Author Index

Abell, D. F., 136n2
Abramovitz, Moses, 1, 347
Achilladelis, B., 321
Acs, Z. J., 301, 306n8
Adams, J. D., 3, 5
Aghion, P., 8
Agnew, C. E., 41n22, 134, 213n1
Alston, J. M., 269n2
Andrews, W., 280
Arrow, K. J., 255, 272, 356n10, 368n24
Aschauer, D. A., 262
Ashenfelter, Orley, 352
Audretsch, D. B., 301, 306n8
Australian Industry Commission, 9
Bachrach, C., 271
Baily, Martin N., 331, 348, 358n14, 367
Baldwin, William, 302
Barletta, N. A., 254
Barro, R. J., 8n4
Bartelsman, E. J., 7
Barton, Glen T., 1, 269, 347n1
Basberg, B. L., 288n1, 321
Benhabib, J., 251
Ben-Zion, Uri, 27n7, 36n17, 313
Berndt, E., 20, 258, 269n1, 353n8, 360, 362
Bernstein, J. J., 258, 260, 261, 264
Bitros, G. C., 100n1
Blundell, R. S., 278
Bogess, Scott, 368n23
Bond, S., 278
Bonnen, J. T., 363
Bosworth, Derek, 325
Bound, J., 185t, 192n8, 195n12, 294, 295, 301, 302f, 303, 304f, 305f, 307f, 330, 368n23
Bresnahan, T. F., 254, 361, 367
Brown, M., 3, 30, 257
Brunk, G. G., 322n17
Bruno, M., 164, 166n12, 167n14, 206
Brynjolfsson, Erik, 362
Caballero, R. J., 8, 261, 262, 272, 351, 356–357n11, 358n12
Campbell, R. S., 321
Carpenter, M. P., 321
Chakrabarti, A. K., 331, 348, 358n14
Chamberlain, G., 275
Chipman, J., 255
Chow, G., 24
Christiansen, L., 20
Cines, M., 321
Clark, Kim, 134
Cockburn, I., 5, 10, 308, 313, 315t, 362–63, 365
Coe, D., 8
Cohen, A. V., 330n25
Cohen, W. M., 302
Cole, Rosanne, 353
Collins, Eileen I., 363
Comanor, William, 321
Conrad, A., 3, 30, 257
Cooper, Martin, 1, 269, 347n1
Crawford, D., 216, 232
Creamer, D., 363
Cummins, C., 192n8, 195n12
<table>
<thead>
<tr>
<th>Name</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cuneo, P.</td>
<td>169, 175, 177, 183, 188, 192n9, 201</td>
</tr>
<tr>
<td>Cutler, R. S.</td>
<td>309</td>
</tr>
<tr>
<td>David, Paul A.</td>
<td>362</td>
</tr>
<tr>
<td>Davis, J. S.</td>
<td>253n2</td>
</tr>
<tr>
<td>Demack, G.</td>
<td>322n17</td>
</tr>
<tr>
<td>Denison, E. F.</td>
<td>3, 157n1, 347, 348, 351</td>
</tr>
<tr>
<td>Diewert, E.</td>
<td>21n4</td>
</tr>
<tr>
<td>Dillon, J.</td>
<td>269n1</td>
</tr>
<tr>
<td>Dorfman, R.</td>
<td>273</td>
</tr>
<tr>
<td>Englander, A. S.</td>
<td>259, 260, 294, 322, 330, 352n5</td>
</tr>
<tr>
<td>Fabricant, Solomon</td>
<td>1, 347</td>
</tr>
<tr>
<td>Fellner, W.</td>
<td>355n9</td>
</tr>
<tr>
<td>Fisher, F. M.</td>
<td>19n2, 68, 69n10</td>
</tr>
<tr>
<td>Fogel, Robert W.</td>
<td>365</td>
</tr>
<tr>
<td>Frame, J. D.</td>
<td>358n12</td>
</tr>
<tr>
<td>Fraumeni, Barbara</td>
<td>364</td>
</tr>
<tr>
<td>Freeman, Richard</td>
<td>365</td>
</tr>
<tr>
<td>Fromm, G.</td>
<td>158, 179, 216, 232</td>
</tr>
<tr>
<td>Gilfillan, S. C.</td>
<td>331</td>
</tr>
<tr>
<td>Gollop, F. M.</td>
<td>161n4, 215</td>
</tr>
<tr>
<td>Gordon, R. J.</td>
<td>18, 348, 350, 353, 367</td>
</tr>
<tr>
<td>Goto, A.</td>
<td>264t</td>
</tr>
<tr>
<td>Granger, C. W.</td>
<td>316</td>
</tr>
<tr>
<td>Gray, W. B.</td>
<td>7, 352n6</td>
</tr>
<tr>
<td>Griliches, Z.</td>
