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2 Methods for Projecting the 
Future Size and Health Status of 
the U. S . Elderly Population 
Kenneth G. Manton, Eric Stallard, and Burton H. Singer 

2.1 Introduction 

Reform of the U.S. health-care system has focused on payment systems and 
insurance for the elderly, a high consumption group, and for 36 million unin- 
sured and 60 million underinsured, younger U.S. residents. For these efforts, 
forecasts of the consequences of public health programs are needed, as well as 
of the effects of population risk factor trends and diagnostic and treatment 
innovation (Blackburn 1989). Because actuarial projections (e.g., Spencer 
1989; Wade 1987) do not use information on health change prior to death, their 
use in designing service delivery, acute and long-term care (LTC) insurance, 
and reimbursement systems is limited, as is their ability to anticipate “turning” 
points in population growth and health (Myers 1981). Health forecasts are also 
needed to design interfaces for private insurance and Medicare and Medicaid 
coverage and for long-term market planning by drug and medical equipment 
manufacturers. 

Changes in the size and health of the U.S. adult population are determined 
by chronic disease morbidity and mortality. Lifestyle and behavior (e.g., physi- 
cal activity, smoking, and diet) influence the natural history of many chronic 
diseases. Improvements in the population distribution of risk factors and treat- 
ment have reduced U S .  mortality of those above age 65 (Blackbum 1989). 
After plateauing from 1982 to 1988, mortality of persons aged 85+ declined 
8.6 percent from 1989 to 1991 (National Center for Health Statistics [NCHS] 

Kenneth G. Manton is research professor of demographic studies at Duke University. Eric Stal- 
lard is associate research professor of demographic studies at Duke University. Burton H. Singer 
is professor of epidemiology economics and statistics at Yale University. 

Support for this research was provided by NIA Grant 5-RUl-AG01159 and I-R37-AG7025 
(Manton and Stallard) and NIA Contract NOI-AGO2105 (Singer). The authors are grateful to Peter 
Diamond, Alan Garber, James Poterba, and David Wise for helpful comments on an earlier draft. 

41 



42 Kenneth G. Manton, Eric Stallard, and Burton H. Singer 

1992). To anticipate changes, health and mortality time-series data must be 
used. In this chapter we (i) introduce integrated models of risk factor dynamics 
and mortality processes, calibrated from longitudinal data, to forecast preven- 
tive and curative intervention effects; (ii) compare actuarial forecasts with 
those based on multivariate stochastic processes; and (iii) introduce models 
integrating disability dynamics with mortality processes, as a step toward in- 
tegrating the dynamics of multiple biological levels (Lipsitz and Goldberger 
1992). 

In section 2.2, we review (2.2.1) the rationale of model specifications and 
introduce (2.2.2), time-inhomogeneous, multidimensional physiological vari- 
able processes. The dependency of mortality on the diffusion processes is de- 
fined in subsection 2.2.3 as a quadratic function of physiological variables 
multiplied by an exponential term representing “senescence.” Dependent com- 
peting risks for multiple-cause mortality are discussed in subsection 2.2.4, 
where dependence is represented by risk factor trajectories generated by the 
diffusion process. In subsection 2.2.5 we introduce Grade of Membership 
(GoM) concepts to identify profiles of disabilities as vertices of a unit simplex 
within which individual disability dynamics operate as bounded diffusion pro- 
cesses. Positions in the simplex are defined by “scores” (i.e., coordinates in the 
convex space) representing the “degree of similarity” of an individual’s traits 
to each “vertex” (i.e., profile of disabilities). Finally, we present discrete time 
approximations in subsection 2.2.6 for estimation and forecasting. 

Section 2.3 presents projections based on scenarios about health interven- 
tions. We then discuss active life expectancy (ALE) projections and exogenous 
economic and social interventions. In section 2.4, we briefly discuss research 
needed to extend and refine models. 

2.2 Methodology 

2.2.1 Overview 

We model mortality as influenced by the temporal dynamics of physiologi- 
cal (or, more generally, “state”) variables. The mortality rate is expressed as a 
product of a quadratic function of measured physiological variables and an 
exponential function of age. The quadratic implies that there is an increasing 
risk of death with the movement of one or more physiological variables from 
an optimum homeostatic value (the minimum point of the function). The re- 
striction to quadratic-as opposed to more complex-surfaces recognizes that 
data will seldom be sufficient to statistically discriminate between quadratic 
and higher-order polynomial surfaces. The exponential term, exp(8 age), is 
interpreted as the contribution to mortality of “senescence.” By “senescence” 
we mean the age-specific average effect of currently “unknown” factors on 
mortality; senescence does not include any of the measured variables in the 
quadratic hazard. Although senescence is discussed in most theories of aging 
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(e.g., Medvedev 1990) as a decline in one or more biological functions, it has 
not been mathematically rigorously defined. 

Evolution of physiological (state) variables in the quadratic hazard is as- 
sumed to be governed by stochastic differential equations with linear drift, i.e., 
dynamics are “Markovian.” Although state variable processes may exhibit non- 
Markovian dependence, we assume that they can always be respecified to rep- 
resent cumulative experience to approximate a Markovian process. 

Forecasts using the stochastic differential equations focus on 
1. The mean vector and covariance matrix of state variables at timedages 

beyond the limits of data used to estimate parameters. Forecasts can be based 
on functional extrapolation assuming parameters do not change. Alternatively, 
parameters can be altered to represent scenarios about different interventions. 

2. Life expectancy at birth, and specific ages, as measures of the effect of 
interventions on state dynamics and mortality. 

3. Life tables for a range of interventions. 
Total mortality is represented as a sum of “crude” cause-specific mortality 

rates, each operating in the presence of (i.e., competing with) all other causes 
(Yashin, Manton, and Stallard 1986). The mortality rate for a cause is corre- 
lated with rates for other causes through a vector of common physiological 
processes which represent the dependence of risks. Computational details are 
in subsection 2.2.4. 

Mortality can also be modeled as a function of disability-both physical 
and cognitive-whose excursion from levels of performance associated with 
the lowest mortality risk are associated with the underlying state processes 
causing disability (see Manton, Stallard, and Singer 1992a). We use Grade of 
Membership (GoM) concepts to construct profiles of disabilities whose co- 
occurrence is biologically plausible. The profiles define fuzzy partitions using 
individual scores to represent the degree of similarity to each profile. The dis- 
ability dynamics are modeled by a stochastic differential equation operating in 
the unit simplex whose vertices are the disability profiles. Mortality at a given 
agehime is represented by a quadratic function of the time-varying “scores,” 
i.e., solutions for the stochastic differential equations in the simplex. In this 
formulation, high mortality rates are associated with excursions of the score 
vector away from (0, . . . , 0, 1,0,  . . . , 0), where 1 is associated with the profile 
having “mild” (or no) disabilities (i.e., the “origin” of the space is a priori 
specifiable as the “state” having no “dis”-ability). Senescence is the average 
effect of unobserved variables at a given age. The hazard is Q(g) exp (0 . age) 
where Q(g) is a quadratic function of the score vector, g. 

Ideally, the hazard would contain both physiological variables and disabili- 
ties. A model for a comprehensive set of state variables representing multiple 
levels of biological organization is beyond this paper’s scope. We do illustrate 
a model where exogenous factors are allowed to influence the disability dy- 
namics, For a discussion of issues in creating multilevel models, and their use 
in forecasting, see Manton (1993). 
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2.2.2 Physiological Dynamics 

equations 

( 1 )  dx(t) = a(t, x(t)) dt + b(t, x(t)) dW(t),  

where W(t) is a J-dimensional Brownian motion process independent of initial 
values x(O), b(t, y) is a bounded matrix-valued function whose entries are scale 
factors governing the size of random fluctuations around y = x(r) ,  and a(t, y) is 
a vector governing drift in the neighborhood of y = x ( t ) .  Equation ( 1 )  describes 
dynamics for a cohort; hence, age and time are confounded. To unconfound 
age and time, a and b must be parameterized by age or, equivalently, by birth 
cohort, c, with age = t - c, where t is calendar time. Values of x(r) are devia- 
tions (excursions) about an optimal (minimum) risk vector of state variable 
values. 

Assume a vector of J variables, x( t ) ,  is governed by stochastic differential 

For the current example, we restrict a(r, y) to be 

(2) Y) = a&) + a,(r)y, 

where a,( t )  is a restoring (“homeostatic”) effect. We assume b depends on age/ 
time and nor on the level, y = x( r ) .  Equation ( 1 )  reduces to 

(3) dx(t) = [aO(t) + a, (t)x(t)] dt + b(t) dW(t). 

