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5 Technical Problems in 
Social Experimentation: 
Cost versus Ease of Analysis 
Jerry A. Hausman and David A. Wise 

Over the past decade, a major portion of empirical economic research 
has been based on what have come to be known as social experiments. 
Primary examples include a series of income-maintenance experiments, a 
housing-allowance demand experiment, several electricity-pricing ex- 
periments, and a health-insurance experiment. Much of our discussion in 
this paper is motivated by the income-maintenance experiments but it 
draws from our experience with the housing-allowance and electricity 
experiments as well. 

The goal of this paper is to set forth general guidelines that we believe 
would enhance the usefulness of future social experiments and to suggest 
ways of correcting for their inherent limitations. Our conclusion and 
results can be summarized briefly. 

Although the major motivation for an experiment is to overcome the 
inherent limitations of structural econometric models, in many instances 
the experimental designs have subverted this motivation. The primary 
advantages of randomized controlled experiments were often lost. In 
particular, in large measure it was impossible to estimate an experimental 
effect using straightforward analysis-of-variance methods, as a standard 
experimental design would suggest. Rather, a careful analysis of the 
results often required complicated structural models based on strong 
model-specification assumptions, the necessity for which an experiment 
should be designed to obviate. Section 5.1 provides a simple explanation 
of this goal and is intended to motivate the remainder of the paper. 

Jerry A.  Hausman is professor of economics, Massachusetts Institute of Technology, and 
research associate, National Bureau of Economic Research. David A. Wise is John F. 
Stambaugh Professor of Political Economy, John F. Kennedy School of Government, 
Harvard University, and research associate, National Bureau of Economic Research. 
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The major complication for the analysis of the experiments was in- 
duced by an endogenous-sample-selection and treatment-assignment 
procedure that selected the experimental participants and assigned them 
to control versus treatment groups partly on the basis of an outcome 
variable whose change the experiments were intended to measure. To 
overcome at the time of the experimental results’ analysis the complica- 
tions caused by the endogenous sample selection and treatment assign- 
ment required rather complex statistical techniques and detracted greatly 
from the simplicity we believe should be a goal of experimental designs. 

We propose that to overcome these difficulties, an experimental design 
should as nearly as possible allow analysis based on a simple analysis-of- 
variance model. This would mean that sample selection and treatment 
assignment should be based on randomization and that stratification on 
response variables should be avoided. 

Although complexities attendant to endogenous stratification can be 
avoided, there are inherent limitations of the experiments that cannot be. 
Two major ones are self-determination of participation and self-selection 
out through attrition. But these problems, we believe, can be corrected 
for with relative ease if endogenous stratification is eliminated. 

Finally, we propose that as a guiding principle, the experiments should 
have as a first priority the precise estimation of a single or a small number 
of treatment effects. The experiments to date have in general been 
hampered by a large number of treatments together with small sample 
sizes so that no single treatment could be estimated accurately. 

Following the motivation in section 5.1, we have elaborated in section 
5.2 these several general guidelines that we believe would enhance the 
effectiveness of future experiments. The problem of endogenous strat- 
ification and a way of avoiding it are set forth in section 5.3. A method of 
correcting for the inherent self-selection problems of social experiments 
is suggested in section 5.4. 

5.1 Unbiased Estimates, Structural Models, 
and Randomization 

Obtaining unbiased estimates is the major motivation for a large 
portion of econometric theory and for the application of econometric 
techniques in empirical analysis. Econometricians generally have in mind 
a model of the form 

(1) y = f ( X ,  E) 7 

where X represents measured and E unmeasured determinants of Y .  The 
goal is to estimate the effects of the elements of X on Y .  A common 
specification off in equation (1) is 

(2) Y = X p + E ,  
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where p is a vector of parameters to be estimated, with each element of p 
measuring the effect on Y of a unit change in the corresponding element 
of x. 

The guiding principle for econometricians is that simple estimation 
techniques (e.g., least squares) will yield unbiased estimates of p if Xis  
uncorrelated with E. “Unbiased” is understood to mean and is indeed 
defined to mean an unbiased estimate of the “causal” effect of X on 
Y-the understood definition of p in much, but not all, of econometric 
analysis. But although the principle is demonstrably true in theory, it is 
often difficult to approximate in practice and its existence impossible to 
verify without reservation. Nonetheless, the goal remains. 

To move toward it, econometricians use two general modes of reason- 
ing. One is economic theory that restricts the function form off, although 
usually only within broad bounds. The other is statistical theory that in 
large part prescribes methods to correct for correlation between Xand E, 
and thus obtaining unbiased estimates of f3. The combination of eco- 
nomic and statistical theory often leads-at least in the abstract-to 
specification and estimation of structural models. Structural models can 
be thought of as those in which the parameters have a causal interpreta- 
tion, with the concomitant property that if unbiased estimates of them are 
obtained they also could be given a causal interpretation. But although 
theoretical prescription of models and their empirical estimation can 
restrict the form off, they can do so only within limits. The estimates must 
be interpreted within the constraints implicit in the assumptions that 
underlie them. In particular, it is usually not possible to know for sure 
that Xis uncorrelated with E, or if not, that corrections have been made 
for correlations that exist. 

A response to this dilemma is to choose selected values of X in such a 
way that they are by design uncorrelated with other determinants of Y, 
thus allowing unbiased estimation of the corresponding values of p. This 
technique is randomization, and it is most often employed within the 
context of a randomized controlled experiment. For purposes of exposi- 
tion we shall henceforth use as an example an estimation of the effects of 
income-maintenance plans-taxes and guarantees-on earnings. 

Suppose that the plan is T, called the treatment, and that earnings 
depend on T, on other measured variables X, and on unmeasured deter- 
minants E according to 

(3) Y=PIT+f (X,  E). 

If individuals (more often families) are chosen at random from the 
population and assigned values of T, in large samples Twill be uncorre- 
lated with E and with X as well. Then simple least-squares analysis-of- 
variance estimation of the model 

(4) Y = P , T + r l ,  
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where r) is equal tofand treated as a disturbance term in this model, will 
yield unbiased estimates of p. 

The primary motivation for this approach is to circumvent the uncer- 
tainties inherent in the assumptions of structural econometric models by 
constructing Tin such a way that it is uncorrelated with other determi- 
nants of Y ,  thus by construction assuring unbiased estimation of PI.  

We have set forth these possibly oversimplified ideas to serve as 
background and motivation for our subsequent discussion. In particular, 
it is important to keep in mind the motivation for randomized controlled 
experiments. Although in the large social experiments we believe it is 
impossible to create the theoretical paradigm of such an experiment, the 
paradigm should serve as a guide to their designs as well as to the analysis 
of their results-much as the theoretical goal of Xs uncorrelated with 
error terms serves as a guide to empirical analysis based on nonexper- 
imental data. We shall argue, for example, that the use of complex 
structural models to analyze the data from social experiments, or ex- 
perimental designs that require such models or depend in large part on 
structural-model assumptions, are often in contradiction to the primary 
motivation for the experiments and thus subvert their intent; they are 
often inconsistent with the raison d’Etre of experiments. We will elabo- 
rate on this and other general propositions in the next section. 

5.2 General Goals and Guiding Propositions 

With the powerful advantage of hindsight, and aided by our part in the 
analysis of social experiments to date, we shall set forth several proposi- 
tions that will enhance the value of future experiments. To do this we will 
explain what we believe to be the major inherent limitations of such 
experiments. The primary ones are self-determination of experimental 
participation and self-determination of withdrawal from the experiment. 
These limitations can be corrected for, and some suggestions for doing so 
are contained in the following sections. Other design characteristics of 
the experiments to date unnecessarily complicate their analysis and in 
particular make it much more difficult to correct for their inherent 
limitations. The primary design feature of this type is stratification on 
endogenous variables. We will address this question first, then turn to a 
discussion of inherent limitations, and then address other principles that 
we believe should guide future experimental designs. 

