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1 The Residential 
Electricity Time-of-Use 
Pricing Experiments: 
What Have We Learned? 
Dennis J .  Aigner 

1.1 Introduction 

Over a period of six years, the Department of Energy (DOE) has been 
engaged in a cooperative program of residential time-of-use (TOU) rate 
experiments, involving time-of-day or seasonally varying prices. There 
are fifteen completed or ongoing projects, the first of which began in 1975 
in Vermont. 

The main goal of this program of experimentation was to determine 
whether TOU pricing would produce sufficient alterations in the load 
curves of residential customers to justify implementation of such rates. 
This “justification” involves three specific effects-the revenue impact 
on the utility, the amount of capacity reduction implied, and changes in 
consumer welfare. The experiments were designed, to a lesser or greater 
degree, to address one or more of these issues. 

A number of design considerations have an impact on the ultimate 
usefulness of the experimental data that have been forthcoming, not the 
least of which is the amount of variation available in peak, midpeak and 
off-peak prices. Many of the DOE experiments have but one set of TOU 
prices, and therefore the inferences available are limited to a single 
statistical comparison of control-group and experimental households. 

Dennis J. Aigner is professor of economics, University of Southern California. 
This paper was prepared for presentation at the NBER Conference on Social Experi- 

mentation, 5-7 March 1981, Hilton Head, South Carolina. This version has been revised 
slightly to account for points raised in the general discussion of it as the conference, but not 
to such extent that the pertinence of the formal discussants’ remarks are diminished. 

Research on the experimental data discussed herein has continued at a rapid pace. In the 
interim since this paper was drafted several important pieces of work relevant to the task 
have appeared that were unable to be included. 
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While in other respects such an experiment may be well designed, its 
results are not generalizable to a situation where the TOU prices are 
different than those used in the experiment. Other design or sampling 
issues of some importance include the type of stratification used, the 
choice of a model used for an optimal allocation of observations to cells, 
whether sample size is adequate to allow for estimation of relevant 
parameters with sufficient precision, the influence of incentive or com- 
pensation payments, the means for handling attrition, the nature of the 
experimental environment, and so forth. 

Design issues relate directly to how the data are developed and used for 
purposes of analysis. In addition, often latitude exists in the choice of a 
statistical framework for analysis apart from requirements or limitations 
implied by the data, its collection, and quality. 

The purpose of the present paper is to consider the empirical results 
available so far from the DOE experiments in light of design and analysis 
concerns and the goals the experiments were ostensibly designed to 
serve. This is done by focusing on price elasticities as the important 
summary parameters of interest, since they feed directly into calculations 
of welfare and revenue impacts and impinge on the matter of rate design 
itself. 

In the following section, the available elasticity results are summarized 
and discussed. Section 1.3 presents the basis for a welfare analysis of a 
move to TOU rates. In section 1.4, the question of implementation is 
considered. Finally, in the concluding section, we take a retrospective 
view and return to the initial design issues raised. 

1.2 Summary of Elasticity Estimates 
As might be expected, the early DOE projects are of highly variable 

quality from the standpoint of being able to make valid statistical infer- 
ences from them. Even some of the more recently established projects 
are of limited value for the purpose of estimating elasticities by time of 
use. 

Table 1.1 summarizes the status of each project and its potential 
usefulness for estimating price elasticities. In assessing a project’s suita- 
bility for price-elasticity estimation, the crucial factor in its experimental 
design is the degree of independent price variation offered to customers. 
Without rate-structure variation it is difficult to ascertain anything more 
than qualitative effects on customer demands resulting from the institu- 
tion of a TOU rate-structure. Consequently, our primary criterion in 
judging a project’s usefulness is the amount of rate-structure variation 
employed. Other design characteristics are also important, of course, but 
we regard these as being of secondary interest. 

Detailed descriptions and comprehensive evaluations of all aspects of 
the experiments have been made by Research Triangle Institute (RTI) 
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Table 1.1 Status of DOE Rate Demonstration Projects 

State Status Results/Potential 

Arizona 
Arkansas 
California (LADWP) 
California (SCE) 
Connecticut 
New Jersey 
New York 
North Carolina (BREMC) 
North Carolina (CP&L) 
Ohio 
Oklahoma 
Puerto Rico 
Rhode Island 
Vermont 
Wisconsin 

ongoing 
completed 
completed 
ongoing 
completed 
can c e 11 e d 
completed 
completed 
completed 
completed 
completed 
ongoing 
cancelled 
completed 
completed 

available; of interest 
available; of limited interest 
available; of interest 
partially available; of interest 
available; of limited interest 
not available; of no interest 
not available; of no interest 
available; of limited interest 
partially available; of interest 
available; of limited interest 
partially available; of interest 
not available; of no interest 
available; of no interest 
available; of no interest 
available; of interest 

(U.S. Department of Energy 1978) on behalf of DOE, and by the 
University of Michigan’s Survey Research Center (Hill et al. 1979) on 
behalf of the Electric Power Research Institute. Thus only a brief descrip- 
tion and evaluation of each project will be given here. In the appendix we 
discuss each project in greater detail and justify our evaluations of them. 

The demonstration projects can be classified into two groups on the 
basis of when they were begun, since only midway into the program did 
the DOE issue guidelines on statistical sampling, experimental design, 
etc., to be used by new projects. These guidelines clearly are minimal 
when judged by the standards of some of the best projects, yet several of 
the most recently established projects do not meet them in important 
respects. 

The first group 01 experiments to be funded took place in Arizona, 
Arkansas, California (Los Angeles Department of Water and Power- 
LADWP), Connecticut, New Jersey, New York, Ohio, Vermont, and 
Wisconsin. The Vermont experiment has such serious flaws that we doubt 
the results should be utilized even on a local level. The Arkansas, 
Connecticut, New York, and Ohio experiments all suffer from a lack of 
variation in price treatments, with at most only two different TOU rate 
structures employed. The New York and Ohio experiments have addi- 
tional serious design flaws, while the Arkansas and Connecticut experi- 
ments are otherwise well designed. The Arizona, California (LADWP), 
and Wisconsin experiments are all well designed with a wide variation in 
price treatments. 

The group of newer experiments includes those in California (Southern 
California Edison-SCE), North Carolina (Blue Ridge Electric Mem- 
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bership Corporation-BREMC and Carolina Power & Light-CP&L), 
Oklahoma, Puerto Rico, and Rhode Island. The designs of these experi- 
ments for the most part benefit from the DOE guidelines, particularly in 
the crucial area of price variation. Only the Rhode Island experiment 
fails in this regard, employing a complex but unvarying rate structure that 
precludes isolation of TOU price effects. The Puerto Rico experiment, 
despite its favorable rate-structure design, has so many idiosyncratic 
features that it should be viewed at best as of local interest only. The 
California (SCE), North Carolina (CP&L) and Oklahoma experiments 
are all well designed in other respects in addition to their use of several 
price treatments. 

Thus six experiments in various stages of completion offer the wide 
price variation desirable for estimation of TOU price elasticities. Data 
from the Arizona and Wisconsin experiments have been generally avail- 
able for some time, with the Wisconsin data seeming slightly better in 
quality; a number of demand studies have been conducted utilizing these 
sources. We report the results of these studies, as well as some studies of 
the Connecticut experiment which utilize the data with a single price 
treatment. Data will soon be fully available from the California 
(LADWP), California (SCE), Oklahoma, and North Carolina tests, but 
at the time of this writing only preliminary reports on these experiments 
are available. To the extent that comparative results from those other 
projects that do not possess price variation but are otherwise well de- 
signed are pertinent, they are also discussed. 

While the notion of price elasticity (own price, cross price, compen- 
sated, etc.) is certainly well understood, elasticity estimation within the 
context of a statistical model of electricity demand and/or consumption 
by time of use presents some unique methodological problems, solutions 
to which are still evolving. Earlier reports from the Electric Utility Rate 
Design Study (Electric Utility Rate Design Study 1977a, 1977b) contain 
reviews of the empirical work available on the average price elasticity of 
demand and introductions to the topic of TOU-demand modeling and 
elasticity estimation. Each of the studies cited contains a more detailed 
exposition of the models and methods used. General references are 
Aigner and Poirier (1979) and Lifson (1980). 

The existing empirical elasticity estimates come in a variety of types, 
distinguished by whether they are compensated or uncompensated, “par- 
tial” or “full.” The definitions of these elasticities and the concepts they 
measure are given in Aigner and Poirier (1979) and also in Hendricks and 
Koenker (1979). In our presentation of empirical elasticity results from 
the demonstration projects, the main focus is on the uncompensated 
partial own-price elasticities, the most commonly reported elasticities. 
After presenting and analyzing these in some detail, we turn to a discus- 
sion of other elasticity types and their usefulness. 
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Estimates from previous empirical work of uncompensated partial 
own-price peak-period elasticities are presented in table 1.2. Because of 
the single TOU rate structure employed in the Connecticut experiment, 
most researchers have not attempted to estimate price effects, but instead 
have focused on explaining load patterns as functions of socioeconomic 
variables, weather, and household demographic characteristics. Exam- 
ples are the studies by Engle et al. (1979), Hendricks, Koenker, and 
Poirer (1978), and Hausman, Kinnucan, and McFadden (1979).’ The 
Engle and Hendricks papers report on attempts to characterize and 
model the individual load curve.2 The Hausman paper is insightful be- 
cause it computes a welfare-based price index for electricity which sug- 
gests that the price of electricity went up for households facing the TOU 
rate (their welfare therefore went down), and thereby explains the reduc- 
tion in monthly consumption experienced by them. 

Lawrence and Braithwait (1977), however, do obtain estimates of price 
elasticities from the Connecticut data using the linear expenditure system 
of demand equations. By imposing a restriction on the consumption 
requirements of household appliances, they are able to surmount the 
problem of lack of variation in the price data. They find that peak-period 
elasticities hover around - 0.5 while the midpeak and off-peak elastici- 
ties are quite a bit smaller. 

Data from the Arizona experiment have received attention from sev- 
eral analysts. Indeed, the range of econometric work on this data set is 
more extensive than any other. Beginning with the work of Taylor (1977) 
and Atkinson (1979a, 1979b), further refinements to the econometric 
methodology and additional results were contributed by Aigner and 
Hausman (1980), Lau and Lillard (1979), and Hill et al. (1980). In DOE’S 
assessment of the Arizona experiment, Miedema et al. (1978) also esti- 
mate TOU price effects. 

Taylor’s numerical results are not reported in the table because they 
are so anomalous. He fits both a straightforward linear-regression model 
and a model employing relative usage (for example, monthly kWh con- 
sumption in the peak period relative to total monthly consumption) as its 
dependent variable. In each instance the price variables perform poorly. 
There are no statistically significant price coefficients in any of the three 
equations, and in the peak and midpeak equations most of the own-price 
terms have positive signs. Income, temperature, and the measure of 

1. The White et al. (1978) Research Triangle Institute report on the Connecticut 
experiment is also in this vein, since they too make no attempt to estimate price effects. 
They do not try to model the load curve or any aggregate thereof, but merely examine shifts 
in TOU consumption in response to the implementation of the TOU rate structure. They 
find that the TOU rates do cause some shifting of consumption out of the peak period. 