2.2.3 Mortality 

7: 
Let T be a random agehime-at-death variable, with survival, conditional on 

0 

where 

Here eRJ is senescence. The quadratic describes mortality risk due to excursions 
of state variables away from values with minimum risk, e.g., xo. The dynamics 
for an individual evolve according to the diffusion process (3) for a random 
length of time, ?: where conditional survival is governed by equations (4) and 
( 5 ) .  If the initial vector, x(O), is Gaussian, then the Gaussian property propa- 
gates to x(t) for all t > 0, even with mortality selection (Woodbury and Manton 
1977). When a,,, a , ,  and b are constants, then (3) is the Ornstein-Uhlenbeck 
process, a unique time-homogeneous Gaussian diffusion process. 
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2.2.4 Cause-Specific Mortality and Competing Risks 

Let cI, . . . , c, be causes of death, and T I ,  . . . , T, random variables repre- 
senting agedtimes at death from cI,  . . . , c,; T = agehime at death = min 
( T , ,  . . . , T,). With the joint survival function S(t , ,  . . . , f,) = P(T, > t , ,  . . . , 
T,  > r,), observe that S(t)  = P(T > t )  = S(t, . . . , t) .  The net hazard for ck in 

the absence of other causes is hk(t) = - k-- P(Tk > t) .  The crude haz- 

ard for ck in the presence of other causes is 
dP(T dt > “ I  

d 
The rate p(t) = - - S(t, . . . , t)lS(t, . . . , t )  is the sum of crude hazard rates, 

k.,(t), by the definition of the total differential; i.e., 

(7) 

dt 

d 

dr 
k(t) = - - S(t, . . . , t)/S(t, . . . , t )  = 

The survival function, S(r) = P(T > r ) ,  is 
t t 

n t n 

0 

If we assume T I ,  . . . , T, are independent, then 
t 

(9) 

n 

i.e., net and crude mortality rates are equal, assuming independence. 
We can represent dependence among T I ,  . . . , T, generated by state pro- 

cesses, {x(r), t 2 O}. Let Xb be the history of the process x(s )  over 0 5 s < r. 
More formally, X; is the minimal a-algebra generated by x(s )  for 0 5 s < t. 
We assume that, conditional on X;), T , ,  . . . , T, are independent. Then 

(10) 

Conditional independence of T,,  . . . , T,, given X;, means, that the process x( t )  
accounts for (“explains”) the unconditional dependence of T,,  . . . , T,. If we 

K 

P(T > tlx;) = n P(T, > t 1 ~ ; ) .  
k =  I 
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assume independence of T I ,  . . . , T, conditional on X;, conditional net and 
crude rates are equal. The conditional survival function is 

0 

where ~ , ( s  I X,!,) is the crude mortality rate conditional on the history of the 
process to s. Forecasts in section 2.3 assume that pk(s I Fo) = ~ ~ ( s ,  x(s)); i.e., 
only current values of x(s) are informative. This is plausible if components of 
x(s) can include measures of the effect of past history to s. For specifications 
involving more complex dependence on process history, see Yashin, Manton, 
and Stallard (1986). 

We parameterize p.,(s, x(s)), analogous to equation ( 5 ) ,  as 

1 
2 

kk(s, x(s)) = [F~,,(S) + b: - x(s) + - xT(s) B,x(s)l ess . 

Thus each kk is a quadratic function of J state variables. Senescence has a 
common value of 8 for all c,; i.e., senescence is the age-specific average effect 
of unknown factors on death. The unconditional survival function is 

(12) 

I 

0 

where 

(14) P k ( ' )  = E[pk(f  x(t)) I ' t1 
(see Yashin et al. 1986). Here equation (14) is the unconditional crude hazard 
for Tk. To see, in a simple scalar case with J = 1, how the pk( t )  are related by 
x(t)-i.e., the explicit form of dependence-suppose that kk(t, x ( t ) )  = 
h,(t)x2(t). Then, after manipulation, it can be shown (Yashin et al. 1986) that 

(15) Pk(t) = h,(r)[m2(t) + ~(01, 
where 

m(t) = E [ x ( t )  I T > t]  

and 

y ( t )  = Var[x(t) I T > t ] .  

These quantities satisfy the system of ordinary differential equations 

'lt> = 2a,(t) y ( t )  + b2(r) - 2y2(t) hk(r), 
dt k =  I 
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To generate forecasts with cause elimination, one sets h,’(t) = 0 when cause 
cko is eliminated. Observe that m(t) and y( t )  depend-via equation (l6)-0n 
all other rates, h,(t); k # ko. The dependence of pk(t) on state variables is-for 
kl(t, x(t)) = h,(t) x‘(t) x(t)-through m(t) and y( t )  in equation (15). Although 
more general specifications (e.g., eq. [ 121) are more complicated than equation 
( 1 3 ,  the dependence of competing risks still operates through differential 
equation systems for m(t) and y( t ) .  

2.2.5 

Survey-based assessments of disability yield vectors of discrete responses, 
x, for each individual. Commonly, among the elderly, many individuals have 
multiple disabilities-but no specific combination occurs with high frequency. 
The distribution of disabilities in a population is best described by constructing 
empirically (and biologically) defensible profiles of co-occurring disabilities 
to be the vertices of a unit simplex. Each individual is associated with a point, 
g,, in the simplex. Components of g, = (g,,,. . . , g,J are convex weights (where 
g,, 2 0 and zF=, g,, = 1) representing the “degrees of similarity” of individuals 
to each profile (or distances to each vertex). For example, a person with g, = 
(0, 1, 0, . . , , 0) has disabilities only found in the second profile. A person with 
g, = (2/3, 1/6, 0, . . . , 0, 1/6) has some disabilities from profiles 1, 2, and K; 
however, more of his conditions are in profile 1 (the score of 2 / 3 )  than in pro- 
files 2 and K (i.e., scores of 1/6). 

The use of the g,l is related to incidental parameter estimation problems 
discussed by Neyman and Pearson, Neyman and Scott, and others. Resolution 
of the problem requires imposition of a “smoothing” operator on incidental 
parameters (e.g., Kiefer and Wolfowitz 1956). In GoM, the statistical proper- 
ties of the g l ,  are derived from theorems due to Weyl (1949) on polyhedra. 
Specifically, such models are identifiable and parameters consistently esti- 
mated, because once J discrete variables are selected, a space of potential re- 

sponses, say M, constructed from xJJ=, basis vectors (i.e., containing only 0s 
or 1 s) is fixed. The probabilities calculated from score estimates (g,,), vertex 
coordinates (AkJ,), and observed responses define a linear parameter space, L,, 
bounded by M. The intersection L,nM yields the simplex, B, whose vertices 
define the profiles (i.e., A,, coordinates) and whose faces define the half-spaces 
for the gl,  (Woodbury, Manton, and Tolley 1994). The convex constraints im- 
posed on the gl ,  by M mean that all individuals are represented on the boundary, 
or in the interior of B, and that each individual’s coordinates are uniquely de- 
fined (given his responses) because of the definition of vertices, A,,, by L,nM. 
This differs from multivariate continuous variable models where coordinate 
systems are constructed to represent central mass points (equivalent to centers 
of gravity) of specific multivariate distribution functions. It also differs from 
contingency tables (Bishop, Fienberg, and Holland 1975) and latent class mod- 
els (LCM; Lazarsfeld and Henry 1968) used for discrete variables. In those 
procedures, the gi, must be 0 or 1. In contingency tables, each person’s group 

Disability and Grade of Membership (GoM) Models 
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is observed (i.e., which g,k = 1.0 is known) so that only the A,, (for each of K 
observed groups) are estimated-under the constraint that groups are discrete 
(i.e., g,, can only be 0 or 1). In LCM, groups are not observed, so that the g,k  
must be estimated. Again the groups are discrete, so the state variable scores, 
g,,, can only be 0 or 1, though the probability of being in a group (i.e., p, ,  = 
P(g,, = 1.0) is what is typically estimated. In GoM there is an additional 
within-group heterogeneity component, due to the continuous scaling of the 
g3,, not represented in LCM. However, LCM is nested within GoM, so likeli- 
hood ratio tests of model specification can be made. In forecasting, the process 
is generally restricted to the unit simplex B. In forecasting using LCM, cases 
can only fall on the vertices, with all transitions being discrete. B imposes 
constraints on the forecasts, although, if well-specified functions relate exoge- 
nous factors to the A,,, and g,,, it is possible to use those functions to predict 
changes in the unit simplex; e.g., new variables can become relevant, changing 
the space M. 

To formalize this, response vectors are modeled as 

P ( X  = 1) = P[X@” = Zlg, = y,]  dp(y,) , i (17) 

S K  

where X@J is a random response vector for an individual with score vector, g,, 
and ~ ( y , )  is a probability measure on the unit simplex with K vertices, S,. 
Dependence among coordinates in the response vector is modeled assuming: 
(i) conditional on g,, coordinate variables are independent; i.e., 

(1 8) 

and (ii) the conditional marginal frequencies, PIX;gl = 1, 1 g, = y,], are convex 
combinations of profile frequencies for the same variable; i.e., 

J 

P [X@’  = I I g, = y,] = n P[X‘8” = 1 I g = y,] ; 
1 1  ,= I 

Y Y 

Here I“,“) is a random variable describing responses t o j  by i with the character- 
istics of k. 

Equations (17)-( 19) describe the distribution of individuals at a fixed age/ 
time. Disability dynamics are modeled as a diffusion process in B; i.e., the 
evolution of the g,, are described relative to a fixed set (or a fixed set condi- 
tional on exogenous factors) of K profiles. For K = 2, scores evolve according 
to a diffusion process on an unit interval. With g, = (g,l ,  g,J = (g,l ,  1 - g,l) ,  
the stochastic differential equation is 

(20) dg , , ( t )  = [a,(t) + a,( t )g , , ( t ) l  dt + c &@F- k 3 1  d ~ ( t ) ,  

where W(t) is standard Brownian motion, to describe dynamics within the unit 
interval. If we assume that (0) and { 1)-points identified by two profiles- 
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are “reflecting” boundaries, then transition probabilities governing equation 
(20) in the closed interval [0, 11 are given by the “fundamental” solution of 

d U  d 2 U  all 
= c%(l - x )  - + [ao(r) + a , ( t )  x ]  -, for (x, t )  E [0,1] X 

d t  dX2 dX 

subject to 

i.e., reflecting boundary conditions. 
The “local” variance (diffusion-term) specification, c2x( 1 - x), implies that 

variance in the region of g, = x is the same as for Bernoulli trials. The age/ 
time-dependent coefficient, a,( t ) ,  defines drift either toward or away from pro- 
file 1, depending on its sign. Forecasts in section 2.3 are high-dimensional 
generalizations of equations (20)-(2 1). The discrete-time analogue of the pro- 
cess used for estimation is in subsection 2.2.6. For a more extensive discussion 
of GoM, see Manton et al. (1992b), Woodbury et al. (1994), Berkman, Singer, 
and Manton (1989), or Singer (1989). 