5.2.1 Stratification on Endogenous Variables 

As described in the previous section, the reason for an experiment is, 
by randomization, to eliminate correlation between the treatment vari- 
able and other determinants of the response variable that is under study. 
In each of the income-maintenance experiments, however, the ex- 
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perimental sample was selected in part on the basis of the dependent 
variable, and the assignment to treatment versus control group was based 
in part on the dependent variable as well. In general, the group eligible 
for selection-based on family status, race, age of family head, etc.-was 
stratified on the basis of income (and other variables), and persons were 
selected from within the strata. In the New Jersey experiment, persons 
with incomes greater than 1.5 times the poverty level were excluded 
altogether. In the other experiments, the stratification on income was less 
complete, but as a result a bit more complicated. Assignment to control 
versus treatment group was also based in part on income. Whether the 
outcome of interest is income or hours worked, which is a component of 
income, such a procedure induces correlation between right-hand vari- 
ables, including the treatment effect, and unmeasured determinants of 
income. Thus it is not straightforward to obtain unbiased estimates of 
treatment effects using simple analysis-of-variance or -covariance tech- 
niques. 

Theoretically, an elaborate analysis of variance procedure that allowed 
for estimation of separate treatment effects within each strata would yield 
unbiased estimates. But because the strata were so numerous, the treat- 
ments so many, and the sample sizes relatively small, this method of 
analysis was impractical because reasonably precise estimates of treat- 
ment effects could not be obtained. Thus to correct for endogenous 
stratification and treatment assignment required rather complicated 
models (Hausman and Wise 1977, 1979, 1980). 

Analysis of experimental results based on such techniques has at least 
two major shortcomings. First, it is relatively complicated-requiring 
nonlinear maximum-likelihood estimation for example. This is a short- 
coming in itself, but seems especially troublesome in the context of an 
experiment one of whose major advantages presumably is simplicity. 
Second, and more important, it necessitates the imposition of functional- 
form constraints. The models proposed by Hausman and Wise are gener- 
ally structural in spirit, and in particular require distributional assump- 
tions against which the results may not be robust. To correct for endoge- 
nous stratification, for example, requires analysis based on truncated 
distributions in which the distribution assumed is necessarily a key com- 
ponent. Since the primary advantage of an experiment presumably is to 
lessen or avoid the necessity for such assumptions, it seems contradictory 
to design experiments whose effects cannot be evaluated accurately 
without them. 

The elimination of stratification on endogenous variables would avoid 
this source of complication. The most straightforward procedure would 
be to randomly select an experimental group from the population and 
randomly assign these selected to control or treatment status, without 
consideration of income or other endogenous variables. Two major 
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objections to such a procedure are cost and political feasibility. Indeed 
the two are not unrelated. Most seriously considered income-support 
programs are intended to guarantee a minimum income to families who 
would otherwise have relatively low incomes. And presumably it is 
primarily this group whose labor supply and earnings would be affected 
by the plan. Nonetheless, it has been difficult to obtain funds for ex- 
perimental programs that guaranteed support for higher-income fami- 
lies, even though under most plans payments to this group would be 
small, since their earnings would be unlikely to fall below the 
“breakeven” point at which payments are zero. In addition, if it is 
important to obtain a “good” estimate of the effect of the program on 
low-income families, then it is necessary to have a large enough number 
of low-income families to do so. Of course a large random sample from 
the population would also provide a large number of low-income fami- 
lies, but larger sample sizes increase the cost of the experiment. 

We do not present numbers on the marginal cost of an additional 
experimental family. Preliminary investigation, however, suggests that it 
is small relative to the fixed costs of running an experiment. Suppose that, 
for whatever reason, it is not feasible to select a random sample from the 
population. We propose in this case that the sample be as random as 
possible. That is, randomly select persons with incomes below a given 
level, without endogenous stratification within this group. But what 
should be the measure of income that determines eligibility? 

We have proposed in section 5.3-after a more detailed description of 
the endogenous stratification problem-a method for selecting the ex- 
perimental group, based on predicted income, in such a way that the 
stratification is not endogenous. 

5.2.2 Inherent Limitations on Random Sample Selection 

We have argued that endogenous stratification procedures unduly 
complicate the analysis of experimental results and that procedures that 
avoid such stratification would be preferable. Nonetheless, there are 
inherent limitations on randomization in social experiments. It is surely 
impossible to attain the theoretical paradigm of a randomized controlled 
experiment. There are at least two major reason for this problem, both 
involving individual self-selection. 

One reason is that persons cannot in general be made to participate 
in an experiment if selected by a random procedure. Some of those 
randomly selected will participate while others will not. If the individual- 
participation decision is related to the effect that the treatment would 
have on individuals, then the estimated treatment effect will be a biased 
estimate of the effect to be expected if the treatment were instituted as a 
program applying to the entire population. 
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The 1954 Salk-vaccine experiment provides a good example of this 
effect. There were two primary versions of the experimental design. In 
the “placebo control” areas, children who agreed to be inoculated (or, 
more accurately, whose parents agreed to the inoculation) were ran- 
domly assigned to the vaccine group or to the placebo group. In the 
“observed control” area, second-grade children who agreed to inocula- 
tion received the vaccine, while first and third graders served as the 
control group. Selected results are shown in table 5.1. 

Children in the placebo control areas who were not inoculated con- 
tracted polio at a rate of 54 per 100,000. The comparable figure for 
children who participated in the experiment was 81, the rate for those 
who participated and received the placebo. Similarly in the observed 
control areas, second-grade children who were not inoculated had a 
substantially lower rate (53), than the rate for the control group (61). 
Thus apparently children who were more likely to contract polio, and 
thus more likely to be helped by the vaccine, were more likely to partici- 
pate in the experiment. This tends to exaggerate the effect of the vaccine. 
For example, one might conclude on the basis of the vaccinated and 
control groups in the observed control areas that the vaccine reduced the 
rate from 61 to 34. But apparently the rate for all children would have 
been less than 61 without the vaccine. It is of course apparent from this 
data that the vaccine was effective, regardless of this uncertainty about 
the magnitude of the effect. But if the effect had been less clear, this 
self-determination of participation could have led to considerable uncer- 
tainty about desirability of universal inoculation. 

A similar effect was apparent in the recent housing-allowance-demand 
experiment. Because of the nature of the primary experimental allow- 
ance, many families could benefit under the allowance plan only if they 

Table 5.1 Reported Cases of Poliomyelitis 

All Reported 
Study Cases per 

Study Group Population 100,000 

Placebo control areas 
Vaccinated 
Placebo 
Not inoculated 

200,745 41 
201,229 81 
338,778 54 

Observed control areas 
Vaccinated 221,998 34 
Controls 725,173 61 
Second graders not inoculated 123,605 53 

Source: (Meier 1978, table 2, p. 11). 
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were willing to move. It seems apparent from subsequent analysis that of 
low-income renters who were asked to participate in the experiment, 
those who were less adverse to moving were more likely to participate in 
the experiment (see Venti and Wise 1982). Thus the estimated ex- 
perimental effect tended to exaggerate the increase in rent that would be 
induced by the allowance where it applied to all low-income renters. 

We have suggested in section 5.4 a procedure that we believe could be 
used to correct for this potential bias, assuming that the self-selection 
cannot be avoided. 

The other form of self-selection is attrition from the experimental 
sample, once a sample has been selected. Again, the problem is that 
determinants of dropping out may be related to the experimental re- 
sponse that would otherwise be observed. For example, persons who are 
not affected by the treatment, possibly because they have high incomes 
for example, may be more likely to drop out than those who are affected 
and thus receive higher payments. This is the problem addressed by 
Hausman and Wise (1979). 

If the experimental design is not complicated by endogenous stratifica- 
tion and assignment, then correction for self-determination of participa- 
tion and attrition would be relatively simple. Indeed correction for both 
simultaneously is quite feasible, and this approach is taken in section 5.4. 
Such a correction, however, is much more complicated if the ex- 
perimental design is also complicated by endogenous stratification and 
assignment. This reinforces the proposal that such stratification be 
avoided in favor of random sampling. Then analysis of experimental 
results can address complications that are unavoidable without having to 
devote extraordinary effort to correct for complications induced by the 
experimental design. 

