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1. Introduction

Since the seminal work of Kydland and Prescott (1982) and Prescott
(1986b), proponents of the real business cycle (RBC) paradigm have
claimed a central role for exogenous variations in technology as a
source of economic fluctuations in industrialized economies. Those
fluctuations have been interpreted by RBC economists as the equilib-
rium response to exogenous variations in technology, in an environ-
ment with perfect competition and intertemporally optimizing agents,
and in which the role of nominal frictions and monetary policy is, at
most, secondary.

Behind the claims of RBC theory lies what must have been one of
the most revolutionary findings in postwar macroeconomics: a cali-
brated version of the neoclassical growth model augmented with
a consumption-leisure choice, and with stochastic changes in total fac-
tor productivity as the only driving force, seems to account for the
bulk of economic fluctuations in the postwar U.S. economy. In practice,
"accounting for observed fluctuations" has meant that calibrated
RBC models match pretty well the patterns of unconditional second
moments of a number of macroeconomic time series, including their
relative standard deviations and correlations. Such findings led Pre-
scott to claim "that technology shocks account for more than half the
fluctuations in the postwar period, with a best point estimate near 75
percent."1 Similarly, in two recent assessments of the road traveled
and the lessons learned by RBC theory after more than a decade,
Cooley and Prescott (1995) could confidently claim that "it makes
sense to think of fluctuations as caused by shocks to productivity,"
while King and Rebelo (1999) concluded that "[the] main criticisms
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levied against first-generation real business cycle models have been
largely overcome."

While most macroeconomists have recognized the methodological
impact of the RBC research program and have adopted its modeling
tools, other important, more substantive elements of that program
have been challenged in recent years. First, and in accordance with the
widely acknowledged importance of monetary policy in industrialized
economies, the bulk of the profession has gradually moved away from
real models (or their near-equivalent frictionless monetary models)
when trying to understand short-run macroeconomic phenomena. Sec-
ond, and most important for the purposes of this paper, the view of
technological change as a central force behind cyclical fluctuations has
been called into question. In the present paper, we focus on the latter
development by providing an overview of the literature that has chal-
lenged the central role of technology in business cycles.

A defining feature of the literature reviewed here lies in its search for
evidence on the role of technology that is more direct than just check-
ing whether any given model driven by technology shocks, and more
or less plausibly calibrated, can generate the key features of the busi-
ness cycle. In particular, we discuss efforts to identify and estimate the
empirical effects of exogenous changes in technology on different mac-
roeconomic variables, and to evaluate quantitatively the contribution
of those changes to business-cycle fluctuations.

Much of that literature (and, hence, much of the present paper)
focuses on one central, uncontroversial feature of the business cycle
in industrialized economies, namely, the strong positive comovement
between output and labor input measures. That comovement is illus-
trated graphically in Figure 1, which displays the quarterly time series
for hours and output in the U.S. nonfarm business sector over the
period 1948:1-2002:4. In both cases, the original series has been trans-
formed using the bandpass filter developed in Baxter and King (1999),
calibrated to remove fluctuations of periodicity outside an interval
between 6 and 32 quarters. As in Stock and Watson (1999), we inter-
pret the resulting series as reflecting fluctuations associated with busi-
ness cycles.

As is well known, the basic RBC model can generate fluctuations
in labor input and output of magnitude, persistence, and degree of
comovement roughly similar to the series displayed in Figure 1. As
shown in King and Rebelo (1999), when the actual sequence of technol-
ogy shocks (proxied by the estimated disturbances of an autoregres-
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Figure 1
Business-cycle fluctuations in output and hours

sive (AR) process for the Solow residual) is fed as an input into the
model, the resulting equilibrium paths of output and labor input track
surprisingly well the observed historical patterns of those variables;
the latter exercise can be viewed as a more stringent test of the RBC
model than the usual moment-matching.

