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3
Cities as Six- by- Six- Mile Squares
Zipf’s Law?

Thomas J. Holmes and Sanghoon Lee

3.1   Introduction

Economists analyzing urban economics questions commonly use geo-
graphic units from the Census Bureau; for example, metropolitan statistical 
areas (MSAs). The Census Bureau, in turn, typically uses arbitrarily defi ned 
political boundaries to construct its reporting units. The Census Bureau 
must satisfy numerous constituents with its reporting. In its determination 
of reporting unit boundaries, the Census Bureau would not be likely to place 
a high priority on what would be best for research in urban economics. Put 
another way, there is a high probability of measurement error between the 
economic units that researchers want and the reporting units such as MSAs 
that the Census Bureau provides.

A question in urban economics that has attracted much attention is the 
extent to which the size distribution of  cities obeys Zipf’s law.1 If  Zipf’s 
law holds perfectly, then when we rank cities and plot the log of the rank 
against the log of the city population, we get a straight line with a slope 
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of 1. Equivalently, the largest city is twice as big as the second largest, three 
times as big as the third largest, and so on (the rank- size rule). Researchers 
who have used MSAs to defi ne cities, such as Gabaix (1999), have found 
that Zipf’s law holds to a striking degree. But what does it mean to say that 
Zipf’s law holds, when the boundaries are determined by bureaucrats and 
politicians?

We are concerned about how to interpret Zipf’s law results with these 
data for three reasons. First, MSAs are aggregations of counties, and the 
county is a crude geographic unit for such a building block. In some parts 
of the country, counties cover an extremely large land area, and locations 
get wrapped together as an MSA that clearly does not comprise a coherent 
metropolitan area.2 We note that even if  measurement error is unsystematic, 
it causes potential problems for a study of  the size distribution, because 
the distribution with measurement error is generally different from the one 
without it. Second, we are particularly concerned about how boundaries 
are drawn for the largest cities. These cities can often be found in densely 
populated parts of the country where MSAs form contiguous blocks, such 
as the Northeast Corridor extending from Washington, DC, to Boston. It 
is often a tough call determining whether a given area should be classifi ed 
as one or two MSAs, and if  the latter, where to delineate the boundary. If  
bureaucrats tend to use broad defi nitions of MSAs that subsume contigu-
ous areas into single large MSAs, this process may itself  contribute to the 
fi ndings of Zipf’s law. Third, with MSA data, we leave out approximately 20 
percent of the population not living in MSAs. So, we do not see what is going 
on with small cities, the left tail of  the size distribution.3 Eeckhout (2004) 
has recently advocated looking at the left tail by using data on census places 
that include very small towns. But as argued next, census places are heavily 
dependent on arbitrary political decisions of where to draw boundaries.

Our chapter considers a new approach to looking at population distribu-
tions that sweeps out any decisions made by bureaucrats or politicians. When 
comparing populations of geographic units, we can think of differences as 
falling along two margins. First, one unit can have a larger population than 
another because it encompasses more land area, holding population density 
fi xed. Second, a unit can have a larger population on a fi xed amount of land; 
that is, higher population density. In our analysis of the size distribution, 
we completely eliminate the fi rst margin and allow only the second. We cut 
the map of the continental United States into a uniform grid of six- by- six- 
mile squares (and some other size grids as well) and examine the distribu-
tion of population across the squares. We document several regularities that 

2. This point about MSAs is well appreciated in the literature. See, for example, Bryan, 
Minton, and Sarte (2007) for a recent discussion.

3. The Census recently released data on what are called micropolitan areas, which are essen-
tially moderate- sized counties that do not qualify as MSAs. So, our concern that the county is 
a crude geographic unit applies here.
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are robust to various ways of cutting the data. We also examine the extent 
to which Zipf’s law holds for squares.

Our fi rst result is that the extreme left tail of the distribution looks approx-
imately lognormal—roughly, a bell curve. With the Zipf distribution, there 
are always more smaller cities than bigger cities; there is never a bell curve 
with a modal point below which the density of log population decreases as 
size decreases. This works well on the right tail of the distribution (e.g., there 
are more squares with 50,000 people than with 100,000) but does not work 
well around the left tail. This point can be highlighted by a discussion of the 
extreme cases of squares with population one and two. There are 713 squares 
with exactly one person (a bachelor farmer, a forest ranger) living in them. 
A much larger number of squares (1,285) have exactly two people living in 
them. (Perhaps a forest ranger couple?) Given priors about scale economies 
and basic agglomeration benefi ts, it not surprising that squares with one 
lonely person in them are rarer than squares with two. The recent literature 
has not focused on scale economies and agglomeration benefi ts to try to 
understand the size distribution; instead, it has focused on the impacts of 
cumulative random productivity shocks (e.g., Gabaix [1999] and Eeckhout 
[2004]). We suspect that to understand the shape of the extreme left tail of 
the distribution of squares, issues of scale economies and agglomeration are 
of fi rst- order importance.

Our second result throws out the extreme left tail and looks at the distribu-
tion of population across squares with population 1,000 or more. Approxi-
mately 24,000 squares meet this population threshold, and these squares 
account for 28 percent of the surface area of the continental United States. 
We construct a Zipf plot and fi nd a striking pattern. To a remarkable degree, 
the plot is linear until it hits a kink at square population around 50,000. 
Below the kink, the slope is approximately 0.75; above the kink, the slope is 
approximately 2. This piecewise linear function fi ts the data extremely well. 
Moreover, when we split the data by region and make a Zipf’s plot in each 
individual region, the same piecewise linear relationship shows up, with the 
kinks in approximately the same place. Our results are not like the standard 
Zipf’s law fi ndings, and the objects we are looking at—with no variation on 
the land- area margin—are different from the standard objects people look 
at. But we fi nd our results intriguing in the same way that the usual Zipf’s 
law fi ndings are intriguing.

