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4 Cost Function Estimation 
of Quality Change 
in Semiconductors 
John R. Norsworthy and Show-Ling Jang 

Semiconductor technology lies at the heart of the revolution in information 
technology. While the official price index in the national income and product 
accounts for computers has been revised to account for changes in the per- 
formance characteristics of computer systems (Cole et al. 1986), no compa- 
rable modification has been made to the price of semiconductor devices. Yet 
semiconductor devices incorporated in telecommunications equipment have 
been largely responsible for the technological change that led to deregulation 
of the telecommunications services industry. The rapid rate of adoption of 
advanced telecommunications equipment and the decline in cost (without a 
corresponding decline in quality) of telecommunications services are indirect 
qualitative evidence for embodied quality change in telecommunications 
equipment. Similarly, the new semiconductor devices have played an impor- 
tant role in the technological change of the computer industry. This empirical 
investigation is designed to develop quantitative evidence of quality change in 
semiconductor devices based on their use in computers and telecommunica- 
tions equipment manufacture. 

An econometric model, which consists of a revised translog variable cost 
function for quality adjustment, input demand functions, and an input quality- 
adjustment function, is developed and utilized in this study. The approach to 
quality adjustment, in the spirit of the hedonic approach, is based on two 
major characteristics of semiconductor products: the device density of 
DRAMS (dynamic random access memory) and the bit rating of microproces- 
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sors. Exponential weights for these technology indicator variables are esti- 
mated for the computer industry (SIC 3573), telephone and telegraph equip- 
ment (SIC 3661), and radio and television telecommunications equipment 
(SIC 3662).' In each industry, evidence for quality change in semiconductors 
is drawn from the input factor demand functions. All input factors are mod- 
eled jointly, rather than the demand for semiconductor input alone, as in the 
conventional hedonic model. That is, factor substitution information from 
other inputs-production- and nonproduction-worker labor, other purchased 
materials, purchased services-is brought to bear on estimation of the quality 
change in semiconductors used for the computer and telecommunications in- 
dustries. Unlike the hedonic case, it is necessary to assume that the prices of 
semiconductor inputs are independent of the level of use by the decision mak- 
ers who use them in production. This assumption is a standard (and minimal) 
one in production modeling. 

In the computer industry, where output has been adjusted for performance 
change, it is also possible to obtain additional evidence for the characteristic- 
related quality change in semiconductors from the increase in the (computer) 
industry's total factor productivity associated with the use of semiconductors. 

Within each of the industries, the quality-adjustment function is con- 
strained to have the same parameters in all input demand functions and the 
cost function. However, a separate quality-adjustment function is estimated 
for each industry. It is found that the quality-adjusted prices for all three in- 
dustries are similar but sufficiently different to reflect the different importance 
of the technological characteristics of semiconductors in the different indus- 
tries. The results tend to confirm the approach. 

The methods demonstrated here are for time-series data. The usual hedonic 
price index model relies heavily on cross-sectional data, often from special 
surveys or proprietary sources. Tiiplett (1989) provides an excellent summary 
of hedonic applications for the U.S. computer industry. It is often the case, 
however, that sufficiently long time series for product characteristics are either 
not publicly available or quite expensive to obtain. 

No sources of quality change other than that associated with the quality of 
semiconductor input are recognized in this study. However, the specification 
of quality change is entirely associated with the semiconductor input as shown 
in equations (1 1) and (12) below, except in the computer industry, where an 
additional term is introduced. This term is introduced because the output of 
the computer industry is adjusted for quality change. It permits total and var- 

1 .  SIC designations are from before the 1987 reclassification. The radio and television com- 
munications equipment industry (SIC 3662) is divided into seven categories: (1) communication 
equipment, except broadcast (SIC 36621); (2) broadcast, studio, and related equipment (SIC 
36622); (3) alarm systems (SIC 36624); (4) search and detection, navigation, and guidance equip- 
ment (SIC 36625); ( 5 )  traffic control equipment (SIC 36626); (6) intercommunication equipment 
(SIC 36628); and (7) electronic systems and equipment not elsewhere classified (SIC 36629). 
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iable input factor productivity to change in association with the same semi- 
conductor quality-modifying function used elsewhere in the model. 

Section 4.1 of this paper shows how quality change can be estimated from 
industry input demand systems based on multiple characteristics or indicators 
of input technology. Section 4.2 explains the development of input and output 
prices and quantities from industry data sources at the Census Bureau and the 
Bureau of Labor Statistics (BLS). Section 4.3 discusses the mechanics of in- 
corporating the technological characteristics of semiconductors in the cost 
function model of production. Section 4.4 presents and discusses the esti- 
mated results. Section 4.5 briefly discusses an agenda for future research 
based on the approach applied in the paper. 

4.1 Indirect Measurement of Quality Change in Production Models 

The translog cost function is a commonly used model of production that 
can be adapted to indirect measurement of quality change in an input.* The 
same general method can be incorporated in other functional forms. To illus- 
trate the measurement of quality change embodied in an input in an econo- 
metric model, we first present (in sec. 4.1.1) a model without quality adjust- 
ment, consisting of a translog variable cost function and input demand 
equations, and then show (in sec. 4.1.2) the model with quality adjustment. 

4.1.1 Translog Variable Cost Function without Quality Adjustment 
This study empirically assesses the contribution of semiconductor inputs in 

the computer industry and two telecommunications equipment manufacturing 
industries. The translog restricted variable cost function model introduced by 
Brown and Christensen (1981) is used to model the production structure of 
these industries. The variable cost function recognizes disequilibrium in that 
the quantity of physical capital cannot be adjusted to achieve minimum total 
cost in the short run for a given set of input prices and the quantity of output. 
The conventional assumption of full equilibrium models such as the translog 
total cost function is simply not reasonable for industries such as semiconduc- 
tors, computers, or telecommunications equipment characterized by rapid 
technological change. 

The translog variable cost function for an industry is given by 

In CV = a, + Ec q Inp, + 1/2 El 2, a,, In p ,  In p, + by In y 
+ b, In k + b, In k In y 

+ 1/2 by, ln2 y + 112 b, In2 k 
(1)  

+ E, qy In p ,  ln Y + 2, c,, 1n P, In,, 

2. The explanation in this section is adapted from Jang and Norsworthy (1990a). 
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where i, j ,  are the variable inputs, p i  = price of variable input i ,  y = deflated 
real gross output, k = real capital input of structures and equipment, and 
CV = variable cost of production. 

Based on Shepard’s lemma and the assumption that variable cost is mini- 
mized for a given set of input prices, the cost share si for the translog variable 
cost function is given by 

d In CV 
(2) d In pi 

= si = ai + Cj  a, In p, + b, In k + b, In Y .  

Derivation of the variable cost function model and estimation of the equa- 
tions for variable input cost shares with a residual error term e, added jointly 
with the cost function itself are explained in Brown and Christensen (1981) 
and need not be repeated here. If an error term is added directly to equation 
(2), it will be in terms of value shares, however. In such a specification, input 
quality change not reflected in the price of input will be obscured because the 
error term contains both price and quantity components. 

In order to separate price and quantity effects, the variable input demand 
equations can be estimated Cjointly with the cost function) rather than the cost 
share equations. The demand equations are readily derived from equation (2); 
adding a classical normal error term to the demand equations yields 

( 3 )  q, = CV . (a, + 2, a,, lnp, + b,k In k + blY In Y)/p, + E ~ .  