<td>2, 3, 4n2, 5, 7, 8, 9, 17, 19, 22, 23n6, 25, 27, 28n9, 30, 33, 36, 37, 38, 39, 40, 41, 52, 53, 72n13, 84n1, 92, 96, 100, 101, 102, 104n4, 106, 108, 118, 134, 137n3, 143n6, 149, 151, 168, 169, 175, 176, 177, 183, 188, 190n6, 192n8, 195n12, 14, 198n16, 200n18, 19, 201, 206n28, 213, 214n2, 219, 220, 221, 242, 244n2, 247, 248, 251, 253, 255, 258, 260, 261, 264t, 265, 269, 270, 273, 274, 276, 277, 280, 281, 290, 295, 297, 298f, 301, 302, 306, 308, 313, 315t, 316, 317, 318, 319, 323, 324t, 325, 326t, 327, 330, 333, 334, 347, 348, 351, 352n5, 7, 353, 356, 357n9, 358, 360, 362, 364</td>
</tr>
<tr>
<td>Grossman, Gene</td>
<td>8n4, 151, 161n4, 215, 272, 356–57n11</td>
</tr>
<tr>
<td>Grunfeld, Y.</td>
<td>29n12, 255</td>
</tr>
<tr>
<td>Hall, B. H.</td>
<td>5, 9, 84n1, 192n8, 195n12</td>
</tr>
<tr>
<td>Hall, R. E.</td>
<td>6, 270, 352</td>
</tr>
<tr>
<td>Hammond, J. S.</td>
<td>136n2</td>
</tr>
<tr>
<td>Hanazaki, M.</td>
<td>294, 322, 330</td>
</tr>
<tr>
<td>Harberger, Arnold C.</td>
<td>366n21</td>
</tr>
<tr>
<td>Harris, L. J.</td>
<td>309</td>
</tr>
<tr>
<td>Hausman, J. A.</td>
<td>5, 301, 302, 306, 316, 317</td>
</tr>
<tr>
<td>Hayashi, F.</td>
<td>271, 314n11</td>
</tr>
<tr>
<td>Heady, E.</td>
<td>269n1</td>
</tr>
<tr>
<td>Helpman, E.</td>
<td>8, 272, 356–57n11</td>
</tr>
<tr>
<td>Hendel, Igal</td>
<td>362</td>
</tr>
<tr>
<td>Henderson, Rebecca</td>
<td>10, 260, 365</td>
</tr>
<tr>
<td>Heston, Alan</td>
<td>365, 367</td>
</tr>
<tr>
<td>Hirschey, M.</td>
<td>313</td>
</tr>
<tr>
<td>Hitt, Lorin</td>
<td>362</td>
</tr>
<tr>
<td>Hoch, I.</td>
<td>35, 105, 269</td>
</tr>
<tr>
<td>Holzer, Harry</td>
<td>365</td>
</tr>
<tr>
<td>Howitt, P.</td>
<td>8</td>
</tr>
<tr>
<td>Huffman, W. E.</td>
<td>253n2, 255, 259, 264t, 269n2, 351n4</td>
</tr>
<tr>
<td>Inoue, T.</td>
<td>314n11</td>
</tr>
<tr>
<td>Ivins, L. N.</td>
<td>330n25</td>
</tr>
<tr>
<td>Iwata, H.</td>
<td>187</td>
</tr>
<tr>
<td>Jaffe, A. B.</td>
<td>4, 5, 7, 8, 10, 42, 192n8, 195n12, 259, 260, 264t, 272, 320, 351, 356–57n11, 358n12, 365, 367</td>
</tr>
<tr>
<td>Jaffe, S.</td>
<td>32</td>
</tr>
<tr>
<td>Jensen, E.</td>
<td>306n8</td>
</tr>
<tr>
<td>Jensen, Michael</td>
<td>352</td>
</tr>
<tr>
<td>Johnson, Harry G.</td>
<td>366n21</td>
</tr>
<tr>
<td>Jones, C. I.</td>
<td>271</td>
</tr>
<tr>
<td>Jovanovic, B.</td>
<td>251</td>
</tr>
<tr>
<td>Juhn, Chinhui</td>
<td>362</td>
</tr>
<tr>
<td>Kelley, Allen</td>
<td>321</td>
</tr>
<tr>
<td>Kendrick, J. W.</td>
<td>3, 40, 57–58n6, 71n12, 151, 161n4, 215, 347</td>
</tr>
<tr>
<td>Khan, B. Z.</td>
<td>321</td>
</tr>
<tr>
<td>Kislev, Y.</td>
<td>7, 28n10, 257, 259, 333</td>
</tr>
<tr>
<td>Klein, L. R.</td>
<td>216, 232</td>
</tr>
<tr>
<td>Kleinknecht, A.</td>
<td>306n7, 321, 325, 348</td>
</tr>
<tr>
<td>Klette, T. J.</td>
<td>6, 8, 271, 280, 281</td>
</tr>
<tr>
<td>Knutson, M.</td>
<td>264t</td>
</tr>
<tr>
<td>Kortum, S.</td>
<td>10, 294, 351, 356–57n11</td>
</tr>
<tr>
<td>Krueger, Alan</td>
<td>361, 365</td>
</tr>
<tr>
<td>Kuroda, M.</td>
<td>198n17, 202n23</td>
</tr>
<tr>
<td>Kuznets, Simon</td>
<td>333</td>
</tr>
</tbody>
</table>
Author Index