2.  The Hendricks, Koenker, and Poirer (1978) paper uses a methodology for approx- 
imating the load curve by a spline function. See Electric Utility Rate Design Study (1977a) 
for an introduction to these ideas. 



Table 1.2 Uncompensated Partial Own-Price Elasticities of Electricity Demand by Time of Day 

Connecticut Arizona Wisconsin 

Narrow Peak Narrow Peak Broad Peak Narrow Peak Broad Peak 
(4 hrs.) Broad Peak (3 hrs.) (5-8 hrs.) (6 hrs.) (9-12 hrs.) 

Peak Period -0.41LL ( - 0.41, - 0.66) ( - 0.48, - 0.84)CC 

( - 0.81, - 0.83)ATK 
Summer -0.lSHOTW -0,17AH - 0.81 

-0.64 ( -  0.69, - 0.79)AT 

Winter (-0.46,-0.66) 

Midpeak Period 
Summer 

- 0.70 (-0.38,-0.58)AT 

Winter (-0.24,-0.50) 



Off-Peak Period 
Summer 

( - 0.51, -0.77) ( - 0.30, - 0.64)CC 

-0.09 (-0.21,-0.24)ATK 

-0.23 

Winter (-0.29,-0.36) 

Sources: Connecticut: Lawrence and Braithwait (1977, table 6, p. 74). Arizona: Entry AT is from Atkinson (1979b, table 10, p. 92); AH from Aigner and 
Hausman (1980, table 4, p. 18); LL from Lau and Lillard (1979, table 3, p. 27); HOTW from Hill et al. (1980, table 4, p. 21). Wisconsin: Entry CC is from 
Caves and Christensen (1980b, tables 6 and 7); ATK is from Atkinson (1979b, table 11, p. 93). 
Notes: Connecticut: Ranges for Connecticut are constructed over results for the months of November 1975 and January 1976, and over subperiods of the 
day (two of which were designated “peak,” three “midpeak,” one “off-peak”). The elasticity estimates given here are those estimated using the MIN 
assumption concerning appliance kWh requirements (see Lawrence and Braithwait 1979, 69). 

Arizona: Since Atkinson (AT) pools the data over months, the ranged are constructed for the broad peak period only. Aigner and Hausman (AH) 
attempt to correct for truncation bias in their results. They use the one summer month of August 1976. Moreover, since length of the peak period is an 
independent variable in their model, a single elasticity is reported, although separate elasticities for individual pricing periods could have been calculated. 
Lau and Lillard (LL) work only with households that faced the narrow peak period, over the period May-October 1976. They pool the data over months. 
Hill et al. (HOTW) also attempt to correct for the influence of the incentive scheme in their work. 

Wisconsin: Ranges were constructed by Caves and Christensen (CC) over the results for the months of July and August 1977, over alternative definitions 
of the peak period (in the case of “broad peak”), and over alternative TOU rate differentials from 2: l  to 8: 1 .  Since Atkinson (ATK) pools the data over two 
available months and over prices, the ranges constructed are for the broad peak period only. 
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applicance capacity are significant explanatory variables in Taylor’s equa- 
tions, which would lead one to conclude that nonprice variables com- 
pletely overwhelm price influence in explaining customers’ response 
patterns. 

Miedema et al. (1978) obtain similar results using monthly data over 
the same period as Tay10r.~ They estimate four different models of 
electricity consumption by time-of-day, employing as regressors prices, 
income, demographic characteristics, weather, lagged consumption, and 
allowance of prices to interact with the other variables. In none of the 
models, estimated individually for each of six months, do they obtain a 
single significant price-elasticity e ~ t i m a t e . ~  

By way of contrast, Atkinson, Aigner and Hausman, Lau and Lillard, 
and Hill et al. all estimate significant price effects, although their esti- 
mates are dissimilar. These researchers take a neoclassical utility- 
maximization approach to the estimation problem and make a separabil- 
ity assumption about electricity consumption.5 Their resulting partial 
elasticity estimates are presented in table 1.2. 

Atkinson’s (1979a) results are based on a translog model estimated 
over the same six-month period as Taylor and Miedema, et al. His results 
show significant own-price elasticities for all periods. When the peak is 
broadly defined, Atkinson finds the peak-period elasticity to be around 
- 0.7, larger (in absolute value) than those corresponding to the midpeak 
and off peak. For the narrowly defined peak he finds that midpeak 
elasticity increases to a level slightly above the peak elasticity. The 
conclusion from Atkinson’s work is that manipulating the on-peak price 
would result in the largest quantity response, at least when the peak is 
broadly defined-as opposed to an alternative whereby the on-peak/ 
off-peak differential is changed by altering the off-peak price.6 Although 
Atkinson’s empirical work can be faulted on several grounds, subsequent 
attempts by others to improve on the econometric model and methods he 
employed still present a sharp contrast to the conclusions of Taylor and 
Miedema et al. 

The work of Aigner and Hausman (1980) represents an interesting 
methodological contribution and contains empirical results that run 

3 .  These results are similarly omitted from table 1.2. 
4. In an appendix to their study, Miedema et al. (1978) employ a translog model and 

obtain for the most part negative and significant elasticity estimates. They dismiss these, 
however, as being mere artifacts of the assumptions inherent in this model specification. 

5 .  For more on this approach see Aigner and Poirier (1979) or Hendricks and Koenker 
(1979). 

6. Although the TOU experiments focus on manipulation of prices, there are other 
interrelated, controllable “parameters” of interest, such as the differential itself, length 
and/or starting time of the peak period, etc. Their corresponding elasticity measures are 
likewise interrelated. See appendix A of Aigner and Poirier (1979) for details on these 
matters. 
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counter to Atkinson’s in both the computed levels of uncompensated 
elasticities and in their patterns. Aigner and Hausman attempt to correct 
the Arizona data for potential biases due to one aspect of the compensa- 
tion scheme which protected sample households from paying any more 
for electricity under experimental rates than they would have paid under 
the prevailing (control) rate. Their results suggest that for these Arizona 
households the midpeak own-price elasticity is largest. The econometric 
specification they use is a powerful one.’ With it, Atkinson’s Arizona 
results are reconciled to those emanating from the Wisconsin project, 
which will be discussed shortly. 

Similarly, Lau and Lillard (1979) offer a substantial methodological 
improvement over Atkinson’s work-while keeping to his model in most 
other respects-by specifying a rich “pooling” model to exploit the 
cross-sectional/time-series nature of experimental data. They find the 
peak and off-peak elasticities to be about the same magnitude, with a 
relatively small midpeak elasticity. But there are shortcomings in their 
work (possibly only minor in nature) which need to be resolved before 
firm conclusions can be drawn. 

A study related to the Aigner and Hausman work is the recent paper by 
Hill et al. (1980). These authors attempt to account for the effects of the 
rather complicated incentive structure faced by the experimental house- 
holds in 1976. While Aigner and Hausman concentrate on the so-called 
maximum constraint, whereby households knew they would pay no more 
for electricity under TOU prices than they would have under standard 
rates, Hill et al. look at the more detailed aspects of the incentive scheme. 
If a household consumed the same amounts of electricity in each TOU 
pricing period in any month in 1976 as it did in the corresponding month 
in 1975, its 1976 monthly bill would have been 85 percent of the 1975 bill. 
In fact, very few customers bumped up against the maximum constraint 
during the experiment, so consideration of the exact details of the incen- 
tive scheme may demonstrate some further insights into the effects of it 
on TOU price response. 

What Hill et al. find, using a different model than Aigner and Hausman 
(the same model used by RTI), is a similar pattern of uncompensated 
own-price elasticities to that reported by Aigner and Hausman, in that 
the midpeak elasticity is largest, followed by off-peak and on-peak 
values. The statistically significant cross-price effects are also negative, 
but the magnitudes of all these elasticities are quite different between the 
two studies. 

Hill et al. also analyzed the 1977 data, where many changes were 
introduced in the experimental design, including elimination of the incen- 

7. Their handling of socioeconomic variables is quite different from Atkinson’s, 
although both use the same translog demand model. 
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tive scheme (the maximum bill constraint was still in force). Some differ- 
ences in the estimated regression equations were evident, comparing the 
1977 results to 1976. In particular, more of a tendency toward shifting 
peak-period kWh’s into the midpeak and off-peak periods was observed. 

Turning to the Wisconsin experiment, Atkinson (1979b) and Caves 
and Christensen (1980a; 1980b) use only two of the first available months 
of data when households were on experimental rates.* Thus their quan- 
titative results must be viewed as very tentative. Atkinson processes the 
Wisconsin data through the same model he used to analyze the Arizona 
data, and with similar results. He finds a substantially higher on-peak 
own-price elasticity than for the off-peak period, whether the latter is 
broadly or narrowly defined. 

Caves and Christensen approach the data cautiously, employing sev- 
eral demand models consistent with economic theory. In their earlier 
(1980a) study they evaluate three alternative models, rejecting the trans- 
log in favor of the constant elasticity of substitution (CES) and general- 
ized Leontief systems (although they present elasticity estimates only for 
the latter). Their broad-peak results are similar to those of Atkinson in 
that the on-peak elasticity is larger (in absolute value) than the off-peak 
elasticity. Their narrow-peak elasticity results, however, show the on- 
peak elasticity to be smaller than the off-peak figure, a pattern that, while 
different from the one found by Atkinson, is in accord with Aigner and 
Hausman’s result.’ In their later (1980b) study Caves and Christensen 
employ the CES demand model and extend it to allow for the effects of 
nonprice variables like consumption level, appliance stocks, and house- 
hold characteristics. They find that in addition to prices, appliance stocks 
have significant effects on time-of-day demands. Unfortunately, they 
present no own-price elasticity estimates, preferring to focus on the 
substitution possibilities between peak and off-peak consumption. 

It is difficult to summarize the empirical results given in table 1.2 since 
the elasticity estimates frequently conflict with each other. While no 
consistent overall pattern emerges from the table, the estimates support 
the following conclusions. First, there is agreement that all the peak- 
period demands are inelastic when expenditure is held constant. Second, 
in all cases where the peak period is broadly defined, the researchers find 
that peak-period elasticity exceeds the midpeak and off-peak elasticities. 
This pattern, however, does not generally hold for the narrow-peak 

8. Caves and Christensen (1980b) also use data on customers in the statistical control 
group for the same two months of the preceding year to improve the efficiency of their 
estimates. 

9. Although Aigner and Hausman’s finding is an overall and not just a narrow-peak- 
period result. 
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results or even for the Aigner and Hausman results which do not vary by 
peak length. 

