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Annals of Economic and Social Measurement, 1/4, 1972 

OPTIMAL STABILIZATION POLICIES VIA 

DETERMINISTIC CONTROL 

BY RoBERT S. PINDYCK 

Economic stabilization policy is defined in terms of a linear-quadratic tracking problem. The implications 
of alternative cost functionals and non-linear models for planning are then discussed in terms of computa- 
tional simplicity and improved performance of mode!s. 

1. INTRODUCTION 

The development of macro-econometric models over the past two decades has 

provided a vehicle for studying the simultaneous time-dependent relationships 

between economic variables and their response over the short term to policy 

instruments, such as tax rates and the money supply. The more recent availability 

of computational algorithms for the efficient solution of sets of simultaneous 

difference equations has made the computer simulation of econometric models a 

particularly useful way to determine and compare the dynamic effects of different 

economic stabilization policies, and to test policies and weed out those whose 

economic effects would be undesirable. Aithough it is an extremely useful tool for 

the planning and analysis of stabilization policies, simulation does not provide 

a direct means of obtaining a policy that is optimal with respect to a fixed set of 

objectives. 

In recent years, there has been an interest in optimal control theory as a 

possible tool for economic planning. Given an econometric.model that one is 

willing to accept as a reasonable and fixed representation (at least over the short 

term) of the economy, and given a cost (objective) functional that represents the 

goals and objectives of economic stabilization, then the design of a stabilization 

policy can easily be thought of as a problem in deterministic optimal control. 

Of course, econometric models are not really deterministic systems. Each 

equation has an implicit additive error term associated with it, and every estimated 

coefficient is itself a random variable. Most of our work, however, is done under 

the guidance of simplification, and so we might choose to ignore the stochastic 

properties of the model or else make the necessary simplifying assumptions about 

them that would allow us to invoke “certainty equivalence” [9] in obtaining a 

solution. Certainly, a deterministic treatment of the optimal stabilization problem 

is simpler in many respects to a stochastic treatment. To judge its usefulness and 

adequacy, we will have to examine some of the results which are now becoming 

available. 

Most, though not all, of the recent work in applying deterministic optimal 

control to economic stabilization policy assumes that the econometric model is 

either linear or else has been linearized, and it is not always clear as to how 

appropriate this assumption is. The cost functionals that have been used have 

generally been quadratic or quadratic-linear in structure. Such a formulation is 
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perhaps somewhat restrictive but results in an optimization problem that is 

mathematically tractable. 

As an example of the use of deterministic control in the formulation of optimal 

stabilization policie:, we will discuss the treatment of stabilization policy as a 

linear-quadratic tracking problem in optimal control. We will then briefly discuss 

alternatives to the linear-quadratic formulation in the context of some other 

recent applications of deterministic control to stabilization policy. Finally, we 

will make some remarks about the use of deterministic optimal control as a 

practical tool for the planning and analysis of stabilization policies. 

2. ECONOMIC STABILIZATION POLICY AS A LINEAR-QUADRATIC 

TRACKING PROBLEM 

Economic stabilization policy can be approached as a deterministic optimal 

control problem that involves tracking as closely as possible nominal state and 

nominal policy trajectories, subject to a quadratic cost functional and the con- 

straint of a linear system. This formulation is actually quite general, and allows 

for penalization for variations in, as well as the levels of, the state variables and 

control variables. 

The deterministic system is of the form 

(1) Xi+1 — xX; = Ax; + Bu; + 2; 

with a given initial condition 

(2) Xo=6¢ 

Here x; is the n-dimensional state vector at time i, u;, the r-dimensional control 

vector at time i, and z;, an s-dimensional vector representing, at time i, s exogenous 

variables which are known for all i but cannot be controlled by the policy planner. 

A, P, and C are known n x n,n x r, and n x s matrices. Note that n, the number 

of state variables, will generally be larger than the number of endogenous variables 

since the structural form of the model will usually contain difference equations of 

order greater than one. 

We then define X; and &@; as the nominal (ideal) state and control vectors that 

we would like to track, and we assume that they have been specified for the entire 

planning period. The nominal time paths for variables such as GNP and invest- 

ment, for example, would probably grow at some steady rate, while that for 

unemployment might drop and then remain low for the remainder of the planning 

period. The control variables themselves cannot be manipulated in any way 

whatsoever, but must also stay close to a set of nominal or “‘ideal’’ time paths. 