Mortality, influenced by disability, is represented by the survival function 

r t  1 

0 

where 

(22) 

Thus, mortality is governed by excursions of g,,(s) and the family of quadratic 
functions defined by (22), together with the average age-specific effect (0) of 
unobserved factor(s). 

2.2.6 Discrete-Time Approximations, Likelihood, and Forecasting 
Algorithms 

1 
2 I.L(s, g(s)) = [-- g’(s> €5 g(s)Iees . 

Since the data used to estimate parameters in equations (3)-(5) are often 
collected in multiwave panel designs, observations on physiological variables 
and disabilities are of the form ~ ( t , ) ,  1 = 1, 2, . . . , (number of assessments), 
where t, denotes the lth survey date. The discrete-time analogue of equation 
(3) is 

(23) x,,, = u, + R,x, + e, , 

where R, - I is the analogue of a,(t), c, = E(e, e,3 corresponds to b(t) * bT(t), 
and {e ,}  are independent, Gaussian distributed vectors with mean 0 and covar- 
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iance matrix C,. For estimation we generalize equation (23) to identify individ- 
uals in specific cohorts; i.e., 

(24) 
x,,, = u, + u, age, + R,  x, + R2 x, age, + R, * z, + e, (age,)” 

where age, means “age of the individual at calender time t,” z, is a vector of 
exogenous variables, and u, is a vector of genetically determined levels on J 
physiological variables. The agehime-dependent mortality rate is 

The time scale for equations (23)-(25) is the intersurvey interval. This is rea- 
sonable when the time between surveys is “small” relative to the time required 
for “substantial” change on state variables. Alternatively, if observations are 
made at time points that are widely spaced relative to rates of change in under- 
lying processes, then one must evaluate how well discrete time observations 
can be embedded in a continuous-time diffusion process, equation (1) (see 
Singer and Spilerman 1976; Frydman and Singer 1979, who discuss the prob- 
lem for finite-state Markov chains). This is a substantive issue about the model 
specification used to estimate parameters of the theoretical process of interest 
given available data-and about its limitations. Two approaches are useful for 
this problem. First, if there is variation in the time of assessment (i.e., it is 
triggered by changes in health-as may be the case in studies of LTC delivery 
systems), then the process can be divided into the smallest possible time unit 
(e.g., a month), and, for GoM, the g z k f  can be assumed to be unchanged until a 
new assessment is made (i,e., until there is a jump in information). Then the 
g,, , are recalculated. The vertices (Ak,,) are assumed constant over all time, so 
that the g g k  , at any time are comparable. Then the monthly process, which more 
accurately approximates continuous time, may be used. This was used to evalu- 
ate the performance of SociaUHealth Maintenance Organizations (Manton et 
al. 1994). Since an assessment is done (in theory) as often as health changes, 
the approximation of the continuous time process should be good. A second 
strategy can be used for surveys with list samples (e.g., the National Long- 
Term Care Survey [NLTCS] ), where administrative records provide partial in- 
formation on the continuous time process. This was done using the 1982 and 
1984 NLTCS where mortality occurring within 3, 6, or 12 months of assess- 
ment could be defined. Changes in the mortality rate over, say, five years can 
be compared, for GoM, with the g,,,’s relation to mortality over three or six 
months. Changes in mortality over five years gives ancillary information on 
likely aggregate changes in disability using maximum likelihood estimates of 
the mortality disability relation for shorter intervals (Manton, Stallard, and 
Woodbury 1991). 

The likelihood, based on equations (24) and ( 2 5 ) ,  using the time scale de- 
fined by intersurvey periods, is 
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In equation (26) x,, and age I f  are observed (T ,  + 1) - to times for person i. 
At t + 1 survival is assessed: S1, = 1 if i dies before t + 1; S,, = 0 otherwise. 
Initial conditions are the distribution of x , ~ ,  conditional on age (+(xg,,1age,,J), 
assuming random sampling. If sampling is nonrandom within age or if the 
model is applied to a new population, +(x,,lage,,) can be reweighted to elimi- 
nate bias (Dowd and Manton 1990). Second (and subsequent) observation(s) 
on a person define the second term in equation (26)-a multivariate time se- 
ries, where +(x(,Ix! ,-,, age,,-,, Sj,-,  = 0) is the density of xz, conditioned on x,,-,, 
age,,-,, and SzI- ,  = 0; I = number of persons in the population. One can see 
that the likelihood varies from that in standard time-series models (e.g., Box 
Jenkins) where mortality selection is not modeled. 

Cohort life tables, and forecasts of their parameters beyond the bounds of 
the data, are based on recurrence formulas. First we set I ,  = P(T > t ) ,  then 

where p, ( * )  is the mortality rate, (25), with the exponential term absorbed into 
pO,, b,, and B,; v, and V, are the mean vector and covariance matrix, respec- 
tively, of state variables at t; v,* and V,* are adjusted for survival to t + 1. v, and 
V, satisfy 

u,* = U, - V,* (b, + B, u,), 

V,* = (I + V, B,)-I V,, (28) 

v,,, = u, + R, v,*, 

V,+,  = R, V,* RT + C,, 
where 

u, = u, + u, age,-,, 

R, = R, + R, age,_,, 

and, for the Framingham data, 

R, = 0. 

For analysis of disability, we used R, to model the effects of income and 
education on disability transitions. Equation (28), for physiological variables, 
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ensures that X,+, is normally distributed with mean vector v , + ~  and covariance 

N(v,*, V,*) is the conditional distribution of XI given survival to r + 1 .  For a 
derivation of these relations, see Woodbury and Manton (1983) and Manton, 
Stallard, and Woodbury (1986). For disability, the process is not Gaussian due 
to constraints on B. Diffusion (C,) is a time-dependent variable with variance 
related to that of Bernoulli trials. 

To represent multiple causes of death, we use the crude mortality rate for c, 

x: B, x,) exp(8 age,) and, using B,, = B, exp (8 

matrix Vl+,-i.e., N(v,+,, V,)-given that XI- L N(v,, V,). Furthermore, XI- L 

1 

2 
at r, u,,(x,) = kOk + b,T . x, + 
age,), observe 

(29) P k r  = E [ I J . ~ ,  (x,) I T ' rl = 2 (*.J(v, + vr*)/'I - [CLkr (vr) 
1 

+ kkI (vr*)1/2 + - In I 1 + V, B, I 
2 

W, B,,l 1 trWl B,l 

(see Manton, Stallard, et al. 1992), with life tables generated by 

To represent the effects of I ,  of eliminating cause k in the dependent competing 
risk framework, we set the force of mortality for the kth cause, p,,,, equal to 
zero in 

where 
K K K 

k0 = c poi, b = c b,, and B = BA . 
i= I k =  I A ; - I  

For disability dynamics, instead of equation (26), parameters are obtained 
by maximizing the conditional (on the gJ likelihood 

Here 

1 if individual i has response 1 on variable j , 
xyi = { 0 otherwise, 

and g''' = (gtl, . . . , R , ~ ) ,  where g,, 2 0 and Cf=, g,, = 1. For a discussion of 
computation, see Manton and Stallard (1988). 

With multiple g,, , for each individual (i.e., eq. [3 11 is expanded by disaggre- 
gating individual observations into episodes based on assessment at each r ) ,  
and hk,,s fixed over r, the discrete time analogue of diffusion in B is 
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(32) 

where C, is-for each t-a K X K matrix of coefficients which are function- 
ally equivalent to regression coefficients subject to constraints that each C, be 
a stochastic matrix and g2k(,+l 2 0, Cf=, g,k = 1. For h # k, chkr is the movement 
in B-away from profile k and toward h during [ r ,  t+l] .  Similarly, 1 - cIkl is 
the total agehime-dependent movement from k during [l, t + 11. 

g,(r+l) = CI g,, + % + I ,  7 

2.3 Forecasts 

2.3.1 Data 

The first analysis uses as state variables physiological risk factors measured 
in the Framingham Study (Dawber 1980) for 2,336 males and 2,873 females 
aged 29-62 years in 1950. The risk factors, measured biennally, were age 
(years), sex, diastolic blood pressure (DBP; mm Hg), pulse pressure (PP; mm 
Hg), serum cholesterol (SC; mg/dl), vital capacity index (VCI; cl/m2), hemo- 
globin (Hb; dg%) or hematocrit (Ht), smoking (CIG; cigarettes per day), body 
mass index (BMI; hg/m2), blood sugar (BLDS; mg%), ventricular (heart) rate 
(VRATE), and left ventricular hypertrophy (LVH). 

Disability assessments were obtained from the 1982, 1984, and 1989 Na- 
tional Long-Term Care Surveys (NLTCS). Twenty-seven disability measures, 
listed in table 2.1, were obtained from all chronically disabled persons inter- 
viewed in the two community samples of the 1982 and 1984 NLTCS ( N  = 

11,535). These were used in a GoM analysis to produce a six-profile solution 
defined by the A,, in table 2.1. The 1989 NLTCS is used to confirm forecasts 
based on 1982 and 1984. 

The profiles in table 2.1 may be interpreted as follows: 

1 is “healthy” with few chronic impairments, 
2 has no Activities of Daily Living (ADL) and few physical impairments but 
has Instrument Activities of Daily Living (IADL) impairments associated 
with cognition (e.g., phoning, managing money, and taking medication), 
3 has no ADL and few IADL impairments but moderate physical limitations 
(e.g., climbing stairs and holding, reaching for, and grasping objects), 
4 has problems with bathing, several IADLs, and more physical functions, 
5 has several ADL and IADL impairments (but not involving cognition, cf. 