Lach, S., 10, 271
Laderman, E., 192n8
Lanjouw, J. O., 10, 312
Leibenstein, Harvey, 366
Lepine, N., 260, 261, 264t
Lerner, J., 10
Levhari, D., 29n12, 255
Levin, R. C., 302, 308, 365
Lichtenberg, F., 5, 83, 94, 104n4, 134, 151,
168, 176, 196n16, 200n19, 201n20, 241,
247, 248, 260, 264t, 352nn5, 7
Lieberman, M. B., 321
Link, A. N., 96
Lys, A., 96
McCloskey, Donald, 97
Mairesse, J., 6, 9, 82, 96, 105, 129, 137n3,
143n6, 149, 169, 175, 177, 199, 183,
188, 192n9, 195n14, 201, 253n2, 263,
264, 269n1, 2, 273, 274, 277, 278, 281,
351n4, 352n5
Manchuso, S. E., 312
Mansfield, E., 3, 17, 27, 33n15, 37n18, 52, 53,
57, 82, 94, 96, 251, 254, 264t, 332n27,
334, 351
Manski, C., 281, 367
Marrs, R., 171n23
Marschak, J., 280
Masuck, M. P., 312
Meade, J. E., 252n1, 255
Mensch, Gerhard, 358n11
Merton, Robert K., 331
Milton, H. S., 32
Minasian, J., 3, 53
Mohsen, P., 9, 187n1, 253n2, 260, 261, 263,
264t, 269n2
Morrison, K., 258
Mowery, David, 297
Mundlak, Y., 35, 105, 269
Mundy, J., 192n8
Munnell, A., 262
Nadiri, M. I., 9, 100n1, 187n1, 257, 258, 260,
261, 264t, 269n2, 351n4
Narir, F., 321
National Bureau of Economic Research
(NBER), 353, 363
National Science Board, 365n18
Nelson, R. R., 3, 19n2, 351
Nerlove, M., 34, 269
Nieves, A. L., 321
Nishimizu, M., 198n17, 202n23
Noma, E., 321
Nordhaus, W. D., 52, 157n1, 213, 333, 348
Norton, G. W., 253n2
Odagiri, H., 187n1
Office of Technology Assessment (OTA), 321,
363
Olley, S., 276, 277
Olson, Mancur, 348
Pakes, A., 8, 10, 27, 87, 142n5, 263, 270, 276,
277, 288n1, 289, 295, 297, 298f, 301,
306, 310, 311f, 312, 313, 314, 316, 317,
318, 319, 325n19, 332, 358n12, 365
Papachristodoulou, C., 325
Pardey, P. G., 269n2
Patel, P., 321, 352n5
Pavitt, Keith, 288n1, 321
Peck, M. J., 190n5
Perry, R., 321
Peterson, W. L., 254, 264t
Prucha, I., 187n2
Putnam, J., 8, 10, 294
Raines, F., 30, 257, 259
Ravenscraft, David, 135n1
Regev, H., 276
Reinsdorf, Marshall, 362
Ringstad, V., 3, 38, 118, 351
Rippley, F. C., 216, 232
Robson, M., 259
Romer, P. M., 4, 8n4, 251, 272, 356n10
Rosenberg, N., 325
Rossman, J., 309
Ruggles, Richard, 363
Ruttan, Vernon, 2, 347n1
Rymes, T. K., 18
Sachs, J., 163n6, 206
Sala-i-Martin, X., 8n4, 251
Sanders, B. S., 309
Sassonou, M., 9, 264, 269n2, 351n4
Schankerman, M., 7, 8, 10, 27, 31n14, 87,
142n5, 169, 201n20, 214n3, 227n14,
259, 261, 263, 288n1, 289, 310, 311f,
312, 313, 317, 318, 332, 358n12, 365
Scherer, F. M., 3, 7, 10, 113n12, 134, 135n1,
151, 213n1, 214n3, 241, 245, 247–50,
259, 292, 294, 295, 296, 301, 303,
306n8, 309, 321, 324n18, 325, 330, 331,
348, 351, 352n5, 6
Schmitz, A., 254, 264t
Schmookler, J., 1, 3, 5, 8, 241, 251, 288n1,
292–93, 295, 297, 301, 309, 325, 328,
331, 347n1, 357
Author Index