We now turn to a discussion of other elasticity types. Table 1.3 presents 
compensated partial own-price elasticity estimates from the previously 
cited empirical studies. These estimates are in all cases smaller than the 
corresponding uncompensated partial elasticities, a consequence of the 
fact that electricity has a positive expenditure effect .lo Since these elastici- 
ties hold utility constant when prices change, they are of particular 
usefulness in analyzing time-of-day pricing policies where the goal is to 
induce consumers to shift their consumption patterns without causing 
them any loss in welfare. The compensated elasticity provides a measure 
of how much consumption would change in response to a price change if 
consumers’ electricity expenditures were simultaneously adjusted (e.g., 
via a lump-sum payment that could only be used to purchase electricity) 
to prevent their welfare from changing. Unfortunately, many of the 
studies do not report compensated elasticities. The estimates that are 
reported are quite low, especially those obtained by researchers using the 
Arizona and Wisconsin data. 

Cross-price elasticities are also estimated by a number of studies, and 
they are crucial to understanding how price changes affect the whole 
pattern of consumption by time of day. Because of the large number of 
cross-price elasticity estimates that would need to be reported, we refrain 
from presenting them in detail and opt instead for a more general discus- 
sion of the results. As with the own-price elasticities, the cross-price 
elasticity estimates vary widely across studies. Lawrence and Braithwait 
(1977) obtain small but positive estimates using the Connecticut data, 
indicating a slight degree of substitutability between electricity consump- 
tion by time of day. Working with the Arizona data, Atkinson (1979b) 
and Aigner and Hausman (1980) find, however, that the cross-price 
elasticities are generally negative, implying gross complementarity of 
time-of-day consumption. Caves and Christensen (1980b) also obtain 
negative uncompensated cross-price elasticity estimates with the Wiscon- 
sin data, although their compensated cross-price elasticity estimates are 
positive. 

Almost all the studies report “partial” rather than “full” elasticities, 
the former not accounting for the indirect effects that price changes have 
on consumption through their effect on electricity expenditure. The full 
elasticities correspond to the common notion of the term “elasticity,” and 
a compelling case is made by Hendricks and Koenker (1979) for them 
being the appropriate measures for public policy use (see Hendricks and 

10. See Aigner and Poirier (1979, 9, equation [2,11]), for the relation between the 
uncompensated and compensated partial elasticities. 



Table 1.3 Compensated Partial Own-Price Elasticities of Electricity Demand by Time of Day 

Connecticut Arizona Wisconsin 

Narrow Peak Narrow Peak Broad Peak Narrow Peak Broad Peak 
(4 hrs.) Broad Peak (3 hrs.) (5-8 hrs.) (6 hrs.) (9-12 hrs.) 

Peak Period 
Summer -0.OlLL - 0.01 ( - 0.03, - 0.04)ATK 

Winter (-0.15,-0.32) 

Midpeak Period 
Summer -0.11LL 

Winter (-0.18,-0.44) 

Off-Peak Period 
Summer -0.OlLL -0.11 (-0.00, -0.Ol)ATK 

Winter (-0.19,-0.28) 

Sources; Connecticut: Lawrence and Braithwait (1977, table 7, p. 75). Arizona and Wisconsin: See table 1.2. 
Notes: Arizona: Neither Atkinson (1979b) nor Aigner and Hausman (1980) report compensated elasticities. Wisconsin: Caves and Christensen (1980a) do 
not report compensated elasticities. See table 1.2 for further explanations. 
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Koenker 1979, 27). The problem lies in converting partial to full 
elasticities.” This procedure requires knowledge of the elasticity of elec- 
tricity expenditure with respect to the price of electricity, so reliable 
estimates of the latter must be found. Caves and Christensen (1980a) and 
Hendricks and Koenker (1979) both compute full elasticities from partial 
ones, but both must rely on an assumed value of the expenditure elas- 
tici t y . 

Besides the projects reviewed herein, Research Triangle Institute has 
provided a summary report (Miedema and White 1980) that covers the 
efforts in Ohio, Rhode Island, and one of the North Carolina experi- 
ments (Blue Ridge Electric Membership Corporation). In these experi- 
ments, as in the Connecticut test, only one TOU rate was applied. In 
Ohio, the sample was small and the ultimate sample design so tenuous 
that the results of the test should probably be discounted entirely. 

In the North Carolina BREMC test, again the sample was small 
(roughly one hundred experimental households) and one rate schedule 
was considered. In this experiment, which ran for twelve months only, no 
perceptible alterations from control-group behavior were observed in the 
test group. 

The Rhode Island experiment provided an additional wrinkle to the 
menu of experimental tariffs by using a time-differentiated demand 
charge as well as the usual time-varying kWh prices. This test ran for 
thirteen months. As in the BREMC case, RTI found essentially no 
statistically significant TOU effects in Rhode Island. 

These comparative results, along with their analyses of Arizona, Con- 
necticut, and Wisconsin, prompted RTI to conclude: 

All studies showed some reduction in usage during the peak period 
under TOU rates. However, reduction in usage during the peak period 
was not accompanied by statistically significant increases in base- 
period usage. Total usage seemed either to decline or remain the same 
in all projects. . . . Peak-day usage shifts and average-day usage shifts 
appeared to be about the same. (Miedema and White 1980, 4) 

Preliminary work on the Oklahoma and North Carolina (CP&L) ex- 
periments was recently made available at a DOE-sponsored conference 
in Denver. While no elasticity estimates were presented, there were 
summaries of the qualitative findings to date. In Oklahoma, Brown et al. 
(1980) report no significant TOU or seasonal effects. Flat rates proved to 
yield some conservation response compared to declining block rates, but 
otherwise no conservation or differential effects overall or by TOU price 
ratio were observed. 

11. This conversion is not necessary if the demand model is formulated in such a way that 
the elasticities directly estimated have a ‘‘full’’ rather than a “partial” interpretation. 
However, as Hendricks and Koenker (1979) point out, these “simple” demand models have 
deficiencies that may very well more than counteract this benefit. 
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In the CP&L test, the RTI group (Miedma 1980) conclude that while 
some evidence of peak period and overall reductions in consumption can 
be found, for the most part these effects are not statistically significant to 
those test groups facing a two-part (customer and energy charge) tariff. 
With demand charges included, many of the TOU response effects are 
significant. 

To date, there is but limited published work relating to the LADWP 
(Los Angeles) experiment being conducted by Rand, even though the 
test itself began in the summer of 1976. Some elasticity results are 
reported in Acton and Mitchell (1980). The primary use of these esti- 
mates is to fuel an illustrative cost-benefit calculation that provides the 
machinery for evaluating the question of TOU rate implementation, not 
to present an exhaustive collection of values for various rating periods, 
customer groups, etc. 

What Acton and Mitchell do is to use the elasticity estimates in order to 
compute the welfare and bill changes that would occur to residential 
customers under an illustrative TOU tariff, organized by consumption 
level. In this way it is made clear that only for large users (3 1100 
kWh/month) will the welfare benefits be sufficient to offset the additional 
costs of metering. For households with swimming pools, the verdict on 
TOU pricing is favorable for households at lower consumption levels (80 
percent of the sample households with average monthly consumption 
S 1100 kWh own pools). 

An interesting sidelight of the Acton and Mitchell analysis is a brief 
discussion of the possible ramifications of going to a voluntary TOU rate. 
Customers who will experience bill reductions in excess of the cost of 
metering are likely volunteers, but they need not also be the customers 
who should be included from the point of view of welfare analysis 
(economic efficiency). For example, for the set of customers for whom it 
is beneficial in a welfare sense to be put under a TOU rate (monthly 
consumption 3 1100 kWh), most would experience a bill increase at 
initial consumption levels after incorporating added metering costs. Thus 
a voluntary program might discourage those customers who are prime 
candidates for inclusion unless they can be persuaded by the fact that 
their bills could be lowered by shifting sufficient usage out of the peak 
period. 

That the target customer for implementation of TOU rates in Los 
Angeles is a large user or a user with a pool may be idiosyncratic of the 
service territory under consideration to a great extent. So while we may 
not encourage generalization of the Acton and Mitchell results to New 
York City, they should be roughly applicable in the southwestern part of 
the country. Their points about voluntary versus mandatory implementa- 
tion and their techniques of analysis are worthy of widespread attention. 
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In a related study, Lillard and Acton (1980) analyze the seasonal- 
pricing portion of the LADWP experiment. This experiment involves 624 
households. Using data covering twenty-three months through Septem- 
ber 1977, Lillard and Acton find, in comparing the test customers to the 
statistical control group, that summer usage is decreased and winter 
usage is increased in response to the differentially higher summer price, 
but that the estimated price elasticities associated with these responses 
are very small-on the order of - .06. In an analysis of anticipated bill 
and welfare changes, again the estimated effects are so small that very 
little is to be gained on a per customer basis. But even so, over a large 
population the net gain (in welfare terms) can be consequential. 

While a preliminary report on the California (SCE) experiment has 
been written (Aigner and Lillard 1980), to date no results from this test 
have been made public. 

Finally, at this point not much is known about the behavior of peak 
demand (coincident or otherwise) as a function of (kWh) price. More- 
over, reported results in all the studies apply generally to the “average 
weekday,” not to the relatively few individual days on which the system 
peaks and similar extremes occur. The Connecticut data have been 
manipulated satisfactorily in this respect by considering changes in the 
customer’s entire load curve, but owing to the lack of price variation in 
the experiment the resulting reductions in peak demand are difficult to 
generalize beyond the particular experimental conditions observed. This 
is not to say that information on daily peak-demand effects is not gener- 
ally available. It is in any experiment where fifteen-minute data were 
collected. But to date almost none of the analysis work has paid it any 
attention, relying one supposes on the assumption that if peak-period 
kWh’s are reduced. so must be the level of instantaneous demand. 

1.3 Welfare Analysis of TOU Pricing” 

In assessing the potential for gains and losses to customers who move to 
a TOU pricing scheme, it is not sufficient merely to examine bill effects. 
Projected bill changes may have a great deal to do with whether or not 
customers choose to accept a voluntary program of TOU rates but they 
are only part of the total impact a customer experiences. The other part of 
the total impact emanates from quantity adjustments per se. Granted that 
consumption of both peak and off-peak electricity has positive marginal 
benefit (more consumption implies more satisfaction), reducing peak- 
period consumption in response to its higher price, for example, must 
result in less satisfaction. The way these matters are handled in conven- 

12. In preparing this section we have borrowed liberally from Acton and Mitchell 
(1980). 
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tional economic theory is through the concept of consumer’s surplus. The 
basic idea is easily illustrated. 