5.2.3 Additional Concerns 

A characteristic of experiments to date has been a rather large number 
of treatments. The income-maintenance experiments, for example, en- 
tailed several treatments defined by different combinations of income- 
guarantee levels and tax rates. In none of the experiments, however, 
were the sample sizes large enough to obtain precise estimates of the 
effects of any particular treatment. Thus analysts generally resorted to 
estimation of a single effect that did not distinguish the various treat- 
ments, or they assumed a structural model that allowed interpolation 
across individuals assigned to different treatments. The more the latter 
procedure was followed, the less consistent the analysis was with the 
motivation for an experiment. That is, it subverted the major goal of 
using random selection and treatment assignment to circumvent the 
inherent limitations of hypothesized structural models. 
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Thus it seems to us that priorities should be ordered in such a way that 
the primary goals of an experiment are met first. The first goal we propose 
should be the estimation of an experimental effect for a treatment. Then 
additional treatments should be added only if each additional one can 
also be estimated with precision. The proposition is that precise estima- 
tion of the effect of single treatment or the effects of a few treatments is to 
be preferred to imprecise estimates of many. This we propose should be 
done in such a way that simple analysis of covariance estimates of treat- 
ment effects may be obtained, subject to the limitations on randomiza- 
tion discussed above and detailed more fully below. Thus we would 
propose an evaluation model of the form 

Y = a l T 1 + ( ~ 2 T 2 + .  . . + ( Y ~ T ~ + X P + E ,  

where the ak are treatment effects. We propose an analysis-of-covariance 
model because our research (Hausman and Wise 1979) has suggested that 
the use of exogenous control variables, represented by X, reduces the 
effect of attrition on estimated experimental effects; we presume that it 
would be likely to reduce the effect of self-determination of participation 
as well. 

The reader will note the absence of a structural parameterization that 
attempts, for example, to describe income and substitution effects. This is 
because we believe that simple precise estimates of a few effects will be 
more readily understood by most observers and will thus carry more 
weight in the decision-making process. In addition, if, for policy pur- 
poses, it is desirable to estimate the effects of possible programs not 
described by treatments, then interpolations can be made between esti- 
mated treatment effects. If the experimental treatments are at the bounds 
of possible programs, then of course this calculation is easier. Although it 
can be argued that structural models are necessary to make interpola- 
tions, we believe that for almost any situation we can think of, the 
simplicity of, say, linear interpolations far outweigh the possible advan- 
tages of interpolations based on a structural model. At the same time, the 
spirit of the experiment is maintained. 

If the experiment is to inform the policy-making process, we believe 
that a single number that can be supported can be more confidently relied 
on than more complex analysis. That the labor-supply effect of a known 
treatment is 16 percent and not 2 percent, for example, is much more 
important than whether the effect of a plan close to the treatment is 16 
percent or 17 percent. 

This is not to say that experimental data should not be used to estimate 
structural econometric models. These data can of course be used like 
other survey data for this purpose. But the experiment should be thought 
of in the first instance as a way to obtain accurate estimates of the effects 
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of particular programs. Structural models with parameters estimated on 
survey data could also be used to make such estimates. (Presumably this 
would be done to a considerable extent before an experiment were 
undertaken, if for no other reason than to help to inform the choice of 
experimental treatment or treatments.) In this sense, the experiment 
could be thought of as checking the accuracy of predictions based on 
analysis of survey data. That is, the experiments should be designed to 
provide a selected number of points “on” the response surface, defined 
for example by tax rate and guarantee levels. It is rather straightforward 
to check for example the degree to which alternative structural models fit 
these “known” points on the response surface. In short, an experiment 
should be used to avoid the inherent limitations of structural models in 
providing accurate estimates of the effects of specified programs. The 
major advantage of experiments should not be lost sight of in an effort to 
estimate models that will predict the result of any plan. A lack of confi- 
dence in such estimates is the motivation for the experiments. To use the 
experimental data only to provide more such estimates, or to set up the 
experiments in such a way that only such estimates are possible, is to 
travel to Rome to buy canned peas. 

5.3 Endogenous Sampling and Stratification 

As discussed in the introduction above, a major feature of classical 
experimental design is that it leads to a simple analysis-of-variance 
(ANOVA) model that minimizes the number of maintained assumptions 
implicit in the interpretation of parameter estimates. That is, the analysis 
is “model free” in two important aspects: (1) In the simplest cases a 
main-effects ANOVA specification is adequate. Questions about the 
need to include, for example, further right-hand variables-as in much of 
econometric and statistical analysis-do not arise. Correct randomiza- 
tion assures that disturbance terms have expectation equal to zero. Also, 
questions of functional form are absent because each experimental- 
treatment effect is measured by a parameter. (2) Distributional assump- 
tions are kept to a minimum in estimation. While distributions of test 
statistics are certainly used in inference, asymptotic theory may provide a 
reasonably good approximation in many cases. Classical experimental 
design together with ANOVA offer the opportunity either to eliminate or 
to decrease greatly a major problem that arises in econometric studies 
based on observational, i.e., nonexperimental data.’ 

Yet in many of the social experiments the classical approach has not 
been followed. Given a limited experimental budget and a “target 

1. We do not mean to disregard important problems that still remain. Questions of 
interactions may still arise, for example. 
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population,” the designers of the experiments, in concentrating sample 
selection on that part of the population most likely to be affected by the 
treatment policy, induced endogenous sample selection and treatment 
assignment. The presence of endogenous sampling complicates the 
analysis of the experiment greatly and thus limits our ability to treat other 
problems that arise, in particular, sample self-selection and attrition. 
And possibly as important, it typically forces the analyst to maintain 
distributional assumptions about the random variables under study. 
These distributional assumptions are not innocuous even in large Sam- 
ples. Significant empirical departures from these assumptions may lead to 
large biases in estimation of experimental effects (e.g., Goldberger 
1980). Most importantly, if the endogenous sampling is ignored in the 
analysis, extremely large biases may result in estimated experimental 
effects. In this section we will present three examples of endogenous 
sampling as well as techniques developed to eliminate the problems that 
it creates. We then propose an alternative approach that attempts to 
choose selectively from the target population without inducing endoge- 
nous sample selection. 

The problems associated with endogenous sampling occur because a 
pre-experimental endogenous variable is used in sample selection and in 
treatment assignment. The effect on the estimated treatment effect arises 
because of correlation between unmeasured determinants of the re- 
sponse variable in the experimental and pre-experimental periods. These 
time effects have often been ignored in the experimental designs.2 
We shall illustrate the problem within the context of an ANOVA 
framework, which when generalized to a random-effects specification, 
allows for serial correlation. We consider a single-period experiment with 
one period of pre-experimental data. 

(5) Yit = ut + P j q t  + pi + q i t  ; 

t = 1 , 2 ; j = l , .  . , J .  

Epi = Eqi, = 0;  V(pJ = cr; ; 

We have decomposed the disturbance term into a permanent individual 
component pi, and another component qit assumed independent across 
time periods.’ The indicator variable Tit is 1 if the individual is receiving 
the experimental treatmentj in period t and zero otherwise. Time effects 
are absorbed into the constant terms u,. The importance of the individual 

2 .  For a further discussion of time effects in experimental design, see Hausman (1980). 
3. Of course with only two periods, this assumption is only a normalization. 



198 Jerry A. HausmadDavid A. Wise 

component pi is given by the correlation p between the disturbance term 
in the two time periods. Such correlations often exceed .5 in econometric 
studies. 

Suppose that the expected cost of an experimental treatment varies 
across individuals and treatments as a function of Yil. Designers of 
experiments have for this reason used Yi, in sample selection and in 
treatment assignment. Because of the presence of pi in both periods, the 
endogenous sampling and treatment assignment based on pre- 
experimental data carries over to the experimental period as well. A 
simple example will help to make the point clear. Suppose we have two 
experimental treatments called generous (G) and not-generous (NG). 
The G treatment is expected to cost more for “high Y” individuals 
because of an expected percentage reduction in work effort. Therefore, 
the designer forms two groups of individuals based on Yil. Low Yl 
individuals are assigned either the G plan or control status; the high Yl 
individuals receive either the NG plan or control status. But when we use 
ANOVA to analyze the experimental results we see from equation ( 5 )  
that E ( p i  I qt) # 0. Thus, our estimates are biased for the population 
since we have not accounted for the presence of individual effects that 
persist over time. Since it is unlikely in most economic and social experi- 
ments that p is near zero, substantial biases may arise from endogenous 
sample designs. 