For example, it is probably undesirable for government spending or the money 

supply to increase by 100 percent in one year and decrease by 200 percent in the 

next year. Manipulating policy variables has real costs associated with it, and 

these costs must be embodied in the cost functional 

The quadratic cost functional then is given by: 

N 

(3) J = 1/2 Y {x — YQ — &) + (u; — AYR, — 0} 
i=0 
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a where Q is an n x n positive semi-definite matrix, and R is an r x r positive 

definite matrix. The diagonal elements of Q, some of which may be zero, give the 

relative costs for deviating from the nominal path of each state variable—for 

example, the cost of deviating from nominal GNP relative to the cost for deviating 

from nominal unemployment. The diagonal elements of R (all of which must be 

non-zero), give the relative costs for deviating from the nominal paths of the 

control variables ; for example, we would expect.it to be more costly to manipulate 

the tax rate than to manipulate the money supply. Finally, the comparative magni- 

tudes of Q and R give the relative costs of control versus the objectives of control. 

The optimal control problem is then to find a control sequence {u¥,i = 0, 

1,...,N — 1} such that u¥ and the resulting x}? satisfy equations (1) and (2), 

and the cost functional (3) is minimized. 

The solution to this problem, which is described elsewhere [5, 6], provides 

a convenient method of obtaining optimal policies that are computationally 

compatible even with reasonably large econometric models. The optimal closed- 

loop feedback control is linear, i.e. of the form 

(4) us = Fx¥ + G; 

This control law tends to be “self-correcting,” i.e. if random shocks are introduced 

into the system so that at different times x; moves away from its optimal value x*, 

the resulting optimal control (in the following period) will force the state variables 

towards their optimal paths. 

As an example of the application of this method, this author [5] calculated 

several optimal stabilization policies using a 28-state variable (ten equations) 

quarterly econometric model [7]. The optimal policies were based on different 

cost functions (i.e. different Q@ and R matrices) designed to provide insight into 

the trade-offs inherent in policy formulation in the context of the model. The 

results demonstrate the usefulness of the approach as a tool both for policy 

planning and for the analysis and better understanding of a model’s dynamic 

behavior. 

3. ALTERNATIVE Cost FUNCTIONALS AND NON-LINEAR MODELS 

The quadratic cost functional has become a familiar in economic optimiza- 

tion problems. Besides having the nice property of yielding linear decision rules 

when applied to the constraints of a linear system, it is, as Theil [10] and others 

have argued, a very reasonable way to model the costs of deviating from desired 

objectives. It is restrictive however, in that it is symmetrical, i.e. overshooting a 

policy target incurs the same cost as undershooting the target. 

Attempts have been made to solve dynamic optimization problems with 

more general cost functionals. In a recent application to economic stabilization 

policy, Friedman [2] has extended Theil’s [10] specification and solution of a 

linear-quadratic optimization problem by working with a cost functional that is 

piece-wise quadratic. For each endogenous variable and each policy variable, the 

range of possible values is divided into three regions; values within the middle 

region are assigned zero cost, but values within the two extreme regions are 

penalized quadratically but asymetrically (e.g. overshooting a target might cost 
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less than undershooting). The algorithm devised to solve this problem calculates 

optimal policies through an iterative process which solves Theil’s standard 

problem along the different pieces of the cost functional. 

The decision as to whether this or any other deviation from the standard 

quadratic cost functional is worth the resulting computational expense depends 

in part on the range of values that the endogenous and exogenous variables are 

likely to take on. Unemployment and inflation will probably always be higher 

than is desired, and GNP growth lower than desired, so there is some question 

as to whether the symmetry of the quadratic cost is itself a serious limitation. 

There may be functional forms other than the quadratic which are more repre- 

sentative of actual social costs. However, the definition of society’s economic goals 

and preferences in any parametrizable functional form is probably a much more 

complex problem than is the attainment of those goals, but as long as one is 

willing to assume that the definition is possible, a quadratic specification does 

not seem too unreasonable, particularly in view of its analytical tractability. 

Probably a more serious restriction than the quadratic cost is that of a linear 

model. Most econometric models are at least quasi-linear in structure, but some- 

times the more interesting aspects of their dynamic behavior arise from the 

non-linearities. Livesey [4] has recently approached the optimal stabilization 

problem with a continuous-time 15 state-variable non-linear model of the U.K. 