Consider figure 1.1, which shows a linear demand curve for, say, 
off-peak electricity. Prior to the implementation of TOU rates, assume 
the customer paid a flat-rate p per kWh and consumed Xl kilowatt-hours 
per month. At the new price,pl, the customer now consumes quantity xl. 
He pays a pricepl for every unit consumed. But according to the demand 
schedule, he would be willing to pay a slightly higher price for consump- 
tion slightly less than xl, a slightly higher price still for consumption 
slightly less than that, and so on back to the initial consumption level Xl. 
But he receives these marginal units of consumption at pricepl instead of 
at price p. Thus, a “surplus” value accrues to him from the price change 
which is represented by the area of the shaded trapezoid pplba (the 
amount G + U). A discriminating monopolist could price his product 
such a way that each additional unit (moving from Xl to xl) is just that 
much less expensive so as to extract this surplus value from the consumer. 

pr ice/kWh 

- 
X 1  X, quant i ty (kWh) 

Fig. 1.1 Measurement of change in consumer’s surplus from a price 
decrease from jY to p1 
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Otherwise the shaded area, which is in dollar units, represents a real gain 
in the customer’s “welfare.” 

In a similar fashion, the increase in peak-period kWh’s will result in a 
loss of this same sort of welfare. Figure 1.2 illustrates the situation, 
wherein the peak-period price per kWh is increased from a flat rate ofp to 
p2. At this price the customer will consume x2 kWh’s as compared to Z2 
when the price wasp. Using the same heuristic argument as before, the 
change in the consumer’s surplus is a loss, in the amount of the area of the 
shaded trapezoid pp2cd (the amount L). 

Adopting a conventional notation, these areas are, respectively, 

where the Greek delta means “change in” or “difference,” i.e., Apl = p1 
- p and Ap2 = p 2  - p .  Then the change in the consumer’s surplus from 

price/kWh 

\ 
-7 L-9 

x- xr, niinn t i t 

Fig. 1.2 Measurement of change in consumer’s surplus from a price 
increase from to p2 
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the combined effects of adopting a higher peak-period price and a lower 
off-peak-period is given by: 

From the producer's viewpoint, calculation of the gains and losses from 
moving to TOU pricing is simplified by assuming that p ,  the flat rate 
charged in each period, is a quantity-weighted average of the marginal 
costs of production in each time period and that the customer charge 
recovers all fixed costs. If mcl and mc2 are the marginal costs in the 
off-peak and peak periods, respectively, and +1 and +2 are the propor- 
tions of off-peak and peak consumption relative to total consumption for 
the class, then 

(2) p = + l r n C l  + +2mc2. 

Assuming that the TOU prices, p1 andp2 are set equal to their respec- 
tive marginal costs, mcl and mc2, and again that the customer charge ( E )  
is used to recover all fixed costs, then in figure 1.1 the producer will lose 
revenue by reducing the off-peak price (demand is assumed to be inelas- 
tic) in the amountplxl - pXl for a change in production costs ofpl(xl - 
XI). This gives a net change (loss) of 

- PXl + plX1 = ApIXI, 

a negative quantity. Similarly, in the peak period revenues are increased 
by changing fromp top2 (again, demand is assumed to be inelastic), and 
costs are reduced, giving a net effect (gain) of Ap2X2. In sum, the change 
in net revenue to the producer is 

(3) ANR = A p l X l +  Ap2X2. 

If we adopt as our criterion for judging the overall benefits or costs to 
society of the adoption of the TOU pricing scheme (E ,  pl,  p2) the sum 
ACS + ANR, then the change in welfare becomes 

(4) AW = ACS + ANR 

+ Ap1X1+ Ap2X2 

= - ?h (Ap1 Ax1 + A P ~ A X ~ ) .  

This sum is equivalent to the sum of the areas U and T in the figures. 
This welfare measure is only approximate. First, the demand curves 

used to develop these formulas are linear. Secondly, the contemplated 
price changes not only have direct influence on the quantities consumed 
that are depicted in the figures but also have indirect effects due to the 
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interrelationship of each quantity on both prices. An exact measurement 
for A W depends on more adequate measurement of ACS and requires 
knowledge of this set of two interrelated demand equations.I3 This is what 
the TOU pricing experiments can provide. 

For a representative customer, one who at the initial consumption 
levels Xl and X2 consumes electricity in the two periods exactly in the 
proportions +1 and +2, the equation (4) also can be interpreted as 
showing a direct welfare effect and a bill effect. At the initial consump- 
tion levels, xl and x2,  a movement to pricespl andp2 will create a change 
in a customer’s bill of exactly 

(5 )  ABo = Ap1XI + Ap2X2 

Whether this number is positive or negative depends precisely on how 

XI / (XI + X2) and X2 / (X1 + X2) 

compare to and +2.  If they are respectively equal, which is the 
definition of the representative customer, then ABo = 0. The shifts in 
consumption that are observed, Axl and Ax2, therefore represent un- 
ambiguous welfare improvements. Ultimately, the bill changes by an 
amount 

(6)  AB = ABo +pi AX1 + P Z A X Z  

(in which ABo = 0 for the representative customer). 
Tracing through the changes in the bill and in consumer’s surplus from 

the price changes to p1 and p2 for the representative customer, we are 
lead to the same formula for AW derived previously in equation (4). In 
figure 1.1 the representative customer’s bill increases byxlXl bg, whereas 
his surplus has increased by the trapezoidal area G + U. The net effect is a 
gain in welfare, the area U. Similarly, in the peak period his bill falls by 
the amount x2X2gc, but surplus is reduced by the area L. The net effect is 
a gain, the area T. 

For a nonrepresentative customer, one with consumption proportions 
different from +1 and +2, the calculations are the same, but Bo # 0. Thus, 
there will be a shift in revenue either to the customer or to the utility at 
initial consumption levels in addition to the changes summarized in 
equation (4). As mentioned previously, calculating the exact welfare 
changes depends on a knowledge of the full demand structure; the above 
calculation should be viewed as approximate only. 

The entire objective of this exposition lies in the identification of those 
customers for whom AW exceeds the additional costs associated with 
implementing the TOU rate structure. This desired set of customers may 
be identified by size, by appliance ownership, or by some other meaning- 

13. See Acton and Mitchell (1980, 7) for more discussion. 
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ful stratifying variable. In their application to the LADWP service area, 
Acton and Mitchell found that under an illustrative mandatory program, 
the change in welfare was sufficiently large to offset the traditional 
metering costs only for customers whose average monthly consumption 
exceeds 1100 kWh. Although this is a small fraction of the population of 
LADWP residential customers (4.3 percent), they account for approx- 
imately 17 percent of residential consumption. 

Offering TOU pricing on a voluntary basis creates a further difficulty in 
that the welfare-efficient set of customers may not be the ones attracted 
to the program. For example, in the Acton and Mitchell illustration, if 
customers were to be charged the appropriate monthly rate for TOU 
metering, the monthly bills of all but the very largest members of the 
z= 1100 kWh/mo. group would experience bill increases at initial con- 
sumption levels. Unless customers could be persuaded that their ultimate 
shifting response will result in sufficiently more “welfare” to make 
participation worthwhile-no doubt a hard concept to sell-the volun- 
tary program will not work. 

However, there may be other population subgroups that are almost as 
attractive in the welfare-efficiency sense whose bills at initial consump- 
tion levels show decreases large enough to offset metering charges, 
thereby making participation in a voluntary program attractive. In the 
LADWP case, Acton and Mitchell point to those households with swim- 
ming pools as likely candidates, but in this case also, bill changes at initial 
consumption levels do not make a voluntary program attractive, even 
though bill decreases would be experienced by most of this group once 
their peak and off-peak period consumption had adjusted to the TOU 
rates. Many households with electric space heating, on the other hand, 
would enjoy initial bill decreases in excess of additional metering costs 
and would, therefore, find a voluntary program attractive. However, 
only for the largest of these users are the welfare gains sufficient to offset 
metering costs. Therefore, the utility faces the problem of attracting a 
potentially large number of customers into a voluntary program for 
whom the ultimate composite welfare benefits are such that they should 
not have been included. 

1.4 The Risks of Implementation 

The previous sections have laid a foundation for possible implementa- 
tion of TOU rates. But there are various uncertainties to cope with in 
assessing the risks associated with that course of action, given that the 
elasticity estimates upon which it depends are subject to sampling error at 
the very least (assuming there was a relevant experiment to provide 
elasticity estimates for the target population) and, more generally, sub- 
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ject to other risks, under the assumption that transference of results 
outside the target population and/or service territory is involved. 

An important aspect of the risks involved in an implementation deci- 
sion is that even if there is a relevant experiment available that can 
provide elasticity estimates for the target population of interest, the 
sampling errors associated with those estimates imply uncertainties for 
the revenue and welfare calculations. These can and should be traced 
through, by deriving the statistical confidence intervals on, say, revenue 
from the confidence intervals available for the estimated elasticities. 

Finally, the more widespread problem of transferring results from an 
experiment of relevance to a different target population and, probably, a 
different service territory involves yet addititional uncertainty, still of the 
statistical variety. The methodology for handling the transference prob- 
lem is available but has not yet been adapted to the issue at hand. 

So, while there can be general discussion on all these points, the 
particular use of available techniques for applying them in specific cases 
remains one of custom fit. 

1.4.1 Uncertainty in Using Experimental Results 

In those few service areas where a reasonably good TOU experiment 
has been run, there still are some sticky issues to contend with in using the 
demand elasticities or, more generally, the estimated set of demand 
equations in evaluating the welfare and revenue impacts of adopting a 
TOU pricing structure. These issues are developed and illustrated herein. 
In those service areas where an experiment without induced price varia- 
tion was completed, a similar exercise could be accomplished, but only if 
the contemplated rate structure were exactly the same as the ex- 
perimental rate structure. Otherwise the situation is such that an evalua- 
tion would require the transference of results from another service area, a 
topic we address in the second part of this section. 

A crucial feature of any of the experiments is the effective population 
to which they apply. In their initial evaluation of the available TOU- 
pricing projects, Research Triangle Institute (RTI) does a good job of 
addressing this point (U.S. Department of Energy 1978), and they reem- 
phasize it in a recent report summarizing their findings on estimated price 
effects for several of the projects. 

The sample was drawn from a population consisting of all 1976 
WPSC non-farm non-seasonal residential customers who had a 12- 
month billing history and whose average monthly usage exceeded 100 
kWh in 1975. This sampled population (approximately 217,000) was 
stratified into nine groups according to their 1975 annual consumption. 
Simple random sampling was used within each stratum to produce the 
desired number of participants. Approximatley 43 percent of all WPSC 
residential accounts were represented by the sample. 
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Participation in the study was mandatory. Customers were billed 
under revenue-neutralized rates. The rates ensured that the average 
household’s bill would be nearly identical to its bill under the existing 
rates, if its consumption level and pattern were unchanged during the 
experimental period. (Miedema and White, 1980, 66-67) 

According to this quotation, 43 percent of Wisconsin Public Corporation 
accounts are represented by the sample; that is, this 43 percent is the 
effective population for which the sample results can be generalized. 
Since participation was mandatory, there is no apparent problem of 
sample self-selection to contend with. 