6 is highly impaired on multiple ADLs and IADLS. 
profile 2; profile 4 had more upper body impairment), and 

Thus, the profiles describe different dimensions of function, e.g., cognitive 
impairment (profile 2), upper (profile 4) and lower body function (profile 5), 
and mixed or combined disability and frailty. There is a rough tendency for 
disability to increase across profiles. 



Table 2.1 Estimates of Response Profile Probabilities (Ak,, x 100) for the Combined 1982 and 1984 NLTCS Sample (11,535 complete detailed 
interviews) 

Variable 

ADL-Needs help: 
Eating 
Getting inlout or bed 
Getting around inside 
Dressing 
Bathing 
Using toilet 
Bedfast 
No inside activity 
Wheelchair-fast 

IADL-Needs help: 
With heavy work 
With light work 
With laundry 
With cooking 
With grocery shopping 
Gctting about outside 
Traveling 
Managing money 
Taking medicine 
Making telephone calls 

Observed 
Frequency 

6. I 
26.3 
40.6 
19.8 
44.0 
21.3 
0.8 
1.4 
3.4 

76.8 
24.2 
46.1 
33.0 
63.3 
63.5 
61.6 
29.7 
24.6 
17.5 

Profiles 

Mild Instrumental Moderate 
Moderate Cognitive and Physical Serious Physical ADL and Serious 

Healthy Impairment Impairment Impairment Physical Impairment Frail 

( 1 )  (2) (3) (4) ( 5 )  (6) 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

24.1 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

100.0 
0.0 

100.0 
100.0 
100.0 
52.7 

100.0 
100.0 
93.3 
83.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

100.0 
0.0 

18.2 
0.0 
0.0 

S5.1 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 

42.0 
0.0 
0.0 
0.0 
0.0 

100.0 
0.0 

100.0 
0.0 

100.0 
100.0 
100.0 

0.0 
0.0 
0.0 

0.0 
76.7 

100.0 
0.0 

100.0 
41.5 
0.0 
0.0 
0.0 

100.0 
0.0 

45.3 
0.0 

100.0 
100.0 
100.0 

0.0 
0.0 
0.0 

46.2 
100.0 
100.0 
100.0 
100.0 
100.0 

5.3 
9.8 

23.0 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
96.0 
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Table 2.1 (continued) 

Protiles 

Variable 

Mild Instrumental Moderate 
Moderate Cognitive and Physical Serious Physical ADL and Serious 

Observed Healthy Impairment Impairment Impairment Physical Impairment Frail 
Frequency (1) (2) (3) (4) ( 5 )  (6) 

Cannot at all 21.4 0.0 0.0 0.0 0.0 0.0 100.0 

None 64.8 100.0 100.0 0.0 0.0 100.0 21.3 
Some 20.8 0.0 0.0 100.0 0.0 0.0 33.6 
Very difficult 10.5 0.0 0.0 0.0 94.4 0.0 10.8 
Cannot at all 3.9 0.0 0.0 0.0 5.6 0.0 28.3 

enough to read a 
newspaper? 13.1 100.0 0.0 100.0 71.3 100.0 46.4 

Mean scores (gk X 100) 33.1 11.9 13.5 9.0 16.5 15.2 

Grasping an object 

Can you see well 
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We reanalyzed the 27 items, using the 16,485 respondents to the combined 
1982, 1984, and 1989 NLTCS. The X,, for the three surveys are in table 2.2. 
There is a high degree of similarity in the six profiles between the two solu- 
tions; i.e., B,,-,, (table 2.1) and B,,-,, (table 2.2) are similar. The primary differ- 
ence is fewer IADL impairments involving outside mobility for profile 3 in 
table 2.2. Variables whose coefficients are on the boundary of B(i.e., A,, = 1.0 
or 0.0) are highly stable because the solution, given the constraints of M, is 
“hyper”-efficient. Thus, B is not changed much by the extension to 1989. The 
trait-weighted prevalence of the six profiles, 1982-89, at the bottom of table 
2.2 for both solutions, also shows a high degree of similarity. 

Finally, national population counts, together with growth rates, r,, in year t, 
were derived from census estimates for ages 30-100 for 1986. Projections of 
the population aged 30-3 1 between 1988 and 2080 (Spencer 1989) determined 
the size of new cohorts at they “age in.” 

2.3.2 Risk Factor Projections/Simulations 

For projections, we need initial conditions, descriptions of two-year changes 
in risk factors (24), and hazard rates for cancer, cardiovascular disease, and 
“other” causes ( K  = 3). In table 2.3 we present sex-specific life-table parame- 
ters for selected ages, for dependent and independent “elimination” of CVD 
generated using equation (28). 

Under independence, age-specific risk factor means do not change. With 
dependence, means change due to decreased selection of persons with adverse 
CVD risk factor values. For males aged 90, mean BLDS rose to 115.0 (from 
11 1.9) because CVD elimination allows diabetics to live longer. Mortality for 
causes dependent on the same risk factors increase. Thus, independence over- 
states the effect of eliminating CVD, with bias increasing as 1, decreases. By 
age 90, the bias for males is 39 percent (i.e., 3.1 vs. 4.3 years); 17.6 percent 
for females. 

If there were no mortality change, the male population aged 85+ would 
grow 75 percent (to 1.4 million) by 2080 (the female population, 71 percent to 
3.6 million) because of increased cohort size. This is less than the 9.8 million 
in the lowest Census Bureau Series 19 projection (mortality changes are 50 
percent of the middle variant). Series 19 uses low, and Series 23 uses middle, 
fertilityhmmigration assumptions. We used fertility/immigration assumptions 
from Series 23. Life expectancy at age 30 (table 2.3) is similar to the United 
States in 1986 (i.e., males 43.8 vs. 43.9 and females 49.0 vs. 50.0). In 2080 
the no mortality change scenario for the population aged 65+ is 19 percent 
lower than Census Bureau Series 23 (49.7 vs. 60.9 million). The relative differ- 
ence for persons aged 85+ is larger (54 percent; 5.0 vs. 10.9 million). The 
Series 19 projections and the forecast with no mortality change are similar for 
the 65+ population (49.5 vs. 49.7 million). 

Mortality is declining for the U.S. population aged 65 + and for those 85 + 
(i.e., for those aged 85+ it declined 8.6 percent from 1989 to 1991; NCHS 



Table 2.2 Estimates of Response Profile Probabilities (A&,, X 100) for the Combined 1982, 1984, and 1989 NLTCS ( N  = 16,485) 

Variable 
Observcd 
Frequency 

Healthy 

( 1 )  

ADL-Needs help 
Eating 
Getting idout of bed 
Getting around inside 
Dressing 
Bathing 
Using toilet 
Bedfast 
No inside activity 
Wheclchair fast 

IADL-Needs help 
With heavy work 
With light work 
With laundry 
With cooking 
With grocery shopping 
Getting about outside 
Traveling 
Managing money 
Taking medicine 
Making telcphone calls 

7.0 
39.9 
39.9 
19.4 
43. I 
21.7 
0.8 
I .5 
7.0 

71.0 
22.6 
41.5 
29.8 
56.9 
59. I 
52.9 
26.8 
23.5 
16.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

14.5 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

Moderate Cognitive 
Impairment 

(2) 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

100.0 
35.5 

100.0 
100.0 
100.0 
61.9 

100.0 
IOO.0 
I 00.0 
87.3 

Profiles 

Mild Instrumcntal 
and Physical Serious Physical 
Impairment Impairment 

(3 (4) 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

100.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 
0.0 

100.0 
0.0 

100.0 
0.0 

100.0 
100.0 
100.0 

0.0 
0.0 
0.0 

Moderate 
ADL and Serious 

Physical Impairment 

( 5 )  

0.0 
Ioo.0 

0.0 
100.0 
48.9 
0.0 
0.0 

19.9 

I 00.0 

1oo.0 
0.0 

36.4 
0.0 

100.0 
100.0 
100.0 

0.0 
0.0 
0.0 

Frail 

(6) 

55.2 
100.0 
100.0 
100.0 
100.0 
100.0 

5.5 
10.2 
25.8 

100.0 
100.0 
100.0 
100.0 
100.0 
100.0 
80.3 

100.0 
100.0 
85.5 



Function limitations-How much 
difficulty do you have: 

Climbing (one flight of stairs) 
None 
Some 
Very difficult 
Cannot at all 

None 
Some 
Very difficult 
Cannot at all 

None 
Some 

Very difficult 
Cannot at all 

Reaching overhead 
None 
Some 
Very difficult 
Cannot at all 

None 
Some 
Very difficult 
Cannot at all 

Bending (e.g., putting on socks) 

Holding a 10 Ib. package 

Combing hair 

(continued) 

18.6 
29.1 
31.4 
21.0 

53.5 
46.6 
0.0 
0.0 

0.0 
88.5 
11.5 
0.0 

0.0 
33.8 
66.2 
0.0 

0.0 
0.0 

50.7 
49.3 

0.0 
0.0 

73.0 
27.0 

0.0 
0.0 

10.9 
89. I 

43.5 
27.9 
18.0 
10.6 

100.0 
0.0 
0.0 
0.0 

100.0 
0.0 
0.0 
0.0 

0.0 
100.0 

0.0 
0.0 

0.0 
0.0 

100.0 
0.0 

100.0 
0.0 
0.0 
0.0 

0.0 
0.0 
0.0 

100.0 

29.6 
18.1 
15.9 
36.4 

84.2 
15.9 
0.0 
0.0 

0.0 
S8.6 
41.4 
0.0 

0.0 
38.9 
61.1 
0.0 

0.0 
0.0 
0.0 

100.0 

0.0 
24.9 
30.3 
44.7 

0.0 
0.0 
0.0 

100.0 

56.1 
21.2 
13.9 
8.8 

100.0 
0.0 
0.0 
0.0 

100.0 
0.0 
0.0 
0.0 

0.0 
100.0 

0.0 
0.0 

0.0 
0.0 

76.8 
23.3 

100.0 
0.0 
0.0 
0.0 

0.0 
34.3 
14.1 
51.6 

71.6 
16.0 
7.0 
5.4 

100.0 
0.00 
0.00 
0.0 

100.0 
0.00 
0.00 
0.0 

0.0 
100.0 
0.00 
0.0 

0.0 
42.17 
57.23 
0.0 

100.0 
0.00 
0.00 
0.0 

0.0 
33.68 
11.54 
54.8 



Table 2.2 (continued) 

Profiles 

Variable 

Mild Instrumental Moderate 
Moderate Cognitive and Physical Serious Physical ADL and Serious 

Observed Healthy Impairment Impairment Impairment Physical Impairment Frail 
Frequency ( 1  j (2) (3) (4) (3 (6) 

Washing hair 
None 
Some 
Very Difficult 
Cannot at all 

Grasping an object 
None 
Some 
Very Difficult 
Cannot at all 

Can you see well enough to 
read a newspaper'? 