The third result concerns the extent that Gibrat’s law for growth rates 
holds with squares. Under a typical statement of  Gibrat’s law, the mean 
and variance of growth is independent of initial size. Gibrat’s law does not 
hold for squares. The relationship between growth and size is an inverted 
U, with the smallest and the largest population squares having the lowest 
growth rates. It is not surprising that the highest population squares have 
a low growth rate, since these areas typically are fully developed, and little 
vacant land is available for further growth.
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Our fourth result links our fi ndings to results in the previous literature 
about Zipf’s law for MSAs. As mentioned, the main fi nding in the literature 
is that when we look at the upper tail of the MSA’s size distribution, the 
regression coefficient of log rank on log population equals 1. Now, if  we were 
to replace MSA population with MSA average density in the regression, we 
do not necessarily expect to get a coefficient of 1, because it depends on the 
elasticity of MSA surface area to MSA population. If  this elasticity equals 
0.05 (which is approximately what we fi nd it to be), then the expected slope 
coefficient on density is actually 2 rather than 1. This is, in fact, our approxi-
mate result when we replace MSA population with MSA density. This is also 
our result when we use the maximum density square rather than the average 
density in the MSA. We fi nd it interesting that the slope we are getting in 
the right tail of these MSA- level regressions is similar to the slope we get in 
the right tail of the square- level regressions (i.e., the slope to the right of the 
previously mentioned kink). We interpret this result as evidence of some 
kind of fractal structure, where the distribution of average density of the 
right tail of MSAs is similar to the distribution of the right tail of squares 
within MSAs, which in turn is similar to the distribution of the right tail of 
squares across all of the continental United States.

Given our wariness about using the MSA surface- area measure, we are 
somewhat surprised that when we use it to construct average MSA density, 
we get numerical results that we can connect to our results with squares. 
Perhaps the bureaucrats are doing a reasonably good job after all. Even if  
they are, our analysis of squares rather than MSAs is still interesting, be-
cause we are looking at something different from the previous literature with 
new insights. The fractal pattern of the right tails—across MSAs similar to 
squares within MSAs similar to squares across the continent—suggests an 
underlying common explanation. The dominant explanation in the recent 
literature of the size distribution of MSAs is the random growth explana-
tion of Gabaix (1999),4 but it certainly cannot explain the size distribution 
of squares within MSAs and squares across the continent. For one thing, 
Gibrat’s law does not hold for squares, as already noted, and Gibrat’s law 
is needed to get the random growth theory to work. For another, it is clear 
that the size distribution of squares within MSAs is better understood by 
economic theories like the Alonzo- Muth- Mills monocentric model of the 
city than by a random growth theory. We believe that a unifi ed theory of 
the size distribution of squares within MSAs and across MSAs will have to 
incorporate economic factors like scale economies and include an explicit 
spatial structure. See Hsu (2008) for an attempt to do exactly this.

The closely related work of Eeckhout (2004) merits further discussion. He 
made a compelling case that the use of MSAs truncates out low population 
areas, and he suggested the use of the census place as a way to see what is 

4. For related work on fi rms, see Luttmer (2007).
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happening at the bottom tail of  the distribution. Interestingly, Eeckhout 
found that the distribution of places is lognormal rather than Zipf. However, 
we are even more concerned about the use of census places to defi ne geo-
graphic boundaries than we are about the use of MSAs. First, only 74 per-
cent of the 2000 population actually lives in what the Census calls a place; 
the rest of the population are in unincorporated areas.

Next, consider table 3.1. To construct it, we take a list of all census places 
from the 2000 Census (Eeckhout’s data) and tabulate all those places with 
population fi ve or less. Two places in the census fi le have exactly one resi-
dent (including Lost Springs, Wyoming), and two places have population 
equal to two, including Hove Mobile Park City, North Dakota. The arbi-
trary decision that Lost Springs with its one resident is considered a place, 
while a farmhouse in an unincorporated area with a family of fi ve living 
in it is not a place of fi ve people is dependent on legal particulars that are 
not likely to be of interest in our analysis of city size distributions. These 
concerns arise at the top of  the size distribution as well. Saint Paul and 
Minneapolis in the Twin Cities are adjacent to each other and are different 
census places, since they have never merged. Manhattan and Brooklyn are 
part of the same census place (New York City), because they merged in the 
nineteenth century. Our six- by- six- square analysis pulls in all of the land in 
the continental United States and treats it in a uniform way: the one resi-
dent of Hove Mobile Park City is on equal footing with a bachelor farmer 
in an unincorporated area, and New York City is treated the same way as 
the Twin Cities.

Many others have noted the inadequacies of MSA defi nitions for vari-

Table 3.1 Census places with population fi ve or less (2000 Census)

 Place  Population 

New Amsterdam town, IN 1
Lost Springs town, WY 1
Hove Mobile Park city, ND 2
Monowi village, NE 2
Hobart Bay CDP, AK 3
East Blythe CDP, CA 3
Hillsview town, SD 3
Point of Rocks CDP, WY 3
Flat CDP, AK 4
Blacksville CDP, GA 4
Prudhoe Bay CDP, AK 5
Storrie CDP, CA 5
Baker village, MO 5
Maza city, ND 5

 Gross village, NE  5  

Note: CDP � Census designated place.
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ous research questions and have used geographical techniques to improve 
on these boundaries. For example, Duranton and Turner (2008) use buffers 
around 1976 settlements within MSA boundaries to obtain more meaning-
ful MSA defi nitions for their analysis of urban growth and transportation. 
Others have used rich geographic data to determine the location of employ-
ment subcenters. (See Anas, Arnott, and Small [1998] and McMillen and 
McDonald [1998].) In principle, rather than fi x squares like we do, it might 
be possible to draw some kind of optimal city boundaries to let the land 
margin back in. We view this approach as fruitful and complementary. But 
once the economists take the job of drawing the metropolitan boundaries 
away from the bureaucrats, we need to worry about the mistakes the econo-
mists might make. For this reason, we think it is useful to nail down what 
happens when we completely eliminate the land margin across locations, as 
we do here.

While the focus of our work is the size distribution and Zipf’s law, our 
work also makes a broader point that research in urban economics should 
not be constrained by standard geographic units handed to us by statis-
tical agencies. The Census releases population data at an extremely high 
level of geographic precision—the block level (which in urban areas is a city 
block or an apartment building)—so there is great fl exibility in choosing 
boundaries. Moreover, such analysis is facilitated by advances in geographic 
information system software. We therefore have great fl exibility in defi ning 
the boundaries to be whatever we want them to be. In many applications 
in urban economics, researchers might be well served by defi ning their own 
boundaries rather than using the off- the- shelf  boundaries. The construc-
tion of segregation indices is one example. Other papers highlighting the 
fl exibility of continuous geographic data include Duranton and Overman 
(2005) and Burchfi eld et al. (2006). Another related work is the G- Econ data-
base, which contains the worldwide geographic distribution of economic 
activity (gross domestic product; GDP) on a 1- degree- latitude- by- 1- degree- 
longitude grid (Nordhaus et al. 2006).