In Ohio, the experiment was voluntary, and, according to Miedema 
and White, 

Selection of sample customers excluded those without a 12-month 
billing history of April 1974 to April 1975, bulk-metered residences, 
company employees, residents on “frozen” rates, and customers with 
less than 6,000 kWh annual usage. The group that was sampled con- 
tained approximately 196,000 of the 337,000 residential customers 
living in the DPL service area. 

About 80 percent of the customers selected to participate in the 
study were not included for such reasons as meter installation prob- 
lems, refusal to participate, and moving plans. Based on the combined 
number of rejections for the experimental and control groups, custom- 
ers in the final sample represent about 39,000 residential customers 
(the effective population). This group constitutes approximately 20 
percent of the sample population and 12 percent of all residential 
customers. (1980, 55-56) 

In this instance, many restrictions were imposed on the population ulti- 
mately sampled; so many, in fact, that the results (which are only com- 
parative-ne TOU rate was used) apply at best to 12 percent of all 
residential customers. 

The point is simply that statistical inference involves generalizing sam- 
ple results in the population from which the sample was selected. If that 
population is different from the target population, then the inference will 
be biased. In some situations the problem can be handled analyti~ally,’~ 
but otherwise the best that can be hoped for is knowledge of the direction 
of the bias. 

For the effective population, it is relatively simple to trace the effects of 
imprecision in the estimated demand elasticities on the revenue or wel- 
fare calculations discussed previously. For example, the revenue change 
derived from shifts in off-peak consumption in moving from price p to 
TOU pricesp, andp, is a function of the quantity change Axl = XI - xl. 

14. See, for example, one of the attempts to correct the Arizona experimental results for 
bias introduced by the incentive scheme used (Aigner and Hausman 1980). While these 
authors do not specifically address the target-population-effective-population issue, the 
methodology developed is pertinent. 
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And that quantity change, as a function of the price changes p 1  and p 2 ,  
can be written 

(7) 

The required partial derivatives, if not directly estimated from a set of 
fitted demand functions, are usually simple functions of other estimated 
model parameters, and a measure of the precision of their estimation can 
be readily obtained. For example, given direct estimates of ax,/dpl and 
ax, lap2 with their estimated variances and covariance, the variance of 
Axl can easily be derived and used to put a confidence band around the 
predicted revenue or welfare change.I5 This would seem to be a very 
useful way to characterize the implications of uncertainty (imprecision) in 
estimated model parameters (slopes, elasticities) on the ultimate crite- 
rion for judging whether a particular TOU rate program should be 
adopted or not. 

Unfortunately, there is not just one way to estimate the important 
parameters. In a previous section we saw how model specification had a 
pronounced influence on the estimated elasticities in the Arizona experi- 
ment. Each set of parameter estimates rests on different statistical 
assumptions, and therefore so do the inferences emanating from them. 
And, for the most part, these underlying assumptions cannot be tested. 
What is hoped for is robustness in the estimated parameters over models, 
but this almost never seems to happen. The range of parameter estimates 
over models, which implies a range of revenue and/or welfare changes, 
poses yet another source of uncertainty to cope with in evaluating a 
proposed TOU rate. In all such situations the most reasonable thing to do 
is to trace out the range of implications and assess their consequences in 
order to fully understand the risks involved, if not to completely resolve 
the matter. 

1.4.2 The Transferability ProblemI6 

When sampling is used to answer a question-test a hypothesis or 
estimate a particular population parameter-there is always the possibil- 

15. If V(b , )  and V(b,) are the variances of the estimates for dx,/dpl and dx,/dp,, 
respectively, and C(b,,b,) is their covariance, then 

V ( b i )  = A d V ( b i )  + AP%’(bz) + ~ A P I A P Z  C ( b i h ) .  
Extending to get a measure of precision for the revenue change from alterations in off-peak 
consumption, we have that 

AR1 =pixi -pa l  = p i  bi + A P ~ x , ,  

and that 

V(AR1) = P:v(w.  
16. In preparing this subsection I have benefited greatly from discussions with E. 

Learner. 
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ity of using previous studies or experience on the same topic in order to 
“guide” the sample design, to supplement it, or to replace it completely 
by prior information. If it is assumed that in any such application there is a 
primary population model that describes the relationships between de- 
pendent and independent variables and the statistical properties of error 
terms, and that this population relationship applies, with differences in 
parameters only, to all subpopulations, then all available information can 
be represented in terms of sets of estimated parameters of a “grand” 
model. The analytical question to be addressed is how the various sets of 
estimates are to be weighted in importance. 

To be specific, consider the situation whereby a utility is considering 
increasing the sample size of its residential load research sample. The 
choices are limited to the addition of some calculable number of magnetic 
tape-recording meters and/or dependence on the load research data of a 
neighboring utility or group of utilities to use in lieu of an addition to its 
own sample. Assuming there is a statistical model that relates the load in 
any predescribed small interval (the meter resolution capability) to 
weather and various other exogenous factors (physical characteristics of 
homes, socioeconomic characteristics of families, appliance ownership 
patterns) for both utilities, it can be shown that there is an optimal 
estimator for the load at any moment which is a linear combination of the 
load data from both utilities. l7 This is not to say that additional sampling is 
not necessary; indeed, it may be. But at least a methodology exists that 
makes it possible to combine information in an appropriate fashion. 
Likewise, in any decision problem prior information can be considered in 
combination with sample data to decide whether further sampling is 
required, and, if so, how many additional additional observations should 
be taken .la 

The transferability problem with respect to an analysis of the implica- 
tions of a TOU rate can be viewed in exactly the same way. In general, the 
problem should be approached by allowing for the possibility that a fresh 
sample will be taken, that is, that the subject utility will design and 
operate its own pricing experiment. Then, given prior information based 
on the results of other experiments, the question is whether a new sample 
should be taken, and if so, what its size should be. Otherwise the decision 
problem is based solely on the available prior information. In a similar 
fashion, the combination of existing elasticity estimates for utilities that 
have run experiments with information from other utilities can be 
achieved. 

A major problem in combining data sets or estimates concerns data 

17. Lindley and Smith (1972). A very recent application of this methodology to a 
“transferability” problem is contained in the paper by DeMouchel and Harris (1981), which 
I became aware of at the conference. 

18. Aigner (1979); a general reference is Raiffa and Schlaifer (1961). 
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quality and sample design. While it is possible to combine data from 
different utilities according to the Lindley and Smith (1972) methodol- 
ogy, a presumption must be made about their quality. Moreover, while 
the data themselves may be comparable, no doubt there will be differ- 
ences in design-as summarized by which stratifying variables have been 
used, on which other explanatory variables data have been collected, etc. 
Thus in the combining process, recognition must be made of the fact that 
various specification errors will exist in fitting the so-called grand model. 
This problem has not been addressed so far in the literature that has 
grown out of the Lindley and Smith work. However, it must be con- 
fronted in order to properly characterize the data that are to be combined 
and to thereby determine whatever constraints may exist on the combin- 
ing process from data that lack certain essential characteristics or 
“quality. ” 

A general proposition is that “similar” utilities can properly make use 
of each other’s load data or experimental results. The statistical modeling 
problem is how best to define “similar” and how to “partially transfer” 
information among dissimilar utilities. As an example, initially one might 
suppose that data could be transferred among warm-climate utilities and 
among cold-climate utilities but not between utilities drawn from differ- 
ent climates. However, climate might affect the average load in a given 
time period while leaving unchanged the responsiveness of load to in- 
creases in price. In that case information about the responsiveness of 
loads to price, possibly for predicting load increases, could be transferred 
between warm- and cold-climate utilities, but information about the 
average loads could not. Next suppose that after a study of several 
utilities it was found that the average load increased by 1 percent every 
time the average daily temperature departed from 68” by 2”. Then even 
the information about average load could be transferred between cli- 
mates. This means that the transferability problem has to be addressed 
within the context of an econometric model of load demand. 

As an example data-pooling problem, consider the one studied by 
Efron and Morris (1975), from which table 1.4 is taken. The batting 
average of eighteen major-league players after 45 turns at bat during 1970 
are reported in column 1 of table 1.4. Anyone familiar with baseball 
statistics will recognize immediately that these averages are too dispersed 
to be end-of-season averages. In fact no one has batted over .400 for the 
season since Ted Williams did in 1941. A sensible prediction of 
Clemente’s rest-of-season average would surely be less than his average 
of .400 after only 45 at bats. What Efron and Morris do is to pool 
Clemente’s average with the averages of the other seventeen batters. An 
extreme possibility would be to assume that all players have the same 
batting ability and to predict the average for the remainder of the season 
to be the same for each, thus equal to the overall average of the 45 x 18 at 
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Table 1.4 1970 Batting Averages and Predictions for Eighteen Major League 
Players 

Pooled 
Average Prediction Limited 
after First Average for Based on Translation 
Forty-five Remainder Stein’s Pooled 

Player At Bats of Season Estimator Prediction 

Clemente (Pitts, NL) .400 ,346 .290 ,351 
F. Robinson (Balt, AL) .378 ,298 ,286 ,329 
F. Howard (Wash, AL) ,356 ,276 ,281 .308 
Johnstone, (Cal, AL) ,333 .222 .277 ,287 
Berry, (Chi, AL) .311 ,273 ,273 ,273 
Spencer (Cal, AL) .311 ,273 ,273 ,273 
Kessinger (Chi, NL) ,289 ,263 .268 .268 
L. Alvarado (Bos, AL) ,267 ,210 .264 ,264 
Santo (Chi, NL) ,244 ,269 .259 ,259 
Swoboda (NY, NL) ,244 ,230 ,259 ,259 
Unser (Wash, AL) ,222 .264 ,254 ,254 
Williams (Chi, AL) .222 ,256 ,254 ,254 
Scott (Bos, AL) .222 ,303 ,254 .254 
Petrocelli (Bos, AL) ,222 ,264 ,254 .254 
E. Rodriguez (KC, AL) .222 ,226 ,254 .254 
Campaneris (Oak, AL) ,200 .285 .249 ,242 
Munson, (NY, AL) ,178 ,316 ,244 ,218 
Alvis (Mil, NL) .156 ,200 ,239 ,194 

bats, namely .265. But the dispersion of the 18 averages after 45 at bats is 
much greater than would be predicted if all players had identical abilities. 
A better assumption would be that the players’ abilities come from a 
distribution with unknown mean and unknown variance. This assump- 
tion leads to the partial pooling of the 18 averages. The prediction of the 
batting average for the remainder of the season is then a weighted 
average of own average and overall average (.265). Clement’s estimated 
average is thereby reduced from .400 to ,290. The last two columns of 
table 1.4 contain different pooled predictions, the latter one being a 
“limited translation estimator” that was designed to limit the pooling 
effect on extreme averages, Clemente’s for example. By a measure of 
overall error, the pooled estimators perform better than the players’ own 
scores after 45 at bats as predictions of their future performance. 