The literature reviewed in the present paper asks very different
questions, however: What have been the effects of technology shocks
in the postwar U.S. economy? How do they differ from the predictions
of standard RBC models? What is their contribution to business-cycle
fluctuations? What features must be incorporated in business-cycle
models to account for the observed effects? The remainder of this
paper describes the tentative (and sometimes contradictory) answers
that the efforts of a growing number of researchers have yielded.
Some of that research has exploited the natural role of technological
change as a source of permanent changes in labor productivity to iden-
tify technology shocks using structural vector autoregressions (VARs);
other authors have instead relied on more direct measures of tech-
nological change and examined their comovements with a variety of
macro variables. It is not easy to summarize in a few words the wealth
of existing evidence nor to agree on some definite conclusions of a
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literature that is still very much ongoing. Nevertheless, it is safe to state
that the bulk of the evidence reviewed in the present paper provides
little support for the initial claims of the RBC literature on the central
role of technological change as a source of business cycles.

The remainder of the paper is organized as follows. Section 2 reviews
some of the early papers that questioned the importance of technology
shocks and presents some of the basic evidence regarding the effects of
those shocks. Section 3 discusses a number of criticisms and possible
pitfalls of that literature. Section 4 presents the case for the existence of
nominal frictions as an explanation of the estimated effects of technol-
ogy shocks. Section 5 summarizes some of the real explanations for the
same effects found in the literature. Section 6 lays out and analyzes an
estimated dynamic stochastic general equilibrium (DSGE) model that
incorporates both nominal and real frictions, and evaluates their re-
spective roles. Section 7 concludes.

2. Estimating the Effects of Technology Shocks

In Gali (1999), the effects of technology shocks were identified and esti-
mated using a structural VAR approach. In its simplest specification, to
which we restrict our analysis here, the empirical model uses informa-
tion on two variables: output and labor input, which we denote respec-
tively by yt and nt, both expressed in logs. Those variables are used
to construct a series for (log) labor productivity, xt = yt — nt. In what
follows, the latter is assumed to be integrated of order one (in a way
consistent with the evidence reported below). Fluctuations in labor
productivity growth (Axt) and in some stationary transformation of la-
bor input (fit) are assumed to be a consequence of two types of shocks
hitting the economy and propagating their effects over time. Formally,
the following moving average (MA) representation is assumed:

? ] = [c»(L) S(S][J]S C ( L )* W

where sf and sf are serially uncorrelated, mutually orthogonal struc-
tural disturbances whose variance is normalized to unity. The poly-
nomial \C(z)\ is assumed to have all its roots outside the unit circle.
Estimates of the distributed lag polynomials Cl'(L) are obtained by
a suitable transformation of the estimated reduced form VAR for
[Axt,nt] after imposing the long-run identifying restriction C12(l) = 0.2

That restriction effectively defines {sf} and {sf} as shocks with and
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without a permanent effect on labor productivity, respectively. On the
basis of some of the steady-state restrictions shared by a broad range
of macro models (and further discussed below), Gali (1999) proposes
to interpret permanent shocks to productivity {ef

z} as technology shocks.
On the other hand, transitory shocks {sf} can potentially capture a
variety of driving forces behind output and labor input fluctuations
that would not be expected to have permanent effects on labor produc-
tivity. The latter include shocks that could have a permanent effect
on output (but not on labor productivity), but which are nontechno-
logical in nature, as would be the case for some permanent shocks
to preferences or government purchases, among others.3 As discussed
below, they could in principle capture transitory technology shocks
as well.

2.1 Revisiting the Basic Evidence on the Effects of Technology
Shocks

Next, we revisit and update the basic evidence on the effects of tech-
nology shocks reported in Gali (1999). Our baseline empirical analysis
uses quarterly U.S. data for the period 1948:I-2002:IV. Our source is
the Haver USECON database, for which we list the associated mne-
monics. Our series for output corresponds to nonfarm business-sector
output (LXNFO). Our baseline labor input series is hours of all persons
in the nonfarm business sector (LXNFH). Below we often express the
output and hours series in per-capita terms, using a measure of civilian
noninstitutional population aged 16 and over (LNN).