Notice that the error term E, in equation (3) is in quantity units. We argue 
elsewhere that the input demand specification is preferable because errors in 
input quantity are minimized directly, thus leading to a better physical descrip- 
tion of the technology of production (Norsworthy and Jang 1992, chap. 3 ) .  
McElroy (1987) proposes an additive general error model based on estimation 
of input demand equations rather than price equations. The exact treatment 
specified by McElroy cannot be achieved when there are parameters that occur 
only in the cost function (e.g., b,, b,, in eq. [ l]) .  However, the general ap- 
proach and motivation for it are entirely consistent with that shown here.3 

A major difference between the share equation and the demand equation 
systems is that one of the cost share equations is redundant, so that the vari- 
able cost function is estimated jointly with all but one share equation. That is, 
for any input r, 

e, = - C e , .  

3. This issue is explained in Norsworthy and Jang (1992, chap. 3). McElroy has verbally ac- 
knowledged the error. 
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(4) 

For the demand equation system, each input equation has an independent er- 
ror term. Consequently, estimation of the demand system increases the effi- 
ciency of the estimation because there are more degrees of f r e e d ~ m . ~  

Restrictions imposing symmetry and homogeneity of degree 1 in prices of 
variable inputs on the system of equations are as follow: 

E, a, = 1, 
X a = X, ai = 0, for all i ,  J. 

- for all i, j ,  a,, - a,,. 
c, c,k = O, 
c, c,, = 0, 
by, f bky = 0, 
b,, + b, = 0 ,  

‘{k = - c,, 9 

Translog Variable Cost Function with Quality Adjustment Based on 
Multiple Technological Characteristics 

I {I 

for all i, 

for all i, 

for all i. 

4.1.2 

The quality change of an input in the production model can be estimated by 
adjusting its quantity and price to their true values on the basis of some indi- 
cators of input technology. Either quantity or price may serve as the basis for 
empirical estimation of quality change in the model. The choice may affect 
the stochastic specification of the model, but both methods should yield simi- 
lar results. Quality adjustment based on quantity of input and quality adjust- 
ment based on exogenous information such as TFP (total factor productivity) 
growth were developed and applied in our earlier studies (Jang and Norswor- 
thy 1988, 1990a, 1990b). We assume here as in our earlier work that the 
quality of inputs is known by the producers; the task of our quality adjustment 
is to discovery why they behave the way they do in using the inputs. There is 
thus no problem of simultaneity in the estimation procedure outlined in this 
section. 

The semiconductor input (4,) is separated from other purchased physical 
materials (q,), and purchased services (9,) are separately treated as well. Sup- 
pose that the unmeasured quality change in semiconductor input q, is propor- 
tional to the log of a quality-adjustment index I;  so that quality-adjusted in- 
put is 
( 5 )  9: = q , I g ,  a > 0, 

or 

In q,* = In q, + a In 13, 

4. Degrees of freedom for estimation of a system of translog-based equations are given by the 
number of observations multiplied by the number of equations estimated. 
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where Is is the technological characteristic index for the industry, a is an esti- 
mated coefficient, and (as before) q, is measured semiconductor input.5 

The corresponding quality-adjusted price for inputs is 

or 

(6) In p,* = In p ,  - a In Is. 

The quality-adjustment index I, is defined below in terms of semiconductor 
characteristics. 

If the quality-adjusted price index of inputs declines faster than the official 
price statistics imply, then the coefficient a will be positive; the null hypothe- 
sis 01 = 0 corresponds to no unmeasured quality change, positive or negative. 

The quality-adjustment function may, of course, reflect multiple character- 
istics of the output(s) of the supplying industry. For example, let 

where the t,'s are logs of technology indicators reflecting technological char- 
acteristics of input s. For the semiconductor industry, these indicators might 
measure performance characteristics such as device density, speed, power re- 
quirements, bit width of data and instruction paths in microprocessors, etc. 
For a first-order function,6 

(8) 
where w,'s are weights estimated in the input factor demand model for each of 
the m characteristics included in the function. (These are comparable to the 
characteristics coefficients in the hedonic model.) For clarity and comparabil- 
ity with the single index case, however, the quality-adjustment index may be 
written 

(9) 

1: = Ct w,t,, i = 1, . . . , m, 

m -  I m -  I 

a In 1, = a[ C z,r, + ( 1  - E z,)tml. 
1 =  I , = I  

Equations (8) and (9) have the same number of independent parameters: 
exactly m. However, changing the parameterization so that w, = az,, i = 1, 

. . . , m - 1,  and wm = a(1 - C z,) permits us to estimate directly the 
m - I  

I =  I 

5. (Y may also be a function a = At) = c,t or (Y = e", where f is the trend variable I ,  2, 3, 
. . . , and the estimated coefficients c, and c measure average annual augmentation of input s. 
Norsworthy and Jang (1989) argue that time trends may capture spurious effects collinear with 
time and that use of an alternative proxy for quality change that has economic content is prefer- 
able. 

6. Higher-order functions, e.g., truncated qualities, are sometimes applied in the hedonic ap- 
proach and could readily be accommodated in a sufficiently large and rich data set. 
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relative weights of the individual characteristics. These relative weights are 
readily interpreted because they sum to one.’ 

The estimated coefficient a is then directly comparable to the coefficient of 
the single indicator. The estimated coefficient zi is the weight of technological 
characteristic i in the quality-adjustment function (9). Correspondingly, In p ,  
is replaced by 

(10) 

in all its occurrences in the cost function. 
Then the variable cost function in equation (1) can be rewritten incorporat- 

ing the modified expression shown in equation (1 1) and the parameter a esti- 
mated as part of the cost function model: 

m- I m -  1 

In p: = In p ,  - a[ C zi t l  + (1 - 2 z,)t,] 
I =  I i= I 

I nCV = 

+ 
+ 
+ 
+ 
+ 
+ 
+ 

where i, j = 1, n, m, v, for the variable inputs: production-worker labor ( l ) ,  
nonproduction-worker labor (n), purchased materials inputs (m), and pur- 
chased services (v). 

The demand equation for the quality-adjusted input s then becomes 

(12) q,* = ( C V / ~ ~ / Z ~ ) [ U ,  + C a, In p, + u,,(ln p ,  - a In ZJ] + &,*. 
J f S  

The substitution shown in equation (10) for the price of quality-adjusted 
semiconductor input is applied throughout the model, and the estimated co- 
efficients a and z, are constrained to be nonnegative. The first-order term 
( - a In I,) with estimated coefficient 2, is the overall variable factor productiv- 
ity gain or cost reduction effect associated with quality improvement in semi- 
conductors (given the level of output and inputs). This effect can be reliably 
estimated only for the computer industry, where the output price has been 

7 .  This reparameterization procedure was applied in earlier studies by Norsworthy and Jang 
(1991) and Norsworthy and Zabala (1990). 
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adjusted for quality change. Because adjustment for quality change has not 
been made for the price of output of either of the telecommunications equip- 
ment industries, there is a downward bias in measured total (and variable) 
factor productivity. Under these circumstances, any estimate of the effect of 
improvement in semiconductor quality on industry productivity would be un- 
reasonably low; measured total factor productivity growth in the industries is 
very nearly zero, while true total factor productivity growth is certainly larger. 
This first-order term is therefore included only in the computer industry 
model. 

The restrictions in equation (4) are not modified by the quality adjustment. 
The modified cost function with the restrictions applied is still homogeneous 
of degree 1 in input prices, including the modified price of semiconductor 
input. Estimates of a quality-adjusted price for semiconductor input may then 
be calculated after the estimation of the cost function (1 1) and the correspond- 
ing input demand equations. 