Schoeffler, Sidney, 135n1
Schultz, T. W., 1, 2, 251, 253, 269, 366n21
Schwartzkopf, A., 321
Scott, John, 302
Seckler, D., 254, 264t
Sharpe, W. F., 24
Sheshinski, E., 255
Siegel, Donald, 5, 258, 352n5, 361–62
Silverston, Z. A., 288n1
Simon, H., 255
Simpson, Margaret, 288n1, 312, 313n10, 358n12
Sirrielli, G., 306n7
Smith, Daniel, 330
Soete, Luc, 294, 321, 352n5
Sokoloff, K. L., 321
Solow, R. M., 2, 347, 366
Stafford, Alfred B., 331
Steiner, P. O., 273
Sterlacchini, A., 257, 259
Stigler, George J., 347n1
Stoneman, P., 325
Summers, Robert, 365, 367
Suzuki, K., 264t
Sveikauskas, L., 230n15, 264t, 333, 352n5
Taylor, C. T., 288n1
Telser, L., 66
Temin, P., 68, 69n10
Terleckyj, N., 30, 37, 40, 53, 72n13, 104n4, 134, 151, 213n1, 214n3, 221, 257, 264t
Tinbergen, Jan, 347n1
Tintner, G., 269
Tong, X., 358n12
Trajtenberg, M., 10, 254, 260, 313n10, 321, 365
Triplett, Jack, 353n8, 360, 364
Tweedie, L. G., 264t
Van Reenen, J., 10
Verspagen, B., 325
Wagner, L. U., 54
Walsh, Vivien, 321
Waugh, F. V., 269
Weisbrod, Burton, 254
Westaway, Tony, 325
Wildasin, David E., 314n11
Williams, B. R., 27
Winter, S., 19n2
Wise, D. E., 41n22, 134, 213n1
Wolf, E. N., 257
Woodrow, E. C., 312
Woolf, P., 321
Wu, J. Y., 261, 262
Wyatt, Geoffrey, 325
Young, Allen, 354
Subject Index

Biases: caused by misspecification, 117-28; in cross-sectional level regressions, 91; in spillover analyses, 261
Bonnen report, 363

Capital, knowledge: 20, 25-27; effect of outside, 28-29
Capital, physical: biases in estimates of, 118-19; defining and measuring, 106
Capital, R&D: biases in estimates of, 118-19; defining and measuring, 9, 25-33, 106, 108, 270; depreciation of, 27-28, 53-54; elasticity of output with respect to, 270; model of in production function, 270-81; in relation of R&D to productivity growth, 142-54. See also Investment, R&D

Computer price index: with adjusted TFP growth, 354-55; based on hedonic regression methods, 353-54
Creamer GNP improvement report, 363