We shall now consider three experimental designs in which endoge- 
nous sampling was used. In the New Jersey Negative Income Tax Experi- 
ment any individual whose pre-experimental income exceeded 1.5 times 
the government-set poverty limit was excluded from the sample. This 
sample truncation was used because the major effect of an NIT program 
was expected to be seen on low-income individuals and families. A simple 
rule was thus used to make the sample resemble the target population. 
Suppose a model like equation ( 5 )  is used to analyze the effects on hours 
worked. Suppose also that individuals’ earnings are low in period one 
either because they have low p or because q1 is negative even though p is 
positive. Low p people with positive ql have been excluded from the 
sample. The analyst must maintain the assumption that the effect on 
hours worked for the sample combination of low p and high p people 
(with negative q) will represent the total population response. This 
assumption appears unlikely to hold true because we might well expect 
the behavioral response to differ among the low p and high p people. In 
other words, if we were to change the sample truncation point from 1.5 
times the poverty limit to another level, the estimated experimental effect 
would be likely to change as well. 

In the Connecticut Time-of-Day Electricity Demonstration (TOD; 
1977), the sample was grouped into quintiles on the basis of electricity 
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usage in the year prior to the demonstration. Then households in the 
upper quintiles were disproportionately sampled since the electric utility 
correctly thought that their reaction to the introduction of time-of-day 
electricity rates would have the largest effects on system revenues. 

In the Seattle-Denver Income Maintenance Experiment, (SIME- 
DIME), the Conlisk-Watts framework was used for treatment assign- 
ment. It allowed the expected cost of an experimental treatment cj for 
treatment Ti to vary with “normal income,” which in practice was closely 
related to pre-experimental income. Consider the Conlisk-Watts 
framework in the regression form. 

(6) Y = x p + E ;  

xi= (0 ,  . . . , 0 ,  1, 0, . . . , 0); j =  1, J ;  

E E = O ;  

V(E) = a2z. 

Here X I  denotes the control observations and j = 2, . . . , 
J denotes the J - 1 experimental treatments and normal-income clas- 
sifications. The Conlisk-Watts design uses as an optimization criterion 
the minimization of the variance of linear function Pfi of the estimated 
coefficients, subject to a budget constraint. We want to choose ni, j = 1, 
J (the number of individuals in a given row of the design matrix) in an 
optimal manner. Let D = P‘P. The complete problem is an integer 
programming problem with a convex objective function subject to linear 
constraints. 

(7) 
J 

min q(nl ,  . . . , n,) = tr[D,Zlnjx/xj)-’], 

n,rO for all j .  

For large N = Znj a suitable approximation is to treat the nj as continuous 
and to round off the results to the nearest integer. To estimate the 
experimental effects in each class via the contrasts, fij - fil, the appropri- 
ate P matrix is an (rn - 1) x m matrix with the first column - 1s and each 
of the remaining columns all zeroes and a single 1. Thus Pj = [ - 1, 0, . . . , 
0 ,  1, . . . , 01. We solve equation (7) to find 

J 
E = [ (J  - l ) ~ ,  + ,Z cJ]& 

J = 2  

The optimal design thus increases the probability of inclusion in the 
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sample for low cj individuals. But since cj is a function of pre- 
experimental income, we see that E(ki  IXj) # 0 which will lead to bias in 
the estimation of experimental effects. 

We do not want to give the erroneous impression that endogenous 
sampling destroys the possibility of experimental analysis. In fact, we 
have written several papers addressing the problem (Hausman and Wise 
1976,1977,1980,1981). And endogenous sampling can reduce the cost of 
an experiment ~onsiderably.~ But we emphasize the model functional 
form and distributional assumptions that endogenous sampling requires. 

To illustrate the nature of these assumptions, we consider again the 
three examples, and for each we discuss possible model specifications. 

1. Sample truncation. In Hausman and Wise 1976 and 1977, models to 
correct for sample truncation are developed. The approach taken 
assumes that the earnings conditional on personal attributes are distrib- 
uted log normal. A two-period model is necessary since sample trunca- 
tion was performed on the pre-experimental data. But since the correla- 
tion of the disturbances across years (p in equation 5) is not zero, 
truncation on pre-experimental data will affect the analysis of the ex- 
perimental results. Therefore, we define a model of the form 

(9) yj, = zj,y + € i f ;  t = 1, 2 ;  € i t  = pi + q j t ;  

with the usual stochastic assumptions. We assume thatf(yjl, yi2 Zil, Zi2)  
is bivariate normal. The Z i p  include experimental treatments as well as 
individual characteristics. Then the likelihood can be written 

where $ is the bivariate normal density and O is the univariate normal 
distribution. For the New Jersey NIT experiment we estimate 6 = .85, 
which demonstrates the potential importance of correcting for trunca- 
tion. The log normal is a convenient distribution that leads to a likelihood 
function that is quite tractable using modern computers. Still, if the 
choice of log normal is not correct, it represents a specification error. 

An even more difficult problem arises if we want to analyze hours 
rather than earnings. Since truncation takes place on earnings we must 
analyze hours and wages jointly, and the four-equation model that results 
leads to a likelihood function considerably more complicated than equa- 
tion (10) (Hausman and Wise 1976,432). Furthermore, given the identity 
between earnings and the product of wages and hours, we must now 
assume that both wages and hours are distributed log normally. Almost 
no other assumptions lead to a tractable likelihood function, even though 

4. Manski and McFadden (1981) consider a similar question in attempting to minimize 
sample-survey costs in a discrete-choice-model framework. 
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some evidence exists that hours might be better represented by a con- 
ditional normal distributi~n.~ And lastly, because of the complications 
induced in the likelihood function by truncation, our ability to handle 
other problems, like sample attrition or taxation, are limited. Thus the 
analysis has been greatly complicated by what seems to be a reasonable 
design criterion, concentrating on the target population of the proposed 
policy. 

2. Stratification on the endogenous variables. To keep the analysis 
simple we here assume that income has been grouped into two intervals, 
even though in the Gary NIT experiment as well as the Connecticut TOD 
demonstration quintiles were used. Assume that below some level L ,  an 
unknown proportion of a random sample of the population is sampled, 
P,, and above L ,  a proportion P2.6 Then the density function is 

where f is the normal-density function N ( Z p ,  u2). Only the ratio 
P = P2/P1 can be identified. Therefore, we divide through the expres- 
sions in equation (11) by P1. Again using normality assumption fory, and 
assuming N1 persons with y 5 L and N2 with y > 1, the log likelihood 
function is 

N1 N1 

L = 2 In f ( y i )  - , X  In  [ai + P(1-  ai)] 

+ 2, In  P +  2. l n f ( y i )  - .Z In [ai + P ( l -  ai)] 

i =  1 1=1 (12) 

N2 N2 N2 

i=l  i= 1 1 = 1  

N N 

i = l  1 - 1  
= X l n f ( y i )  - . X  In ( P f  ( 1  - P ) a i )  +N2 In  P ,  

where = [ ( L  - Zip)]. Again, a maintained distributional assump- 
tion is necessary and a rather complicated maximum-likelihood problem 
is presented. Furthermore, when we want to do a two-period analysis or 
consider other problems, our ability to do so is limited by the rapidly 
increasing complications induced by the stratification on the endogenous 
variable. 

3. Treatment assignment using an endogenous variable. Our last exam- 
ple is the SIME-DIME NIT experimental design. Here seven income 

5 .  The opportunity to do any type of nonparametric analysis is severely limited here 

6. If P ,  and P2 are known, the analysis can be simplified somewhat. See Hausman and 
because we do not have observations on the part of the sample that was truncated. 

Wise (1981). 
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intervals, called “E-levels,” were used to define rows in the Conlisk- 
Watts design framework of equations (6)-(18). The costs ci were then 
derived as a function of E-level. The expected cost of a treatment was 
presumed to rise with E-level because it was assumed that tax revenues 
would decline and that NIT payments would increase. The result was that 
no one in the highest E-level interval was assigned treatment status; all 
were assigned to be controls where, of course, the cost does not grow with 
E-level. Furthermore, in general, persons with higher E-levels were more 
likely to be assigned to experimental treatments with more generous 
support levels. Thus, treatment assignment was based on an endogenous 
variable-pre-experimental income-which was highly correlated with 
the response variable during the experiment. 