Applying this procedure assumes that enterprises using input s do so on the 
basis of its technological characteristics; that is, the users perceive the input 
in terms of the quality-adjusted relation between price and quantity. Thus, the 
demand equation for the input s is stated in terms of adjusted quantity and 
price.8 

In this framework, we can also test the hypothesis that a = 0, that is, that 
there is no significant quality change except that reflected in the current offi- 
cial price index for semiconductors. The simplest test is based on the t-test; 
the significance of the contribution of the quality-based price adjustment to 
the estimated model as a whole may also be captured in a likelihood ratio test. 

In the estimation procedure, the quantity demanded of semiconductor in- 
put, qf, must be adjusted to agree with the quality-adjusted price, pf from 
equation ( 10). We applied the following iterative estimation procedure: 
1. For the initial value of a, compute qf using equation (5). 
2. Estimate a as part of a full information maximum likelihood (FIML) es- 

3. Recompute qf from (5) using the new value of a. 
4. Reestimate a by FIML estimation of the cost function model using the 

timation of the cost function model. 

parameter values from the prior iteration. 

8. The dependent variable, and hence the error term, in the share equation for the quality- 
adjusted input s is invariant to the adjustment; i.e., s, does not change in magnitude when quality 
adjustment for semiconductor input is introduced. However, while ss = s,*, the dependent vari- 
able and error term in the demand equation for semiconductor input differ according to whether 
the inputs is quality adjusted. That is, 

qf # q, and E: # E,. 

In other words, the stochastic specification of the model changes with the quality adjustment, 
necessitating the iterative estimation procedure described below. 
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Steps 3 and 4 were repeated until successive values of q,* for each year 
differed by a cumulative total of less than .05. This procedure converged in 
three iterations for SIC 3661, four for SIC 3662, and three for SIC 3573. 

The final stage estimate of the quality-adjusted quantity of semiconductor 
input results in a larger q$ and smallerp: than the initial estimate. The larger 
q$ changes the stochastic specification of the model by increasing the relative 
importance of errors in semiconductor input. The smallerp: affects the elastic- 
ity of substitution estimates (through the a, coefficients), in principle for all 
pairs of inputs. Consequently, the iterative procedure is nece~sary.~ 

4.1.3 

It is important to make clear how this approach relates to conventional he- 
donic studies of technology-intensive products, such as Dulberger (chap. 3 in 
this volume). Triplett provides a thorough statement of the hedonic approach 
to price deflation (Ti-iplett 1987) and its applications to capital goods (Triplett 
1989). The explanation that follows is keyed to the latter discussion. 

Comparison with the Standard Hedonic Approach 

The conventional hedonic function may be expressed as 

(13) P = h(c),  

where P is a vector of prices of n varieties of the good in equation (12), and c 
is a matrix measuring each of k characteristics of each of n varieties of the 
good (Triplett 1989, eq. [ l ] ,  p. 128). The production function that corre- 
sponds in our study to Triplett's equation (2) (Triplett 1989, 130) is the short- 
run function 

(14) 

where y is output. K is fixed capital input, and q,, i = L,  N ,  M, V; S, are the 
variable inputs noted for equation (1 1)  above. (Equation [ 1 1 )  above is the dual 
to eq. [ 141.) The quality adjustment of q,, semiconductor input, is achieved 
by mapping q, into semiconductor characteristics space: 

Y = f(4L7 q N t  4.w 9"9 4s;  K ) ,  

(15) 

where the T,, i = 1 ,  . . . , m, are the quantities of the various characteristics 
in the aggregate 9,. By estimating the function that carries out transformation 
(15) in the context of the production model, we obtain weights for the semi- 
conductor characteristics embodied in the aggregate input q,. These weights 
measure the marginal productivity in the industry being studied. This point is 
worth stressing: the weights obtained from the cost function for the industry 

4, = q v , ,  . ' ' , Tm), 

9.  We utilized the FIML estimation procedure in program SORITEC. This procedure cannot 
update q: shown in the demand equation for semiconductor input as part of the iterative process 
of determining parameter values, thus necessitating the iterative procedure. 
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are specific to the production technology used in that industry; they also re- 
flect the mix of characteristics peculiar to input S in that industry.'O 

The quality-adjusted quantity of semiconductor input is thus denoted q,* , 
where 

(16) qs* = qs * I ,  

and I is a quality index based on the transformation of the quantity of semi- 
conductors into characteristics space. We specify the index I in logarithmic 
form: 

(17) ln(q,*lq,) = In I = (w,t ,  + . . . + wmtm) = El w,f ,  

where t, is the (log of the) representative measure of characteristic i for semi- 
conductors. Its dimensions are units of characteristic i per unit of semiconduc- 
tor input. (Ideally, t ,  should represent the quantity of characteristic i in semi- 
conductors input for the industry; however, that information was not available 
to us.) The coefficients w, are estimated transformation coefficients and mea- 
sure units of base year input S per unit of characteristic i .  Consequently, the 
quality-adjustment expression for semiconductor input is given by 

(18) q,* = qs . exp(&w,O 
The form in which equation (18) is estimated is altered somewhat to permit 
direct testing of the proposition that proportional changes in the characteris- 
tics lead to equal proportional changes in the quality of semiconductor input. 
Thus, for estimation, the log of the quality index in equation (17) is rewritten 

(19) In I = a(X z,t,), 

where z, = 1 - E;=rI' zt and w, = az,. 

a - 1 after estimation of the model. 

is, 

We can then test the proposition that a = 1 by computing the t-statistic for 

The quality index I must preserve the cost of input s in nominal terms, that 

(20) Ps'ls = pTq%, 

(21) p,* = P J I ,  

where we obtain 

lnp; = lnp,  - (w,t, + . . . + w,t,). 

The right-hand side of expression (21) replaces In p ,  in the estimated translog 
model, equation (1 1) above. 

The prices of characteristics may be obtained by simultaneously solving the 
system of simultaneous equations 

10. There is no industry-specific information available to us to identify industry-specific com- 
position of aggregate semiconductor input. 
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subject to the conditions that psq, = X i  p,qi and p i  > 0 for all i. 
The formulation assumes that information is available that quantifies tech- 

nological characteristics in the aggregate semiconductor input. In this appli- 
cation, we did not have that information; consequently, our estimates of the 
weights zi (and the corresponding wi) contain elements that reflect industry- 
specific adjustments not only for the transformation coefficients wi but also for 
the Tjq, as well. Thus, in order to derive characteristics prices according to 
equation (22) from this application, it would be necessary to obtain estimates 
of Ti for each industry. A similar limitation applies to the technique used by 
Dulberger, as noted in section 4.4.2 below concerning industry-specific he- 
donic weights. 

4.2 Data Sources, Measurement, and Concepts 

The data used in this study are the historical U.S. time-series data at the 
four-digit SIC level for telephone and telegraph apparatus (SIC 3661), radio 
and television communications (other telecommunications) equipment (SIC 
3662), and computers (SIC 3573). 

To estimate the econometric models, the information required is total cost 
(TC), variable cost (CV), the price and quantity of output (Y), net capital stock 
( K ) ,  production-worker labor (L) ,  nonproduction-worker labor (N), semicon- 
ductors (S), purchased services (V), and (other) intermediate input, “materi- 
als” (M).” These measures are derived and constructed on the basis of several 
data sources. The major sources are the Census of Manufactures (CM) and the 
Annual Survey of Manufactures (ASM) of the Census Bureau, the producer 
price index (PPI) program of the BLS, and The Detailed Input-Output Struc- 
ture ofthe US. Economy (Bureau of Economic Analysis 1963, 1967, 1972, 
1977). Following is a detailed description of the sources and methodology 
used to create the input, output, and price data for these industries. 