3.2   Data

We draw a grid of six- by- six- mile squares across the map of the conti-
nental United States. A map is a two- dimensional projection of the three-
 dimensional globe, and the square grid may look different on maps using 
different projection methods. We use the USA Contiguous Albers Equal 
Area Conic projection method, which preserves area size: the size of an area 
on a map is equal to the real size of the area on the globe.5

5. This may not be true in maps using other projections. For example, maps using Mercator 
projections present Greenland as being roughly as large as Africa, but Africa is about fourteen 
times as big as Greenland.
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We use six miles for our baseline, because in the fi rst version of this chap-
ter, we used the original township grid of six- by- six- mile squares. This grid 
was laid down in the early 1800s by the Public Land Survey System (PLSS) 
for the purpose of selling federal lands. (See Linklater [2003] and Holmes 
and Lee [2008].) That was a good place to start, but we eventually realized 
that drawing our own grid would be much cleaner. That way, we could cover 
states that were otherwise left out (e.g., the original thirteen states were not 
surveyed, because there were no federal lands to sell). Moreover, the original 
survey done with chains and landmarks was sloppy compared to what we 
can do now on a computer. We have to anchor the grid at some place, but as 
we show later, shifting the grid up or down or left or right is irrelevant. As 
discussed in section 3.7, a large enough change in the grid size can make a 
difference but not a small change.

The grid has 85,527 squares, each exactly thirty- six square miles, sum-
ming up to 3.1 million square miles of the continental United States. Figure 
3.1 illustrates the grid in the vicinity of New York City. Note the six- by- six 
squares along the coast project into the water. We treat these areas as full 
six- by- six- mile squares and do not distinguish between dry land and water 
when delineating the surface area within the square. We make no distinc-

Fig. 3.1  Map of grid lines for six- by- six squares in the vicinity of New York City
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tion, because people can live on the water (e.g., on houseboats) in some cases 
more easily than they can live on dry land, particularly in remote desert 
areas. We return to the water issue in section 3.7.

We use the population data from the 2000 and 1990 decennial Census 
reported at the level of the census block. In urban areas, a census block is 
a city block or an apartment building. For 2000, there are 7 million census 
blocks in the continental United States. Of those reporting any population, 
the area of the median census block for 2000 equaled 0.014 square miles, a 
tiny unit of land compared to a six- by- six square. The ninety- fi fth percentile 
of block area equals 1.43 miles, still a small amount. The Census Bureau 
reports the longitude and latitude of a point within the boundaries of each 
census block, and we use this point to map each block into a six- by- six 
square. Figure 3.2 illustrates the location of census blocks in the vicinity of 
New York City. In this area, a thousand or more blocks can be assigned to 
a particular square.

We need to address the possibility of measurement error in the allocation 
of population to squares. A block boundary might cross the boundaries of a 
six- by- six square, and when this happens, someone living in the block on one 
side of the boundary can be mistakenly allocated to the six- by- six square on 
the other side. Because blocks are typically very small, this issue is negligible, 

Fig. 3.2  Location of census blocks (2000 Census) in the vicinity of New York City
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except in a few extreme cases. To get some sense of this issue, we determine 
for each of the 280 million people in the population what six- by- six square 
they are assigned to and the number of block groups assigned to the same 
six- by- six square. The fi rst percentile of this statistic is thirty- fi ve blocks. 
This means that all but 1 percent of the population live in six- by- six squares 
with at least thirty- fi ve blocks assigned to them. Now, thirty- fi ve blocks will 
trace out a fairly clean square. The fi fth percentile is 74 blocks, the fi ftieth is 
719, and the seventy- fi fth is 1609. We are confi dent that for 99 percent of the 
population, our assignment is very good. We note that even in remote rural 
areas, the Census typically defi nes blocks at a fi ne level of granularity.6

To compare our results with what comes out of the traditional approach 
with MSA- level data, it is useful to aggregate our squares to MSAs. We 
allocate squares to the MSAs as defi ned for the 2000 Census. In certain 
metropolitan areas, the Census offers a choice of consolidated areas (e.g., 
the New York CMSA) versus a breakdown into component areas. We use the 
consolidated defi nitions. There are 274 different such MSAs in the continen-
tal United States. We allocate squares to MSAs according to the following 
rule. A square gets assigned to an MSA if  any block in the square is part 
of the MSA. In the event a square is at a boundary where MSAs overlap in 
the square, we assign the square to the MSA with the largest surface area 
based on blocks.

Table 3.2 presents summary statistics of how population from the 2000 
Census varies across squares. Mean population across the 85,527 squares 
is 3,269. Population is highly skewed, with two squares in the New York 
MSA having 1.3 million in population. The area unit used in the analysis to 
calculate density is the six- by- six- mile square. So, each square has one unit 
of area, and the population density equals the population.

Table 3.2 also presents summary statistics for the 274 MSAs. Mean den-
sity is 7,881 per square, which is twice the density of squares overall. The 
mean number of squares across MSAs is 87, with the minimum being 14 
and the maximum being 981 squares. So clearly, the square is a much smaller 
geographic unit than the MSA. The maximum land area is attained by 
the Las Vegas MSA, which is a good example of the limitations of Census 
MSA defi nitions. The surface areas of counties in Nevada are huge. Since 
the Census uses the county as a building block unit for MSAs, much of the 
surrounding area that is not actually part of the Las Vegas metropolitan 
area is folded into the MSA bearing its name.7

6. In a relatively small number of cases, a square has only one block group assigned to it. 
There are 592 such blocks, accounting for 20,000 people (out of 280 million). These look like 
unusual and exceptional cases rather than just simply rural cases. Of these 20,000 people, 
5,677 are in the 29 Palms military base in California. The base is in a census block covering 
272 square miles. Another block is in the Mohave Desert. Others are in national parks and 
national forests.

7. Another example of this problem with huge counties is the case of the Flagstaff MSA 
in Arizona. The city of Flagstaff is located in the geographically huge Coconino county (over 
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3.3   Background Equations

Discussing some background equations on the size distribution is useful. 
Following the notation of Gabaix and Ioannides (2004), let Si denote the 
population size of city i, and suppose the distribution of populations across 
cities is Pareto:

(1) Ranki � P(Size�Si) � 
�
�
Si

�
.

Taking logs, we get

(2) ln Ranki � ln � � � ln Si.

The slope � is called the tail coefficient. Zipf’s law is said to hold if  � � 1.
Let Li be the land area of city i and the population density Di be

 Di � 
Si
�
Li

.

The analysis remains in a log- linear form if  there is a constant elasticity � 
relationship between land and population,

Li � 	Si
�.

Taking logs yields

(3) ln Li � ln 	 
 � ln Si.