The statistical problem of predicting the rest-of-season averages of 
these eighteen ball players is essentially the same as the problem of data 
transferability for utilities. If no data are transferred from the other 
seventeen players to Clemente, a prediction based on his average alone is 
likely to be too extreme. If the other data are fully transferred with no 
allowances made for individual differences, the resultant prediction of 
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.265 is likely to be too conservative. The statistical technique described 
by Efron and Morris allows the data to select the degree of transferabil- 
ity. If the 18 averages are sufficiently similar to support the hypothesis 
that all batters have the same ability, then the data are fully transferred in 
the sense that Ahis’s .156 average has the same weight for predicting 
Clemente’s rest-of-season performance as Clemente’s own average. But 
if the 18 averages after 45 at bats are very dispersed, the degree of 
transferability can drop to zero, with Clemente’s prediction being equal 
to his current average of .400. 

This simple problem of pooling batting averages can be generalized in 
several ways that bring it closer to the complexities that must be handled 
in the problem of data transferability. The batting averages used for 
prediction purposes are all based on 45 at bats. In the case of the TOU 
experiments, sample sizes vary widely. And for most utilities that desire 
to evaluate a TOU pricing structure, sample size is zero. This is akin to a 
new player entering the league. 

Of course, in the case of utility companies there will be many variables 
which could suggest reasons why a utility without data should not be 
treated as an average utility. Continuing the baseball example, we might 
expect to observe two kinds of batters-outfielders and infielders, with 
the latter selected with greater concern for their defensive abilities. A 
player with an initial average of .400 may with justification be considered 
an outfielder, and therefore his average should be shrunk not toward the 
overall mean of .265 but rather to the mean of the outfielders’ averages. If 
it is not known which batters are offensive specialists and which defensive 
specialists, the data may nonetheless suggest the dichotomy. 

Theoretically, the limitations on data transference will be defined by 
the weight placed on data from other utilities in the pooling process just 
described. In a sense, if all relevant variables are observed both in the 
parent utility and in the collection of utilities at large, there are no 
limitations to transferability. But because the data on concomitant vari- 
ables may not be comparable, certain difficulties arise in the pooling 
process. As mentioned previously, the nature and extent of these difficul- 
ties remain to be worked out. From this research will come guidance as to 
what the limitations to transferability are. They will be defined in terms 
of geographical location, specific weather patterns, customer demo- 
graphics, etc. 

To conclude, there are no conceptual limitations on data transference 
but there are strong assumptions which may not be very attractive that 
are required to accomplish it through the Lindley and Smith (1972) 
framework. The existing methodology has not yet been applied to the 
case of transferring experimental results between utilities or, for that 
matter, to load research data in general. This major research focus 
remains to be undertaken. Finally, within the context of a general 
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framework for transferability, even the information from experiments 
without price variation may be important and usable. 

1.5 Conclusions 

What are the primary shortcomings of the available estimates of the 
relevant short-run elasticities? First, there is the matter of discrepancies 
among the estimates within experiments. From a qualitative viewpoint, 
we can conclude that TOU- pricing “worked.” Quantitatively, only the 
Arizona and Wisconsin tests provide enough integrity of design and at 
least a semblance of common findings on which to base a decision about 
implementation. Soon, but not just yet, detailed results will be available 
from Oklahoma, North Carolina (CP&L), LADWP, and Southern Cali- 
fornia Edison c o .  These results may provide enough evidence for imple- 
mentation, but we should also like to know if a better strategy than 
overall implementation might be phased or selective implementation, 
concentrating on large customers first. Presumably every experiment’s 
results could be organized and reported according to size of customer (at 
least in some broad intervals) as in the LADWP case. Thus proper 
information to support selective implementation could be made avail- 
able. 

What then of the fact that the available reliable findings are confined to 
such a limited area (Arizona and Wisconsin-or Arizona, Wisconsin, 
Oklahoma, Southern California [LADWP and SCE], and North Caro- 
lina, when these latter results are available)? Ideally, one would hope 
that once all conditioning variables have been accounted for, there will be 
a unanimous verdict, even down to the actual numbers themselves. Yet 
there seems to be enough room for a lack of unanimity that, due to the 
basic latitude for mismodeling, present but undiscovered faults in the 
experiments, etc., one shouldn’t be too surprised if in fact there is a hung 
jury on the specific magnitude of TOU effects across service territories. 

Research on the transferability problem, made even more important 
by practical considerations imposed by the National Energy Act, may 
produce the comprehensive framework within which all such issues can 
be resolved. But the electric utilities will have to act (or at least defend 
their nonaction) on TOU- pricing very soon, probably before the trans- 
ferability problem is resolved. In the interim, given a clear verdict on the 
qualitative results of the experiments, implementation may take place, 
for the rate setting and regulatory process itself is an experiment with 
inherent and accepted risks associated with errors of calculation and 
judgment. A decision made on TOU- pricing is no more or less irreversi- 
ble than any other.19 

19. Following this line of reasoning, presumably there are now quite a few examples of 
implementation, primarily of a voluntary nature, including Arizona Public Service Co., 
LADWP, and Wisconsin Power & Light. 
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Finally, what of the design issues raised at the outset? How have they 
contributed to or limited our knowledge of TOU- pricing effects from the 
battery of available experiments? Clearly the lack of significant price 
variation and the fact that in most experiments with price variation, peak, 
off-peak, and midpeak prices are not varied independently substantially 
limits the generalizability of the results even on a local level. Sample-size 
considerations are at issue here too, since more “treatments” (prices, 
definitions of pricing periods, etc.) require more observations in order to 
achieve a given level of precision for parameter estimates. 

In these several respects, one of the experiments stands clearly above 
the rest: the Rand-LADWP experiment. It has a large sample size with 
wide (and, to some extent, independent) variation in prices. Definitions 
of pricing periods (peaks, off-peak, midpeak) were not rigid. Moreover, 
optimal design methods were used to further squeeze information out of 
the sample, but not to such an extent as to limit the variety of analysis 
models that could be applied once the data were in hand. Probably the 
only clear limitation on the LADWP experiment was its use of volunteers 
and an incentive scheme for participankm 

All the other experiments represent some compromise on the best 
features of the LADWP test, but some also improve on the LADWP 
experiment’s major weaknesses. For example, both the Wisconsin and 
North Carolina (CP&L) projects have mandatory participation and no 
compensation payments. 

In all cases, however, there are other, perhaps more severe limitations 
that customers face, imposed by the experimental environment and the 
fact that the experiments are short-run by nature. Many people contend 
that with a full-blown commitment to TOU- pricing, the responsiveness 
of customers will be different than that estimated by the experiments. 
This difference will occur because appliance choices will be made with an 
eye to TOU response; new appliances will become widely available, and 
there will be no choice but for customers to respond (assuming manda- 
tory implementation). But it seems impossible to estimate these effects. 
The prevailing attitude is that if TOU- pricing can be shown to be 
cost-effective based on the available experimental evidence, the pricing 
strategy surely must be even more desirable in the long- run. 

While both of these views are reasonable, it is important to note that 
none of the experiments allows us to estimate the effects (apart from 
TOU response) of changing the average price of electricity on the con- 
sumption of other goods. These expenditure elasticities, which convert 
partial price elasticities to full price elasticities, can mitigate substantially 

20. It should be noted that the issues of independent price variation, voluntary participa- 
tion, and incentive payments are not separate. Rates designed with revenue neutrality in 
mind (which therefore eliminates independent variation in peak and off-peak prices), of 
course eliminates the need for compensation payments and may be an important ingredient 
in achieving mandatory participation. 
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the anticipated long-run effects from mandatory implementation of TOU 
rates. It may well be that the apparent overall conservation effect of 
TOU- pricing observed in many of the experiments is merely an artifact 
of their short-run nature, wherein response was constrained by the pres- 
ent set of household appliances and closely reflects the potential response 
to higher electricity prices without regard to TOU influences. 

Appendix: Project Evaluations 

In this appendix we discuss the fifteen demonstration projects in more 
detail and explain our evaluation of each project. The projects may be 
judged on many facets of their experimental design and, as mentioned in 
the text, the Research Triangle Institute and Michigan Survey Research 
Center (SRC) studies do just that. The SRC paper, for example, evalu- 
ates projects on the basis of appropriateness of experimental conditions, 
noncoverage error, sampling error, treatment error, nonresponse error, 
and measurement error. The judgments we make in table 1.1 of the text 
are based on the descriptions and evaluations given in the SRC study, 
with the design of the experiment’s price treatments being of primary 
importance in making our decisions. 

In classifying projects on the basis of their ability to provide quality 
data for estimates of TOU price effects, we use the following procedure. 
First we divide the projects into two groups, depending on whether they 
employ a single price treatment or a wide variation in treatments. We 
then examine the nonprice aspects of each project’s experimental design. 
Those projects with a single price treatment which also have other design 
problems are classified as being “of no interest .” Those with a single price 
treatment which are otherwise generally well designed are termed “of 
limited interest.” Any projects that have multiple price treatments but 
other design drawbacks are also considered to be “of limited interest.” 
Finally, projects with multiple price treatments that are well designed 
overall are viewed as being “of interest.” 

Projects with a Single Price Treatment and 
Other Design Flaws (“Of No Interest”) 

Projects in this category are those in New York, Ohio, Rhode Island, 
and Vermont. All employ single price treatments. The Vermont experi- 
ment is not even evaluated by the SRC study because of its unscientific 
design. The New York project has a severe problem with a biased 
sample, as the sample is made up in large part by nonrandomly selected 
volunteers who responded to a bill insert. The Ohio project is somewhat 
better in this regard, since the sampling was conducted randomly (after 
some customers were excluded for various reasons). However, because 
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participation was voluntary, about 70 to 80 percent of the selected cus- 
tomers decided not to take part in the experiment. Other problems 
include possible customer confusion about the price they were being 
charged during a labor strike and insufficient documentation of many of 
the details of the experiment. The Rhode Island project appears not to 
have been designed to examine demand responses to TOU rates, as it 
employs a complex rate structure that is never varied. At the time of the 
SRC study, documentation was insufficient to judge the project on many 
other design characteristics. 

Projects with a Single Price Treatment Which Are 
Otherwise Well Designed (“Of Limited Interest”) 

The Arkansas, Connecticut, and North Carolina (BREMC) projects 
come under this heading, as all are generally well designed except that 
they have only a single price treatment. The Arkansas project’s favorable 
design characteristics include mandatory participation and no participa- 
tion incentives. The Connecticut experiment employs a sampling proce- 
dure that results in high-quality consumption and survey data. 

