming the 
calculations, but in being critical on many substantive points. Some initial programming work was 
performed by Michael K. Smith. Last, but not least, financial support from the National Science 
Foundation, NSF GS 2799 and NSF GS 32003X, is gratefully acknowledged. 
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Since these assumptions were also made in the well-known works of Simon 

(1956) and Theil (1958) on first-period certainty equivalence to be applied to 

multiperiod decision under uncertainty, the main difference of the present study 

from their analysis should be stressed.* Because their method does not explicitly 

provide optimal policies for future periods beyond the first, and expected welfare 

depends on these future policies, it cannot conveniently be applied to calculate 

the expected welfare associated with the optimal policy, or any other policy, 

except by simulations that require the generation of random disturbances. On 

the other hand, the calculation of expected welfare by our method is simple and 

analytic. Similarly, the application of non-stochastic control theory to a linear 

econometric model by ignoring the random disturbances, as exemplified by the 

interesting work of Pindyck (1971), does not yield expected welfare for a given 

policy; nor are the alleged optimal time paths for the policy variables calculated 

by Pindyck (1971) truly optimal if random disturbances are included. By allowing 

for the random disturbances of an econometric model as in stochastic control 

theory, the present study overcomes these deficiencies. 

In my opinion, the literature on the control of stochastic systems is unneces- 

sarily complicated for the researcher who wishes to understand the main ideas 

and the derivations of the optimal control solution for the case of quadratic 

welfare and linear model in discrete time. In two previous papers, Chow (1970b, 

1972), I have provided simple expositions using the elementary technique of 

Lagrange multipliers. To make this paper self-contained, and to set the stage for 

further analysis, I will include, in section 2, an exposition of the main ideas, 

drawing partly on the previous papers and supplementing them by an elementary 

exposition using the method of dynemic programming. Building on the basic 

theory, I will derive in section 3 the gain of the optimal policy over a policy of 

maintaining a constant rate of growth for each policy variable. The method of 

section 3 will then be applied to a highly simplified and aggregative econometric 

model of the U.S. economy in section 4. Conclusions and possible extensions of 

the present study will be presented in section 5. 

2. Basic IDEAS AND THEORY 

To begin with, we take as given a linear econometric model in its reduced 
form: 

(2.1) yy = Ageia +--+ + ApaVe-m + CoeX, +--+. + CopXp—n + DO, + UY, 

where y, is a vector of dependent variables, x, is a vector of variables subject to 

control, A;, and C;, are given constant matrices, u, is a serially uncorrelated vector 

with mean zero and covariance matrix V. Exogenous variables in the system which 

are not subject to control will be treated either as part of b, (also assumed to be 

given constants) or as a part of u,. To simplify anaiysis, the system (2.1) will be © 

rewritten as a first-order system, 

? For a fuller discussion of this point, see Chow (1972), which discussed other differences as 
well. 
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which will be redesignated as 

(2.3) Y, = Ay,-1 + CX, +O, + uy. 

Note that the newly defined y, includes current and (possibly) lagged dependent 

variables as we!l as current and (possibly) lagged control variables, whereas x, 

remains the same as before. 

The performance of the system will be measured by the deviations of y,, 

as defined in (2.3), from the target vectors a, (t = 1,..., T). The vectors a, will 

have the same dimension as y,, and since the latter include lagged variables, 

the elemenis of a, have to be consistently specified through time. Specifically, 

welfare cost is measured by 

, T 

(2.4) W=E 3 (y, ae a,) Ky, ak a,) 
t=1 

where the expectation E is conditional on the initial condition y,, again in the 

notation of (2.3), and K, are known, symmetric (usually diagonal), positive semi- 

definite matrices, with zero elements as a rule corresponding to lagged (endogenous 

and control) variables. ; 

The main idea of control is to steer y, close to the target a, by choosing 

appropriately the control variables x, . It will be fruitful to think of x, as composed 

of two parts, X, which is deterministic, and x* which is random, both from the 

vantage point of the decision process at the beginning of period 1. That is to say, 

X, (t= 1,...,T) can be specified once and for all in period 1, whereas x* 

(t = 1,..., 7} may depend on the random elements u, which are observable, 

at least indirectly, if the parameters in the system are known. Similarly, the time 

series y, under control wili be viewed as the sum of two parts, the first being 

(2.5) VY, =AN-1 + C% +5, Wo = Yo) 

which is deterministic, and the remainder y* = y, — j, being 

(2.6) ye=Aye,+Cx*+u, (y§ =0) 

which is random, and independent of the first part because u, are. Accordingly, 

the welfare cost is decomposed into two parts, - 

T 

(y; - a,) K,(y, = a,) +E Y yr’ K.yf - W, + W, 
1 t=1 
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and the control problem is also separated into a deterministic control problem 

of minimizing W, with respect to X, and a stochastic control problem of minimizing 

W, with respect to x*. 