4.2.1 Labor 
Two components of labor input are distinguished in this study, namely, 

production-worker labor (L) and nonproduction-worker labor (N). Production 
workers are defined by the CM as workers (up through the line-supervisor 
level) closely associated with production operations at the establishment. The 
number of nonproduction workers is computed by subtracting the number of 
production workers from the number of all employees given in the CM or 

1 1. Disaggregation of production and nonproduction labor in high-technology industries results 
in substantial improvement in the resulting model (Jang 1987) because the compensation and 
employment trends differ considerably for the two categories of workers. The Division of Produc- 
tivity Research at BLS separates nonenergy intermediate input into purchased services and other 
materials because price and input trends for services are quite different, as William Gullickson of 
that agency has argued for many years. 
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ASM for each year; payroll for nonproduction workers is computed similarly. 
Supplemental labor costs are added into the payrolls of both production work- 
ers and nonproduction workers in proportion to their shares in total payroll. 
The augmented payroll of nonproduction workers divided by the number of 
nonproduction workers is the annual salary per nonproduction worker. (Em- 
ployment of nonproduction workers is used as the unit of measure because 
hours of nonproduction workers are typically not measured, or not measured 
well.) The hours worked by production workers and their hourly wage rates 
based on the augmented production-worker payroll are derived from the CM 
and ASM and used as the quantity and price of production workers, respec- 
tively. 

4.2.2 Semiconductors 
From a technological perspective, semiconductors are one of the most im- 

portant materials in the manufacture of communications equipment and com- 
puters. We separate semiconductors (SIC 3674) from other intermediate ma- 
terials, which includes all physical materials and electric and gas utilities, 
shown in the CM and ASM. The ratio of expenditure on purchased semicon- 
ductors to expenditure on total intermediate materials is taken from the input- 
output tables in the CM years. These ratios are interpolated for each year. The 
price index for semiconductors comes from gross output deflators developed 
in the BLS economic growth program. 

4.2.3 Materials 
The levels of annual materials expenditures excluding semiconductors (and 

most purchased services) are taken directly from the five-year CM and the 
ASM. The real quantity of materials input is obtained by deflating materials 
expenditure. The aggregate price deflator for materials, P,, is constructed as 
follows: 

P ,  = C wipi ,  i = 1, . . . , n, 
i =  I 

where i designates a particular materials input category. Twenty to thirty-five 
categories of materials and services inputs together were treated, depending 
on the industry. On the basis of the detailed input-output table, all physical 
materials and services purchased from the manufacturing sector and electric, 
gas, water, and sanitary services are included. The prices (Pi) of these detailed 
materials are obtained from the producer price indexes of BLS. The weight 
(W,)  of each individual material in aggregate intermediate input in these indus- 
tries is computed from the input-output tables. First, we compute the weight 
from the input-output tables of 1958, 1963, 1967, 1972, and 1977; then we 
interpolate these weights to obtain the approximate weights for each year. The 
1982 CM was used to extend the weights for materials. 
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4.2.4 Purchased Services 
The services provided by the transportation, communications, wholesale 

and retail trade, finance, insurance and real estate, and government sectors, 
especially computer services, have become more alid more important in the 
production process, but the cost of materials measured in the CM and ASM 
does not include the cost of these purchased services. 

The ratio of purchased services expenditures to total cost for each industry 
is taken from the input-output tables for the CM years, and the ratio is inter- 
polated between these values for each intermediate non-CM year. Using the 
approach applied to materials, we developed the price index for purchased 
services by aggregating the detailed purchased services shown in the input- 
output tables. 

4.2.5 
Besides the direct costs of variable input factors such as labor, semiconduc- 

tors, materials, and purchased services discussed above, manufacturers must 
pay the costs of holding work-in-process inventories. These costs can be mea- 
sured in terms of holding related variable inputs. We thus compute the total 
cost of holding the work-in-process inventories by multiplying the quantity of 
the inventories in current dollars by the rate of return in the industry. This cost 
is then distributed to the individual variable inputs by their shares in total 
variable cost. Thus, the cost of holding raw materials inventories is added to 
total materials expenditures after deflation to obtain the real quantity of mate- 
rials inputs. Thus, the price of materials is increased by the cost per unit of 
materials input of holding work-in-process inventory. The cost of holding the 
work-in-process inventory is thus treated as part of the cost of the variable 
inputs, with the cost allocated according to the shares in the variable cost of 
production. Semiconductor and other materials inputs are treated the same 
since there is no separate information on inventories of semiconductors and 
other materials. 

4.2.6 Capital Stocks for Physical Assets and Financial Assets 
The quantities of capital stocks of equipment and structures in these indus- 

tries were computed by the perpetual inventory method. Investment data se- 
ries are taken from the ASM and CM. The rates of economic depreciation 
applied for different types of producers’ durable equipment and for private 
nonresidential structures from Hulten and Wykoff (198 1) are used here as in 
many productivity studies, notably Jorgenson, Gollop, and Fraumeni (1987). 
The Hulten-Wykoff asset depreciation rates are not specific to industries, nor 
do they change through time. Depreciation rates for capital stock in these 
industries are developed as follows. First, the shares of the different types of 
durable equipment and structures in total expenditures on capital goods for 
each industry are computed on the basis of the capital flow tables for 1963, 
1967, 1972, and 1977 from the associated input-output studies. These shares 

Variable Costs after Adjustment for Holding Inventories 
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are interpolated between CM years. Using these shares as weights, the depre- 
ciation rates are summed for all types of equipment and structures from the 
Hulten-Wykoff study to obtain more reasonable depreciation rates for these 
two elements of the capital stock for each industry. The depreciation rates vary 
through time because and only because the weights change. 

To compute the service prices of capital equipment and structures, we use 
Jorgenson et a1.k approach, somewhat modified. Besides equipment and 
structures, other assets, especially financial assets, are also important in most 
manufacturing industries. These financial assets must also earn a normal re- 
turn. Their omission from calculation of the rate of return on physical assets 
imparts an upward bias to that rate of return. Interindustry differences in rates 
of return on capital should in principle reflect productivity differences. How- 
ever, differences in rates of return measured in this way will result not only 
from differential productivity of physical assets but also from different re- 
quirements for financial assets. 

The rate of return on capital, which includes equipment and structures as 
well as other assets-financial assets and all types of inventories-is com- 
puted by dividing total property income by the sum of nominal values of all 
assets at the end of the prior year. The values of equipment and structures are 
the products of their asset prices and quantities, respectively, which are de- 
rived as described above. The value of financial assets is estimated by multi- 
plying the ratio of financial assets to the physical assets in the industry by the 
value of the physical assets. The ratios are taken from the financial statements 
in the Compustat data base for SIC 3661 and 3573. Balance sheets of nonfi- 
nancial corporate business from the Federal Reserve Board of Governors is 
used as a proxy for SIC 3662, for which Compustat lists no companies at all. 
A serious deficiency in coverage arises with the financial data for both indus- 
tries because AT&T, a major producer of both types of equipment as well as 
of computers, is not listed in either SIC 3661, SIC 3662, or SIC 3573 in the 
Compustat data base. The omission of AT&T financial data amounts to as- 
suming that the capital requirements for production of telecommunications 
equipment in that company are the same as those of nonfinancial corporations 
in general. While this assumption is dubious, the resulting correction for the 
return to financial assets is surely better than the assumption that they earn no 
return at all. 

4.2.7 Total Cost and Output 
The sum of shipments and changes in inventories of finished goods in cur- 

rent prices that come from the CM and ASM is the total cost before adjustment 
for the cost of holding financial assets and inventories. The cost of holding 
financial assets and inventories is measured by multiplying the amounts of 
financial assets and inventories by the rate of return in the industry. To get the 
true total cost for production, the costs of holding financial assets and finished 
goods are subtracted from the sum of shipments and changes in inventories. 