Table 3.2 Summary statistics: Squares and MSAs (population from 2000 Census)

Unit  Variable  Number  Mean  
Standard 
deviation  Minimum  Maximum  

Sum across 
units

Square Population 85,527 3,269 18,181 0 1,317,207 279,583,434
Log(population) 70,590 5.69 2.48 0 14.09 —
Area (6 � 6 square) 85,527 1 0 1 1 85,527

MSA Population 274 843,209 1,986,836 60,744 21,343,534 231,039,389
Population density 274 7,881 7,073 215 55,151 —
Log(population 
 density) 274 8.67 .80 5.37 10.92 —

  Area (6 � 6 square)  274  87  103  14  981  23,798

18,000 square miles). The Census classifi es the whole county as the Flagstaff MSA. Flagstaff 
is the third largest MSA by land area. Cities quite distant from Flagstaff, including Tuba City 
(78 miles) and Page (119 miles), are folded into the Flagstaff MSA because they happen to be 
in this county. A large percentage of the Flagstaff MSA population reported by the Census 
comes from distant places like these that clearly are not part of the economic unit of Flagstaff 
city. Researchers might be tempted to use the city boundaries of Flagstaff rather than the MSA 
boundaries. But this raises the issue of the often arbitrary political decisions that determine 
municipal boundaries.
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Solving the preceding for ln Si and substituting into equation (2) yields

(4) ln Ranki � �ln � 
 
�
�
�

 ln 	� � 
�
�
�

 ln Li.

This is a Zipf’s relationship using land instead of  population. Note the 
slope is �/ �, not �. In the special case where population density is constant 
across cities (e.g., each individual inelastically demands one unit of land), 
then � � 1, and the slope coefficient for the land regression in equation (4) 
is identical to the slope coefficient for the population regression in equation 
(2). But otherwise, in the empirically relevant case where � � 1, the slope is 
higher for the land regression than the population regression.

Analogously, using ln Di � ln Si –  ln Li and equation (3), we can solve for 
ln Si in equation (2) in terms of ln Di to get

(5) ln Ranki � �ln � � 
� ln 	
�
(1 � �) � � 

�
�
1 � �

 ln Di.

This is a Zipf’s plot for population density. The tail coefficient is � /  (1 –  �). 
If  Zipf’s law holds so that � � 1, and if  � � 1, then this slope will be greater 
than 1.

Next, consider squares. Let the squares be indexed by j, and let sj be the 
population of square j. Let Ai be the set of squares that are in city i. Then, 
city population, land area, and density equal

 Si � ∑
j�Ai

sj.

 Li � Number of squares in Ai,

 Di � 
Si
�
Li

 � mean sj, j � Ai.

In general, the relationship between the size distribution of the squares sj and 
of the cities Si is quite complicated, except for the special case where each 
square is a city. We leave to future research a theoretical analysis of this rela-
tionship and focus instead on a descriptive analysis of the distribution of the 
squares sj and how it compares to the distribution of MSA- defi ned cities.

We are able to make one immediate observation. Let si
max be the highest 

population square in city i,

 si
max � max

j∈Ai

sj.

If  the maximum density square is proportionate to the overall city popu-
lation density,

(6) si
max � Di,

and if  we replace Di in equation (5) with si
max, then we obtain the same slope 

coefficient. This is interesting, because the maximum population square is 
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more reliably measured than the average population density of an MSA. 
The latter heavily depends on where the boundaries are drawn. Typically, 
there is rural land at the boundary of an MSA, so the wider the boundaries 
are drawn, the lower the overall MSA population density. The si

max variable 
is determined in the interior of  the MSA, the “central business district,” 
far from the boundaries of the MSA. So, it will not be affected if  the MSA 
boundary is arbitrarily increased twenty miles out or twenty miles in.8 (The 
MSA boundaries still impact the si

max measure if  the Census merges two 
MSAs into one.)

3.4   The Size Distribution of MSAs

As a benchmark, this section examines the size distribution of MSAs. 
Following Gabaix (1999), we focus on the 135 largest MSAs, treating this 
area as the upper tail of the distribution.

Figure 3.3 presents three Zipf plots. Panel A is the standard plot where 
we use population. Panel B replaces population with land area as in equa-
tion (4); panel C replaces population with density as in equation (5).9 Table 
3.3 reports estimated slope coefficients. As is common in the literature, we 
estimate the tail index two ways: standard ordinary least squares (OLS) and 
the Hill method (the maximum likelihood procedure under the null hypoth-
esis that the distribution is Pareto). See Gabaix and Ioannides (2004) for a 
discussion of econometric practice in this literature. As recommended in 
this work, we use simulation methods to estimate the OLS standard errors, 
because the usual method yields biased estimates. Zipf’s law for the popu-
lation holds in a striking fashion. The OLS estimate of the slope coefficient 
for the population regression is 1.01. The fi t is excellent, as can be seen by 
the straight line in fi gure 3.3 and by the R2 of 0.988 in table 3.3.

The Hill estimate of the population coefficient is 0.94—a little less than 
1. But the estimated standard error is 0.07, so we cannot reject that the 
slope equals one with a standard statistical test. Here and elsewhere in the 
chapter, the Hill estimates are a little smaller than the OLS estimates and 
have a higher estimated standard error but are otherwise similar. Since the 
OLS and Hill estimates are basically telling the same story, for the rest of 
the chapter, we will discuss just the OLS estimates in the text but report both 
in the tables.

The OLS slope coefficients on land and density are 1.70 and 1.90, respec-
tively. Straight lines fi t reasonably well. To relate this result to the equations 
in the previous section, we look at the relationship between land area and 

8. One issue with si
max one could raise is that it might depend on where the grid is positioned. 

We show in the following text that we can shift around the grid and our results with si
max do 

not change.
9. Analogous to what we do for population, for land, we take the top 135 MSAs ranked by 

land, and for density, we take the top 135 MSAs ranked by density.
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Fig. 3.3  MSA- level Zipf plots: A, top 135 MSAs by population; B, top 135 MSAs 
by area; C, top 135 MSAs by population density
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population in the top 135 MSAs by population. A regression of the log of 
MSA area on log MSA population yields a slope coefficient of 0.52.10 Let 
us take this as an estimate of � from the previous section. Equations (4) and 
(5) from the previous section suggest the slope coefficient on both land and 
density should approximately equal 2 if  � � 1 and � � 0.5 approximately 
hold. Our estimates of 1.70 and 1.90 are in the ballpark of 2.