Our baseline estimates are based on a specification of hours in first-
differences; i.e., we set nt — Ant. That choice seems consistent with the
outcome of Augmented Dickey-Fuller (ADF) tests applied to the hours
series, which do not reject the null of a unit root in the level of hours at
a 10% significance level, against the alternative of stationarity around a
linear deterministic trend. On the other hand, the null of a unit root in
the first-differenced series is rejected at a level of less than 1%.4 In a
way consistent with the previous result, a Kwiatkowski et al. (1992)
(KPSS) test applied to nt rejects the stationarity null with a significance
level below 1%, while failing to reject the same null when applied to
Ant. In addition, the same battery of ADF and KPSS tests applied to
our xt and Axt series support the existence of a unit root in labor pro-
ductivity, a necessary condition for the identification strategy based
on long-run restrictions employed here. Both observations suggest the
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Figure 2
The estimated effects of technology shocks {Difference specification, 1948:01-2002:04)

specification and estimation of a VAR for [Axt,Ant]. Henceforth, we
refer to the latter as the difference specification.

Figure 2 displays the estimated effects of a positive technology
shock, of a size normalized to one standard deviation. The graphs on
the left show the dynamic responses of labor productivity, output, and
hours, together with (+) two standard error bands.5 The corresponding
graphs on the right show the simulated distribution of each variable's
response on impact. As in Gali (1999), the estimates point to a signifi-
cant and persistent decline in hours after a technology shock that raises
labor productivity permanently.6 The point estimates suggest that
hours do eventually return to their original level (or close to it), but
not until more than a year later. Along with that pattern of hours, we
observe a positive but muted initial response of output in the face of a
positive technology shock.
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Figure 3

Sources of U.S. business cycle fluctuations (Difference specification, sample period: 1948:01-
2002:04)

The estimated responses to a technology shock displayed in Figure
2 contrast starkly with the predictions of a standard calibrated RBC
model, which would predict a positive comovement among the three
variables plotted in the figure in response to that shock.7

Not surprisingly, the previous estimates have dramatic implications
regarding the sources of the business-cycle fluctuations in output and
hours displayed in Figure 1. This is illustrated in Figure 3, which dis-
plays the estimated business-cycle components of the historical series
for output and hours associated with technology and nontechnology
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shocks. In both cases, the estimated components of the (log) levels of
productivity and hours have been detrended using the same bandpass
filter underlying the series plotted in Figure 1. As in Gali (1999), the
picture that emerges is very clear: fluctuations in hours and output
driven by technology shocks account for a small fraction of the vari-
ance of those variables at business-cycle frequencies: 5 and 7%, re-
spectively. The comovement at business-cycle frequencies between
output and hours resulting from technology shocks is shown to be es-
sentially zero (the correlation is -0.08), in contrast with the high posi-
tive comovement observed in the data (0.88). Clearly, the pattern of
technology-driven fluctuations, as identified in our structural VAR,
shows little resemblance to the conventional business-cycle fluctua-
tions displayed in Figure 1.

The picture changes dramatically if we turn our attention to the esti-
mated fluctuations of output and hours driven by shocks with no per-
manent effects on productivity (displayed in the bottom graph). Those
shocks account for 95 and 93% of the variance of the business-cycle
component of hours and output, respectively. In addition, they gener-
ate a nearly perfect correlation (0.96) between the same variables. In
contrast with its technology-driven counterpart, this component of out-
put and hours fluctuations displays a far more recognizable business-
cycle pattern.

A possible criticism to the above empirical framework is the as-
sumption of only two driving forces underlying the fluctuations in
hours and labor productivity. As discussed in Blanchard and Quah
(1989), ignoring some relevant shocks may lead to a significant distor-
tion in the estimated impulse responses. Gali (1999) addresses that is-
sue by estimating a five-variable VAR (including time series on real
balances, interest rates, and inflation). That framework allows for as
many as four shocks with no permanent effects on productivity, and
for which no separate identification is attempted. The estimates gener-
ated by that higher-dimensional model regarding the effects of technol-
ogy shocks are very similar to the ones reported above, suggesting that
the focus on only two shocks may not be restrictive for the issue at
hand.8

2.2 Related Empirical Work

The empirical connection between technological change and business-
cycle fluctuations has been the focus of a rapidly expanding literature.
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Next, we briefly discuss some recent papers that provide evidence on
the effects of technology shocks, and that reach conclusions similar to
Gali (1999), while using a different data set or empirical approach. We
leave for later a discussion of the papers whose findings relate more
specifically to the content of other sections, including those that ques-
tion the evidence reported above.