139 Estimation of Quality Change in Semiconductors 

Production of output is thus separated from production of shipments, and the 
two are priced separately. The quantity of real output is the deflated value of 
total revenue after the adjustments noted above. Output is deflated using the 
appropriate BLS price indexes from the PPI. 

The quantities and prices of variable inputs are normalized to 1.00 in 1977. 
Quantity indexes are then obtained by dividing expenditures on the input by 
the normalized price. 

4.3 Semiconductor Characteristics for Quality Adjustment in a Cost 
Function Model 

Appendix table 4A. 1 shows the technology frontiers chosen to represent 
the seventy-fifth percentile of performance for two types of semiconductor 
devices: DRAMS and microprocessors. The original data went back only to 
1972; extrapolations to 1968 were based on the perceived history of the indus- 
try and have not been objected to in discussions with semiconductor special- 
ists.I2 (These data were not adjusted to “tune” the estimation results.) Poly- 
nomial smoothing (a quadratic function of time) was applied to reflect the mix 
of devices of both types. It would be most appropriate to use value weights 
for the mix of DRAMS and microprocessors used in each industry applied to 
the indicators. We judged that such a procedure would result in roughly com- 
parable smoothing. From 1968 to 1977, the normalized performance indica- 
tors move about the same distance (from -3.4 to 0) ,  although in different 
patterns. After 1977, the depicted advance in DRAM characteristics is about 
four times faster than that of microprocessors. The two series of technolog- 
ical characteristics clearly show different patterns, however imprecise they 
may be. 

In a study based on cross-sectional as well as time-series data, a much 
richer description of semiconductor technology than employed here would be 
possible. Such a study could be based in part on plant-level data from the 
Longitudinal Research Data file at the Census Bureau. In terms only of the 
number of characteristics included, this study is inferior to the conventional 
hedonic approach. However, the model explains more than 99 percent of the 
observed variation in input demand. 

This approach has innovative features that compare favorably with the usual 
hedonic study, however. The weights of the characteristics of semiconductor 
devices are permitted to change by industry. (While we have not yet done so, 
we would expect to reject the hypothesis that the quality-adjustment functions 
are the same across industries.) Second, the interaction of semiconductors 
with other major categories of inputs is incorporated into the model through 
the joint estimation of the input demand functions and the cost function. 
Third, in the case of the computer industry, it is also possible to include evi- 

12. However, we regard the 1968-7 l data as preliminary. 



140 John R. Norsworthy and Show-Ling Jang 

dence for the semiconductor quality adjustment from the effect on total factor 
productivity in the industry. An ideal approach, in our view, would combine 
cross-sectional data with the cost function-based model applied here, en- 
abling the analysis of more technological characteristics. 

4.4 Empirical Application to Three Industries 

4.4.1 Estimation Results 

The cost function estimations outlined above were carried out for the tele- 
communications equipment and computer manufacturing industries SIC 
3661, 3662, and 3573 by the FIML method in the SORITEC econometrics 
package. The results for each of these industries are shown in tables 4A.2, 
4A.3, and 4A.4, respectively. 

The coefficients of the estimated variable cost function models suggest that 
most of the model characteristics are satisfactory. l 3  All variable input demand 
curves slope downward at all points, except as noted below, based on the BY 
parameters. I4 All industries show increasing returns to scale (in varying de- 
grees) as expected; scale measures are in “credible” ranges: greater in com- 
puters, reasonably close to one elsewhere. Second-order parameters are rea- 
sonable in size; models characterized by overfitting often show second-order 
parameter values exceeding one. 

With the exception of the demand for production-worker labor in industry 
3662, the input demand functions are concave in their own prices, as the elas- 
ticities in table 4A.5 show. The shadow cost of capital, b,, however, is effec- 
tively zero. The coefficient, b,, was constrained to be nonpositive in all mod- 
els. As noted in the data section, the absence of financial data for AT&T from 
the industry aggregate makes the capital results for SIC 3661 and 3662 less 
than complete. Because there are parameter constraints connecting the capital 
and output coefficients, this problem may also affect the estimates of econo- 
mies of scale, which show increasing returns of about 40 percent in SIC 3661. 
The Durbin-Watson statistics (after first-order autocorrelation correction in 
SIC 3661) indicate that there may be downward bias in the estimated standard 
errors owing to serial correlation of the residuals for SIC 3662 and 3573. 

13. It may be that the method for computing standard errors and r-statistics in FIML estimation 
results in downward bias in the standard errors when our iterative method of estimation is applied. 
A characteristic of many FIML estimation techniques is that the standard errors of the estimated 
coefficients are determined empirically on the basis of changes in the provisional coefficient esti- 
mates just prior to convergence. In consequence, when the estimation tolerance is extremely 
small-a practice to ensure reproducibility of the results and comparability across models-the 
variance-covariance matrix of the estimated coefficients gets quite small, and the t-statistics ex- 
plode. In this constrained choice set, we chose the accuracy of the parameter estimates over that 
of their standard errors in order better to identify the interindustry differences among the quality- 
adjustment functions. It may be possible to correct this deficiency in the near future. 

14. The parameters in the appendix tables have been rewritten as uppercase entities because of 
the limitations of computer software. 
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We did not expect the rates of quality augmentation inferred from the three 
industries to be the same. Lancaster’s (1971) theory of demand based on char- 
acteristics of goods represents an individual product as a bundle of character- 
istics. As an example, device density and microprocessor capacity” for semi- 
conductor inputs could be expected to yield different advantages in different 
kinds of communications equipment and computers. (In fact, this appeared to 
be so, but with little effect on the correlations of the resulting quality-adjusted 
prices.) Further, a considerable number of different devices are grouped to- 
gether as output of the semiconductor industry, with large differences in func- 
tion and prices per unit. Because our technology indicators include only two 
characteristics, DRAM density and microprocessor bit width, we thought it 
reasonable that the effects of embodied technical change might differ signifi- 
cantly in value per unit among the three industries. This proved to be the case, 
but the differences are somewhat smaller than we expected. 

Estimates of the coefficients for quality adjustment of semiconductor input 
in this study for the three industries are shown in tables 4A.2-4A.4. The 
estimated coefficients alpha (a) are quite close for the telecommunications 
equipment industries. Computer manufacture is similar to telephone and tele- 
graph equipment, but with even higher weight for DRAMS. That is, the values 
of a are 1.34 for SIC 3661, 1.38 for SIC 3662, and 1.28 for SIC 3573.16 As 
table 4A.6 shows, the weights for the DRAM and microprocessor character- 
istics are about Y3 and %, respectively, in telephone and telegraph equipment 
and computers (SIC 3661 and 3573) and are reversed for other telecommuni- 
cations equipment (SIC 3662). Preliminary discussion with semiconductor 
and telecommunications industry sources suggests that the relations among 
the weights for the three industries are plausible. The great similarity be- 
tween the manufacture of computers and the manufacture of telecommunica- 
tions switching devices has been widely noted (e.g., Flamm 1989). The sim- 
ilar weights for technological characteristics found in the patterns of usage by 
the two industries confirm that observation. In contrast, microprocessor per- 
formance seems to be more important in other telecommunications equipment 
(SIC 3662). 

The t-statistics reported in tables 4A.2-4A.4 are biased upward as a con- 
sequence of the iterative estimation procedure and are therefore inappropriate 
for testing hypotheses concerning the effect of quality change on the models. 