Next, we bring in our information about squares into an MSA- level anal-
ysis. For each MSA i, we determine si

max, the maximum population square 
of all the squares in MSA i. We substitute si

max for the average density Di, 
as discussed in the previous section. The results are reported in the bottom 
row of table 3.3. The estimated slope coefficient equals 1.76. The estimate 
is close to the 1.90 estimate obtained with average density, and the fi t is 
little better: R2 � 0.988 instead of R2 � 0.973. Recall that the land measure 
for MSAs is crude, making the derived measure of average MSA density 
a relatively crude object. Yet, the results are similar with the two alterna-
tive measures of density. Suppose the population of the maximum density 
square is proportionate to average density as in equation (6) and that the 
average density measure is measured precisely. Then, these two regressions 
would yield similar slopes. We interpret this fi nding as encouraging for those 
wishing to use MSA- defi ned cities.

It is worth noting that even with the si
max regression, we are still dependent 

on Census decisions about whether two nearby metropolitan areas should 
be grouped into one or two MSAs. The Census groups San Francisco and 
Oakland into one MSA, so the observation of si

max is downtown San Fran-
cisco. If  Oakland were separated into a distinct MSA, we would get another 
observation of si

max for downtown Oakland. In our exercise in the next sec-
tion with squares, we do not depend on such Census classifi cations.

Table 3.3 MSA- level Zipf regression results: Alternative size measures

OLS Hill method

Size measure  
Slope 

(absolute value)  R2  
Slope 

(absolute value)

Population 1.013 .985 .944
(.12) (.078)

Land area 1.70 .984 1.569
(.12) (.176)

Density 1.896 .973 1.616
(.12) (.120)

si
max (maximum population square in MSA) 1.761 .988 1.546

  (.12)    (.125)

Note: Each regression uses top 135 MSAs ranked by given size measure.

10. The standard error is 0.04, and the R2 � 0.52.
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So far, our focus has been on the upper tail of the MSA distribution. Next, 
we look at the entire distribution of MSAs. It is known in the literature that 
Zipf plots of MSAs tend to exhibit a concave shape when the lower tail of 
the distribution is included. (See, for example, Rossi- Hansberg and Wright 
[2007].) When a Zipf’s plot is not a straight line, a standard density plot of 
the distribution can be more revealing than a Zipf’s plot. As a segue into 
looking at the whole distribution, we fi rst illustrate in panel A of  fi gure 
3.4 a density plot (histogram) of log population for just the upper tail, the 
135 highest population MSAs. Also illustrated in the plot is the best- fi tting 

Fig. 3.4  Density plots: A, 135 largest MSAs; B, all 274 MSAs; C, populated 
squares

A

C

B
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normal curve. Clearly, the bell- curved shape of the normal does not fi t the 
distribution within the top 135 MSAs very well. Rather, a Pareto distribution 
is a good fi t here. With the Pareto, the density is a straight line that is strictly 
decreasing; the smaller the units, the more units there are.

Panel B in fi gure 3.4 illustrates the distribution of log population for all 
274 MSAs. Now, the tendency for monotone decline of the density is not 
as pronounced as it is with just the top 135, but this is still the clear pattern. 
Certainly, the bell curve of the normal does not fi t the distribution of MSAs 
very well.

3.5   The Size Distribution of Six- by- Six Squares

We turn now to the size distribution of six- by- six squares. Table 3.4 pro-
vides cell counts for population size groupings. Approximately 15,000 of 
the 86,000 squares are unpopulated. There are 713 squares where only one 
person lives and 1,285 where two people live. Clearly, the Pareto in which 
the density is always decreasing cannot fi t this distribution.

Panel C of fi gure 3.4 is a density plot of log population across all squares 
with at least one person. For the unpopulated squares, the log of popula-
tion is minus infi nity, so the fi gure leaves out a spike at minus infi nity. For 
squares with one person, log population equals 0, so the plot begins here. 
The last column of table 3.4 provides a conversion from population to log 
population to aid in interpretation of the fi gure. When log population is less 

Table 3.4 Distribution of population across six- by- six squares (Census 2000 
population in the contiguous United States)

  
Number 

of squares  
Percent of 
population  

Log(population) at 
bottom of grouping

All squares 85,527
Population � 0 14,937 0.00 –�

Population � 0 70,590 100.00 0.00
By population size grouping
  Population � 1 713 .00 0.00
  Population � 2 1,285 .00 0.69
  3 � population � 5 2,564 .00 1.10
  6 � population � 10 2,532 .01 1.79
  10 � population � 100 16,233 .23 2.30
  100 � population � 1,000 23,289 3.59 4.61
  1,000 � population � 10,000 19,271 21.20 6.91
  10,000 � population � 50,000 3,521 27.40 9.21
  50,000 � population � 1,000,000 1,179 46.28 10.82
  1,000,000 � population 3 1.29 13.82
Size groupings of later interest
  1,000 � population 23,974 96.17 6.91
  50,000 � population  1,182  47.57  10.82



Cities as Six-by-Six-Mile Squares: Zipf’s Law?    121

than 4 (when population is less than about fi fty), the best fi t normal curve 
fi ts reasonably well, though the fi t is choppy. Certainly, the lognormal fi ts 
the distribution better than the Pareto on the right tail.

Our fi nding that the lognormal is a rough approximation to the right tail 
of the distribution of squares is like Eeckhout’s (2004) fi nding that the log-
normal fi ts the right tail of the distribution of census places. But as argued in 
the introduction, the census place is a problematic geographic unit to use in 
examining the size distribution. Eeckhout presents a random growth model 
with shocks to location productivities that generates a lognormal distribu-
tion. We do not attempt any formal analysis in this chapter to try to explain 
why the size distribution has the shape that it has. But a look at the raw data 
makes us skeptical that random location- specifi c productivity shocks are 
the main driving factor, at least at the extreme left tail. That there are more 
squares with two people than with one person (1,285 instead of 713) seems 
to us more likely due to basic agglomeration benefi ts in the human condition 
rather than the variance of location- specifi c productivity shocks. It seems 
likely that as we move beyond the one-  and two- person size classes, related 
agglomeration forces are also at work.

We now turn our attention away from the extreme left tail and consider 
what the distribution looks like with the extreme left tail truncated. If  any 
part of  the distribution is to look anything like Zipf, it has to be on the 
downward- sloping portion of the density. Inspection of fi gure 3.4 (panel C) 
reveals that the mode of the distribution is approximately at a log population 
of 7, which corresponds to approximately a population of 1,000. Hence-
forth, we truncate all squares with population less than 1,000. From table 
3.4, we see that there are 23,974 squares with 1,000 people or more and that 
these account for about 28 percent of the U.S. land mass and 96 percent of 
the population. The coverage of the population is very signifi cant here. Even 
with the truncation, we are including areas that are quite remote.