An early contribution is given by the relatively unknown paper by
Blanchard, Solow, and Wilson (1995). That paper already spells out
some of the key arguments found in the subsequent literature. In par-
ticular, it stresses the need to sort out the component of productivity
associated with exogenous technological change from the component
that varies in response to other shocks that may affect the capital-labor
ratio. They adopt a simple instrumental variables approach, with a
number of demand-side variables assumed to be orthogonal to ex-
ogenous technological change used as instruments for employment
growth or the change in unemployment in a regression that features
productivity growth as a dependent variable. The fitted residual in
that regression is interpreted as a proxy for technology-driven changes
in productivity. When they regress the change in unemployment
on the filtered productivity growth variable, they obtain a positive
coefficient; i.e., an (exogenous) increase in productivity drives the
unemployment rate up. A dynamic specification of that regression
implies that such an effect lasts for about three quarters, after which
unemployment starts to fall and returns rapidly to its original value.

As mentioned in Gali (1999, footnote 19) and stressed by Valerie
Ramey (2005) in her comment about this paper (also in this volume),
the finding of a decline in hours (or an increase in unemployment) in
response to a positive technology shock could also have been detected
by an attentive reader in a number of earlier VAR papers, though that
finding generally goes unnoticed or is described as puzzling. Blanchard
and Quah (1989) and Blanchard (1989) are exceptions because they
provide some explicit discussion of the finding, which they interpret
as consistent with a traditional Keynesian model "in which increases
in productivity . . . may well increase unemployment in the short run if
aggregate demand does not increase enough to maintain employment."9

The work of Basu, Fernald, and Kimball (1999) deserves special at-
tention here, given its focus and the similarity of its findings to those
in Gali (1999) despite the use of an unrelated methodology. Basu,
Fernald, and Kimball (BFK) use a sophisticated growth accounting
methodology allowing for increasing returns, imperfect competition,
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variable factor utilization, and sectoral compositional effects to un-
cover a time series for aggregate technological change in the postwar
U.S. economy. Their approach, combining elements of earlier work by
Hall (1990) and Basu and Kimball (1997), among others, can be viewed
as an attempt to cleanse the Solow residual (Solow, 1957) of its widely
acknowledged measurement error resulting from the strong assump-
tions underlying its derivation. Estimates of the response of the econ-
omy to innovations in their measure of technological change point to a
sharp short-run decline in the use of inputs (including labor) when
technology improves, with output showing no significant change
(with point estimates suggesting a small decline). After that short-run
impact, both variables gradually adjust upward, with labor input
returning to its original level and with output reaching a permanently
higher plateau several years after the shock.

Kiley (1997) applies the structural VAR framework in Gali (1999) to
data from two-digit manufacturing industries. While he does not re-
port impulse responses, he finds that technology shocks induce a nega-
tive correlation between employment and output growth in 12 of the
17 industries considered. When he estimates an analogous conditional
correlation for employment and productivity growth, he obtains a neg-
ative value for 15 out of 17 industries. Francis (2001) conducts a similar
analysis, though he attempts to identify industry-specific technology
shocks by including a measure of aggregate technology, which is
assumed to be exogenous to each of the industries considered. He finds
that, for the vast majority of industries, a sectoral labor input measure
declines in response to a positive industry-specific technology shock.
Using data from a large panel of 458 manufacturing industries and 35
sectors, Franco and Philippon (2004) estimate a structural VAR with
three shocks: technology shocks (with permanent effects on industry
productivity), composition shocks (with permanent effects on the in-
dustry share in total output), and transitory shocks. They find that
technology shocks (1) generate a negative comovement between output
and hours within each industry, and (2) are almost uncorrelated across
industries. Thus, they conclude that technology shocks can account for
only a small fraction of the variance of aggregate hours and output
(with two-thirds of the latter accounted for by transitory shocks).