15. Microprocessor capacity is expressed as “bit width’-our own term (not to be confused 
with “band width,” which is only tangentially related). Integrated circuit technology has packed 
more functions on successively larger microprocessor “CPUs” (central processing units) so that 
bit width is an indicator of circuit integration and microprocessor speed as well as the data path 
and instruction repertoire that bit width directly measures. 

16. The overall effect in computers is much larger despite the smaller value for alpha because 
an additional term, z,, is included, representing the effect on total factor productivity in the in- 
dustry. 

17. Conversations with Jerry Junkins, chief executive officer, and Vladmire Catto, chief econ- 
omist, Texas Instruments. 
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In order to test the hypothesis that adding quality adjustment to the models 
does not improve their explanatory power, we adopt the likelihood ratio test 
(see, e.g., Judge et al. 1985, 182-84). The test statistic is 

A = 2(U - R), 

where U is the log of the likelihood function (LLF) of the unrestricted model 
(the model with technology-based quality adjustment, and R is the LLF of the 
restricted model (the model without quality adjustment). The test statistic A 
has a chi-squared distribution with degrees of freedom equal to the number of 
parameter restrictions: two each for the telecommunications equipment indus- 
tries and three for the computer industry. The LLF for the unrestricted model 
is based on the first pass of the iterative estimation procedure because the left- 
hand side of the model is changed in subsequent passes. Thus, the unrestricted 
LLFs reported in the text table below (showing hypothesis tests for effects of 
quality change in semiconductors) are not comparable to those reported in 
tables 4A.2-4A.4: 

Industry Unrestricted Restricted df A Xy.05) 

3661 
3662 
3573 

216.21 195.17 
121.95 116.32 
85.31 63.82 

2 42.08 5.99 
2 10.63 5.99 
3 42.98 7.81 

The overall effect of semiconductor quality improvement in computers is 
much larger than in telecommunications equipment because a term is included 
in the model representing the variable input factor productivity effect of im- 
provement in the quality of semiconductors. This effect is about 6.3 percent 
per year, as table 4A.6 shows. Such an effect is quite large: for U.S. manufac- 
turing as a whole, total factor productivity growth is about 1 percent per year 
before removal of scale effects. The coefficient estimated in table 4A.4 that 
leads to the effect reported in table 4A.6 is adjusted for scale effects because 
the scale coefficient b, is estimated as part of the same model. 

It is interesting to speculate why the exponential weights for the quality- 
adjustment functions are all greater than one. That is, the implied input de- 
mand effects (including substitution and, in the computer industry, cost reduc- 
tion) of semiconductors are greater than DRAM density and microprocessor 
bit width changes would imply. This result may be interpreted as the effect of 
omitted characteristics. Dulberger (chap. 3 in this volume) suggests that the 
answer may lie in improved “packaging” of the devices: adaptation of the 
techniques that combine the semiconductor devices with other components 
and each other in the construction of complete systems. Whatever the cause, 
however, it is remarkable that the evidence from all three industries suggests 
that the growth in performance characteristics of semiconductor devices as 
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measured here understates the growth in their comparative value in production 
of computer and telecommunications equipment. 

Table 4A.7 shows the resulting quality-adjusted semiconductor prices for 
these three industries as well as the official price index for the computer indus- 
try (Cartwright 1986). The price index for computers used in the GNP ac- 
counts described by Cartwright is adjusted for quality change using a hedonic 
approach introduced by Cole et al. (1986). In comparison with this computer 
price index, our estimated prices of semiconductor devices used in all indus- 
tries decline much more rapidly. Such a pattern would result in correspond- 
ingly higher growth of real output and productivity in the semiconductor in- 
dustry than the measures obtained from the official price statistics. 

Table 4A.8 shows the correlation coefficients for the quality-adjusted price 
indexes and their changes, expressed both in levels and in natural logarithms. 
While the correlation coefficients are all extremely high, the adjusted prices 
nevertheless exhibit rather different behavior. Quality adjustment for com- 
puter industry use of semiconductors shows the largest decline over the period 
studied, with the decline about twice as rapid both before and after the index 
year 1977, compared to the adjusted price of input to other telecommunica- 
tions equipment. Another source of differences in quality-adjusted prices 
among industries could result from the adjustment of semiconductor input 
prices to reconcile production and shipments costs. (It should be noted that 
we made no postestimation or “feedback” adjustment of any of the model data 
to “tune” the results.) However, comparison of tables 4A.8 and 4A.9 shows 
that the quality-adjusted semiconductor prices are more highly correlated 
across industries than are the prices of semiconductor input before quality 
adjustment. 

Table 4A. 10 shows the effects of changes in performance characteristics of 
semiconductors on production costs in the U.S. computer industry for the 
period 1969-86 and for three subperiods. The cost-reducing effect declines 
from an annual rate of more than 2 percent in 1969-73 to about 0.67 percent 
in 1979-86. However, the value of the cost reduction increases from the ear- 
liest to the latest period because the total volume of sales in the computer 
industry increases. 

4.4.2 Comparison with Dulberger’s Method 
It is useful to compare this approach with that applied by Dulberger (chap. 

3 in this volume). (Note that Dulberger’s analysis is based on data that were 
not available to us during the course of our study.) The Dulberger hedonic 
price index can be applied to deflate semiconductor input to an industry only 
if the detailed composition of that input is known in terms of characteristics. 
In other words, if the Dulberger deflator is applied to deflate input to the com- 
puter industry (SIC 3573) or telecommunications industries equipment (SIC 
3661 and 3662), then the deflation will be based implicitly on the composition 
of the hedonic sample in the absence of data on composition of the semicon- 
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ductor input in that specific industry. Unlike the hedonic deflator from the 
Dulberger application, the deflator derived from our approach reflects the 
technology of production in each of the industries studied, and the hedonic 
weights reflect the input demand transactions carried out by each industry. 
That is, the Dulberger hedonic index, like the Lancaster formulation, reflects 
the combinations of characteristics in the buyer’s opportunity set but is mute 
concerning the buyer’s actual choices. Our variant reflects the results of the 
buyer’s choices but does not identify the original opportunity set. 

4.5 Conclusions and Implications for Future Research 

This study examines three related equipment manufacturing industries that 
are central in different ways to the information revolution. Our key findings 
are as follows. 

1. Advances in semiconductor technology have profoundly influenced the 
patterns of production in telecommunications equipment and computer man- 
ufacture. These technological advances are captured in physical characteris- 
tics of semiconductors. 

2. These technological advances constitute largely unmeasured quality 
change in semiconductors. After adjustment, the prices per unit of perform- 
ance fall dramatically (table 4A.7) and-as expected-faster than quality- 
adjusted prices of computers. 

3. Consequently, the producer price indexes for semiconductor devices 
greatly understate quality change and thus the quantity of semiconductor input 
of constant performance. 

4. The relative weights of DRAM device density and microprocessor word 
size vary among industries and are highest for DRAMS in the computer indus- 
try. (All three industries might be better understood and modeled as multi- 
product industries so that the roles of the semiconductor inputs could be clar- 
ified by estimation of separate parameters linking them to different output 
categories in the using industries.) 

5. Cost function-based estimation of hedonic price indexes offers substan- 
tial promise for finding industry-specific price deflators. The required as- 
sumption that producers minimize the short-run variable cost of production is 

18. Despite the data limitations that our application necessarily reflects, the resulting input 
deflators are industry specific and perhaps not implausibly different from one another. There is no 
doubt, however, that a more specific data set in the particulars noted would improve our method. 
Our method has been applied in a recent doctoral dissertation at Rensselaer Polytechnic Institute 
(Pitt 1991). In that application, technological characteristics of aircraft are the basis for obtaining 
airline-specific indexes of the quality of the fleet of aircraft. Each fleet year for each carrier is 
represented by a vector of technological characteristics based on the composition of the fleet in 
that year. (The current value of the aircraft is used to weight its contribution to overall fleet tech- 
nological characteristics.) Thus, in that case, where the data were available, the method applied 
here used detail of the type represented in Dulberger’s analysis. 
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also required to interpret conventional hedonic price indexes as reflecting 
value in use. 