Figure 3.5 is a Zipf’s plot of the population distribution of squares with 
1,000 or more people. It exhibits a clear pattern. The relationship looks 
piecewise linear, with a kink around log population of 11 (which corresponds 
to a population of approximately 50,000). Above the kink, the relationship 
steepens. We use nonlinear least squares to fi t a piecewise linear function to 
the plot in fi gure 3.5. The estimates are reported in table 3.5. Because of the 
large number of observations, the estimated standard errors are quite small, 
so they are not reported. The estimated kink is at a log population of 10.89. 
Below the kink, the (absolute value of) the slope is 0.75; above the kink, it is 
1.94. The R2 � 0.998 is extremely high, so the piecewise linear function fi ts 
very well. For comparison purposes, we also fi t a linear function. The slope 
in the linear case is between the estimates for the piecewise linear case, and 
the fi t is noticeably worse.

The Census groups states into nine different census divisions. Our next 
exercise is to examine the distribution of population across squares within 



Fig. 3.5  Square- level Zipf plot for continental United States (all 23,974 squares 
with population at least 1,000)

Table 3.5 Six- by- six- square- level Zipf regression results (squares with population 1,000 
and above)

Piecewise linear Linear

Sample of squares  N  Kink  Slope1  Slope2  R2  Slope  R2

All squares with population � 1,000 23,974 10.89 .747 1.937 .998 .833 .969
By Census division
  New England 1,027 9.96 .569 1.521 .996 .763 .930
  Middle Atlantic 2,184 10.28 .669 1.249 .997 .759 .965
  East North Central 4,313 10.92 .784 1.982 .999 .861 .975
  West North Central 2,337 11.04 .886 2.607 .999 .941 .984
  South Atlantic 4,977 10.72 .756 2.175 .995 .857 .959
  East South Central 2,898 10.48 1.010 2.357 .997 1.072 .983
  West South Central 3,078 11.17 .786 2.834 .997 .857 .969
  Mountain 1,383 11.55 .723 3.662 .997 .791 .964
  Pacifi c  1,777  11.21  .521  1.872  .992  .646 .922
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each census division. Figure 3.6 contains Zipf plots for all nine divisions, 
and table 3.5 lists the estimates. To a remarkable degree, the pattern we have 
established for the country as a whole occurs in each division individually. 
Table 3.5 shows that the estimated location of the kink varies little across the 
divisions, roughly eleven for each. In fi gure 3.6, we see that the slope on the 
left side of the kink is approximately the same for each division. The plots 
look something like vertical shifts across the divisions. In all cases, the slope 
to the right of the kink is strictly greater than 1, and to left of the kink, the 
slope is less than 1 (with the exception that for the East South Central, the 
slope actually equals 1 to the left of the kink).

The kink at log population of 10.9 suggests we should explore this upper 
tail. This corresponds approximately to a population of 50,000. Now, trun-
cate all squares with population less than 50,000. We are left with 1,182 
squares, accounting for 48 percent of the population. Table 3.6 reports the 

Fig. 3.6  Square- level Zipf plots for census divisions (square population at 
least 1,000)
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results of a linear Zipf’s regression on this tail of the distribution. Taking the 
country as a whole, the slope is 1.889. Looking at each census division indi-
vidually, the variation in the slope is relatively small, and the mean is 2.

We conclude this section by connecting our results from the square- level 
analysis to the previous section’s results for the MSA- level analysis. The 
bottom of table 3.6 reports the results of Zipf regressions across squares 
within MSAs. For example, there are twenty- six squares with 50,000 people 
or more in the Boston MSA, and when we estimate the Zipf’s regression 
on this sample, we get a slope of 1.46. The table reports the results of indi-
vidual regressions for the top ten MSAs (by population), as well as the 
mean coefficients across these regressions for the top ten and top twenty- fi ve 
MSAs. (We only do this for large MSAs, since small MSAs have few 50,000
 
squares with which to run the regression.)

Table 3.6 Six- by- six- square- level Zipf regression results (squares with population 
50,000 and above)

OLS Hill 
method

Slope
Sample of squares  N  (absolute value)  R2  Slope

All squares with population � 50,000 1,182 1.889 .983 1.569

By Census division
  New England 58 1.865 .989 1.892
  Middle Atlantic 154 1.318 .989 1.302
  East North Central 193 1.929 .987 1.641
  West North Central 74 2.389 .969 2.108
  South Atlantic 218 2.271 .972 1.847
  East South Central 44 2.763 .923 2.575
  West South Central 138 2.286 .918 1.778
  Mountain 85 1.951 .853 1.487
  Pacifi c 218 1.597 .931 1.236

Mean across divisions 131.3 2.041 .948 1.763

By MSA (10 largest)
  Boston 26 1.462 .987 1.491
  Chicago 54 1.412 .974 1.246
  Dallas 35 2.208 .869 1.401
  Detroit 35 1.718 .938 1.603
  Houston 29 1.751 .894 1.469
  Los Angeles 82 1.265 .870 0.986
  New York 95 1.139 .981 1.173
  Philadelphia 32 1.425 .982 1.612
  San Francisco 43 1.451 .935 1.373
  Washington 43 1.639 .955 1.336

Mean across top ten MSAs 47.4 1.547 .939 1.369
Mean across top twenty- fi ve MSAs  29.2  1.776  .915  1.556
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Recall from table 3.3 that in an MSA- level regression with the 135 top 
MSAs, when we use the maximum population square si

max as the size mea-
sure, we get a slope of 1.761. It is notable that when we take the MSA that 
is ranked 135 according to this measure, its value of si

max is 65,000, which 
approximately equals the 50,000 cutoff we are using here. The 1.761 slope 
approximately equals the slope of the within- MSA, square- level regressions 
we are doing here. The average slope across the top twenty- fi ve MSAs is in 
fact 1.776.

The results here are interesting in two ways. First, there is an interest-
ing fractal- like pattern among squares with 50,000 or more in population. 
Looking within a given MSA, the Zipf coefficient across squares is on the 
order of 1.7. This is approximately what we get when we take the maximum 
population square in each MSA and look across MSAs. It is also approxi-
mately what we get when we take all such squares across the whole country 
and look at them together (the 1.9 estimate in table 3.6), as well as when we 
look at squares in individual regions.

Second, this coefficient is also approximately the result we get when we do 
not use the squares and just use average MSA density (the 1.896 coefficient 
on density in table 3.3). We have raised concerns about the arbitrary way 
MSAs are defi ned, and there is certainly measurement error. Yet, our anal-
ysis in which MSA defi nitions play no role whatsoever (1.889 Zipf coefficient 
in table 3.6) is very close to our results in the MSA density analysis of table 
3.3 (again, the 1.896 coefficient in table 3.3). Now, these are different objects 
that need not be the same, even if  with perfect measurement. Yet, the sug-
gestive fractal pattern here hints that they might very well be the same or 
very close if  we did have perfect measurement. And even with the imperfect 
measurement of MSAs we have to work with, our analysis may not be very 
far off.