Data: availability of micro and international, 367; constrain understanding, 348-49; disaggregation of BLS-IO and NSF data, 213; firm-level, 188; on growth of R&D capital stock, 142; input price, 261; level of aggregation, 263; multicollinearity in data series, 33-36; on patent rights, 308; quality for observation and measurement, 358-65; simultaneity in data series, 33-36; smoothing R&D series, 233-34; stock market valuation to assess patent value, 313-19; TFP and R&D in manufacturing sector, 234-39

Diffusion: curve or path of, 2; of innovations, 368; of new technology and knowledge, 1-2

Endogeneity: as source of misspecification, 273, 280-81; of technical change, 1-2, 8, 351, 368

Externalities: measurement of R&D, 252–53, 260–68; in “New” growth economics, 251; returns accruing outside firm’s returns, 52; as source of increasing returns and productivity growth, 255

Firms: business units as defined in PIMS data base, 135–36; data defining business units within, 134–36; differences across, 89–91; effects in econometric analysis, 89; partial productivity growth, 91–94; sample in analysis of productivity and R&D at firm level, 100–102, 106–8; size in relation to R&D, 68–72; treatment of mergers in sample, 113–17

Gibrat’s law of proportionate and independent growth, 171

Heterogeneity: differences in industry sectors, 108–9, 129–33; as source of misspecification, 273, 280–81

Industry: actual research in, 87; estimates of differences in sectors, 108–9, 129–33; measurement of output in research-intensive, 87. See also Manufacturing sector

Innovation diffusion, 368

Inputs: in analysis of returns to R&D, 20–22; R&D intensive, 30–31

Inventions: in analysis of returns to R&D, 24–25; components of production of, 356–57; formal R&D-based, 357–58; patents as indicators of, 356–58; represented by specific patent, 308–13

Investment, R&D: effect on TFP growth rate, 145t, 150t, 153–54; factors influencing, 19; with slowdown in productivity growth, 349–51. See also Capital, R&D

Knowledge: borrowed, 30–31, 38–39; diffusion and production of new, 1–2; measurement of externalities in, 366–67; in measurement of R&D capital, 25–33

Measurement: current framework for, 365–67; of impact of new ideas on research productivity, 252–54; of output and input, 19; problems of R&D capital, 31–33; of productivity, 367–68; of product-process mix effects, 146; quality of data for, 358–65; of social returns to R&D spending, 252–55; of technical change, 1–2

Misspecification: biases caused by, 117–28; endogeneity as source of, 273, 280–81; heterogeneity as source of, 273, 280–81; in production function estimates, 273; simultaneity as cause of, 33–35, 273; spillovers as source of, 273–74, 281

Multicollinearity: among R&D series, 261; problem of, 33–34

National Bureau of Economic Research (NBER), 5, 288

“New” growth theory, 7–8, 251, 366

Office of Technology Assessment report, 363

Output: in analysis of returns to R&D, 20–22; definition and scope of, 18; measurement in research-intensive industry, 22–25, 87; measurement of, 19; measures of R&D, 26–28

Patent rights: average value of, 308–13; data on, 308–9; granting of, 288–90

change, 321; numbers of applied for and granted (1970s), 349–50; relation to R&D activity, 301–8; renewals, 310; royalty potential, 310; sources of information about and in, 291–96, 319–21; stock market valuation of, 313–19; trends in applications and grants, 322–31

Production function: error term decomposition, 104–5; estimates in analysis of productivity and R&D at firm level, 117–27, 131–33; estimates in differentiated industry sectors, 108–9, 129–33; long- and short-term components, 144; model in analysis of returns to R&D, 20–22; in model of R&D and productivity relationship, 221–23; productivity in context of, 18; relation of R&D spending to productivity growth, 89–90

Productivity: analysis by industry sector of partial productivity growth, 93–94; analysis of firms’ partial productivity growth, 91–93; causes of slowdown, 163–68, 322; defined, 18; modeling relationship to R&D, 219–30; role of interindustry flows of R&D on growth of, 242–50. See also Total factor productivity (TFP)

Productivity transfers, interindustry, 30–31, 257–58

Quality change, 353

Rees productivity report, 363

Research: actual research in industry, 87; applied, 36; basic, 36–37; model of contribution to productivity growth, 52–55; need to measure and conceptualize, 43; private and social returns to, 87; productivity in relation to firm size, 68–71