One elementary way to solve the deterministic control problem? is to intro- 

duce the Lagrange multipliers A,, and differentiate the Lagrange expression 

1 T s , ‘ T ma e ‘és 

(2.8) L, a 2 > (y, Se: a,) KV, & 7 a,) aE ys AD, a Ay, 1 a Cx, 6 b,] 
t=1 t=1 

to yield 

OL 
(2.9) ae = Ct = 0 (t = 1,...,T) 

t 

OL, a ’ > 
(2.10) ay => KA, = a,) -_ A, + As s4Ae+1 => 0 (t = Be ate fips Ar+1 = 0). 

Equations (2.10), (2.9), and (2.5) will be used, in that order, to express A, as a linear 

function of y,, to solve for X,, y,, and A, as linear functions of j,_,, and using the 

last, to express A,_, as a linear function of j,_,, and so forth, beginning with 

t = T. Thus, by (2.10), 

(2.11) Ar = KyYz — Kaz + ApyiArs, = Aryz — hy 

where 

(2.12) Bw Kk, 

(2.13) heat Kate. 

By (2.9), (2.11) and (2.5), 

(2.14) CrAr =0= CrlHryr sd hy] = CrlHyAryr-1 + H7CyXr + Hb; a hy), 

implying 

(2.15) Xp = Gr¥r-1 + Sr 

where 

(2.16) Gy = —(CpH7Cy)'CyH Az; 

(2.17) 8r = —(CpH7Cz) 'Cp(H yb — hy). 

Using (2.5) and (2.11) respectively, in conjunction with (2.15), we solve for j; and 

Ay as functions of jy_,: 

(2.18) Vr = (Az + CyGyp)¥z_, + bp + Crgz; 

(2.19) Ar => H(A; + C7Gr)¥r-; + H(b; + Cr27) war hy. 

Having solved for A; in terms of j7_,, we will substitute (2.19) into (2.10) 

in order to obtain an equation analogous to (2.11): 

(2.20) Ap-1 = Ky_,¥r-1 — Ky-147-1 + AtAz = Hy_,Yr-1 — hy-, 

3 Although the result given below is well-known, the simple derivation presented here does not 
seem to be available in the literature on control. 
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where 

(2.21) H;y-, = Kr- + ATH AAr + C,Gr) 

(2.22) hy_-, = Kyp_,@7-, — ApH (by + Crgz) + Ahr. 

The development from (2.14) on can now be followed, with T — 1 replacing T, 

and so forth. The above solution to this deterministic control problem consists 

of using the pair of equations (2.16) and (2.21) to obtain G;, Hy_,,Gr_,,..., 

consecutively with (2.12) as the initial condition, and, given H,, of using the pair 

of equations (2.17) and (2.22) to obtain g7,hy_,,g7_,,..., consecutively with 

(2.13) as the initial condition. Having obtained G, and g,, we set the optimal Xx, 

by the linear feedback control rule (2.15) on y,_,. 

The stochastic control problem of minimizing W, subject to (2.6) can also 

be solved by the method of Lagrange multipliers.* However, it may be useful to 

present an elementary exposition using the method of dynamic programming of 

Bellman (1957), a method which has often been applied to both deterministic and 

stochastic control problems. Consider the decision on x# in the last period, when 

the welfare cost will be 

(2.23) W, = E;y? KzyF 

where E, denotes expectation conditional on the information available at the 

beginning of period T, namely, y=_,. To facilitate its generalization to other 

periods than T, we rewrite (2.23) as 

(2.24) W, = E,y}?'H,yy} 

= (Aryt_, + Crxf)!HpAryt_; + CrxF) + Pr 

where 

(2.25) H, = K; Pr = E,u;Hzuz. 

Minimizing (2.24) with respect to x¥ by differentiation yielcs 

(2.26) x} = Gryf-1 

where 

(2.27) Gr = —(C7H,C,) 'CyHyAr. 