Treatment assignment using endogenous variables does not in theory 
prevent the use of ANOVA in the analysis phase of an experiment. What 
is needed, however, is an elaborate specification allowing a separate p in 
equation (5) for each E-level and treatment or control assignment. But in 
the SIME-DIME experiment, for example, including manpower treat- 
ments, there would be J = 59 columns in the X matrix. In fact, if full 
ANOVA were done without deleting higher-order interactions as did the 
design model, J would exceed 200. Thus even for the comparatively large 
sample sizes as in the SIME-DIME, we cannot hope to obtain precise 
estimates of experimental effects. And when other factors such as race 
and city are added to the analysis, full ANOVA estimation becomes 
hopeless. Thus we are left with estimating ANOVA specifications with 
many fewer parameters than the experimental design requires. One 
approach is to enter E-level as a right-hand-side variable in linear form. 
But we immediately lose the model-free aspect of ANOVA since correct- 
ness of functional form becomes an issue. In fact, a linear specification of 
E-level is not totally appropriate since it does not remove all correlation 
between the treatment variable and the stochastic disturbance. 

Again, a model of treatment assignment can be constructed, as spec- 
ified by Hausman and Wise 1980. But since treatment assignment is a 
zero-one outcome, a probit model (or logit model) is required along with 
the necessary distributional assumptions. An additional complication 
arises here because we must specify the partly unknown model of treat- 
ment assignment correctly.’ Thus, both distributional assumptions and 
functional-form assumptions are required for model estimation. The 
resulting likelihood function used in estimation is even more complicated 
than equations (10) and (12). And as emphasized above, additional 
complications like sample attrition are almost impossible to treat jointly 
with the sample-assignment issues. 

7. The unknown aspect arises because there does not exist a straightforward model for 
assignment of E-level. Part of the assignment procedure involved qualitative judgments. 



203 Technical Problems in Social Experimentation 

A simple solution exists to these design and analysis problems. Ran- 
domize over pre-experimental income. Then problems of endogenous 
assignment or stratification do not occur, so ANOVA specifications again 
are appropriate. But in making such a choice, we give up the notion of a 
target population; so the precision of our analysis for a particular group 
may decrease, given size and experimental budget. Or to state the prob- 
lem in an alternative manner, for a given level of precision in estimation, 
the necessary budget for an experiment might increase substantially. 

An alternative approach is to stratify on exogenous variables only and 
to approximate the goals of endogenous stratification by using predicted 
values of the endogenous variable.8 

We shall consider the first example, sample truncation, since the issues 
can be seen quite clearly. Figure 5.1 represents the density of earnings 
with a truncation point T.9 Suppose our aim is to sample people in the 
area of the distribution marked I. Now instead of using pre-experimental 
income with its associated problems, consider the use of “exogenous” 
income stratification, based on income predicted on the basis of exoge- 
nous variables, say from the regression equation 

(13) Y i = Z i s + € i ,  

where the prediction is 

Fi = zis = zis + z(z’z)-lz’€. 
Note that ei still enters the last term through the product Zi’ ei . But for a 
sample of size N this term is of order 1/N, so it quite rapidly disappears as 
the sample becomes large. The variables included in Zi would be educa- 
tion, training, union membership, age, etc. We could then base trunca- 
tion, so problems that arise from the individual effect pi = - qit  being 
present in both periods no longer occur. 

If the covariance between yi and jji were very high, we would have 
solved the problem. Then the predicted value would do almost as well as 
the actual endogenous variable. But for log earnings the R2 of the 
regression is around .25; multiple correlation coefficients in the range of 
.25 to .60 are quite common for many cross-sectional regressions in 
econometrics. Thus, if we use ii < F as the truncation point, we expect on 
average to do about 1.2 as well as pure random sampling in selecting 

While this is an improvement, we might do even better by choosing a 
point k < L as our sample truncation point. Perhaps a useful approach to 

yi < L .  

8. This approach was employed in the design of a survey for electricity use in Vermont by 
Hausman and Trimble (1981). 

9. We are assuming a common truncation point, although in the NIT experiment it 
depended on family sue, which partly defines the poverty limit. But we can add varying 
truncation points to our analysis with no added complications. 
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I 

I Y 
L 

Fig. 5.1 Selection based on an exogenous variable. 

the choice of k can be constructed as follows. Assume the benefit to 
estimation of the experimental effect has expected value of the form 
V(y i )  = f3 / (yi - p)2. That is, we expect to learn little about labor-supply 
response from low-income or high-income individuals. On the other 
hand, cost is expected to grow linearly with income c(y i )  = cyi. Suppose 
we want to solve for the optimum truncation point k ,  given our knowl- 
edge that since we are using predicted income ji, the actual y i  = ji + ei 
will differ. The optimization problem is 

(14) = yi - ei 5 k .  

We solve the corresponding expected value problem 

m p  f3/(yi  - p)’, s.t. Zcy, 5 C, 

max L = E ( p / ( j i  + ei - 7)’) + XIE(C - C c ( j i  + ei)) 
k 

(15) 

+ h2( k - ji). 
The form of the solution can be seen by assuming that the variable has 

been transformed to make the residuals approximately normal and that 
we center the data to set 7 = 0. Then we choose k to 
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where u is the standard deviation of the residual distribution. The first- 
order conditions of equation (16) are straightforward, and the problem 
can be solved straightforwardly on a computer since the constraint will be 
satisfied with equality and all the functions are monotonic in k .  In this 
problem the gains over random sampling increase as the variance of the 
residuals decreases, so yi and ji are more highly correlated as we would 
expect. If the correlation becomes very small, we will be quite close to 
random sampling. But in many cases random sampling may be preferable 
to endogenous sampling, which as we have attempted to show, can lead 
to difficult problems in the analysis phase of an experiment. 

5.4 Self-Determination of Participation and Attrition 

We have addressed in the previous sections a problem largely induced 
by experimental design, a problem that should be avoided. In this section 
we will address a major potential problem that cannot in general be 
avoided but that can be corrected for without undue complication, as 
long as it is not accompanied by induced endogenous stratification. 

Suppose it were possible to select a random sample of families from the 
population, or from a subset of the population (say with predicted income 
below a certain level). Of the families selected at random, some, when 
asked to participate in the experiment, will do so, while others will elect 
not to participate. Even though a random sample is identified, those who 
choose to participate may not represent a random sample. In experiments 
to date no systematic record has been kept of who, when asked, partici- 
pates and who does not. Thus it has not been possible to identify system- 
atic differences (and in particular unmeasured ones) between those who 
participate and those who do not; of course, if differences existed, there 
has been no way to correct for them. In the income-maintenance experi- 
ments, for example, a procedure like the following was used. Each 
experiment was conducted within a single city or a small number of cities. 
All families within the city or within some section of the city were 
canvassed to locate those with a few predetermined characteristics. In 
these experiments, income, race, age of family head, and number of 
dependents were attributes that determined eligibility. Those who were 
found to meet the eligibility criteria were asked to enroll in the experi- 
ment. Of those who did enroll, some were assigned to a treatment group 
and others to a control group. It is the enrollment decision that concerns 
us here. 

Suppose that instead of using a procedure like the above, we were to 
begin with an external source of data on families. The U.S. census is a 
logical choice. Census data provide information on family income, race, 
one or two parents in a family, education of family head, number of 
dependents, etc. Suppose that the known family attributes are repre- 
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sented by a vector of characteristics X. From families surveyed by the 
Census Bureau, a random sample could be chosen. 

For simplicity, suppose the goal is to estimate a single-treatment effect. 
Ideally we would like to randomly assign part of this randomly selected 
sample to a control group and others to the treatment group. Then after 
some time period, we would like to compare controls and experimentals, 
with Y the outcome of interest, using a simple analysis of variance model 
of the form 

(17) Yi = Po + PITi + ~ i ,  

where Ti is an indicator variable with the value 1 for experimentals and 0 
for controls. 