Mean scores (ik X 100) 
1982-84 NLTCS" 
1982, 1984, and 1989 NLTCS 

55.8 
14.8 
9.4 

20.0 

66.0 
20.3 
10.1 
3.6 

14.3 

100.0 100.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

100.0 100.0 
0.0 0.0 
0.0 0.0 
0.0 0.0 

100.0 0.0 

33.7 11.9 
34.4 11.6 

0.0 
100.0 

0.0 
0.0 

0.0 
100.0 

0.0 
0.0 

100.0 

13.5 
13.1 

0.0 
0.0 

100.0 
0.0 

0.0 
0.0 

95.5 
4.5 

100.0 

9.0 
9. I 

100.0 
0.0 
0.0 
0.0 

100.0 
0.0 
0.0 
0.0 

100.0 

16.5 
16.7 

0.0 
0.0 
0.0 

100.0 

24.6 
34.3 
14.8 
26.3 

45 .4 

15.2 
15.3 

"From table 2.1. 
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Table 2.3 Observed (baseline) and Cause-Elimination Life-Table Values Assuming 
Independence and Dependence of Competing Risks: CVD Elimination for 
Male and Females, Framingham Heart Study (20-year follow-up) 

age, e, PP DBP BMI SC BLDS Hb VCI CIG 

Baseline 
Dependence 
Independence 

Baseline 
Dependence 
Independence 

Baseline 
Dependence 
Independence 

Baseline 
Dependence 
Independence 

Baseline 
Dependence 
Independence 

Baseline 
Dependence 
Independence 

Baseline 
Dependence 
Independence 

Baseline 
Dependence 
Independence 

Baseline 
Dependence 
Independence 

Baseline 
Dependence 
Independence 

30 

50 

70 

90 

110 

30 

50 

70 

90 

110 

43.9 45.0 
53.9 
54.8 

25.7 47.7 
34.9 47.7 
35.8 

10.8 63.0 
17.7 63.3 
18.8 

2.9 77.3 
6.0 79.4 
7.2 

1.1 88.0 
1.8 96.2 
2.7 

50.0 45.0 
56.9 
57.3 

30.4 48.9 
38.0 48.9 
38.5 

13.7 68.8 
20.3 68.9 
20.8 

3.6 86.9 
7.0 88.2 
7.6 

1.1 99.6 
1.8 105.9 
2.3 

Males 
80.0 260.0 

83.3 276.0 
83.4 276.1 

82.8 266.1 
83.0 265.7 

80.8 250.3 
81.7 242.3 

78.5 254.0 
80.5 225.8 

Fernales 
75.0 235.0 

80.0 256.0 
80.0 256.1 

83.0 252.5 
83.0 252.7 

83.9 234.7 
84.7 233.4 

80.2 220.1 
84.3 210.6 

215.0 80.0 145.0 

241.1 83.7 149.6 
241.2 83.7 149.6 

223.0 98.5 150.7 
223.4 99.0 150.7 

204.7 111.9 151.9 
205.6 115.0 151.3 

188.9 120.7 155.7 
199.0 133.3 154.4 

200.0 80.0 125.0 

246.2 81.9 135.4 
246.3 81.9 135.4 

255.9 94.2 141.8 
256.1 94.3 141.9 

263.6 105.1 146.1 
262.7 106.1 146.5 

275.6 113.0 148.3 
271.2 118.8 149.2 

140.0 14.0 

127.4 12.9 
147.4 13.0 

100.8 4.9 
100.2 5.2 

78.0 0.0 
73.3 0.w 

70.4 0.0 
53.1 0.0 

115.0 8.0 

105.7 10.1 
105.7 10.1 

78.1 6.8 
77.8 6.9 

53.5 1 . 1  
51.0 1.4 

41.4 0.0 
29.4 0.0 

Cigarette smoking was fixed at zero to prevent negative values. 

1992). Declines are due, in part, to observed risk factor trends from 1960 to 
1987, where smoking, cholesterol and hypertension among the US. elderly 
(age 65-74) population declined (e.g., Popkin, Haines, and Patterson 1992). 
Further improvement can be expected due to smoking reduction (Fiore et al. 
1989), increased education (Feldman et al. 1989), and adoption of healthier life 
styles (e.g., more physical activity and improved nutrition) by elderly cohorts. 

For our projection we had to establish “optimal” risk factor values for total 
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mortality. The total mortality function is generated as the sum of three cause- 
specific functions because certain risk factors (e.g., SC) had different relations 
with different causes (e.g., with CVD and cancer; Neaton et al. 1992). The 
cause-specific relations of risk factors is important in assessing “population” 
versus “high-risk” public health interventions. Indeed, “population” interven- 
tion for SC may increase mortality for a portion of the population (Frank et al. 
1992). There have been questions raised about the evidence demonstrating the 
efficacy of SC reduction (Ravnskov 1992). There is less controversy about con- 
trolling SC by diet and exercise (which affects other metabolic parameters) 
than about the population use of SC-lowering drugs-especially those affect- 
ing liver enzymes (Oliver 1991). Consequently, we used the quadratic mortal- 
ity model to determine the values that would increase life expectancy most, 
based on the 34-year Framingham follow-up. These are presented in table 2.4. 
Differences between the 20-year and 34-year data suggest what effects are like 
at the latter ages observed in the 34-year data. 

There are differences between the optimal profiles for the 20-year and 34- 
year data on SC. This is because the quadratic surface for SC has a flat interior 
region due to the relations of SC to different diseases (Frank et al. 1992; Nea- 
ton et al. 1992). The additional 14 years of follow-up decreases the “optimal” 
male cholesterol value. The female cholesterol value remains higher (Epstein 
1992). Part of the reason for the variability is the strong correlation over time 
of metabolic parameters. For example, BLDS, BMI, and VCI increased for 
males when SC declined. 

The consequences of risk factor interventions, using parameters estimated 
from 20-year and 34-year Framingham data are in table 2.5. The mean and 
variance for CIG for smoking elimination are fixed at 0.0. This only modestly 
increases the population, because few smokers survive to age 80. Second, risk 
factor means were fixed at “optimal” levels for each cohort in 2006 (e.g., inter- 
ventions for persons aged 30 in 1986 were introduced at age 50 in 2006, for 
those aged 50 in 1986 at age 70 in 2006, etc.). Life tables were calculated with 
vjo set to “optimal” risk factor levels, K,, and R = I, u, = 0, and C = 0. V,o 
was not changed. The male population in 2040 increased from 21.6 to 36.0 
million at age 65 and from 1.6 to 9.8 million at age 85. Next, we partially (50% 
or 75%), or completely, eliminated variance by pre- and post-multiplying V,,, 
by a diagonal matrix; C is recalculated. The male population aged 65+ in- 
creased to 62.1 million by 2040. Males aged 85+ increased to 25.4 million by 
2040, and to 36.0 million in 2080. Females had similar increases (i.e., 28.5 
million in 2040 and 37.9 million in 2080). Projections based on the 20-year 
and 34-year optimal risk factor profiles are similar. 

In table 2.6, the highest census projections (Series 9) are presented along 
with “optimal” projections based on 34-year data (profile 3, table 2.4). 