Substitution of (2.26) for x¥ in (2.24) gives the minimum expected cost for the 

last period as 

(2.28) W, = yp_ (Az + CpG; HpAz + CrGy)yF_1 + Pr- 

By the principle of optimality in dynamic programming, the optimal strategy 

for any period, say, T — 1, is obtained by minimizing the expected cost from that 

period on under the assumption that all future controls shall be optimally set. 

This is to minimize 

(2.29) E,_,(W, + yP_,Ky_ ,yF-1). 

* For such a solution, see Chow (1972). 

395 



Substituting (2.28) for W, in (2.29), we find that the expression to be minimized 

will have the same form as (2.24), i.e., 

(2.30) Ep_slyt-1:Hr-syt-1 + Pr) = (Ar-iyF-2 + Cr-yxF-1) 

x Hy_ (Ap-,YF-2 + Cr- :XxF-1) + Pr-1 

where 

(2.31) Hy_, = Ky_, + (Az + CrGz)H7(Az + C;Gz) 

= Ky_, + AyH7(A; + CzG7); 

(2.32) Pr-1 = Pr + Ez_,uy_,Hyz_uz-. 

Thus, the development from (2.26) on can be followed, with T — 1 replacing T, 

and so forth. In brief, we use the pair of equations (2.27) and (2.31) to obtain 

Gr, Hy_,,Gy-_;,..., with initial condition (2.25). Given G,, we obtain the 

optimal x* by the linear feedback control equation (2.26) on y*_,, noticing that 

the feedback coefficients G, are identical with those applied to j,_, in the 

deterministic contro] problem earlier. In the above exposition, we have decom- 

posed the optimal control problem of minimizing the welfare cost (2.7) into a 

deterministic control and a stochastic control problem. In an ordinary treatment, 

the solution to the entire problem is given simply as x, = G,y, + g,, where 

x, = X, + xf and y, = y, + y* in our notations. 

It is interesting to note the steady-state solution for G,. If A, = A, C, = C, 

and K, = K for all t, G, may reach a steady-state solution G, obtained by solving 

(2.33) G, = —(C'H,C)"'C'H,A; 

(2.34) H,_, =K +(A+CG,/H{A + CG)). 

Since the solution is obtained backward in time, starting from t = T, G, will 

reach a steady-state for small values of t. This means that, when the time horizon 

is long, and with a time-invariant model, the optimal rule is the same for the 

early periods, and the terminal condition will affect behavior only for periods 

close to the end of the time horizon. Note also that the possibility for G, to reach 

a steady-state depends on the parameters A and C, but not on the time paths of 

the target a, and the combined effect b, of other exogenous variables, the latter 

affecting the solution for g,. As can be seen from (2.17) and (2.22), g, could reach 

a steady-state if, in addition, a, and b, are constant through time. 

3. DERIVING THE GAIN FROM OPTIMAL STOCHASTIC CONTROL 

From the exposition of section 2, one easily sees that the gain from applying 

an optimal feedback policy, as compared with the rule of maintaining a constant 

growth rate for each control variable, can be decomposed into two parts. The 

first is the gain of optimal stochastic control over optimal deterministic control, 

the latter being a policy which sets the values of all future control variables at the 

beginning of period one. This gain is measured by the difference between 

W, = )'7_, Ey*’K,y# for the optimal policy of equations (2.26), (2.27), and (2.31), 

and that value in the absence of any feedback, i.e., y* = A,y*_, + u,. The second 
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is the gain of optimal deterministic control over the deterministic control rule 

of a constant growth rate for each policy variable. These two parts will in turn be 

derived. 

The reader will have noticed that the proponents of maintaining a constant 

growth rate for just one control variable (money supply) have not stated their 

position sufficiently for a meaningful and rigorous analysis. To complete the 

specification of a meaningful proposition, we add that all control variables should 

grow at constant rates, that a quadratic welfare function be used to measure the 

performance of the economy, and that, for the benefit of the proponents of such a 

proposition, the particular growth rates be determined sub-optimally in accor- 

dance with the given welfare function.° 

For the first part of the gain, one can evaluate W, for the optimal policy as 

follows. Write . 

T T 

(3.1) W,= ) Ey’ K yt = > we K(Eyty?"). 
t=1 t=1 

Note that, for the optimal policy given by (2.26) and (2.27), the stochastic model 

(2.6) becomes 

(3.2) y* = (A, + C,G,)y*_, + uy. 

Postmultiply (3.2) by y*’ and take expectation to yield 

(3.3) Eyty*’ = (A, + C,G,)Ey* ,y*’ + Euyui. 