Projects with Multiple Price Treatments but 
Other Design Flaws (“Of No Interest”) 

The Puerto Rico project falls in this category. While it features varying 
time-of-day rates that allow for elasticity estimation, it has a number of 
unappealing aspects. There are many unnecessary exclusions from the 
sample, it is unclear whether allocation to treatment groups is random, 
and response is voluntary and quite low. 

Well-Designed Projects with 
Multiple Price Treatments (“Of Interest”) 

The projects in this group are those in Arizona, California (LADWP 
and SCE), North Carolina (CP&L), Oklahoma, and Wisconsin. All 
employ multiple price treatments and generally have other favorable 
design characteristics. The North Carolina and Wisconsin projects are 
the best designed of these featuring widely varying rates since they have 
mandatory participation. These two experiments also use rate structures 
that contain demand charges, enabling researchers to estimate price 
effects on peak kW demand. The other experiments offer slightly lower 
quality data, and researchers have to contend with problems of volunteer 
bias and the effects of incentive payments on consumption. 

Other Projects 

TOU pricing experiments were also scheduled to take place in New 
Jersey and San Diego, California. Both were scrapped because of equip- 
ment problems. 
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Dennis Aigner has provided us with a useful paper that reviews the 
various residential time-of-use (TOU) pricing experiments and discusses 
a variety of important implementation issues. After nearly a decade of 
debate before state and federal regulatory agencies about the benefits 
and costs of TOU pricing and the expenditure of tens of millions of 
dollars on experiments, it is certainly an appropriate time to take stock of 
what we have learned. 

The Aigner paper leads me to several general conclusions about the 
TOU experiments and their usefulness for public policy and electric- 
utility decision making. First, it is fairly clear that many of the experi- 
ments have serious flaws that limit their usefulness for estimating the 
price elasticities of interest. While there are numerous sampling, ex- 
perimental design, and duration problems, the most important general 
problem is that many of the experiments failed to provide a sufficient 
number of different TOU price treatments to make econometric estima- 
tion of price elasticities possible. Of the fifteen experiments discussed, 
only six appear to be particularly useful for the estimation of TOU 
own-price and cross-price elasticities, and data from only two of these 
(Arizona and Wisconsin) have been made widely available for analysis to 
date. 

Second, most studies that have analyzed the data from experiments 
which were structured so that price elasticities could be estimated have 
found that the own-price elasticities at various times (peak, shoulder, 
off-peak) are negative. This result comes as no great shock to most 
economists. The point estimates for the own-price elasticities vary 
widely, however. Peak-period elasticity estimates have a range of some- 
thing like -0.2 to -0.8, and off-peak elasticity estimates range from 
about - 0.1 to - 0.8. Differences among the experiments in the definition 
of pricing periods makes useful comparisons of peak versus off-peak 
elasticities very difficult. Cross-price elasticity estimates also vary widely 
across studies, both in absolute value and sign. Analysts working with 
similar data come up with very different elasticity estimates because the 
analytic approaches differ with regard to the specification of the demand 
system to be estimated, the experimental time period for which data are 
utilized, and the extent to which they account for the compensation 
scheme used to “protect” participants from increases in their electricity 
bills. 

Finally, at least in principle, the results of these experiments can be 
used by public utilities and their regulatory commissions to help decide 
on whether to institute voluntary or mandatory residential TOU pricing. 

Paul L. Joskow is professor of economics, Massachusetts Institute of Technology. 
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There are three major issues that must be tackled here. First, since the 
implementation of residential TOU pricing requires relatively large ex- 
penditures on metering equipment, we want to determine the character- 
istics of those residential customers whose responses to TOU pricing will 
yield welfare gains that are greater than the additional transaction costs 
associated with TOU pricing. Aigner’s discussion of the calculation of the 
welfare gains and losses from TOU pricing, that draws on the familiar 
SteinedBoiteux peak-load pricing model and the application of this 
model to preliminary data from the Los Angeles experimental data by 
Acton and Mitchell, provides a simple methodology for making such 
calculations. Second, even when good experimental data are available to 
a regulatory commission, the elasticity estimates are uncertain, and sta- 
tistical confidence intervals must be correctly calculated and applied in a 
meaningful way in any welfare analysis. Third, techniques must be de- 
veloped to allow us to transfer what we have learned from the very small 
number of good experiments to other areas of the country with diverse 
economic and demographic characteristics. While Aigner sketches out 
possible solutions to these last two issues, it seems to me that a lot of work 
remains to be done before they can be adequately resolved. 

The residential TOU experiments were conducted primarily at the 
behest of state and federal regulatory authorities and electric utilities 
interested in obtaining information to help resolve public policy debates 
over TOU pricing and to estimate the effects of TOU pricing on load 
patterns and revenues. These are the ultimate customers for the results of 
these experiments. I believe it is useful to evaluate them from the per- 
spective of the regulators and the firms in the context of the problems 
they have been trying to grapple with at least for the past ten years. 

The first issue that I want to discuss is why so many of the experiments 
were so poorly designed. I believe the answer lies in the true political and 
economic origins of these experiments. When the earliest experiments 
were structured, those involved had simply not thought very deeply about 
what the data generated might be used for. The earliest experiments were 
motivated more by narrow adversarial and litigation concerns than by a 
serious interest in sound economic analysis. The earliest efforts to esti- 
mate the effects of TOU pricing on residential electricity consumption 
patterns arose in the early 1970s in the context of enormous regulatory 
controversy about the desirability of marginal-cost pricing in general and 
TOU pricing based on marginalist principles in particular. 

On the one hand, several environmental groups and a number of 
economists appearing before state regulatory commissions were pressing 
for the use of marginal-cost pricing principles in place of conventional 
average-cost pricing principles and argued that mandatory TOU rates for 
industrial customers and mandatory or voluntary TOU rates for residen- 
tial consumers should be implemented. Proponents of TOU pricing 
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pointed to the experiences in France, England, and Germany as exam- 
ples of situations in which TOU pricing had been used successfully at both 
the industrial and residential levels. The efficiency rationale for marginal- 
cost pricing and the extension of marginalist principles to the develop- 
ment of peak-load pricing schemes for electricity service had long been a 
part of the economic literature. The major interest of environmental 
groups in TOU pricing was to give incentives to reduce the rate of growth 
in peak demand so as to reduce the need for additional power plants. 
These arguments were often congenial to state regulatory commissions 
because they too were looking for ways to reduce the need for new 
generating capacity, with costs two to three times average historical costs, 
as a way to moderate the need for rate increases. Most electric utilities 
opposed TOU pricing initially. Among other things, they argued that 
consumers would not respond to higher prices by reducing consumption 
on peak, that TOU metering was too costly and impractical, that it would 
increase uncertainty about revenues and profits, that it would only lead to 
shifting peaks, etc. Large industrial customers opposed marginal-cost 
pricing and, initially, TOU pricing primarily because they were con- 
cerned that major changes in rate structures would be used by state 
regulatory commissions to redistribute the relative contributions to total 
utility revenue requirements so that the industrial classes would pay more 
and the residential class pay less. The early TOU experiments were really 
fire-fighting exercises aimed at developing some crude U.S. evidence that 
the elasticity of demand for electricity was negative (yes indeed, back in 
the early 1970s some regulatory commissions and utilities refused to 
believe this). Furthermore, the experiments were motivated by a mis- 
perception that the residential class represented the greatest target of 
opportunity for TOU rates, despite the fact that countries like France had 
devoted most of their efforts to the industrial class. The early TOU 
experiments were also viewed by some as a convenient way of delaying 
regulatory decisions on TOU pricing. 

These experiments had their origin in a heated regulatory controversy, 
and little thought was given to the kinds of cost-benefit analyses that 
Aigner spends a good deal of time discussing. There was no inherent 
reason for these early experiments to have been so poorly designed. 
There already existed a reasonably good model to build on in the English 
Domestic Tariff Experiment conducted between 1967 and 1972, and the 
analysts working with these early experimental residential data used 
precisely the same welfare model that Aigner presents in his paper. In 
short, the early experiments were poorly designed because they were 
poorly motivated and had very narrow objectives. 

Some of the more recent experiments have been better structured and 
have yielded more useful information, both because the Department of 
Energy established some minimal guidelines and because some utilities 
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have come to realize that it is in their interests to better understand how 
residential consumers respond to TOU rates, how such rates affect 
short-run revenues, and how such rates can be used strategically for 
system planning and load forecasting. Although there remains some 
utility hostility to TOU rates and skepticism about the value of the 
information generated by experiments like this, many utilities have come 
to realize that it is in their interest to squeeze as much information as they 
can out of such experiments since this information is potentially useful to 
them for planning and regulatory purposes. The best experiments have 
been done in situations where the ultimate consumers of the information 
(utilities and regulators) really cared about using it effectively and where 
the experiments were part of a broader-load research-and-system- 
planning effort. Furthermore, a major contribution of these experiments 
was to get utilities and regulators to begin to think seriously about 
rate-structure reforms and consumer responses to changing rate struc- 
tures. 

A second issue involves the neoclassical welfare analysis discussed at 
length in Aigner’s paper. Are regulatory commissions and utilities likely 
to be guided by these kinds of calculations? I believe the answer is almost 
certainly no. Regulatory commissions appear to be guided in their policy 
decisions by three considerations: Can TOU pricing reduce the need for 
additional generating capacity and help to moderate requests for rate 
increases? Can the results of TOU pricing experiments be used to deter- 
mine who gains and who loses as a result of changes in rate structure? Will 
TOU pricing reduce customer bills in the short run? 

There is general acceptance among regulatory commissions of the 
notion that on the margin, all consumers should face prices that reflect 
the replacement costs of electricity. However, this intuitive understand- 
ing of the role of prices in consumer decisions and the relationship 
between consumption decisions and electricity supply has not been trans- 
lated into broad acceptance of marginal-cost pricing principles by regula- 
tory commissions. Whatever the academic interest in more refined 
welfare calculations, regulatory commissions do not understand what 
deadweight losses are, would not care much about them if they did, and, 
as a result, more refined calculations are unlikely to have any policy 
effects. I should note here that the decision to offer general TOU rates in 
England (the White Meter Tariff) was made before the Domestic Tariff 
Experiment was completed. Furthermore, the welfare calculations per- 
formed after the experiment was completed indicated that the welfare 
gains from TOU pricing were insufficient to cover the additional metering 
costs. The new rates went into effect before the experimental information 
was in and stayed in effect despite the negative welfare calculations. 
Regulatory commissions in the United States are primarily concerned 
with the average level of the electricity prices and issues associated with 
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the distribution of the revenue burden among different types of custom- 
ers. Their decisions for or against marginal-cost pricing and TOU pricing 
reflect these concerns. Any results based on conventional welfare calcula- 
tions are only likely to have an impact if they can be placed in this context. 