In the “optimal” case, of 177 million persons aged 0-44 in 1986,61 percent 
of females and 33 percent of males survive to age 85 in 2080. The male popula- 
tion aged 65+ is projected to be 74.6 million in the optimal case versus 52.5 
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Table 2.4 Risk Factor Means and Optimal Means (for eight variables, 20-year follow- 
up, and for ten variables, 34-year follow-up, Framingham data sets) Used in 
Projections 

Males Females 

Observed Observed 
Profile 1 Profile 2 Profile 3 Means at Profile 1 Profile 2 Profile 3 Means at 

Variable (20-year) (34-year) (34-year) Age 30 (20-year) (34-year) (34-year) Age 30 

I .  PP(mm 

Hg) 
2. DBP 
(mm Hg) 

3. BMI 
(hg/m’) 

4. SC (mg/ 
dl)  

5. BLDS 
(mg%) 

6. Ht (%)4 

Hb (dg%) 

7. VCI 

8. CIG 
(cl/m?) 

(cigarettes 
per day) 

9. LVH 

10. VRATE 

minute) 
(per 

e30 

32 

82 

227 

260 

58 

- 

152 

152 

0 

- 

- 

35.5 

74.4 

254.5 

211.8 

57.5 

46.8 

- 

145.9 

0.0 

0.0 

61.3 

70.9 

27.8 

80.5 

257.5 

172.8 

101.8 

47.5 

- 

160.1 

0.0 

0.0 

67.4 

82.5 

45 
(13.7) 
80 

(12.5) 
260 
(34.4) 
215 
(41.4) 
80 

(29.6) 
47 
(3.1) 

145 
(10.2) 
140 
( I  8.9) 
14 

(11.5) 

0.06 
(0.0) 
77.0 

(11.8) 

59 

71 

274 

251 

I07 

- 

133 

100 

0 

- 

- 

47.2 

78.0 

267.3 

222.0 

124.9 

44.6 

- 

121.7 

0.0 

0.0 

55.6 

73.2 

46.8 45 

78.0 75 

267.6 235 

221.7 200 

124.4 80 

44.6 44 

(15.5) 

( 12.3) 

(44.7) 

(42.9) 

(22. I )  

(3.0) 

(10.2) 

(17.0) 

(8.1) 

- 125 

121.6 115 

0.0 8 

0.0 0.1 
(0.0) 

55.5 77.0 
(11.6) 

73.5 

Notes: Standard deviations in parentheses. 
uHermatocrit value used in 34-year projections. 

million in Series 9. The optimal male population aged 85+ is 38.3 million 
versus 13.9 million according to Series 9. Similar results occur for females 
aged 85+ (i.e., 39.7 vs. 20.0 million). Comparison of Series 5 and 9 projec- 
tions showed that fertilityhmmigration produced 10 percent of the age 85+ 
and 18 percent of the age 65 + population increase in Series 9. 

Projections of persons aged 85+ for 2040 by Guralnik, Yanagishita, and 
Schneider (1988), assuming a 2 percent per year mortality decline, are a third 
higher than Series 9 projections (i.e., 23.5 vs. 17.9 million). Ahlburg and 
Vaupel (1990) projected 72 million persons over 85 in 2080-similar to our 
optimal case (78.0 million). Their projections use a 2 percent per year mortal- 
ity reduction and high fertility and immigration rates. Using middle fertility/ 
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Table 2.5 
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Alternative Projections (in millions of Persons) for 2040,2060, and 
2080: 20-Year and 34-Year Framingham Data 

2040 2060 2080 

Age 65+ 
20-Year data 

BaselineJ 
Smoking eliminated 
Reduction of profile Ih risk factor variance by: 

0%' 
50% 
75% 
100% 

34-Year data 

Age 8 5 i  
20-Year data 

Baseline' 
Smoking eliminated 
Reduction of profile 1 risk factor variance by: 

100% Reduction in variance (profile Zh)  

0%" 
504 
75% 
100% 

34-Year data 
100% Reduction in variance (profile 2) 

Age 6 5 i  
20-Year data 

Baselined 
Smoking eliminated 
Reduction of profile 1 risk factor variance by: 

0%" 
50% 
75% 
100% 

34-Year data 

Age 85+ 
100% Reduction in variance (profile 2) 

20-Year data 
Baselined 
Smoking eliminated 
Reduction of profile 1 risk factor variance by: 

OW 
50% 
75% 
100% 

34-Year data 
100% Reduction in variance (profile 2) 

21.6 
23.5 

36.0 
51.5 
58.7 
62.1 

63.3 

1.6 
I .I 

9.8 
17.7 
22.9 
25.4 

26.4 

30.2 
31.4 

43.9 
56.8 
62. I 
65.4 

67.3 

3.8 
4.1 

13.3 
21.8 
25.8 
28.5 

31.2 

Males 

21.6 
23.6 

36.8 
55.5 
66.3 
72.0 

72.9 

I .3 
1.5 

9.8 
21.9 
30.4 
35.3 

36.2 
Females 

29.8 
31.1 

45.1 
61.2 
68.9 
74.3 

14.4 

3.3 
3.7 

14.5 
26.3 
32.8 
37.5 

37.8 

20.7 
22.1 

35.8 
54.3 
65.0 
71.0 

71.7 

I .4 
1.6 

10.0 
22.2 
30.8 
36.0 

36.7 

28.9 
30.2 

44.1 
59.9 
67.7 
73.3 

73.3 

3.6 
4.0 

14.8 
26.5 
33.0 
37.9 

31.9 

5 e e  table 2.3. 
bOptimal values for 20-year and 34-year data are presented in table 2.4. 
<Changes in risk factor means only. 



Table 2.6 Comparison of Population Projections Based on Control of Multiple Risk Factors and on the High Census Bureau 
Variant (millions) 

~ ~ 

Males Females Total 
Age 

1990 2010 2040 2060 2080 1990 2010 2040 2060 2080 1990 2010 2040 2060 2080 

65 + 13.0 24.9 68.1 
85 + 0.9 4.6 31.1 
Surviving to age (6.7) (18.5) (45.7) 

85 from 65' 
(%) 

65 + 11.8 18.1 37.1 
85 + 0.8 2.2 6.6 
Surviving to age (6.8) (12.2) (17.8) 

85 from 65' 
("/.) 

Risk Factor Control' (20-Year Delay) 
75.6 74.6 18.9 26.5 70.0 77.5 76.3 31.9 51.4 138.1 153.0 151.1 
37.8 38.3 2.3 5.8 32.6 39.5 39.7 3.2 10.4 63.7 77.3 78.0 

(50.0) (51.3) (12.2) (21.9) (46.6) (51.0) (52.0) (10.0) (20.2) (46.1) (50.5) (51.6) 

Census Bureau Highest Variant (Series 9)' 
43.1 52.5 17.5 24.4 45.5 51.7 61.4 29.3 42.5 82.6 94.8 113.9 
10.0 13.9 2.1 4.9 11.2 15.7 20.0 2.9 7.2 17.9 25.6 33.9 

(23.2) (26.5) (12.0) (20.1) (24.6) (30.4) (32.6) (9.9) (16.9) (21.7) (27.0) (29.8) 

Sources: For risk factor control, Duke University, Center for Demographic Studies; for Census Bureau highest variant, Spencer (1989). 
"Figures in parentheses are percentage of persons over age 65 that are age 85+. 
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immigration assumptions, the 2 percent mortality decline projects 58 million 
persons aged 85+ in 2080. Thus, the optimal projections produce mortality 
declines averaging more than 2 percent per year. The 2 percent assumption 
generates a life expectancy of 100 years in 2080. “Optimal” interventions proj- 
ect life expectancies 3-12 years higher. 

In the “optimal” case, senescence is assumed unchanged (8 is not altered) 
and no diseases are “cured.” The Gompertz in equation (5) (8 is 8.05 percent 
for males, 8.12 percent for females) limits the life expectancy for persons with 
optimal risk factor profiles. Without using the 10 risk factors in the mortality 
function, the 8 for the 34-year data was 9.4 percent for males and 10.0 percent 
for females. Thus, the 10 risk factors significantly reduced (by 14.4 percent 
and 19.0 percent) the effects (8) of unobserved variables on the age depen- 
dence of mortality. Since 8 is a nonlinear parameter, the proportion of the age 
dependence explained by the 10 risk factors is much higher than the decline in 
8; about 62 percent of male and 69 percent of female age dependence of mor- 
tality was due to the risk factors. 

Without 8, the coefficients of the mortality function are not only biased, but 
do not represent thc age variable equilibrium of the process (e.g., Manton 
1988) because the risk factors contain “age” effects that bias them away from 
the true homeostatic point. Since more persons survive to advanced ages, and 
with improved risk factor profiles, the probability of an individual living to 
ages higher than currently observed increases. 

2.3.3 

Equations (31) and (32) in section 2.2.6 represent cohort changes in disabil- 
ity with age and mortality after an index age (e.g., to = 65). To project the 
distribution of the disabled population to a future time, multiple cohort projec- 
tions are needed. Specifically, for, say, 2020 we might consider the active life 
expectancy (ALE) for all persons aged 65+ at that date. To do this, we need 
to evaluate life-table equations for a cohort aged 65 in 1990 (i.e., the 1925 
birth cohort), a cohort ages 67 in 1990 (i.e., the 1923 birth cohort), and so 
forth, up to the oldest age (e.g., the cohort aged 115 in 1990, or the birth cohort 
of 1875). The cohort life-table parameters weighted by its size in 1990 can, for 
the appropriate age and date, be assembled to form the cross-sectional popula- 
tion. Specifically, cohort calculations must be made from age-specific start 
points in, say, 1990 and run to 2020 using equations (27) and (28). For the 
population aged 65 in 1990, life-table calculations (population weighted) must 
be run from age 65 (in 1990) to age 95 (in 2020). In 2020, the ratio 1,,/1,,, 
generates the number of persons surviving to 2020. Multiplying by vk(9sl, the 
mean of scores on profile k, generates the number of survivors aged 95 in 2020 
in each disability class. For the population aged 70 in 1990, ll&o generates 
the number of survivors to age 100 in 2020; multiplied by uk(loo), this produces 
the number in each disability class. Similar calculations are performed for 
other age groups. These are summed to get the total population aged 65+ in a 
given disability state at a given date. 

Projections Based on Disability Dynamics 
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In interpreting the projections, it is important that individual membership in 
disability states are graded and multidimensional. This stabilizes projections 
but means that “counts” are sums of the g,L, not the number of individuals with 
nonzero scores. If the average score among persons with nonzero g,, is, say, -5 ,  
then the projected count is 50 percent of the number of such persons. Alterna- 
tively, two persons, each with 50 percent disability, are equivalent to one per- 
son with 100 percent disability; i.e., counts are weighted by traits associated 
with each profile. Since the k profiles form partitions for each individual, the 
sums of the g,, partition the projected population. 