Premultiply the transpose of (3.2) by y*_,, take expectation, and substitute the 

result for Ey*_,y*’ in (3.3) to yield 

(3.4) Eyfyi' = (A, + C,G,)(Eye yi (A, + C,G,) + Eu,u,. 

Equation (3.4) can be used to evaluate Ey*y*’ in (3.1), starting with Eyfy?’ = 
Eu,u; = V. Since the suboptimal! policy ignores any information on y*, and it 

sets G, = 0 in the model (3.2), it will have a stochastic welfare cost W, with Ey*y*’ 

given by 

(3.5) Ey yr = AEyy- yi 1)A, + V. 

This completes the evaluation of the welfare gain by using optimal stochastic 

control, over the best deterministic control policy. 

For the second part of the gain, W, for the optimal deterministic policy can 

easily be calculated by definition (2.7). For the suboptimal policy, the control 

equation is constrained to be, with D denoting a diagonal matrix, 

(3.6) xX, = Dx,_, 

or alternatively, 

(3.7) x, = Gj,_, =(...0 D 0...0) 

5 An important motivation of this study is to examine rigorously the policy, mostly attributed 
to Friedman and widely discussed after Friedman (1968), of increasing money supply at a constant 
percentage rate. We have pointed out that more is needed to make such a proposition meaningful. 
For further discussion of Friedman’s methodology from the viewpoint of dynamic, stochastic, and 
quantitative economics, the reader may refer to Chow (1970a). 
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where the matrix G has zero elements except for the submatrix corresponding to 

the vector X,_ , which is imbedded in the vector j,_ , . The problem is to minimize 

W, with respect to (d,,d2,...,d,) = d, the diagonal elements of the matrix D. 

There are various methods to perform this minimization. A good method which 

we have used for the calculations in section 4 is the gradient method described in 

Goldfeld, Quandt, and Trotter (1966). Given any guess of the unknown vector d, 

the value of the function W,(d) can be calculated using the definition (2.7), the 

model (2.5), and the control rule (3.7); so can the gradient of W,(d) at that point, 

either numerically or analytically. By using a quadratic approximation to the 

function to be minimized near that point, the Goldfeld-Quandt-Trotter method 

insures that the matrix of second derivatives used to calculate the unknown for 

the next iteration is positive definite, even if the function itself is not convex. 

This method can be used to obtain the suboptimal d, and the associated welfare 

cost W, can be calculated. 

From the viewpoint of applications, our analytical framework may be 

applied to the leveis of economic variables, or to their first differences, depending 

on the interest of the researcher. The variables in the welfare function and in the 

control equations may be of either type. If the given econometric model explains 

the levels, one can create new variables for the first differences by introducing 

identities, and vice versa. 

4. MEASURING THE GAIN FOR A SIMPLE MACRO MODEL 

The econometric model to be used to measure the gain from an optimal 

stochastic control policy is a very aggregative multiplier-accelerator model that 

I constructed, Chow (1967), using annual data of the United States covering the 

years 1931-1940 and 1948-1963. There are four stochastic equations explaining 

the four dependent variables listed below. 

y, = AC = first difference of total personal consumption expenditures, 

millions of current dollars. 

y, = Al, = first difference of gross private domestic investment in producers’ 

durable equipment plus change in business inventories, millions. 

y3 = Al, = first difference of new construction, millions. 

y, = AR = first difference of yield of 20-year corporate bonds, annual 

percentage rate times 10,000. 

x, = AM = first difference of currency and demand deposits adjusted in 

middle of the year, millions of current dollars. 

x, = AG = first difference of government purchases of goods and services, 

millions. 

Five other dependent variables are explained by identities, giving a total of nine 

structural equations as listed in Table 1. The reduced form equations, corre- 

sponding to (1.1), are given in Table 2. There are two exogenous variables, 

x, = AM and x, = AG, both of which are assumed to be contre! variables. They 
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TABLE 2 