Shea (1998) uses a structural VAR approach to model the connection
between changes in measures of technological innovation (research
and development [R&D] and number of patent applications) and sub-
sequent changes in total factor productivity (TFP) and hired inputs, us-
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ing industry-level data. For most specifications and industries, he finds
that an innovation in the technology indicator does not cause any sig-
nificant change in TFP but tends to increase labor inputs in the short
run. While not much stressed by Shea, however, one of the findings
in his paper is particularly relevant for our purposes: in the few VAR
specifications for which a significant increase in TFP is detected in re-
sponse to a positive innovation in the technology indicator, inputs—
including labor—are shown to respond in the direction opposite to the
movement in TFP, a finding in line with the evidence above.10

Francis and Ramey (2003a) extend the analysis in Gali (1999) in sev-
eral dimensions. The first modification they consider consists in aug-
menting the baseline VAR (specified in first differences) with a capital
tax rate measure to sort out the effects of technology shocks from those
of permanent changes in tax rates (more below). Second, they identify
technology shocks as those with permanent effects on real wages (as
opposed to labor productivity) and/or no long-run effects on hours,
both equally robust predictions of a broad class of models that satisfy
a balance growth property. Those alternative identifying restrictions
are not rejected when combined into a unified (overidentified) model.
Francis and Ramey show that both the model augmented with capital
tax rates and the model with alternative identifying restrictions (con-
sidered separately or jointly) imply impulse responses to a technology
shock similar to those in Gali (1999) and, in particular, a drop in hours
in response to a positive technology shock.

Francis, Owyang, and Theodorou (2003) use a variant of the sign re-
striction algorithm of Uhlig (1999) and show that the finding of a nega-
tive response of hours to a positive technology shock is robust to
replacing the restriction on the asymptotic effect of that shock with
one imposing a positive response of productivity at a horizon of ten
years after the shock.

A number of recent papers have provided related evidence based on
non-U.S. aggregate data. In Gali (1999), the structural VAR framework
discussed above is also applied to the remaining G7 countries (Canada,
the United Kingdom, France, Germany, Italy, and Japan). He uncovers
a negative response of employment to a positive technology shock in
all countries, with the exception of Japan. Gali (1999) also points out
some differences in those estimates relative to those obtained for the
United States: in particular, the (negative) employment response to a
positive technology shocks in Germany, the United Kingdom, and Italy
appears to be larger and more persistent, which could be interpreted
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as evidence of hysteresis in European labor markets. Very similar qual-
itative results for the Euro area as a whole can also be found in Gali
(2004), which applies the same empirical framework to the quarterly
data set that has recently been available. In particular, technology
shocks are found to account for only 5% and 9% of the variance of the
business-cycle component of euro area employment and output, respec-
tively, with the corresponding correlation between their technology-
driven components being —0.67). Francis and Ramey (2003b) estimate
a structural VAR with long-run identifying restrictions using long-
term U.K. annual time series tracing back to the nineteenth century;
they find robust evidence of a negative short-run impact of technology
shocks on labor in every subsample.11 Finally, Carlsson (2000) devel-
ops a variant of the empirical framework in BFK (1999) and Burnside
et al. (1995) to construct a time series for technological change, and
applies it to a sample of Swedish two-digit manufacturing industries.
Most prominently, he finds that positive shocks to technology have,
on impact, a contractionary effect on hours and a nonexpansionary
effect on output, as in BFK (1999).

2.3 Implications

The implications of the evidence discussed above for business-cycle
analysis and modeling are manifold. Most significantly, those findings
reject a key prediction of the standard RBC paradigm, namely, the pos-
itive comovement of output, labor input, and productivity in response
to technology shocks. That positive comovement is the single main fea-
ture of that model that accounts for its ability to generate fluctuations
that resemble business cycles. Hence, taken at face value, the evidence
above rejects in an unambiguous fashion the empirical relevance of the
standard RBC model. It does so in two dimensions. First, it shows that
a key feature of the economy's response to aggregate technology
shocks predicted by calibrated RBC models cannot be found in the
data. Second, and to the extent that one takes the positive comovement
between measures of output and labor input as a defining characteris-
tic of the business cycle, it follows as a corollary that technology shocks
cannot be a quantitatively important (and, even less, a dominant)
source of observed aggregate fluctuations. While the latter implication
is particularly damning for RBC theory, given its traditional emphasis
on aggregate technology variations as a source of business cycles, its
relevance is independent of one's preferred macroeconomic paradigm.
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3. Possible Pitfalls in the Estimation of the Effects of Technology
Shocks