3.6   Growth Rates

The theoretical literature has emphasized the link between the size dis-
tribution of cities and their growth rates. In particular, Gabaix has shown a 
connection between Gibrat’s law and Zipf’s law. One version of Gibrat’s law 
is that the mean and variance of the growth rate of a city are independent 
of the initial size of a city. Authors such as Ioannides and Overman (2003) 
have noted that Gibrat’s law is a reasonable fi rst- order approximation to the 
data. (See also Black and Henderson [2003] for an analysis.)

Table 3.7 shows that Gibrat’s law is a reasonable fi rst- order approximation 
for MSA growth in our data. The measure of growth rate used here is the 
difference in log population between 2000 and 1990. Mean growth over all 
MSAs during the period is 0.124. The mean growth varies relatively little 
over the four different MSA groupings in the table. It takes a low of 0.114 
for cities with less than 250,000 people and has a peak of 0.141 for cities in 
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the 0.5 to 1 million range. Moreover, the standard deviation does not vary 
much across the different groups.

Table 3.7 shows that Gibrat’s law is not a good approximation for the 
growth of squares. The mean and variance of growth depend on size in a 
clear pattern. Mean growth in the smallest size category is 0.054—the lowest 
over all categories. Growth increases with size until it attains a maximum 
value of 0.149 for squares in the 10,000 to 50,000 range. Beyond this, mean 
growth decreases, falling to 0.093 in the 50,000 to 100,000 range and to 
around 0.05 beyond that. The standard deviation is not fl at but decreases 
sharply with population.

These results for the growth rates of squares are not surprising, given what 
we know about the patterns of urban and rural growth. As is well known, 
remote rural areas have been declining in their share of population, so not 
surprisingly, mean growth is lowest in the smallest size category, under 1,000 
people in the square. Also well understood is that in large urban areas, popu-
lation expansions take place at the edges where new housing is constructed. 
For this reason, the most dense squares (those with more than 100,000 in 
1990 population) have the lowest growth rate besides the under- 1,000 cat-
egory. These dense areas are already built up, and additional housing units 
are hard to squeeze in. Those squares that tend to be on the edge of met-
ropolitan areas (in the range of 10,000 to 50,000 people) have the highest 
growth rate of 0.149.

Table 3.7 Growth rates (change in log population), 1990 to 2000, by size (MSAs 
and squares)

  

Number with positive 
population in 1990

and 2000

Change in log population

 Mean  Standard deviation

MSAs 274 .124 .100
MSAs by 1990 population
  Population � 250,000 135 .114 .098
  250,000 � population � 500,000 66 .127 .093
  500,000 � population � 1,000,000 32 .141 .129
  1,000,000 � population 41 .139 .094
Squares 65,975 .081 .6186
Squares by 1990 population
  Population � 1,000 43,723 .054 .741
  1,000 � population � 2,000 8,057 .129 .228
  2,000 � population � 5,000 7,117 .139 .242
  5,000 � population � 10,000 2,953 .144 .223
  10,000 � population � 50,000 3,118 .149 .204
  50,000 � population � 100,000 616 .093 .128
  100,000 � population � 250,000 341 .056 .095
  250,000 � population � 500,000 39 .046 .071
  500,000 � population  11  .060  .061
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It is also easy to see why the highest population squares have the lowest 
variance of growth. The absence of a large stock of vacant buildable land 
eliminates the possibility of  upside growth, and the existence of  a hous-
ing stock decreases the downside of population outfl ow (see Glaeser and 
Gyourko [2005]). It is easy to see why the smallest locations have the highest 
variance of growth. If  the forest ranger living by himself  or herself  in a six-
 by- six square gets married, population in the square doubles.

3.7   Robustness

In setting our grid of squares, we had to determine: (a) what grid size to 
use (we picked six miles), and (b) where to start the grid. Let us begin by 
exploring this second decision, which is analogous to the decision of where 
to put the prime meridian for longitude, an arbitrary placement that by 
international convention passes through Greenwich. With the way we have 
placed the grid in fi gure 3.1, we can see that downtown Manhattan is in the 
same six- by- six square with Jersey City and other places across the river 
in New Jersey. If  we had shifted the grid two miles to the east, downtown 
Manhattan would have been in a square with Queens.

One may wonder whether this arbitrary decision on our part impacts our 
results. Fortunately, the answer is no: where to start the grid has virtually 
no impact on our results. Table 3.8 shows what happens when we shift the 
grid two miles and four miles to the north. (Note that if  we shift it north six 
miles, the grid remains the same.) Analogously, it shows what happens when 
we shift the grid two and four miles to the east. The top row contains the 
original baseline results. The rows below are the results with the shift and 
show that they are the same up to two- digit accuracy, and for some columns, 
up to three digits.

Next, we consider changing the size of the grid. Signifi cant changes in the 
grid will impact the results. If  we make the grid size 1,000 miles, there will 
be only three squares. If  we make the grid one meter by one meter, then our 
fi rst problem is the Census data are not fi ne enough for this size. Our second 
problem is that populations would typically be one if  a person happened to 
be standing in the one- by- one- meter square at the time of the census and 
zero otherwise, so the size distribution would not be interesting.

Next, we focus on the robustness of our results to relatively small changes 
in the grid size. We consider two smaller grid sizes (two and four miles) 
and four larger ones (eight, ten, fi fteen, and twenty miles). To a remarkable 
degree, our results are robust to these changes in grid size. Recall that in the 
original six- by- six analysis, we used a 1,000 population cutoff for the piece-
wise linear regression and a 50,000 cutoff in the linear regression. When we 
change the grid size, we also change the population cutoffs to keep popu-
lation density at the cutoff the same. For example, the area of a two- by- two 
square is 1/ 9 times the area of a six- by- six square. So, for the two- by- two 
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case, the linear regression cutoff is 5,556 � 50,000/ 9. The piecewise linear 
function fi ts extremely well throughout all the grid sizes (R2 � 0.997 and 
above). The coefficient estimates do not vary much: 0.7 to 0.8 below the kink, 
and 1.8 to 2.0 above the kink. Moreover, the locations of the kink increase 
by the expected magnitude. For example, going from a two- by- two grid to a 
four- by- four grid increases the area by a factor of 4 (ln [4] � 1.39). If  den-
sity at the kink stayed the same, then the kink should increase by 1.39 when 
moving from a two- by- two grid to a four- by- four grid. The actual increase of 
1.19 � 10.26 –  9.07 is fairly close. We see an analogous pattern for the other 
grid sizes. We conclude that our results are not an artifact of an arbitrary 
choice of a six- mile grid length.