Research and development (R&D): aggregated components of output, 26; borrowed, 38–39; changes in productivity over time, 151–54; company-financed, 69–71, 73, 82–83, 91–93, 96; comparison of relation to productivity growth in Japan and United States, 200–208; contribution to growth, 18–19; contribution to production, 9; decay of potency, 151, 153–54; declining patent-R&D ratios, 355–56; differential between social and private returns to, 355; effects on costs, prices, and profits, 155; empirical analysis of relation to productivity growth, 142–54; federally financed, 68–70, 72–73, 86, 91, 93, 96; in generation of productivity growth, 88; inferring contribution to productivity growth, 219–21; interindustry flows of, 241–50; mix between product and process, 154–55; model of relationship to productivity, 219–30; model of TFP growth related to R&D capital stock, 221–31; NSF data, 214–15; NSF R&D-Census match data, 82–86, 88–89; process-oriented, 243, 245, 248–50; product-oriented, 243, 245, 248; publicly and privately financed, 36–38; relation of patents to activity in, 301–8; relation to firm size, 68–71; returns to R&D and R&D spillovers, 264–65; role in French and U.S. productivity growth, 168–69; spillover and direct effects of government-financed, 36, 38; stock market valuation of, 313–19; studies estimating returns to, 39–41, 264; tracing measured effects of, 9. See also Externalities; Spillovers, R&D

Residuals: accounting for observed, 351; looking for correlations among, 262; output growth attributed to, 2; yielded by economic models, 2

Returns: data sources used in analysis of, 20–21, 41–42; differential between social and private returns to R&D, 355; input and output in returns to R&D, 20–22; to R&D and R&D spillovers, 264–65; to R&D expenditures, 59–68, 74–77, 252–55; to research, 87; studies estimating returns to R&D, 39–41, 264, 269–70

Ruggles report, 363

Simultaneity: in analysis of R&D contributions to productivity growth, 104–5, 128; solutions to problem of, 274–80; as source of misspecification, 33–35, 273

Specialization, 25
Specification, 117–28. See also Misspecification

Spillovers: approaches to construction of stocks or pools, 258–61; measurement of, 260–68; model of within-industry effects of, 28–29; in “New” growth economics, 251; as source of misspecification, 273–74, 281

Spillovers, R&D: effects of government-financed, 36, 38; estimating, 8; as ideas borrowed by research teams, 258; identification and measurement of, 30–31, 319; importance of, 7–8; as inputs purchased from other industries, 257–58; model of within-industry effects, 256

Stigler committee, 353, 363

Technical change: in analysis of productivity and R&D at firm level, 106–12; endogenous, 1–2, 8, 351, 368; external, 87; knowledge spillovers in, 7–8; measurement of, 1; in “New” growth economics, 251; output growth attributed to, 2; patents as indicators of, 321, 328–30, 334–36; as source of growth, 1

Technology: diffusion of new, 1–2; firm-specific variations in, 143; patents as measure of shift in, 328; role of interindustry flows in productivity growth, 241–42, 244–50

TFP. See Total factor productivity (TFP)

Tornqvist indexes, 216–17, 231

Books of Related Interest

R&D, Patents, and Productivity
Edited by Zvi Griliches
The groundbreaking work in this volume explores the relationship between research and development (R&D) and its subsequent impact on technology and economic performance. Major findings include documentation of a significant relationship between R&D expenditures and subsequent growth in productivity, the usefulness of patents as an indicator of inventive activity, and the relative unimportance of R&D in accounting for the recent worldwide slowdown in the growth of productivity.
An NBER Project Report

Output Measurement in the Service Sectors
Edited by Zvi Griliches
In this volume, leading experts from government and academia suggest that current measurement methodology may be underestimating the contribution of services to productivity growth in the economy as a whole. The contributors look at the consumer price index, labor productivity indexes, wholesale and retail trade, the stock market, banking, education, day care, and transportation.
NBER Studies in Income and Wealth, Volume 56

The Economics of New Goods
Edited by Timothy F. Bresnahan and Robert J. Gordon
New goods are at the heart of economic progress. But the value created by new goods must somehow be converted into an exact quantitative measurement if official data on inflation, such as the consumer price index, are to represent accurately the theoretical concept of a true "cost-of-living" index. The eleven essays in this volume include historical treatments of new goods and their diffusion; practical exercises in measurement addressed to recent and ongoing innovations; and real-world methods of devising quantitative adjustments for quality change.
NBER Studies in Income and Wealth, Volume 58