6. Finally, cost function-based estimation of hedonic price indexes permits 
the unambiguous attribution of cost changes and associated productivity 
changes to quality change in the subject input, as demonstrated above for the 
U.S. computer industry. 

We believe that the methods applied here also hold considerable promise 
for investigation of quality change in other industries. Particularly if applied 
to pooled plant-level time-series/cross-sectional data, these methods could ac- 
commodate a wider range of technological characteristics and thus provide 
more detailed and more reliable results than industry time-series data can sup- 
port. (As noted in sec. 4.4, there is evidence for unmeasured characteristics.) 
A major strength of the approach is that identifying information for the value 
of different technological characteristics is derived from demand for other in- 
puts as well as the one under study and from the cost function itself. There are 
literally dozens of studies in the past twenty years that attest to the improve- 
ment that interrelated factor demand models bring to studies of production. 
Much of this promise can be realized in quality-adjusting input factors for 
unmeasured quality change, that is, in adapting a hedonic or characteristics- 
based approach in cost function modeling. 

The role of technological change in telecommunications equipment on tele- 
communications would be better understood through a study of the telecom- 
munications services industry itself. Such a study could incorporate descrip- 
tions of the technological advances embodied in telecommunications 
equipment as this study uses DRAM density and microprocessor word size to 
describe the performance of semiconductors. Jang and Norsworthy ( 1990b) 
have outlined a method for assessing the effect of technological change in 
telecommunications equipment on telecommunications services. Such a study 
could provide an improved estimate of quality change of telecommunications 
equipment and thus an improved estimate of real output in SIC 3661. That 
information in turn would permit estimation of the contribution of semicon- 
ductors to the (quality-adjusted) growth of total factor productivity in tele- 
communications equipment, in the fashion applied to the computer industry 
in this paper. We are currently conducting such a study for the New York State 
Public Service Commission. 

In the broader context of analysis of technological change, such a study 
would represent an important addition to the vertical tracing of the effects of 
semiconductor technology through equipment manufacture to the delivery of 
information services. A comparable study of the role of computers in financial 
and other services as well as manufacturing would complement the telecom- 
munications sequence nicely. 

Ultimately, however, studies from currently available data sources cannot 
substitute for the systematic collection of data for quality adjustment of prod- 
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ucts whose technological characteristics are rapidly evolving. For the detailed 
sort of information required to permit the PPI and CPI programs to keep up 
with accelerating technological change, considerably more resources will be 
required both for data collection and for empirical research based on those 
data. Studies such as this, and even those possible with the Census Bureau’s 
Longitudinal Research Data file, can provide only “targeting” information for 
industries where technological change has outrun industrial price measure- 
ment programs. Certainly, the semiconductor industry is one such. 
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Appendix 

Table 4A.1 Technological Characteristics of Semiconductors Used for Quality- 
Adjustment, Natural Logarithms (1977 = 0) 

DRAM Microprocessor 

Density Density Word Size Word Size 
Year Smoothed Indicator Smoothed Indicator 

1968 
I969 
I970 
1971 
1972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
I983 
1984 
1985 
1986 

- 3.38946 
- 3.00345 
- 2.61980 
- 2.23849 
- 1.85953 
- 1.48292 
- 1 .  I0867 
- 0.736761 
-0.367206 

0.000000 
0.364855 
0.727360 
1.0875 1 
I .44532 
1 ,80077 
2.15388 
2.50463 
2.85303 
3. I9908 

- 3.46574 
- 3.46574 
- 3.46574 
- 2.07944 
- 2.07944 
- 2.07944 
- 0.693147 
-0.693147 
-0.693147 

0.00000 
0.00000 
0.00000 
0.693147 
0.693147 
2.07944 
2.07944 
2.07944 
2.07944 
3.46574 

- 3.2281 5 
- 2.74520 
-2.29332 
- 1.87251 
- 1.48276 
-1.12408 
- 0.796460 
- 0.499908 
- 0.23442 1 

0.000000 
0.203356 
0.375646 
0.5 16871 
0.627031 
0.706 I25 
0.754 154 
0.771 I17 
0.7570 15 
0.71 1848 

- 3.46574 
- 3.46574 
-2.07944 
- 2.07944 
- 0.693 147 
- 0.693 147 
-0.693147 

0.00000 
0.00000 
0.00000 
0.00000 
0.00000 
0 .00000 
0.00000 
0.693 147 
0.693 147 
0.693 147 
0.693 I47 
1.38629 
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Table 4A.2 Estimated %anslog Variable Cost Function, U.S. Telephone and 
Telegraph Apparatus Industry (SIC 3661), Quality Adjustment Based 
on Technological Characteristics of Semiconductors 

Coefficient Name Value of Coefficient r-Statistic 

A 0  4.27823 2,825.12 
AN 0.185892 179.697 
AM 0.536192 521.608 
AS - 0.1629018-0 1 - 19.3494 
ALPHA 1.3416 -2,692.00 
ZR 0.64450 3,039.89 
AV 0.790003E-0 1 47.3942 
ANM - 0.3450658-0 1 -48.9988 
ANS - 0.408 1868-03 -0.895394 
ANV 0.137574 369.008 
AMS - 0.546782E-02 - 8.69463 
AMV - 0.37489 18-0 1 - 12.1577 
ASV - 0.408221E-02 -4,20729 
ANN 0.332749E-01 87.7688 
AMM 0.684 195E-0 1 142.557 
ASS -0.55227OE-02 -9.58593 
AVV - 0.44495 1 E-0 1 - 359.275 
BY 0.720430 1,038.59 
BK -0.89398 18-05 - 0.0943 134 
BEK -0.592812 - 2,767.58 
CNK 0.2493458-01 14.6355 
CMK - 0.1872 1 IE-03 -0.163427 
CSK 0.12561OE-01 18.5945 
CVK - 0.265574E-01 - 16.9188 
RL - 0.73980 18-0 1 - 127.501 
RN -0,478550 - 706.962 
RM - 0.178418 - 140.741 
RS 1.101 19 1,541.58 
RV 0.475493 524.840 

LLF = 123.15 

R' D = W  

Variable cost function 0.9980 1.0850 

Production workers 0.8607 0.981 I 
Nonproduction workers 0.9103 0.9726 
Materials 0.9949 0.9249 
Semiconductors 0.9203 0.3198 
Purchased services 0.9795 0.8463 

Input demand equations: 
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Table 4A.3 Estimated 'kanslog Variable Cost Function, Other Communications 
Equipment (SIC 3662), Quality Adjustment Based on Technological 
Characteristics of Semiconductors 