The control variables included the interest rate, the growth rate of government 

expenditures, and the rates of change of three tax rates, and the quadratic cost 

functional penalized for unemployment and an adverse trade balance, while 

assigning a positive utility to the terminal capital stock. 

Livesey solved this stabilization problem computationally, using a conjugate 

gradient method [3], but large amounts of computation time are typically involved 

in the iterative solution of a non-linear optimal! control problem. Even though his 

model was fairly small, the large number of iterations required made it too costly 

to reach the true optimum (i.e. to allow the solution algorithm to iterate until 

convergence) or to repeat the optimization for several alternative cost functionals. 

Livesey’s results raise the fundamental question that has been encountered 

again and again in engineering application of optimal control, namely, is the 

non-linear optimization worth all of the computational difficulty that it entails. 

This question is particularly important in economic stabilization where the 

specification of the cost functional is so arbitrary, thus making it desirable to test 

different objectives by computing several different optimal policies. The experience 

in engineering has been that often the closed-loop control for a linear model can 

be applied adequately to the control of a physical system that is non-linear. 

We have had less experience with control theory in economics, but we can expect 

that the adequacy or inadequacy of linear or linearized models will depend on how 

much of the dynamic behavior of the economic system is determined by the non- 

linearities in its structure. Our analytical tools for dealing with the dynamics of 

non-linear systems are meager and so we may have to look at computational 

results to get a better feeling for how much we can rely on linear optimal control 

as a means of obtaining stabilization policies. As an example, it would be interesting 

for comparison to solve Livesey’s optimization preblem using a linearized version 

of the model with the same cost functional. 
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4. DETERMINISTIC CONTROL AS A TOOL FOR PLANNING 

As we mentioned before, computer simulation of econometric models has 

lately become accepted as a useful tool for the planning and analysis of short-term 

stabilization policies, and this acceptance is at least in part due to the availability 

of efficient computational algorithms and the resulting ease by which numerical 

simulation results can be obtained. An economist can take a model of almost 

any size and, by simulating it over and over again, experiment with different 

values of policy parameters and different time-paths for policy and other 

exogenous variables. 

If optimal control is ever to gain the acceptance that simulation has as a 

practical tool for policy planning and analysis, it is imperative that it yield solu- 

tions that are computationally tractable. An economist should be able to get 

numerical solutions easily so that he can experiment, much as he would with 

simulation, with different values for the parameters in his cost functional] or 

different time-paths for non-policy exogenous variables. This should be an 

important consideration when cranslating stabilization policy into an optimal 

control problem, and the specification of the optimal control problem should be 

such that its solution will make it possible to obtain efficiently and easily compu- 

tational results for policies using models of reasonable size. 

The linear-quadratic specification is robust in its applicability to the stabiliza- 

tion problem, and has the special advantage of being computationally tractable. 

Whether deviations from the linear-quadratic specification are worth the added 

computational expense depends partly on how big that expense is, but also on 

exact!y how the properties of the resulting optimal policies depend on the non- 

linearities or alternative cost functionals that one might want to introduce. For 

now, even within the context of the linear-quadratic formulation, the dynamic 

properties of optimal stabilization policies are not well understood. Sengupta [8] 

for example has used simple multiplier-accelerator mouels to show that the 

stability characteristics (e.g. the possible presence of oscillatory behavior) of the 

optimal policy depends on the lag structure of the model, as well as possible 

constraints on the control. When dealing with non-linear models and more 

complicated cost functionals, it is all the more difficult to get an analytical under- 

standing of the dynamics of the optimal policy and to assess the loss (the degree 

of sub-optimality) involved in a linearization of the model. 

The points raised above also apply to the choice between a deterministic 

versus a stochastic approach to finding optimal policies. The econometric model 

is a stochastic system, but solving a stochastic optimal control problem that takes 

into account both the implicit additive error terms and the statistical properties 

of the estimated coefficients can be extremely difficult, especially when one wants 

to obtain computational results for a large model. In simplifying the problem and 

using a deterministic treatment, we rely on past engineering experience with the 

linear-quadratic deterministic control of non-linear stochastic systems. The self- 

correcting nature of the linear control law (equation 4) that results seems to have 

provided rather satisfactory results—satisfactory not only because they can be 

computed easily, but also because they do not seem to be that sub-optimal in 

their performance. 
Massachusetts Institute of Technology 
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