REDUCED FoRM EQUATIONS 

Dependent Coefficient of 
Variable AC_, ee In-} Y_, AM __, AM AG 

(1) AC 0.3744  -—0.6173 -—0.4751 0.0466 —0.0651 0.9393 0.2697 
(2) Al, 0.1644 —1.2243 —0.4324 0.0514  -—0.0592 0.4837 0.3425 
(3) Al, 0.0470 —0.1606 —0.6335 0.0531  -—0.0868 0.3007 0.0087 
(4) AR 0.0650 -—0.2220 —0.1709 0.0168 0.2943 —0.5477 0.2561 
(5) AY, 0.5857 -—2.0023 —1.5411 0.1511  -—O2I111 1.7236 0.6209 
(6) I, 0.1644 -—0.2243 -0.4324 0.0514 —0.0592 0.4837 0.3425 
(7) I, 0.0470 —-0.1606 0.3665 0.0531 —0.0868 0.3007 0.0087 
(8) AY 0.4627 -—1.5818 -—1.2174 0.1194 —0.1668 1.3617 1.2805 
(9) Y 0.4627  —1.5818 -—1.2174 1.1194 —0.1668 1.3617 1.2805 

Source : Solution of the structural equations of Table 1. 

augment the above_nine variables in a newly defined 11 x 1 vector y,, in the 

notation of equation (2.3). 

There are two sets of calculations to be presented in Table 3, one obtained 

by controlling the first differences of the variables, and the second by controlling 

the variables in their levels.° The initial conditions y, are those for the year 1964.’ 

The target paths a, of all expenditures variables (in first differences or in levels 

as the case may be) are set to grow by 5 percent per year starting from their 

historical values y). The target path for the first difference of the rate of interest 

is set equal to zero for all periods; the target path for the interest rate variable 

itself is set equal to 43,300 (or 4.33 percent per year times 10*, its value in 1964). 

Since the model does not explain the price level P, and lagged price P_, is used 

in the first three structural equations as a deflation device, we will assume that 

this exogenous variable grows by 2 percent per year from 120.7, its value in 1964. 

The time horizon T is 10 years. 

The matrix K in the welfare function is assumed to be diagonal. Its non-zero 

diagonal elements have been chosen according to two major considerations: 

whether the interest rate variable should be weighted, and whether individual 

expenditures variables C, J, , and J, should be weighted above and beyond their 

sum. Total of government expenditures is included in the welfare function, either 

by itself or as one component of a sum, but money supply is not because there is 

little rationale for doing so. Of course, the path of money supply is appraised 

through its effect on expenditures and, in some calculations, through its effect 

on the behavior of the rate of interest. The weight given to the interest rate, when 

it is present in the welfare function, is equal to that of an expenditure variable, 

implying that a deviation of 1 percentage point (or 10,000 in our units) from target 

is as costly as a deviation of 10,000 million dollars for an expenditure variable. 

Calculations using other weights for the interest rate variable, and for government 

expenditures, than those reported in Table 3 have also been performed, but they 

© For brief comments on the relative merits and limitations of using levels and first differences 
in the welfare function, see Chow (1970b). 

7 See Chow (1967), p. 12, for data on yg. The initial conditions will not affect G,; therefore, the 
stochastic part of the welfare cost will not be affected. 
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TABLE 3 

MEASURING WELFARE COSTS FOR OPTIMAL AND SUBOPTIMAL POLICIES 
(10° millions) 

Using First Differences Using Levels 
Welfare Weights on first 

Run| Differences or levels of 1 1 | 1 1 1 
—W, | —W,| —(W, + W,)| —W, | —W W, + W 

Cl, 1, RY, YG Tee | pet | pe tN eM | eh | lM + M) 

Subopt. | 547.6 24.1 571.7 639.2 2.1 641.3 
(1) 1 1 | optimal | 388.4 0.0 388.4 388.4 0.0 388.4 

ratio 1.41 1.64 

Subopt. | 586.8 43.5 630.3 778.8 69.9 848.7 
(2); 1 #1 #1 1 1 | optimal | 451.8 12.5 464.3 417.1 59.7 4768 

ratio 1.30 1.87 

Subopt. | 358.9 21.6 380.4 460.7 1.0 461.7 
(3) 1 | optimal | 257.5 0.0 257.5 257.5 0.0 257.5 

ratio 1.39 1.79 

Subopt. | 564.7 33.4 598.1 701.0 9.6 710.6 
(4) , 1 | optimal | 426.3 12.7 439.0 487.0 7.3 494.4 

ratio 1.32 1.44 

Subopt. | 603.9 50.8 654.7 840.6 73.3 913.9 
mere bt 1 1 | optimal | 477.4 21.9 499.2 520.3 64.1 584.4 

ratio _ 1.26 1.62 

provide the same orders of magnitude for the relative gains of the optimal policies 

over the suboptimal policies. 