This section has two main objectives. First, we try to address a ques-
tion that is often raised regarding the empirical approach used in Gali
(1999): to what extent can we be confident in the economic interpreta-
tion given to the identified shocks and, in particular, in the mapping
between technology shocks and the nonstationary component of labor
productivity? We provide some evidence below that makes us feel
quite comfortable about that interpretation. Second, we describe and
address some of the econometric issues that Christiano, Eichenbaum,
and Vigfusson (2003) have raised and that focus on the appropriate
specification of hours (levels or first differences). Finally, we discuss a
paper by Fisher (2003) that distinguishes between two types of technol-
ogy shocks: neutral and investment-specific.

3.1 Are hong-Run Restrictions Useful in Identifying Technology
Shocks?

The approach to identification proposed in Gali (1999) relies on the as-
sumption that only (permanent) technology shocks can have a perma-
nent effect on (average) labor productivity. That assumption can be
argued to hold under relatively weak conditions, satisfied by the bulk
of business-cycle models currently used by macroeconomists. To re-
view the basic argument, consider an economy whose technology can
be described by an aggregate production function:12

Yt = F(Kt,AtNt) (2)

where Y denotes output, K is the capital stock, N is labor input and A
is an index of technology. Under the assumption that F is homoge-
neous of degree 1, we have:

— = A Fp(k 1) (3)
Nt

where kt = Kt/(AtNt) is the ratio of capital to labor (expressed in effi-
ciency units). For a large class of models characterized by an underly-
ing balanced growth path, the marginal product of capital Fk must
satisfy, along that path, a condition of the form:

(4)
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where ji is the price markup, x is a tax on capital income, p is the time
discount rate, S is the depreciation rate, a is the intertemporal elasticity
of substitution, and y is the average growth rate of (per-capita) con-
sumption and output. Under the assumption of decreasing returns to
capital, it follows from equation (4) that the capital labor ratio k will be
stationary (and will thus fluctuate around a constant mean) as long as
all the previous parameters are constant (or stationary). In that case,
equation (3) implies that only shocks that have a permanent effect on
the technology parameter A can be a source of the unit root in labor
productivity, thus providing the theoretical underpinning for the iden-
tification scheme in Gali (1999).

How plausible are the assumptions underlying that identification
scheme? Preference or technology parameters like p,5, a, and y are gen-
erally assumed to be constant in most examples and applications found
in the business-cycle literature. The price markup /u is more likely to
vary over time, possibly as a result of some embedded price rigidities;
in the latter case, however, it is likely to remain stationary, fluctuating
around its desired or optimal level. In the event that desired markups
(or the preference and technology parameters listed above) are non-
stationary, the latter would more likely take the form of some smooth
function of time, which should be reflected in the deterministic com-
ponent of labor productivity, but not in its fluctuations at cyclical fre-
quencies.13 Finally, notice that the previous approach to identification
of technology shocks requires that (1) F̂  be decreasing, so that k is
uniquely pinned down by equation (4), and (2) that the technology
process {At} is exogenous (at least with respect to the business cycle).
The previous assumptions have been commonly adopted by business-
cycle modelers.14

3.1.1 Do Capital Income Tax Shocks Explain Permanent Changes
in Labor Productivity?
The previous argument is much less appealing, however, when ap-
plied to the capital income tax rate. As Uhlig (2004) and others have
pointed out, the assumption of a stationary capital income tax rate
may be unwarranted, given the behavior of measures for that variable
over the postwar period. This is illustrated in Figure 4, which displays
two alternative measures of the capital income tax rate in the United
States. Figure 4.A displays a quarterly series for the average capital
income tax rate constructed by Jones (2002) for the period 1958:1-
1997:IV. Figure 4.B shows an annual measure of the average marginal
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capital income tax rate constructed by Ellen McGrattan for the period
1958-1992 and that corresponds to an updated version of the one used
in McGrattan (1994).15 Henceforth we denote those series by x\ and rf

M,
respectively. Both series display an apparent nonstationary behavior,
with highly persistent fluctuations. This is confirmed by a battery of
ADF tests, which fail to reject the null hypothesis of a unit root in both
series, at conventional significance levels.