Coefficient Name Value of Coefficient r-Statistic 

A 0  
AN 
AM 
AS 
ALPHA 
ZR 
AV 
ANM 
ANS 
ANV 
AMS 
AMV 
ASV 
ANN 
AMM 
ASS 
AVV 
BY 
BK 
BEK 
CNK 
CMK 
CSK 
CVK 

4.960 15 
0.267009 
0.327592 

1.3843 
0.582204 
0.153946 

0.6496598-0 1 

0.69 12 14E-01 
-0.475510E-02 

0.4393748-0 1 
- 0.77344OE-02 
- 0.904379E-01 
- 0.937887E-02 
- 0.547744E-0 I 

0.523390E-01 

0.796024E-01 
0.964603 
0.1415588-03 

-0.401418 
0.31 1857E-01 
0.185577E-01 

- 0.2578568-01 
- 0.25 I 170E-0 I 

0.953483E-02 

I 15485 
512.181 
683.26 1 
294.571 

-49,596.3 
6,450.42 

624.417 
368.229 

279.605 
- 16.0016 

- 20.2399 

1,275.38 

1,616.57 
-60.5852 

590.507 
101.642 

1,619.52 
40,780.1 

- 89,902.6 
32.4336 

1,271.62 
206.153 

143.386 
- 69.4602 

LLF = 110.28 

R? D = W  

Variable cost function 0.9949 1.0850 

Production workers 0.6358 0.981 I 
Nonproduction workers 0.9442 0.9726 
Materials 0.9798 0.9249 
Semiconductors 0.9999 0.3198 
Purchased services 0.9963 0.8463 

Input demand equations: 
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Table 4A.4 Estimated 'hanslog Variable Cost Functions, U.S. Computer 
Manufacturing (SIC 3573), Quality Adjustment Based on 
Technological Characteristics of Semiconductors 

Coefficient Name Value of Coefficient ?-Statistic 

A 0  
AN 
AM 
AS 
ALPHA 
ZR 
ZT 
AV 
ANM 
ANS 
ANV 
AMS 
AMV 
ASV 
ANN 
AMM 
ASS 
AVV 
BY 
BK 
BEK 
CNK 
CMK 
CSK 
CVK 

6.1 1539 
0.34539 1 
0.272393 
0.402017E-01 
1.28181 
0.830 143 

0.175 130 
- 0.629755E-01 

- 0.21029 1 E-01 
- 0.2505 16E-01 

0.189820 
0.9263 13E-02 
0.579878E-0 1 

- 0.85672OE-02 
- 0.59 1376E-0 1 
-0.190384E-01 
- 0.5335978-02 
-0.236525 

0.468209 
- 0.4775568-01 
- 0.717143E-01 

0.957002E-0 1 

0.427278E-02 
- 0.185323E-01 

-0.3 181938-01 

36,859.8 
328.308 
176.175 
45.8208 

2,99 1.85 
585.567 

-226.155 
154.050 
- 10.2198 
- 30.6193 
275.01 3 

121.829 
- 16.5092 
- 145.826 

8.85685 

- 6 I ,8067 
- 14.8061 

121.687 
- 197.401 

125.170 
- 12.7616 

-2,681.77 

- 38.8456 

4.47603 
-39.7112 

LLF = 46.426 

R2 D = W  

Variable cost function 0.9981 1.307 

Production workers 0.9529 1.499 
Nonproduction workers 0.9550 1.250 
Materials 0.9934 1.393 
Semiconductors 0.9957 1.499 
Purchased services 0.9961 1.053 

Input demand equations: 
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Table 4A.5 Own Price Elasticities of Inputs, Quality-Adjustment Models Based 
on Technological Characteristics of Semiconductors,' (1967-86) 

~~ 

SIC 3661 SIC 3662 SIC 3573 

Production-worker labor 0.1552 -0.1778 - 1.7692 
Nonproduction-worker labor -3.2001 -3.4818 - 2.4502 
Materials -0.6445 - 1.6033 - 2.9221 
Semiconductors - 106.9720 - 12.9657 - 29.195 I 
Purchased services - 23.0867 - 1.8441 - 12.9602 

'From models reported in tables 4A.2-4A.4. 

Table 4A.6 Coefficients of Quality-Adjustment Function for Semiconductor 
Inputs in Telecommunications Equipment and Computer Industries" 

SIC 3661 SIC 3662 SIC 3573 

Alpha (a) 1.3416 1.3843 1.2818 
DRAM density (ZJ 0.6445 0.5822 0.8301 
Microprocessor word size 0.3555 0.4178 0.1699 
TFP growth (annual from Z') 0.056 

"he estimated variable cost function does not include the capital input so that we have no way 
of estimating the capital saving associated with improvement in the quality of semiconductors. 
Accordingly, we have assumed no capital saving and reduced the estimated variable factor pro- 
ductivity increase in accordance with the share of capital in total cost: about 14.2 percent. 
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Table 4A.7 Semiconductor and Computer Price Indexes after Quality Adjustment (1977 
= loo) 

Year 

Quality-Adjusted Prices Based on 
Technological Characteristics of 

Semiconductors Used In: Official 
Computer 

PPI SIC 3661 SIC 3662 SIC 3573 Price Index 

1969 
1970 
1971 
I972 
1973 
1974 
1975 
1976 
1977 
1978 
1979 
1980 
1981 
1982 
1983 
I984 
1985 
1986 
Average annual rate 

of change (%) 

93.54 
92.29 
91.46 
89.99 
91.29 
99.75 

101.75 
100.06 
100.00 
99.16 

100.16 
107.21 
106.57 
103.29 
109.44 
113.15 
112.11 
113.72 

.47 

4,912.9 
2,845.1 
1,673.0 

987.2 
607.1 
406.5 
256.8 
158.1 
100.0 
63.4 
41.4 
29.0 
19.0 
12.3 
8.8 
6.2 
4.2 
3.0 

- 17.86 

5,074.5 
2,825.0 
1,511.2 

934.3 
571.7 
383.0 
247.2 
154.0 
100.0 
65.5 
33.9 
33.2 
23.2 
16.1 
12.4 
9.7 
7.3 
5.7 

- 16.39 

11,458.3 
3,476.1 
2,884.0 
1,539.6 

866.3 
528.0 
300.4 
170.4 
100.0 
59.0 
36.3 
23.8 
15.0 
9.2 
6.3 
4.4 
2.9 
2.1 

-20.76 

309. I 1  
276.46 
237.26 
204.36 
184.93 
145.77 
132.75 
115.72 
100.00 
84.78 
73.21 
58.84 
53.78 
50.08 
38.61 
34.30 
. . .  
. . .  

-5.97 

Table 4A.8 Correlation Matrices for Quality-Adjusted Prices of Semiconductor 
Inputs for Three Using Industries, 1969-89 (price indices: 
1977 = 1) 

Levels Changes 

SIC 366 1 3662 3573 366 1 3662 3573 

366 1 1 .o 1 .0 
3662 0.9996 1 .o 0.9993 1 .o 
3573 0.9943 0.9969 1 .o 0.9947 0.9977 1 .O 

~~ 

Thanges are correlated from 1970-86 
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Table 4A.9 Correlation Matrices for Prices of Semiconductor Inputs before 
Quality Adjustment for Three Using Industries, 1969-86' (price 
indices: 1977 = 1) 

Levels Changes 

SIC 366 1 3662 3573 3661 3662 3573 

3661 1 .o 1 .o 
3662 0.9986 1.0 0.9923 1.0 
3573 0.9847 0.9881 I .o 0.9304 0.9309 1 .O 

"Changes are correlated from 1970-86. 

Table 4A.10 Technological Characteristics of Semiconductors and Effects on 
Computer Industry Cost, Average Annual Rates of Change,' Selected 
Periods, 1969-86 

1969-86 1969-73 1973-79 1979-86 

Average change in 
DRAM density 36.4855 38.0132 36.8380 35.3103 

Average change in 

Cost effect of 

Cost effect of 

Average total effect 

microprocessor word size 20.3355 40.5281 24.9954 4.8028 

DRAM density -0.9275 - 1.3886 - 1.0334 - 0.5733 

microprocessor word size - 0.2904 -0.6705 -0.3252 - 0.0435 

of semiconductors - 1.2180 -2.0591 - 1.3586 -0.6169 

Tomputed by differences in logarithms 
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