But suppose not all of the random sample agrees to participate. Sup- 
pose participation depends on X and a random disturbance term q in the 
following way: 

(18) Pi = Xilx + qi, 
where Pi is an unobserved index variable with the property that individual 
i agrees to participate if Pi > 0. If Yi and Pi are jointly normal with 
correlation coefficient p , and q is normalized to have variance 1, we know 
that the expected value of Yi , given that individual i enrolls is given by 

Suppose that p1 is estimated by least squares using the sample of partici- 
pants and ignoring the last term in equation (3). Let the inverse Mills 
ratio + (.) / CP [ a ]  be represented by Mi. According to standard excluded- 
variable arguments, if M is correlated with T,  the least-squares estimate 
of p1 will be biased. As the sample of participants becomes large, the 
least-squares estimate goes to 

where pMTis the correlation between M and T. If the treatment indicator 
T,  however, is assigned randomly, then it will be uncorrelated with Xand 
thus with M which is a function of X .  Under these simple assumptions, 
the least-squares estimate of the treatment effect will be consistent, as 
long as the assignment to control versus treatment groups is random. 
Each participant could be randomly assigned, or each of those in the 
census sample could be randomly assigned prior to enrollment, as long as 
at the time of enrollment, prospective participants did not know their 
assignment. 

But the model as set out above hides by omission a potential major 
source of self-selection bias. Suppose that if the treatment were given to 
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all persons in the population, the responses would vary among them. It is 
clear that this is indeed the case (even after controlling for measured 
family characteristics). It seems plausible that the decision to participate 
will depend on the potential response. For example, it is often hypothe- 
sized that persons whose behavior is most likely to be affected will be 
most likely to participate, even though they do not know prior to enroll- 
ment whether they will be in the treatment or in the control group. This is 
the essence of the examples given in section 1.2.2. 

The idea may be represented by a random-effects model of the form 

(21) Yi = P o  + ( P i  + bJTj + ~i = Po + PlTi + biTi + ~ i ,  

where from the perspective of the analyst, b is random with mean 0. 
Using (21), the expected value of Yi among participants is given by 

In this case, it is clear that the least term will be correlated with Ti, and a 
least-squares estimate of p 1  would be biased. 

Joint maximum-likelihood estimation of (18) and (21), however, could 
be used to obtain a consistent estimate of PI. The procedure is similar to 
the one proposed by Hausman and Wise (1979), except that the equa- 
tions pertain to the response variables and participation, rather than to 
the response variable and attrition. In this case, there are two possible 
outcomes: Individual i doesn't participate with probability, 

(23) 1 - @[Xi.], = Pli , 
or individual i participates with response Yi,  with likelihood 

The likelihood function 

N1 N2 
L = .c In P l i +  c 1, P2i (25) r = l  i =  1 

can easily be maximized to obtain estimates of P along with the other 
parameters of the model. 
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The other component of self-selection that seems unavoidable in social 
experiments is attrition. Some participants will inevitably drop out of the 
experiment before the treatment response is measured. To take advan- 
tage of individual specific characteristics that persist over time, it is 
advantageous to observe participants for some period of time before the 
treatment becomes effective. This will lead to four equations of the form 

(26) Pj = xia + E l i  , 
Y , i  = x,is + € 2 i ,  

y 2 i = x z i s +  p l T + € 3 i ,  

Ai = Xi y + eqi , 

Where Y1 pertains to the response variable before the treatment period, 
Y2 to the response variable during the experimental period, and A is an 
unobserved indicator variable with the property that individual i leaves 
the experiment, if Ai < 0. This system of equations can also be estimated 
readily with available maximum-likelihood techniques (see Venti and 
Wise 1981). 

Comment John Conlisk 

Endogenous stratification is the main issue discussed by Hausman and 
Wise. I have little to say about it because they have said things well. 
Regarding endogenous stratification that can be avoided, as when nega- 
tive-tax experimenters stratify on actual pre-experiment earnings rather 
than on an exogenous earnings-capacity measure, the Hausman and Wise 
advice is very simple: Don’t do it. In my view, the advice is feasible and 
very important--perhaps the best message of the conference. Regarding 
endogenous stratification that cannot be avoided, as when subjects self- 
select through nonparticipation or attrition, Hausman and Wise describe 
the applicable statistical techniques. 

In addition to analyzing endogenous stratification, Hausman and Wise 
devote substantial attention to other design issues. This other material is 
less clear and less well developed. Roughly speaking, Hausman and Wise 
advocate the simplest kind of classical design-a fully randomized design 
intended for a one-way analysis of variance (ANOVA). I have a long 
comment about the randomization advice, a shorter comment about the 
ANOVA advice, and a short concluding comment. 

Randomization 

Consider the kind of textbook example associated with a classical 
ANOVA design. Suppose a large number of planting boxes are to be 

John Conlisk is professor of economics, University of California, San Diego. 
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soiled, seeded, cultivated, harvested, and measured in a uniform man- 
ner. Some of the boxes, however, are to be selected at random for 
application of a chemical whose effect the experimenter wishes to esti- 
mate. If we think of the plants in a given box as analogous to a family in a 
social experiment, what complications to the example would we add to 
make it more like the social experiment? Here are some possibilities. 

Suppose that the plants are at substantial and different stages of 
maturity when the experiment begins, that the number of plants per box 
and the sizes of boxes vary, that the soil and other nutritional history 
varies, that the experimenter is allowed to apply the chemical and mea- 
sure the effect over only a short duration, that the cost per box varies 
greatly, and that plant biology leads us to expect interaction between the 
treatment (the chemical) and the covariates (plant age, box size, and so 
on). If plants could walk out on the experimenter, we could add self- 
selection to the list of horrors. 

Before the conference, my reading of the Hausman and Wise advice 
was that, despite the complications just listed, the experimenter should 
stick to the simple strategy of full randomization-that is, no use should 
be made of the exogenous covariate information in assigning boxes to 
treatment. My intuition balked at this notion because it sounded like 
throwing away information. Why not use the covariates at the design 
stage, especially covariates expected to interact with the treatment? At 
the conference, however, I was told that this was a misreading of the 
Hausman and Wise paper. They did not object to categorizing the boxes 
into strata, or blocks, according to the exogenous covariates. The advice 
was merely that there should be full randomization of treatment assign- 
ment within a given stratum. This advice, however, leaves me puzzled. If 
a stratum is defined broadly, so that the covariates have a substantial 
range within the stratum (especially covariates expected to interact with 
treatment), my original question remains. Is there no use to be made of 
these covariates in assigning boxes to treatment? If a stratum is defined 
narrowly so that important covariates are essentially held fixed within a 
stratum, then the estimated treatment effect may be so stratum-specific 
that nothing important can be learned without experimenting at several 
different strata. In this case, the design advice is thoroughly incomplete 
without a discussion of strata selection and data pooling. 

Whatever the truth about Hausman and Wise’s meaning, the issues 
need clarification. To address the issues more formally, consider a ver- 
sion of Hausman and Wise’s equation (3), plus an interaction effect. 

(1) Y = P,T(l+ p2z)-1 + p3z + p a +  E .  

Here Tis the treatment variable; Xand 2 are scalar exogenous variables. 
Consider first the case p2 = p3 = 0. Then 2 drops out, and the model 
becomes like the one Hausman and Wise use to make the following case 
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for randomization. For a sizable sample, random assignment of subjects 
to levels of T leaves T independent of X and E; hence the treatment effect 
6Y / 6T = p1 can be estimated from a simple regression of Y o n  T. No 
serious assumptions about X and E need be made; indeed no data on X 
are needed. X can be viewed as an extraneous nuisance variable whose 
potential for creating econometric problems is neutralized by randomiza- 
tion. 

Now consider the case of p2 > 0 and p4 = 0. Here Xdisappears and the 
exogenous variable to contend with is Z. The treatment effect 

is a function of Z; for a reason given below, 6Y/  6Tis constructed to go to 
zero as 2 gets large (hence the nonlinearity is p2). Since 6Y / 6T depends 
on Z, then Z is not simply a nuisance variable. Rather it is a central part of 
the object of study. It is not surprising that the case for randomization 
unravels when it is Z rather than X at issue. Random assignment of 
subjects to treatment levels makes T independent of Z and E, but this 
independence does not buy much. It does not buy off the need for Z data, 
nor does it neutralize econometric problems caused by Z. For example, 
measurement error in Z or correlation of Z with E will, through the 
algebraic interaction of 2 and T,  prevent consistent regression estimation 
of the treatment parameters p1 and p2. That is, randomization will not 
prevent the need for strong assumptions about Z and E. 