One notable pattern in table 3.8 is the decline of the MSA- level regression 
coefficient on si

max as the grid size is increased. As grid sizes increase, the 
squares begin to incorporate the entirety of the MSA. So, the population of 
the biggest square si

max begins to approximate the population of the MSA as 
a whole, and the coefficient gets close to 1 (Zipf’s law), as it is in table 3.3.

One last issue concerns what is happening on the coasts with the squares. 
As can be seen in fi gure 3.1, some of the squares in the New York metro area 

Table 3.8 Robustness of results to alternative grids

MSA- level 
regression on si

max

Square- level piecewise linear 
regression, population � 1,000 

per 6 � 6 squarea

Square- level 
linear regression, 

population � 
50,000 per 

6 � 6 squarea

  OLS slope  R2  Kink  Slope1  Slope2  R2  OLS slope  R2

Baseline 6 � 6 grid 1.761 .988 10.89 .747 1.937 .998 1.889 .983
Shift of baseline grid
  2 miles north 1.790 .986 10.95 .751 1.984 .998 1.892 .980
  4 miles north 1.838 .986 10.90 .750 1.923 .998 1.879 .981
  2 miles east 1.715 .988 10.90 .745 1.957 .998 1.919 .987
  4 miles east 1.774 .989 10.92 .747 1.979 .998 1.924 .983
Alternative grid size
  2 miles 1.981 .977 9.072 .680 2.097 .999 1.800 .968
  4 miles 1.873 .992 10.262 .719 2.037 .999 1.886 .979
  6 miles 1.761 .988 10.899 .747 1.937 .998 1.889 .983
  8 miles 1.595 .981 11.433 .773 1.976 .998 1.959 .986
  10 miles 1.483 .978 11.655 .786 1.819 .998 1.914 .987
  15 miles 1.325 .979 12.328 .816 1.850 .998 1.959 .994
  20 miles  1.246  .969  12.482  .822  1.630  .997  1.994  .983

aWe adjust the population cutoffs for the squares to keep the population density the same across cutoffs 
for the different grid sizes. For example, in the two- by- two- square linear regression, we use all the squares 
with population sizes greater than or equal to 5,556 (� 50,000/9). The 50,000 comes from the base case 
of the six- by- six- mile square. The nine takes account of the fact that the area of a six- by- six square is nine 
times as large as a two- by- two square.



Cities as Six-by-Six-Mile Squares: Zipf’s Law?    129

are partly in the very dense island of Manhattan and partly in the water. 
Since the highest population density locations (New York, Chicago, etc.) 
tend to border bodies of water, one might wonder whether some systematic 
biases might be present. We think this is an interesting point but not one 
of much quantitative signifi cance, because we are working with logs rather 
than levels. We make two distinct arguments. First, in these dense cities, the 
log population of the squares changes relatively slowly as we move away 
from the coasts (at least at a six- by- six grid size). The possibility of system-
atic biases at the coasts is not quantitatively a big problem, because many 
other squares nearby that are approximately equal in log population will 
average things out. Second, even at the coast, variations in density are not 
quantitatively signifi cant. Suppose, for example, that a square at the coast 
is half  in the water (ln [1/ 2] � – 0.3). At the dense squares near or in Man-
hattan, log population is around 14. If  we shifted such a square and put 
it half  in the water, log population would fall to 13.7 � 14 –  0.3. This is a 
small difference compared to the vast differences in log population between 
squares close to Manhattan (regardless of whether in the water) and squares 
in less- dense places, such as upstate New York. Even if  the square were 99 
percent in the water, this would not matter either, because such a square at 
a six- by- six resolution would represent a negligible portion of the down-
town area.

3.8   Conclusion

Our chapter studies the distribution of population across six- by- six- mile 
squares, examining the extent to which Zipf’s law and Gibrat’s law hold. The 
main results are as follows:

1. At the bottom tail of the distribution, the distribution is roughly log-
normal, certainly not Zipf.

2. For squares above 1,000 in population, a Zipf’s plot has a piecewise 
linear shape, with a kink at around a population of 50,000. Below the kink, 
the slope is 0.75; above the kink, it is around 2. The fi nding is robust across 
different regions in the country.

3. Gibrat’s law does not hold with squares. Mean growth has an inverted 
U- shaped relationship with population size. The variance of growth declines 
with size.

4. The slope of 2 in the upper tail matches what we get with MSA- level 
data if  we substitute population density for population in a Zipf’s plot. This 
is consistent with the usual Zipf coefficient of 1 for the population regres-
sion if  the land elasticity of population is 0.5. The slope of 2 also matches 
what we get if  we use the maximum population square in the MSA instead 
of average density, as well as what we get in the upper tail when we look at 
squares within MSAs. All of this suggests some kind of fractal pattern in 
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the left tail in which the distribution of squares within MSAs looks like the 
distribution of MSAs across the country, which in turn looks like the distri-
bution of squares across the country and within individual regions.

In our title, we put a question mark after “Zipf’s Law.” It is clear that the 
standard Zipf’s law does not apply for squares in the upper tail, because the 
slope is around 2, not 1. Nevertheless, if  we take the land elasticity of popu-
lation to be 0.5 (which roughly fi ts the data for large MSAs), then a slope 
coefficient of 2 for squares (where the land margin is fi xed) is consistent with 
a slope coefficient of 1 for regularly defi ned MSAs (where the land margin 
varies). In this sense, Zipf’s law holds for squares in the right tail. But what 
about below the kink of a square population of 50,000? For relatively less-
 populated squares like these, an expansion of the population might not put 
much pressure on the land margin, as vacant rural land in the square can be 
converted to housing sites. If  the land elasticity were zero, the coefficient on 
density in equation (5) would be the same as the coefficient on population 
in equation (2). In this extreme case, the relevant comparison is between the 
0.75 slope for squares and the standard slope of 1, and Zipf’s law does not 
hold. If  the land elasticity is a little higher than zero, Zipf’s law works better. 
Regardless of this matter, the fact that the Zipf’s plot is straight as an arrow 
for population in the range between 1,000 and 50,000 is very intriguing. The 
presence of the kink is intriguing, as well.

We believe a joint analysis of the distribution of population of squares 
within and across metropolitan areas is a fruitful area for further research. 
We see opportunities for progress in theories that emphasize economic con-
siderations and spatial factors, such as the work of Hsu (2008). In terms of 
directions for future empirical work, we believe it would be promising to 
examine the size distribution of squares in an international context.
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