Additionally, we do not want parameters for cross-sectional life tables. 
We need to simulate a current cohort’s future experience. Estimates from the 
1982, 1984, and 1989 NLTCS suggest that the proportion of the elderly pop- 
ulation remaining nondisabled increased. The population aged 65+ grew 10 
percent from 1984 to 1989, while the disabled population grew 6.8 percent 
(Manton, Corder, and Stallard 1992). The problem is to modify C, to reflect a 
reasonable cohort scenario. The scenario is implemented by altering sam- 
ple weights to reflect assumptions about cohort disability changes. In our 
cohort scenario, we assumed that half of 80 percent of the transitions to a 
disability state from the nondisabled, screened population were prevented 
and that two-thirds of 20 percent of that population with changes had dis- 
ability prevented. The two adjustments, implemented by adjusting sample 
weights, imply 53 percent of the disability occurring in the younger non- 
disabled population is prevented. By imposing interventions in the screened, 
nondisabled population we simulated the prevention of disability in a pop- 
ulation that (a) is younger than the NLTCS (Medicare-eligible elderly dis- 
abled) population on average, (b)  has not had disability for a long time, 
i.e., it must be newly incident, and (c )  tends to be at a relatively low level 
of disability. This produces a life table that matches the Social Security Ad- 
ministration (SSA) cohort life expectancy projected for persons age 65 
in 1984 (Social Security Administration [SSA], 1983). Since the second 
NLTCS was done in 1984, the scenario produced results very close to the SSA 
projections. The cohort life expectancies also match period life tables pro- 
jected by the SSA (1989) for the approximate midpoint (i.e., 2005) of the 
projection interval. The intervention produced dynamics (C,) (see eq. 
[32]) consistent with the monthly disability dynamics estimated from the 
Medicare component of the SocialhIealth Maintenance Organization (S/ 
HMO) evaluation. Thus, the scenario accurately reflects short-term disability 
changes. 

Projections can be altered by modifying the g,,., and generating new C,. 
Thus, the effects of disease intervention on disability may be forecast. In the 
projections, we did not change disease prevalence, but we assumed that the 
income and education distribution for persons aged 65-69 would be applied 
for persons at all ages in the cohort life table. 

Table 2.7 contains sex-specific life-table parameters for selected ages for (a)  
cohort simulations, (b) the forecasting model calibrated with the 1982, 1984, 



Table 2.7 Simulation, Baseline Cohort Life Tables, and Age-Specific Meaning g,A X 100 

Age 

Profiles 

2 3 4 5 6 Inrtitutional 

65 Simulation 
Cohort 
Income and education 

75 Simulation 
Cohort 
Income and education 

85 Simulation 
Cohort 
Income and education 

95 Simulation 
Cohort 
Income and education 

105 Sirnulation 
Cohort 
Incornz and education 

Ioo,OoO 
1 oo,oo0 
I00,oo0 
66,272 
68,956 
68,958 
32,587 
32,886 
37,374 
7,06 I 
6,262 

10,894 
655 
198 

1,780 

0.0% 
0.0% 

4.1'% 
4.1% 

I .o%J 
14.7% 

- I 1.3% 
54.3% 

-69.8% 
171.8% 

15.4 
1.5.6 
16.8 
10.7 
10.3 
12.2 
6.6 
6.1 
8. I 
4.4 
3.2 
5.8 
3.5 
2.2 
4.8 

Mules 
92.7 
92.2 
92.7 
91.6 
85.4 
90.2 
78.5 
73. I 
75.7 
65.3 
56.8 
63.6 
68. I 
50.0 
65.2 

0.7 
4.0 
0.7 
I .3 
8.5 
2. I 
4.6 

12.1 
6.2 
6.0 

12.6 
7.4 
6.0 

19.1 
7.3 

1 . 1  
0.7 
I .4 
1.1 
0.8 
I .2 
2.0 
1.3 
2. I 
2.7 
I .6 
2.9 
2.7 
0.2 
2.9 

0.8 
0.7 
0.9 
0.7 

71.1 
0.6 
I .7 
2.6 
I .5 
I .4 
5.6 
1.3 
1.3 
4.8 
I .2 

2.2 1 .5 
1.1 I .0 
I .9 1.7 
I .9 I .7 
1.8 I .3 
2.4 2.0 
3.9 4.2 
3.5 2.4 
5.5 4.8 
6.5 7.3 
6.6 5.8 
7.9 8.1 
6.3 6.6 

12.6 3.3 
7.9 7.7 

I .0 
0.3 
0.7 
1.8 
I .2 
1.5 
5. I 
5.1 
4.2 

10.9 
11.1 
8.9 
9.0 

10.0 
8.0 



65 Simulation 
Cohort 
Income and education 

75 Simulation 
Cohort 
Income and education 

85 Simulation 
Cohort 
Income and education 

95 Simulation 
Cohort 
Income and education 

105 Simulation 
Cohort 
Income and education 

100,Ooo 
100,000 
100,000 
80,560 
82,201 
84,340 
5393 I 
54,235 
59,797 
18,192 
18,757 
26,725 
2,916 
2,246 
8,111 

0.0% 
0.0% 

2.0% 
4.7% 

0.6% 
10.9% 

3.1% 
46.9% 

- 23.0% 
17X.2% 

Femules 

20.5 91.2 
20.6 92.1 
23.7 9 1 3  
142 87.6 
13.9 84.0 
17.3 83.4 
8.5 68.8 
8.4 65.1 

11.9 65.1 
5.5 46.8 

8.9 52.2 
4.5 49.6 
3.6 50.0 
7.5 53.2 

4.9 48.8 

0.9 1.7 2.2 I .4 1.4 
3.4 2.0 0.7 1.2 0.8 
0.9 1.7 1.7 1 .s I .3 
1.5 2.3 1 .8 2.7 I .7 
7.8 1.3 1 . 1  2.2 1.4 
3.7 2.6 1.6 3.3 3.2 
4.4 3.6 2.5 5.3 4.0 

12.1 2.2 2.7 5.5 3.4 
7.2 3.0 2.0 6.1 7.0 
8.2 4.1 3.1 5.9 8.3 

10.6 1.8 4.6 5.8 6.1 
10.1 3.7 2.5 5.7 11.8 
8.5 4.3 3.2 6.1 8.6 
9.9 1.2 4.4 4.9 5.0 

10.7 3.9 2.6 5.8 12.3 

1.1 
0.8 
I .2 
2.5 
2.2 
2.2 

11.5 
9.0 
8.0 

23.4 
22.4 
14.0 
19.7 
24.5 
11.6 

Sourcr: 1982 and 1984 NLTCS. 
"For each pair of numbers in this column, the top is the percentage incrcasc in survival (I,) for 1982-89 cohort relative to simulation. and the bottom 
is the percentage increase in survival for income and education adjustment relative to simulation. 
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and 1989 data, and (c) the cohort simulation with the income and education 
distribution adjusted. 

The six profiles are augmented with an “Institutionalized” group to repre- 
sent the entire US. Medicare-eligible population aged 65 +. Life expectancy 
(e , )  for the cohort simulation is higher at age 65 than in the 1986 U.S. cross- 
sectional life tables produced by the U.S. Bureau of the Census (Spencer 1989; 
e.g., for females, 20.5 years vs. 19.0 years, and for males, 15.4 years vs. 14.8 
years). Mortality decreases at later ages (from that observed in the period life 
table) because nondisabled persons have lower mortality. Overall, the life ex- 
pectancy is nearly identical to that of the 1919 cohort (i.e., persons aged 65 in 
1984) life tables prepared by the SSA (i.e., for males, 15.3 vs. 15.4 years, and 
for females, 20.6 vs. 20.5 years; SSA 1983). In table 2.7 we also present life 
tables calculated using the declines in disability observed from 1982 to 1989 
(with mortality followed from 1982 to 1991; with Bayesian unit weights ap- 
plied to each year’s sample). The projected life expectancy at age 65 is again 
close for males (i.e,, 15.4 vs. 15.6 years) and females (20.5 vs. 20.6 years). The 
simulations are similar to the 1982-89 life tables for males to age 85 and for 
females to age 95. The fact that the simulation provides a higher life expec- 
tancy at later ages than the 1982-89 data is because (a) the 1982-89 life tables 
do not reflect disability declines after 1989 and (b) since we weighted each 
survey year equally (a conservative approach), the 8 for the 1982-84 interval 
is smaller because of the shorter interval (i.e., OM = 4.0 percent and 8, = 3.6 
percent) than for the 1982-89 estimates (i.e., 8,w = 5.5 percent and 8, = 4.4 
percent). This is because there are more unobserved disability transitions in 
the five-year interval 1984-89. We also show the effect of controlling income 
and education using the simulated cohort as the base. This increases life expec- 
tancy 1.4 years for males and 3.2 years for females. The life expectancy trajec- 
tories of the three scenarios are presented in figure 2.1. 