As shown in Figures 4.C and 4.D, which display the same series in
first differences, the presence of sizable short-run variations in those
measures of capital taxes could hardly be captured by means of some
deterministic or smooth function of time (their standard deviations
being 0.79% for the quarterly Jones series, and 2.4% for the annual
McGrattan series). In fact, in both cases, that first-differenced series Azt

shows no significant autocorrelation, suggesting that a random walk
process can approximate the pattern of capital income tax rates pretty
well.

The previous evidence, combined with the theoretical analysis above,
points to a potential caveat in the identification approach followed in
Gali (1999): the shocks with permanent effects on productivity esti-
mated therein could be capturing the effects of permanent changes in
tax rates (as opposed to those of genuine technology shocks). That mis-
labeling could potentially account for the empirical findings reported
above.

Francis and Ramey (2003a) attempt to overcome that potential short-
coming by augmenting the VAR with a capital tax rate variable, in
addition to labor productivity and hours. As mentioned above, the
introduction of the tax variable is shown not to have any significant in-
fluence on the findings: positive technology shocks still lead to short-
run declines in labor.

Here, we revisit the hypothesis of a tax rate shock mistaken for a
technology shock by looking for evidence of some comovement be-
tween (1) the permanent shock sf estimated using the structural VAR
discussed in Section 2, and (2) each of the two capital tax series, in
first-differences. Given the absence of significant autocorrelation in AT/
and Art

M, we interpret each of those series as (alternative) proxies for the
shocks to the capital income tax rate. Also, when using the McGrattan
series, we annualize the permanent shock series obtained from the quar-
terly VAR by averaging the shocks corresponding to each natural year.

The resulting evidence can be summarized as follows. First, innova-
tions to the capital income tax rate show a near-zero correlation with
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the permanent shocks from the VAR. More precisely, our estimates of
corr(Axl,sf) and corr(AzfA, ef) are, respectively, -0.06 and 0.12, neither
of which is significant at conventional levels. Thus, it is highly unlikely
that the permanent VAR shocks may be capturing exogenous shocks to
capital taxes.

Second, an ordinary least squares (OLS) regression of the Jones tax
series Art on current and lagged values of ef yields jointly insignificant
coefficient estimates: the p-value is 0.54 when four lags are included,
0.21 when we include eight lags. A similar result obtains when we re-
gress the McGrattan tax series Arf

M on current and several lags of ef,
with the p-value for the null of zero coefficients being 0.68 when four
lags are included (0.34 when we use 8 lags). Since the sequence of those
coefficients corresponds to the estimated impulse response of capital
taxes to the permanent VAR shock, the previous evidence suggests
that the estimated effects of the permanent VAR shocks are unlikely to
be capturing the impact of a possible endogenous response in capital
taxes to whatever exogenous shock underlies the estimated permanent
VAR shock.

We conclude from the previous exercises that there is no support for
the hypothesis that the permanent shocks to labor productivity, inter-
preted in Gali (1999) as technology shocks, could be instead capturing
changes in capital income taxes.16

3.1.2 Do Permanent Shocks to Labor Productivity Capture
Variations in Technology?
Having all but ruled out variations in capital taxes as a significant fac-
tor behind the unit root in labor productivity, we present next some ev-
idence that favors the interpretation of the VAR permanent shock as a
shift to aggregate technology. We also provide some evidence against
the hypothesis that transitory variations in technology may be a signif-
icant force behind the shocks identified as transitory shocks, a hypoth-
esis that cannot be ruled out on purely theoretical grounds.