It is thus important to ask whether the exogenous variables in a social 
experiment are more like X or more like Z. To be concrete, consider a 
negative-tax interpretation of equation (1). Suppose the response vari- 
able Y is an earnings variable (perhaps in logs); suppose T is a guarantee 
level (with the negative-tax break-even point fixed and suppressed); and 
suppose the major exogenous variable is some measure of earnings 
capacity (perhaps constructed as the predicted value from a regression of 
pre-experiment earnings on schooling, age, and other exogenous vari- 
ables). Since we expect the treatment effect to decline toward zero as 
earnings capacity gets to and beyond the break-even income, earnings 
capacity acts like Z in the treatment effect 

That is, earnings capacity is better represented by Z than by Xin equation 
(1). From the viewpoint of economic behavior, the difference is crucial. 
To omit the interaction between treatment T and earnings capacity Z 
would be to assume that a negative tax has the same expected influence 
on a surgeon as on an unskilled laborer. More generally, to omit the 
interaction would be to assume that an agent's expected response to an 
economic stimulus is independent of his economic circumstance. Suppose 
then that Z represents earnings capacity and that X represents some 
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other exogenous variable. It appears to me that all the social experiments 
involve important exogenous variables that, like Z in equation (l), 
interact with treatments. Since the potential of Z for creating econ- 
ometric problems cannot be neutralized by randomization, how should 
we interpret the Hausman and Wise advice about randomization? There 
seem to be two cases. 

Case 1 

Perhaps Hausman and Wise are merely saying that, at a fixed value of 
2, one should randomize so as to neutralize the potential nuisances of X 
and E. That is, define a stratum by a fixed value Z = Zo (in practice, a 
narrow range for Z ) ,  randomize within the stratum, and estimate the 
stratum-specific treatment effect 

by a simple regression of Yon T. If this is the advice, it appears to be 
perfectly logical, but not very helpful. The hard design problems are in 
dealing with Z. Is knowledge of the treatment effect at a single Z value 
enough information to justify the experiment? Probably not. Then how 
many Z values (how many strata) should be chosen, and what should they 
be? Will continuity of response across Z values be assumed, as in equa- 
tion (l), to lay a foundation for data pooling across strata? If so, then the 
standard sort of assumptions about Z (independence of E and so on) must 
be made, despite Hausman and Wise’s desire to avoid them. If continuity 
in 2 is not assumed, as Hausman and Wise would probably advise, then 
each stratum is in effect a separate experiment; and the multiplicity of 
experiments fragments the effective budget and sample for each. 

Case 2 

Perhaps Hausman and Wise are advising not just randomization at a 
given Z ,  but rather randomization across the full range of 2, either in the 
population or at least up to some sizeable truncation point. Advocacy of 
such “full” randomization is the way their paper clearly reads to me, 
despite discussion at the conference. As noted above, however, the 
independence of T and 2 resulting from full randomization will not 
prevent the need for data on Z or the need for assumptions about Z (such 
as independence of E). This absence of a positive case for full randomiza- 
tion should be coupled with the presence of a negative case. Let C(T,Z) 
be the expected cost of one observation at treatment level Tfor a subject 
with earnings capacity 2. The form of C(T,Z) may be such that cost 
efficiency in design leads to a correlation between Tand 2. In addition, if 
a continuous-response function is assumed, as in equation (l), efficient 
exploitation of the geometric placement of available (T,Z) points may 
lead to designs with correlation between T and Z. 
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In summary, Hausman and Wise have argued that proper randomiza- 
tion will lead to simple designs and a much reduced need for econometric 
structure. Their argument is not convincing, primarily because it neglects 
interactions between treatments and exogenous variables. Such interac- 
tions are typically central to the behavior studied in social experiments. 
When these interactions, along with cost and geometric considerations, 
are accounted for, I see no reason to suppose that a good design will be 
the sort of simple design Hausman and Wise have in mind, nor do I see a 
useful way to substitute simple rules of thumb (like randomization and 
ANOVA response functions) for a full-blown, optimal design analysis 
specific to the context at hand. 

Response Functional Form 

The issue here is the disagreement between designers who favor some 
sort of continuous response function and those who favor an ANOVA 
response function (a separate parameter for every point on the response 
function considered). In the many discussions I have heard about the 
response-functional-form issue, I have never heard anyone claim that 
true response functions are likely to be other than continuous and fairly 
smooth. For example, Hausman and Wise remark in the paper that they 
are willing to estimate unknown points on a response surface by linear 
interpolation between known points. People’s reluctance to impose con- 
tinuity of response seems to be based on the fear that the only way to do it 
is to make a commitment to some specific functional form, and thus to 
risk an inaccurate outcome if the specific functional form is wrong. 

This reasoning, in my opinion, is incorrect. It is possible to impose 
continuity and a degree of smoothness in a way that is robust to a great 
variety of specific functional forms (see Conlisk 1973). Handled properly, 
continuity of response is not to be thought of as an assumption in the same 
league with, say, normality of residuals. Residual normality is a very 
strong assumption which nearly everyone would have doubts about; it is 
understandable that Hausman and Wise wish to avoid a normality 
assumption when they can. Response continuity, however, is a relatively 
weak assumption which everyone believes in; it is not so understandable 
why Hausman and Wise wish to avoid it. The advantage of a response- 
continuity assumption is greater design efficiency. If an optimal design 
model is “told” that response information gathered at one design point is 
partially transferable to adjacent design points, then the model can pick 
and choose among design points and can thereby get more out of the 
given design budget. 

In the design phase of the New Jersey experiment, there was a dis- 
agreement between the Mathematica group, which favored an ANOVA 
response function, and the University of Wisconsin group, which favored 
response-continuity assumptions. On this issue, Hausman and Wise are a 
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curious cross, having the Mathematica assumptions and the Wisconsin 
conclusions. 

The New Jersey design involved nine combinations of negative-tax 
parameters at each of three earnings-capacity levels-a total of twenty- 
seven treatments. Under the response-continuity assumptions favored by 
the Wisconsin group, the optimal design model (used by both groups) led 
to a concentration of observations at many fewer than twenty-seven 
treatments. The design model in effect advised the designers to observe 
the response at a few well-chosen treatments and to infer the response at 
other treatments by fitting a response function. Under the ANOVA 
assumption favored by the Mathematica group, the design model led to a 
more even distribution of observations across all twenty-seven treat- 
ments; all treatments have to be handled separately when there is no 
response continuity. 

The Hausman and Wise advice might be paraphrased as follows: By all 
means, assume an ANOVA response function (the Mathematica 
assumption); continuity of response would be uncomfortably restrictive. 
However, to promote precision, keep the number of treatments small; 
one can always interpolate to other treatments at the experiment’s end 
(the Wisconsin conclusion). Is this more like the Mathematica position or 
more like the Wisconsin position? The answer, I think, is unclear until 
Hausman and Wise complete their advice by describing how they would 
choose their small number of treatments. If their choice depended in part 
on the ultimate interpolations that data users would surely make, then I 
would view them as assuming response continuity without admitting it. If 
their choice ignored this ultimate use of the data, I would wonder why. 

Conclusion 

The Hausman and Wise analysis of endogenous stratification is well 
grounded in formal models presented in this paper and in their other 
papers. The major piece of design advice, to avoid endogenous stratifica- 
tion when possible, is persuasive and important. 

The remaining design advice, in my opinion, is not well grounded in 
formal models; the arguments strike me as overly casual. Examples: The 
advice to randomize and the simple model to support that advice are of 
little use until the central issue of treatmenkovariate interaction is 
formally handled. The advice to avoid restrictive assumptions is of little 
use without a robustness analysis to help distinguish weak from strong 
assumptions. The advice to keep the number of treatments reasonably 
small is of little use without a model, involving a cost constraint, that 
defines reasonable smallness. Explicit in the paper’s subtitle (“Cost ver- 
sus Ease of Analysis”) and implicit in much of the discussion are trade- 
offs forced by the need to limit costs; but no formal model of the 
trade-offs is presented. The advice to avoid response-continuity assump- 
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tions, but to interpolate at the experiment’s end, has a flavor of self- 
contradiction that calls for a design model to sort out the logic. A final 
example: Having emphasized that nonparticipation and attrition will 
create a problem in the data analysis, Hausman and Wise argue that this 
problem is an additional reason to stick to a simple classical design. But 
why should a particular problem in the data argue for a design developed 
in contexts not involving that problem? What is needed is an extension of 
design theory to handle nonparticipation and attrition in an explicit way. 