Disability represents an actual loss of function for a person, rather than a 
risk factor out of range. Thus, it is a better predictor of mortality (see Grand et 
al. 1990; Campbell et al. 1985). For example, 92 percent of the age dependence 
of mortality for males, and 94.5 percent for females, is explained by functional 
level (compared to 62 and 69 percent for the risk factors). However, disability 
is not only an outcome of disease processes. Often, loss of function (implying 
decreased activity and worsened nutrition) is an etiological factor in mortality 
at advanced ages; e.g., 56 percent of deaths in one autopsy series were due to 
CHF, pulmonary embolism, or pneumonia, all of which are stimulated by lack 
of activity and poor nutrition. Only recently have mechanisms underlying the 
effect of functioning on health been specified. It was discovered, for example, 
that impaired heart muscle produced enzymes down-regulating the activity of 
skeletal muscle to keep them within the range of activity supportable by the 
remaining cardiac function (Drexler 1992). Many metabolic parameters are 
affected by activity-even to extreme ages (e.g., age 107 in Lindsted, Tonstad, 
and Kuzma 1991). Likewise, higher education and higher income not only 
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30 - 

20 - 

MALES - Simulation 
.d- 1982 to 1989 Data - Income & Education 

I 

6 5  7 5  8 5  9 5  1 0 5  

Age 

25 FEMALES 
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5 

0 I 

65 75 85 9 5  105 

Age 

Fig. 2.1 Life expectancy at selected ages for males and females under three 
different scenarios: cohort simulation, 1982-89 life tables; and income and 
education adjustment of cohort simulation 

imply improved access to medical care but also better lifestyle and higher ex- 
pectations about health and functioning at later ages. 

In addition, we can examine the distribution of frailty at each age. The value 
for g ,  represents ALE at a given age. For males this declines more rapgly in 
the 1982-89 data (e.g., to 56.8 percent by age 95). For females the level of 
ALE is about the same at each age. In general the group that increases most 
rapidly in the 1982-89 data is the second group with mild cognitive impair- 
ment. For females, income and education greatly reduce the institutional popu- 
lation. 

In table 2.8 we present cross-sectional distributions of males and females in 
each disability state for 1990 and 2020 and changes in the size of those popula- 
tions (based on cohort simulations). 
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Table 2.8 Distribution of Persons in Each Disability State, 1990 and 2020 
(thousands) 

Profile 

Age Group 1 2 3 4 5 6 Institutional 

Baseline: 1990 
65 + 1 1,047.4 I 
85 + 6 17.95 

65 + 20.490.82 
85 + l , 5  11.63 

65 + 20,479.09 
85 + 1.416.83 

Baseline: 2020 

Variance control: 2020 

Baseline: 1990 
65 + 15,228.11 
85 + 1,298. I2 

65 + 26.037.34 
85 + 2.912.99 

65 + 25,915.74 
85+ 2,702.47 

Baseline: 2020 

Variance control: 2020 

184.75 
40.73 

352.32 
104.99 

375.9 I 
107.02 

343.02 
109.68 

679.84 
298.53 

679.66 
285.19 

Males 

173.79 109.99 
19.36 11.01 

3 16.48 202.72 
50.49 27.73 

336.81 225.83 
52.70 32.35 

Fernales 

437.46 352.48 
84.70 64.38 

790.24 634. I2 
206.44 157.22 

803.76 661.15 
201.36 166.21 

305.40 
47.49 

592.5 1 
121.37 

635.87 
129.78 

513.50 
125.97 

940.28 
307.05 

959.60 
299.58 

280.60 
44.95 

522.48 
114.76 

604.89 
140.02 

396.42 
1 16.39 

784.75 
323.71 

865.16 
368.13 

255.44 
65.50 

545.93 
166.61 

721.86 
258.59 

722.42 
330.76 

1,535.03 
903.86 

2,009.09 
1,288.55 

Suurce: 1982 and 1984 NLTCS 

The baseline population change from 1990 to 2020 reflects the growth of 
the age 85+ population. The changes for 2020 with, and without, variance 
control reflect increases in the size of the most disabled populations when dis- 
ability heterogeneity is eliminated; i.e., this reflects what projections with dis- 
crete groups (e.g., using LCM categories, gl, = 0.0 or 1.0) would produce. 
The effects are considerable at advanced ages; e.g., at ages 85+ in 2020 the 
institutional population increases 55 percent for males and 43 percent for fe- 
males with variance control. The most fundamental problem is that age trajec- 
tories of disability are distorted by the use of homogeneous categories. 

The variance control intervention shows that the effect of reduced mortality 
is eventually overwhelmed by mortality selection (i.e., reversing the mortality 
differentials). This demonstrates that the average age trajectory of risk factors 
(i.e., for an average individual) is not the same as the age trajectory observed 
for a heterogeneous population. In a population, mortality “prunes” the tails 
of the risk factor distribution, leaving a residual subpopulation with lower 
risks. The variance control intervention collapses the tails of the distribu- 
tion to a single point mass, eliminating the effects of selection from the pro- 
jections. 



73 Projecting the Size and Health Status of the U S .  Elderly Population 

2.4 Discussion 

We modeled mortality as a function of risk factor histories prior to death. 
The diffusion process describing the evolution of state variables and history- 
dependent mortality rates are used to forecast means and covariances of state 
variables and life tables and life expectancies for several scenarios. This is 
different from demographic forecasts (Spencer 1989; Wade 1987; Alho and 
Spencer 1990a, 1990b), which use only terminal-state information-i.e., age 
and cause of death. An advantage of the diffusion models is that one can ascer- 
tain the time scale and role of intermediate health processes prior to death. 
Methods that use only terminal-state information can assess interventions only 
when their effects on mortality are already manifest. 

We also introduced a model of disability dynamics and mortality based on 
profiles of disabilities identified with the vertices of a unit simplex. Individual 
disability dynamics are represented via a diffusion process for score vectors, 
whose components are interpreted as the “degrees of similarity” of an individ- 
ual’s response to each profile of conditions. With mortality rates constructed in 
terms of g,,, we produced history-dependent mortality rates which reflect phys- 
ical and cognitive functioning of individuals prior to death. Ideally, both physi- 
ological and disability variables would be represented in a model. However, an 
integrated model, involving multiple levels of biological organization, lies in 
the future. 

We forecast population size and health using the diffusion mortality pro- 
cesses with physiological variables. Changes in population produced by risk 
factor interventions were simulated. A stochastic limit to life expectancy was 
imposed by representing senescence in the mortality function. Risk factor val- 
ues were not assumed to change until 2006. No change in case fatality or aging 
rates was assumed. Large population increases above age 85 resulted. 

Federal population projections, useful for many purposes, do not make 
health forecasts. Models based on health processes sometimes make unrealis- 
tic assumptions, e.g., that risk factors operate independently (Tsevat et al. 
1991). Multivariate stochastic process models, calibrated with longitudinal 
data, represent the interaction of risk factors, age, and mortality and may antic- 
ipate “turning points” that, without a model, may take years to identify (Myers 
1981). Past mortality declines were presaged by risk factor changes in the pop- 
ulation between 1960 and 1987. The projections illustrate (a) risk factor-based 
forecasts, (6) estimates of upper bounds to future population growth based on 
risk factor effects, and (c) variation of forecasts. They also show that Census 
Bureau projections are achievable by controlling known risk factors. In Census 
Bureau projections, however, mortality improvements are “front-end’’ loaded 
(they decline to an ultimate rate in 2012). We assumed no improvement in the 
first 20 (or 30) years. 

The risk factor projections also suggest that uncertainty in the growth of the 
U.S. elderly population and changes in its health are greater than currently 
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envisioned. To understand how uncertainty propagates in forecasts, research is 
needed on: (1) integration of multiple data sources with different error struc- 
tures (e.g., superpopulation sampling models; Cassel, Sarndal, and Wretman 
1977), (2) data with long-term follow-up and more experience at advanced 
ages, (3) biologically realistic models of health processes, (4) effects of error 
of parameter estimates, and modes of reducing it, on forecast uncertainty, and 
( 5 )  effects of functional impairment on mortality. 

In addition, the analyses identified risk factor dynamics important for mor- 
tality at late ages. For example, reduction of SC and BMI at later ages may be 
due to a significant prevalence of malnutrition (Williams 1992). Popkin et al. 
(1992), in analyzing risk factor trends, showed that the population aged 65-74 
responded to public health initiatives. However, those initiatives emphasize 
risk factor avoidance appropriate to middle-aged persons-goals that may not 
be optimal at later ages. What is needed are recommendations of positive ac- 
tions specifically for elderly persons. This model is one way to assess the con- 
tent of public health programs designed specifically for the elderly. For ex- 
ample, forecasts of risk factor means to very advanced ages show nonlinear 
trajectories due to the interaction of state dynamics and mortality. Specifically, 
at some advanced age the mean of a risk factor must start moving to more 
optimal values because of the exponential increase in the force of mortality 
due to unobserved factors represented by the Gompertz. When sufficient num- 
bers of risk factors are represented that 0 is “small,” the cross-temporal covari- 
ances of observed risk factors will describe optimal trajectories. 

Using disability assessments from the NLTCS, we produced projections of 
ALE for males and females. Disability was represented by scores describing 
multiple dimensions of disability. The use of a dynamic model with graded 
scores predicted a very different distribution of disability in 2020 than if dis- 
crete disability groups are used. Specifically, variance within disability catego- 
ries tended to increase mortality risks-especially for the most highly disabled 
groups. At the same time, it reduced the average gl,.! for high disability dimen- 
sions, so that the mortality in later years declined. This is why variance “con- 
trol” initially increased life expectancy (i.e., at ages 65 and 75) and then de- 
creased it (i.e., at ages 85 and above). 

We also investigated an intervention whereby certain disability transitions 
(to low levels, at early ages among persons with no prior impairment) were 
modified to simulate a cohort. The cohort scenario focused on short-term 
changes in incidence. This is an area requiring further substantive and method- 
ological research. Specifically, the NLTCS detects disability of 90-t days dura- 
tion at two points in time. To take point prevalences as fixed to calculate dis- 
ability effects may overestimate the length of disability episodes and 
underestimate the number of persons experiencing disability. The number of 
short-term stays, and the likelihood of disability reversal, may be underesti- 
mated. To deal with data limitations, a model accurately describing continu- 
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ously changing disability states, their interaction with mortality, and time of 
observation is needed. 
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