The first two runs in Table 3 give no weight to the interest rate variable, 

while the last three give a weight of 1 as specified above. Within these two groups, 

the runs are presented with increasing number of variables to be controlled. Note 

that, when the number of variables to be controlled is equal to the number of 

policy instruments (2 in our case), the deterministic components of these variables 

will reach their targets exactly, and the deterministic part of the welfare cost is 

therefore zero. Note also that the welfare cost is measured by a weighted sum of 

squared deviations in millions, so that 100 (10°) for one expenditure variable 

would mean a standard deviation of 10 billion dollars. 

As far as the five runs using first differences are concerned,®* the gain of the 

optimal solution in the stochastic part of welfare cost varies between about 

30 to 40 percent, and this part is much more important than the deterministic 

part. Hence, if the economic model contains stochastic disturbances, one can 

hardly afford to ignore them in the study of optimal policy. As far as the five 

runs using the levels of the variables are concerned,’ the gain of the optimal 

solution in the stochastic part of welfare cost varies from about 40 to 80 percent, 

and, again, this part dominates the deterministic part of the welfare cost. 

8 All calculations for the stochastic part of welfare cost require the use of the covariance matrix V 
of the reduced-form residuals, for which see Chow and Levitan (1969). 

° These calculations require the introduction of three more variables, i.e., the levels C, R, and Y,, 
into our equations of Tables 1 and 2; these variables are explained by simple identities. Furthermore, 
the control variables are M and G, rather than AM and AG. 
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One might wish to ask why the relative gains of the optimal policies are 

greater for the calculations using levels of the variables than the corresponding 

gains using first differences. To answer this question, let us reexamine how the 

stochastic part of the welfare cost is calculated. For the optimal policy, we choose 

a linear feedback control equation x* = G,y*_, in such a way that the system 

under control 

yi = Ay#., + Cx¥# + u, =(A + CG)y—., + u, 

will have small weighted sum of variances. More precisely, we choose the matrix 

G, = —(C'H,C)~'C'H,A to make the matrix (A + CG,) small, in the sense of 

having a minimum tr(A + CG,)'H,{A + CG,). This is equivalent to regressing 

the columns of the matrix A on the columns of the matrix — C, with the columns 

of G, as regression coefficients in a multivariate regression. For the sub-optimal 

policy, we set G, = 0. The gain from the optimal policy is the gain (in reducing 

variances) by using a smaller matrix (A + CG,) in the above stochastic system 

rather than the matrix A itself. If the lag structure of the system as reflected in 

the matrix A becomes more complicated, with reference to a given matrix C, 

in such a way that the ratio of tr A’H,A to tr(A + CG,)H,{A + CG,) becomes 

larger for the optimal G,, then the gain from optimal control will be greater. 

Intuitively speaking, the more sparse A is, A = 0 being the extreme case, the less 

will be the effects of the lagged variables on the current state, and thus the less 

will be the gain from optimal feedback control. If this point is valid, one should 

expect larger gains from optimal control if he employs a quarterly model instead 

of an annual one, because there will be more lagged variables and the matrix A 

will be bigger in dimension and less sparse. 

Granted that the optimal policy is definitely better than the suboptimal 

policy for a given welfare function, how much of the superiority would remain 

when judged by a different welfare function? To shed some light on this question, 

I have calculated the ratios of the suboptimal stochastic welfare costs to the 

optimal for Runs (1), (2), (4), and (5), using the welfare weights of Run (3) which are 

unity for R and Y only. These ratios are respectively 1.25, 1.32, 1.30, and 1.35 

for the calculations in first differences ; they are 1.28, 1.25, 1.42, and 1.41 respec- 

tively for the calculations in levels. The optimal policies are thus seen to be fairly 

robust against different welfare functions—trecall that the optimal policies of 

runs (1) and (2) were derived without including the rate of interest in their welfare 

functions. 