Comment 

Figure 5.1 describes the process of social experimentation as a series of 
transitions. First, the population is screened to form a subject pool. Some 
subjects are rejected because they fail to meet the screening criteria; 
others are accepted but balk and refuse to participate. Second, there may 
be a period of pre-experimental observation which results in some sub- 
jects being rejected and others dropping out. The retained subjects form 
the experimental subject pool. This completes the pre-experimental 
phase of the study, labeled I on the diagram. Third, the experimental 
subject pool is assigned treatments. The result, after further attrition, is a 
set of complete observations. Fourth, the experimental data are used to 
estimate a model of the effects of treatment. Population statistics may 
provide information required to compensate for refusals and attritals. 
Fifth, the estimated model is used to draw policy conclusions. Population 
statistics may be useful for correcting or augmenting statistics for the set 
of complete experimental observations. 

Associated with the transitions in this diagram are probabilities con- 
ditioned on previous events. The likelihood of complete observations is a 
product of these probabilities. The analyst maintains hypotheses that 
place these probabilities in suitable parametric families. Then the model 
can be estimated by the method of maximum likelihood or the method of 
moments. 

Design decisions are the choice of sample frame, which determines 
screening probabilities, and the choice of experimental design, which 
determines the conditional distribution of treatments. Factors in the 
design decision are (1) cost, (2) technical or political feasibility, and (3) 
the simplicity and precision of the statistical model. Given an objective 
function of these factors, one can in principle chose an optimal design. 

Hausman and Wise have drawn four main conclusions on the design of 
social experiments. First, it is desirable to analyze the effects of treat- 
ments with a simple ANOVA model embodying a minimum of structural 
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assumptions. Second, employment of an ANOVA requires an exogenous 
sample frame and random treatment assignment. Third, if cost con- 
straints or technicaUpolitica1 constraints make a random sample frame 
infeasible, then exogenous stratification on predicted endogenous vari- 
ables is preferable to endogenous stratification. Fourth, the problems of 
balking and attrition can be handled by straightforward methods for 
random designs, but are greatly complicated by endogenous designs. I 
will comment on each of these conclusions in turn. 
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An ANOVA Model Is Desirable 

I heartily endorse the criterion of designing experiments so that a 
simple, direct, robust statistical model like ANOVA can be used. The 
authors go on to argue that policy questions can be answered best by 
measuring the effects of a few treatments precisely and using simple 
linear interpolation between treatments. There are several objections to 
this view. First, some cases exist where policy is clearly focused on the 
response surface rather than on specific treatments-an example is the 
interest in cross-price elasticities in electric time-of-day pricing experi- 
ments. ANOVA with linear interpolation can be viewed as one way of 
fitting a response surface. Another way is higher-order interpolation, or 
splines. A third way is a traditional structural model, with maintained 
structural hypotheses providing the smoothing. What is best in this range 
depends on the application. A final comment concerns the authors’ 
concentration on first-order treatment effects: Second-order interactions 
of treatments with concomitant variables such as age and education may 
also be of strong policy interest-economy may require some structural 
hypotheses in specifying these interactions. 

ANOVA Models Require an Exogenous Sample Frame 
and Random Treatment Assignment 

Hausman and Wise do not distinguish carefully the screening phase of 
an experiment from the treatment-assignment phase. When this distinc- 
tion is made, it is clear that the key to the use of the ANOVA model is 
random treatment assignment, conditioned on the experimental subject 
pool. This is true no matter what sample frame is used to obtain the 
experimental subject pool. Random treatment assignment creates a “cor- 
don sanitaire” which isolates the effects of endogenous sampling, balks, 
and pre-experimental attrition. 

This observation has several important implications. First, the value of 
random treatment assignment should be emphasized. This method per- 
mits estimation of treatment and interaction effects by simple ANOVA 
or COVA methods with minimal structural assumptions and isolates 
sample biases introduced by endogenous sampling, balks, and attrition. 

Second, with random treatment assignment, there is no need to require 
exogenous sampling. Then endogenous sampling may be a useful tool for 
reducing experiment cost and meeting technical and political constraints. 
One loses only simple consistent estimators of main and concomitant 
variable effects, which are unlikely to be important for policy analysis. 
(See note at end of “Comment.”) 

Exogenous Stratification on Predicted Endogenous Variables 
Is Preferable to Endogenous Stratification 

Ceteris paribus, exogenous stratification leads to simpler and more 
precise estimators than endogenous stratification and is the method of 
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choice. The Hausman-Wise suggestion of using an exogenous surrogate 
for endogenous sampling is a good one. There are two caveats. First, the 
cost economies from endogenous stratification may not be obtainable 
using a surrogate. For example, in a study of locational choice, the 
primary economies in sampling come from actual geographical stratifica- 
tion. Even a good surrogate for actual location requires a different, more 
costly, method of contacting subjects. 

Second, the whole issue of exogenous versus endogenous stratification 
becomes blurred when the experiment is used for different policy pur- 
poses. For example, exogenous stratification, by location in an exper- 
iment on the effects of housing subsidies on consumption patterns, 
becomes endogenous when location decisions are a subject of policy 
questions. 

Problems of Balking and Attrition Have 
Straightforward Solutions for Random Sample Frames, 
but Are Greatly Complicated by Endogenous Designs 

The above discussion emphasizes that random treatment assignment 
isolates biases introduced by balking and attrition in the pre-exper- 
imental phase. This simplification is both substantial and desirable. It 
does not require an exogenous sample frame. 

Even with random treatment assignment, attrition in the experimental 
phase can introduce bias, due to E(TE I complete observation) # 0. With 
maintained structural hypotheses, this bias can be corrected by max- 
imum-likelihood methods of the sort outlined by Hausman and Wise. 
Alternative methods are to estimate 

Y = p + T a + ( T x  X ) y  
+ X p  + E(E I complete observation) + q 

by NLLS or a multi-step Amemiya-Heckman procedure, or to introduce 
regressors spanning E(E I complete observation). All these methods tend 
to be distribution-specific, with the last method being least so. If the 
sample frame is endogenous or there are pre-experimental balks or 
attrition, then the conditional distribution of E will be more complex and 
will be influenced by the structure of these effects, as the authors claim. 
The difference is quantitative, but not qualitative, in the complexity of 
model specification and estimation. Since pre-experimental balks or attri- 
tion force this problem even for exogenous sample frames, I do not 
consider this a strong argument against endogenous sampling. 

Balking and attrition are potential sources of severe bias in social 
experiments and require careful treatment. It is worthwhile to attempt to 
correct these biases, even at the cost of additional structural hypotheses 
and the loss of simple ANOVA methods. I believe the focus of further 
research on social experimental methodology should be on robust 
methods for correcting self-selection biases. 
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Note 

COVA Model: Y = p. + Ta + X p  + ( T  @ X ) y  + E .  

T =  Treatment-dummy vector 
X =  Commitment variables 
TO X = Second-order interactions 
p = Main effect 
a = Treatment effects 
p = Concomitant variable effects 
y = Interaction effects 

Endogenous sample frame and/or endogenous refusal or attrition => E(E I X ,  experimental 
sample pool) # 0. 

Random treatment assignment =>E(T I X , E )  = 0 .  

RESULTS: 

1. Random treatment assignment => treatment and interaction effects can be estimated 
consistently from the regression Y = p. + Ta + ( T  OX) y + 1, or treatment effects alone 
from the regression Y = p. + Ta + q. 

Exogenous determination of the experimental sample pool, i.e., E(E I X ,  ex- 
perimental sample pool) = 0, and exogenous treatment assignment => treatment, con- 
comitant variable, and interaction effects can be estimated consistently from the regression 

2 .  

Y = I*. + Ta + xp + ( T 0 X ) y  + E. 
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