A third set of issues concerns the general usefulness of the TOU pricing 
experiments for long-range planning and load forecasting by utilities and 
their regulators. Most utility planners who understand the economic 
rationale for TOU pricing and are even sympathetic to the underlying 
objectives of efficiency based TOU pricing, do not find the experimental 
results to be particularly useful. A major reason for this view is the 
correct perception that by their very nature these experiments only allow 
us to estimate short-run elasticities of demand, given existing appliance 
stocks. Many utility planners envision the potential for substantial 
changes in the composition of appliance stocks as consumers repond both 
to generally higher energy prices and to TOU electricity prices. The 
changing appliance stock will draw on both existing appliance technology 
and appliance innovations. Of special interest are storage heating and 
cooling systems, storage hot-water heaters, dual fuel heat pumps, as well 
as changes in conventional appliances that will allow for better exploita- 
tion of TOU rates. System planners are most interested in examining the 
impact of TOU rates in the context of disaggregated appliance-specific 
load-forecasting models which can be conveniently coordinated with 
system dispatch and probabalistic planning models. As utility planning 
and load forecasting has become more sophisticated, the most progres- 
sive utilities have come to follow the European example of trying to 
coordinate pricing policy with appliance research and the provision of 
appliance information to consumers. Overall, utility planners have not 
found the aggregate econometric demand work that has been forthcom- 
ing from the experiments particularly useful because it reflects only 
short-run responses and has been conducted at too high a level of 
aggregation. 

The lack of interest in the experimental results also reflects a percep- 
tion that electricity pricing systems based primarily on time of use do not 
really represent the most effective way to give consumers signals reflect- 
ing the true marginal cost of production. In a number of cases utilities 
have gone well beyond conventional TOU pricing and are developing 
more sophisticated and efficient pricing systems. For example, for those 
systems in which peak demands are very sensitive to variations in temper- 
ature and humidity, there is a desire to tie the price signals more directly 
to weather-related periods of coincident peak demand than can be done 
with predetermined prices established for broad time periods of the day 
during several months of the year. A variety of radio, cable, and trans- 
mission-line communication devices are being developed. These will 
allow for more flexible interactive pricing systems, including interruptible 
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tariffs that provide reduced rates but allow the utility to directly control 
appliances during peak periods. Coincident peak-sensitive pricing 
schemes are being offered to some industrial customers and experiments 
are under way with controlled storage heating, cycling of air conditioners, 
dual fuel heat pumps and other appliances. The residential TOU experi- 
ments simply do not provide the information on long-run consumer 
behavior that is of most importance in this effort. 

TOU pricing experiments have had and will have little if any positive 
impact on regulatory decisions to implement TOU rates and have pro- 
vided information on consumer behavior that is of only limited value in 
planning and load forecasting. The experiments have shown that consum- 
ers respond to higher prices by reducing consumption in the short run. 
For those who really doubted that such responses would occur, perhaps 
the results will finally convince them. Those studies that have found that 
peak and off-peak consumption were complements are of some potential 
interest, but I suspect that this result is an artifact of the focus on 
short-run responses given appliance stocks and are in any event presented 
at too high a level of aggregation to be of general use. Even where 
short-run elasticity estimates might be of value, the uncertainty ranges 
associated with the estimates obtained from the same data sets are so 
large that they are of limited use for pinning down anything of interest 
with great precision. To some extent the residential TOU experiments 
may have been counterproductive. They have led to too much of a focus 
on residential customers, where metering and other transactions costs are 
relatively high, and have diverted attention from industrial customers 
where TOU rates are likely to be more productive and where we have the 
most evidence based on foreign experience. Furthermore, the existence 
of ongoing TOU rate experiments may have served as a convenient 
excuse to avoid making decisions to reform electric utility rates so that 
they better promote economic efficiency. 

This is not to say that there has been no progress on the rate-reform 
front. TOU rates are now available on a mandatory or voluntary basis in 
many states. Regulatory commissions and utilities have come to take 
rate-structure reforms, including TOU rates, much more seriously than 
they did ten years ago. The Public Utility Regulatory Policy Act requires 
states to consider the cost basis on which electricity rates are based and to 
determine whether TOU rates should be instituted. Recent Federal 
Energy Regulatory Commission rules for determing the rates that utili- 
ties must pay for power generated by cogeneration and other small power 
production facilities are based on the kinds of marginal-cost principles 
that have motivated economists to advocate the general application of 
marginal-cost pricing to electric-power rate making. But these reforms 
have proceeded largely independently of the residential TOU experi- 
ments. Commissions and utilities that have gone forward have taken the 
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bull by the horns; they have recognized that consumption behavior is 
sensitive to prices and that rates based on marginal cost give better signals 
to consumers than rates based on average historical costs. They have 
recognized that TOU rates are almost certainly justified for large custom- 
ers, given conservative assumptions about the relevant elasticities, that it 
takes a long time to economically re-meter the system anyway, and, 
therefore, that the most sensible thing is to gradually introduce perma- 
nent mandatory TOU rates starting with the largest consumers and to 
follow the behavior of these consumers with a carefully structured load 
research program. Mandatory programs have often been supplemented 
by voluntary programs in which customers wanting TOU rates must pay 
for their own meters and perform their own cost-benefit analyses. Some 
care in structuring the voluntary programs and gradual adjustments in the 
basic residential rates can help to avoid adverse selection problems that 
might otherwise develop. 

Perhaps the most important change that has occurred during the past 
decade is that proposals for fundamental changes in all electric power 
rates are now taken seriously by regulators and utilities. TOU rates have 
come to be seen as one of several potential pricing and contracting 
innovations that must be viewed in the broader context of the develop- 
ment of a better understanding of appliance utilization, appliance choice, 
the development of new appliances that can use energy more economi- 
cally, better sampling and load research work, and the development of 
more sophisticated load-forecasting and system-planning models. The 
TOU experiments and the econometric estimates of demand elasticities 
based on these estimates have provided some useful impetus to these 
developments, but I think it has been and will continue to be a small 
impetus. The most important effects have been indirect. The experiments 
have fostered more thoughtful discussion of rate-making alternatives that 
include TOU pricing, but have gone beyond pure time-related rates. The 
economic and statistical techniques that have been developed to analyze 
the data generated by these experiments will also certainly prove to be 
useful in the evolution of our understanding of consumer behavior as 
these techniques are applied to more extensive load-research information 
and new developments in pricing, metering, control, and appliance tech- 
nology. 

In short, the experiments have helped to focus the discussion and 
analysis of theoretical and empirical issues that arise when we consider 
broad issues of efficient pricing, consumer behavior, and load forecasting 
in the electric utility industry. The estimated elasticities themselves are of 
limited theoretical interest or public policy significance. 
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Comment Lester D. Taylor 

In April 1975, the Federal Energy Administration funded six demonstra- 
tion electricity pricing experiments for the purpose of generating data 
that could be used in assessing the costs and benefits of pricing electricity 
according to the time of day it is used. TOU pricing was viewed by policy 
makers as a possibly important conservation-inducing response to the 
energy crisis that was triggered by OPEC and the Arab embargo. Econ- 
omists, as is well- known, are drawn to TOU pricing because of its firm 
basis in theoretical welfare economics. Indeed, scratch an economist, and 
if he doesn’t say “supply and demand,” he will probably say “peak-load 
pricing,” for if done properly TOU pricing is economically efficient and 
leads to a maximum social welfare.’ 

However, in any practical situation, this is a counsel of perfection, 
because whether or not an existing nonoptimal pricing system should be 
scrapped depends upon the benefits to be gained in relation to the costs. 
In other words, the implementation of TOU pricing can be justified on 
social-welfare grounds only if it can be demonstrated that the change in 
social welfare is positive. However, calculation of the benefits and costs 
that would be involved requires a great deal of very detailed information 
on the structure of demand and costs. Information on costs is in principle 
available in the utilities, but, unlike utilities in Western Europe, U.S. 
utilities in 1973 had never engaged in TOU pricing, so there were no 
historical data from which estimates of the demand for electricity by time 
of day could be obtained. This was the information that was to be 
forthcoming from the FEA time-of-use pricing experiments. 

In his paper, Dennis Aigner has attempted to assess the knowledge 
that has been obtained in the experiments. Altogether fifteen experi- 
ments figure in Aigner’s assessment-the six original demonstration proj- 
ects, plus nine subsequent experiments. Aigner’s was a difficult one, and 
he has done a very good job. Besides providing an excellent overview of 
results, he has produced a coherent description of a framework for 
calculating the benefits and costs of TOU pricing plus a statement of the 
problems that will be faced in transferring the results beyond the sampled 
population. 

Drawing on earlier work at the University of Michigan and the Re- 
search Triangle Institute, Aigner gives a useful summary assessement of 
the strengths and weaknesses in the designs of the various experiments. 
By now, there is almost general agreement as to which are the well- 
designed experiments and which are the ones to avoid, at least in terms of 
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1. Social welfare in this context is defined as the sum of consumers’ and producers’ 
surplus. 
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yielding transferrable information about the structure of demand. As he 
notes, the Arizona, California (both LADWP and SCE), Oklahoma, 
North Carolina, and Wisconsin experiments have the most potential in 
this regard. Of these experiments, data from the Arizona experiment 
became available the earliest, and, together with the Wisconsin experi- 
ment, has been the most worked over to this point. 

Having been a party to the Arizona experiment (Jack Wenders and I 
designed the tariffs and the incentive scheme), I agree with Aigner that 
the Los Angeles and Wisconsin experiments are more useful than the 
Arizona experiment, although the Arizona experiment does contain 
some prime information, especially concerning the effects of incentive 
payments. As Aigner notes, the first year of the Arizona experiment 
contained a complicated implicit incentive payment that was designed to 
ensure voluntary participation in the face of TOU rates that reached as 
high as 16dkWh during the peak period. Until the paper of Hill et al. 
1980, the implicit incentive payment had not been properly modeled 
(including my own Aspen effort). That this is important to the price 
elasticities is evident by comparing the results in my Aspen paper, which 
Aigner kindly describes as “anomalous,” with the results in Hill et al. 
1980. However, to return to the comparison of the Arizona with the Los 
Angeles and Wisconsin experiments, the Los Angeles and Wisconsin 
experiments are much larger than the Arizona experiment and are better 
designed in their nonprice aspects. 

The really important question in all of this, however, is the one raised 
in the title of Aigner’s paper: What have we learned from the experi- 
ments? I had hoped that Aigner would conclude that enough information 
now exists to provide at least a preliminary assessment of the costs and 
benefits of implementing TOU pricing, but those hopes are clearly 
dashed. Although he doesn’t say it in so many words, my conclusion from 
reading Aigner’s paper is that any scientific assessment of TOU pricing is 
still a long way off. The experiments are in reasonable agreement on 
own-price TOU elasticities of demand, but there is virtually no agree- 
ment concerning cross elasticities. Until these are defined with reason- 
able precision, a scientific assessment of TOU pricing is not possible. 
However, my gut feeling is that events will not wait for this to occur. 
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