The gains from optimal policies having been measured, it would be of interest 

to examine the nature of the optimal feedback equations as reflected in the matrix 

G,. Table 4 shows the matrix G, for all the runs of Table 3. In all calculations, 

the matrices G,, beginning with G,,) converge very rapidly—for three significant 

figures, Table 4 applies equally well to G;.1 will confine myself to two observa- 

tions. First, concerning the relative roles of money supply and government - 

expenditures, other things being equal, optimal money supply will become more 

active, as measured by the absolute values of the feedback coefficients, when the 

rate of interest occupies a less important position in the welfare function ; optimal 

government expenditures will be more active when this variable occupies a less 
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TABLE 4 

OPTIMAL FEEDBACK CONTROL MATRIX G 

Run | AC_, Ty -4 In -1 Y_, M., M_, C_, R_, Y,-; G_, 

Using First Differences 

(1 AM |—0.3398 1.1616 0.8941 -—0.0877 0.1225 —0.1225 
1 AG | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

—0.3459 0.9073 0.7028 —0.0688 0.1121 —0.1121 (2) AM 
AG | 0.0002 0.2047 0.1136 —0.0119 0.0038 0.0038 

(3) AM |—0.0336 0.1149 0.0885 -—0.0087 0.3997 —0.3997 
AG |—0.3256 1.1130 0.8567 -—0.0840 —0.2947 —0.2947 

(4) AM |-—0.2727 0.9337 0.7198 -—0.0706 0.1821 —0.1821 
AG |—0.0888 0.2929 0.2167 -—0.0214 —0.0719 0.0719 

(5) AM |—0.2547 0.6713 0.5206 —0.0510 0.1909 —0.1909 
AG |—0.0879 0.4319 0.2881 -—0.0290 —0.0712 0.0712 

Using Levels of Variables 

») M |-0.3398 1.1616 0.8941 —0.0877 1.1225 —0.1225 ~0.5802 0.3602 
(1) G | 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 

>) M_|-0.3612 0.7339 0.5206 -0.2291 1.096 -0.096 -0.6526 0.4463 
(2) G | 0.0116 0.2228 0.2179 —0.3170 0.0156 —0.0156 0.3757 0.279: 

3, M |-0.0336 0.1149 0.0885 -0.2525 1.3997 —-0.3997 1.2195 0.0000 
(3) G |~0.3256 1.1130 0.8567 —0.6056 —0.2947 0.2947 ~ 1.2967 1.0000 

4) M |-02762 0.9460 0.7298 -0.0715 1.1785 —0.1785 0.2515 —0.5007 0.2444 
(4) G |~0.0675 0.2206 0.1615 —0.0160 —0.0530 0.0530 ~0.2602 —0.0796 0.1286 

g) M_ |-0.2822 0.5693 0.4109 -0.2130 1.1624 -0.1624 0.5172 0.2865 0.3169 
(5) G |~0,0634 0.3786 0.3217 —0.3321 —0.0469 0.0469 0.2471 —0.2719 0.4024 

important position in the welfare function. Secondly, because our consumption 

function (see Table 1) is of the form 

AC, = 9.3083 AY, , + 0.1938 AC,_, +... 

and our investment function, as derived from the accelerations principle through 

a stock-flow transformation, is of the form 

1,, = 0.2806 AY, , + 0.33751, ,-, +... 
or 

Al, , = 0.2806 AY, , — 0.66251, ,-, +... 

a compensatory policy would be to react negatively to AC,_, but positively to 

I, ,-, and I,,_,, as indicated by the coefficients in Table 4, and suggested by the 

coefficients in the reduced-form equation for AY in Table 2. If the above formula- 

tions of the consumption and investment functions are correct, monetary and 

fiscal policies should react differently to lagged consumption and to lagged 

investment expe.:ditures as recommended here. 

To provide a very crude check on the wisdom of actual government policies 

during the period 1948-1963 (the post World War II sample period of our model), 

I am reporting the following two regressions of AM, and AG, on AC,_,, 

(I, + I,),-,;, AM,-,, and linear trend t (t = 1948,..., 1963), placing in paren- 

theses below each regression coefficient its ratio to the standard error. 
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Observed Feedback Control Regressions 

1958-1963 

AC, (+ij., 6M., t Intercept ae 

AM -—O.3183 0.0957 0.0898 — 135.8 266,539.0 2,673 0.23 

(— 1.66) (0.58) (0.30) (—0.31) (0.31) 

AG —0.2115 0.7270 —0.1343  -—2004.0 3,886,846.0 6,401 0.29 

(—0.46) (1.85) (6.19) (— 1.89) (1.90) 

In these regressions, the two investment variables are combined to avoid too 

much multicollinearity ; the trend and the intercept are used to represent g, in 

the feedback control equation. Allowing for their standard errors, one can say 

that the coefficients of AC_, ard (J, + I,)_, do tend to be respectively negative 

and positive as in an optimal policy, and that the first three coefficients (or four, 

if the coefficient of investment expenditures counts as two) are not very different 

from the optimal coefficients in Table 4—discount the row of zeros in the optimal 

equations for AG in run (1) because AG is given too much weight, aid discount the 

row for AM in run (3) because AR is given too much weight. If uncertainties were 

ignored, and the above coefficients were used for the matrix G, to calculate the 

stochastic part of welfare, one would obtain: 

Run . 1 2 3 4 5 

- W, (regression) 566.1 536.2 288.8 583.0 553.1 

z W, (suboptimal) 547.6 586.8 358.9 564.7 603.9 

Ratio 0.97 1.09 1.24 0.97 1.09 

Thus, a set of (non-stochastic) feedback control equations based on historical 

observations would not compare unfavorably with the suboptimal policy of 

G, = 0. However, the above estimates of welfare gains are biased in favor of the 

observed regression policy because the standard errors s of the regressions and 

of the regression coefficients, which have been ignored in these calculations, would 

increase the variances of the system.'® One cannot say, from this very crude 

analysis, that monetary and fiscal policies in the period 1948-1963 were destabil- 

izing. 

5. CONCLUDING REMARKS 

In this paper, I have set forth a theoretical framework for measuring the 

welfare gains by following an optimal stochastic control policy as compared with 

a suboptimal policy which only permits a constant rate of growth for each policy 

‘0 One should at least incorporate the two observed feedback control equations as stochastic 
equations in the system by taking into account the random disturbances in them, but this would still 
leave out the possibly random nature of the regression coefficients. On the other hand, large residuals 
in the historical feedback regressions might be due to policies designed for non-economic reasons 
(such as financing and spending for the Korean War), and compensations for their effects later on. 
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variable, and have provided numerical measures of gains using a macro-economic 

model. I have found that the stochastic part of welfare cost, which takes into 

account the random disturbances of an economeiric model, is much larger than 

the deterministic part which does not. If first differences enter the welfare function, 

the gain varies between 30 to 40 percent ; if levels of the variables enter the welfare 

function, the gain varies between 40 to 80 percent, both in terms of weighted sum 

of squares of deviations from targets. By examining how the optimal stochastic 

control policy works in this framework, I have indicated that the complexities of 

the lagged structure of the system as reflected in the matrix A, for a given matrix C 

of the effects of the policy variables, will tend to make the gain from the optimal 

policy greater, implying, for example, that a model using quarterly observations 

is likely to yield larger gains than an annual model. 

It has also been found that the gain from an optimal policy, which is derived 

from a given welfare function, is fairly robust against (reasonable) variations in 

the welfare weights for its evaluation. The characteristics of the optimal feedback 

policies have been examined. Historical feedback relationships have been crudely 

estimated by regressions, and they do not suggest that monetary and fiscal policies 

in the United States were destabilizing in the period 1948-1963. 

Let me now comment briefly on the possibility of relaxing the three main 

assumptions stated at the beginning of this paper. As suggested by Athans (1971), 

for example, an analysis using a quadratic welfare function and a linear stochastic 

model can be applied to a problem involving non-quadratic welfare and non-linear 

model by, first, solving the deterministic version of the latter problem, a version 

that substitutes zero for random disturbances, with whatever method available 

(such as Pontryagin’s minimum principle or dynamic programming), and, second, 

controlling the deviations of y, from the optimal path obtained above after the 

linearization of the original model around this optimal path. This suggestion 

deserves further investigation, especially in view of the large differences between 

the optimal stochastic solutions and the optimal deterministic solutions that we 

have found in this paper. 

If the model is linear and the welfare function quadratic, but the parameters 

are unknown and treated as random, it is well-known, and can easily be shown 

using techniques parallel to those of equations (2.23) to (2.32), that the optimal 

feedback equations will remain linear with matrices 

G, = —[E(C’'H,C)]~‘E(C'H,A) 

H,_, = K,-; + E(A + CGYH{A + CG,) 

replacing those of equations (2.27) and (2.31) respectively, provided that the random 

matrices A and C have density functions which are unchanged during the planning 

period. If this proviso is accepted, as it is reasonable in many applications when 

the prior information on A and C at the beginning of the planning period dominates 

the additional information to be collected during the planning period, one has an 

analytical solution to the optimal control problem after evaluating the mathe- 

matical expectation of the product of any two elements of the matrices A and C by 

Bayesian methods, as is done in Chow (1971). I hope to report on the results of 

this approach in the near future. ae 
Princeton University 
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