Francis and Ramey (2003a) test a weak form of the hypothesis of
permanent shocks as technology shocks by looking for evidence of
Granger-causality among several indicators that are viewed as inde-
pendent of technology on one hand, and the VAR-based technology
shock on the other. The indicators include the Romer and Romer
(1989) monetary shock dummy, the Hoover and Perez (1994) oil shock
dummies, Ramey and Shapiro's (1998) military buildup dates, and
the federal funds rate. Francis and Ramey show that none of them
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have a significant predictive power for the estimated technology
shock.

Here, we provide a more direct assessment by using the measure
of aggregate technological change obtained by Basu, Fernald, and
Kimball (1999).17 As discussed earlier, those authors constructed that
series using an approach unrelated to ours. The BFK variable measures
the annual rate of technological change in the U.S. nonfarm private
business sector. The series has an annual frequency and covers the
period 1950-1989. Our objective here is to assess the plausibility of the
technology-related interpretation of the VAR shocks obtained above by
examining their correlation with the BFK measure. Given the differ-
ences in frequencies we annualize both the permanent and transitory
shock series obtained from the quarterly VAR by averaging the shocks
corresponding to each natural year.

The main results can be summarized as follows. First, the correlation
between the VAR-based permanent shock and the BFK measure of
technological change is positive and significant at the 5% level, with a
point estimate of 0.45. The existence of a positive contemporaneous
comovement is apparent in Figure 5, which displays the estimated
VAR permanent shock together with the BFK measure (both series
have been normalized to have zero mean and unit variance, for ease of
comparison).

Second, the correlation between our estimated VAR transitory shock
and the BFK series is slightly negative, though insignificantly different
from zero (the point estimate is —0.04). The bottom graph of Figure 5,
which displays both series, illustrates the absence of any obvious
comovement between the two.

Finally, and given that the BFK series is mildly serially correlated,
we have also run a simple OLS regression of the (normalized) BFK
variable on its own lag, and the contemporaneous estimates of the per-
manent and transitory shocks from the VAR. The estimated equation,
with f-statistics in brackets, is given by:

BFKt= 0.29 BFKt^+ 0.67 &z
t - 0.32 ef

(1.85) (2.16) (-1.11)

which reinforces the findings obtained from the simple contemporane-
ous correlations.

In summary, the results from the above empirical analysis sug-
gest that the VAR-based permanent shocks may indeed be capturing
exogenous variations in technology, in a way consistent with the
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interpretation made in Gali (1999). In addition, we cannot find evi-
dence supporting the view that the VAR transitory shocks—which
were shown in Section 2 to be the main source of business-cycle fluctu-
ations in hours and output—may be related to changes in technology.

3.2 Robustness to Alternative VAR Specifications

Christiano, Eichenbaum, and Vigfusson (2003) have questioned some
of the VAR-based evidence regarding the effects of technology shocks
found in Gali (1999) and Francis and Ramey (2003a), on the basis of
their lack of robustness to the transformation of labor input used. In
particular, Christiano, Eichenbaum, and Vigfusson (CEV) argue that
first-differencing the (log) of per-capita hours may distort the sign of
the estimated response of that variable to a technology shock, if that
variable is truly stationary. Specifically, their findings—based on a
bivariate VAR model in which (per-capita) hours are specified in levels
(nt = nt)—imply that output, hours, and productivity all rise in re-
sponse to a positive technology shock. On the other hand, when they
use a difference specification, they obtain results similar to the ones
reported above, i.e., a negative comovement between output (or pro-
ductivity) and hours in response to technology shocks. Perhaps most
interesting, CEV discuss the extent to which the findings obtained
under the level specification can be accounted for under the assump-
tion that the difference specification is the correct one, and vice versa.
Given identical priors over the two specifications, that encompassing
analysis leads them to conclude that the odds in favor of the level spec-
ification relative to the difference specification are about 2 to I.18 CEV
obtain similar results when incorporating additional variables in the
VAR.

Our own estimates of the dynamic responses to a technology shock
when we specify (per-capita) hours in levels do indeed point to some
qualitative differences. In particular, the point estimate of the impact
response of hours worked to a positive technology is now positive,
though very small. In contrast with the findings in CEV, that impact
effect and indeed the entire dynamic response of hours is not signifi-
cantly different from zero. The sign of the point estimates is sufficient,
however, to generate a positive correlation (0.88) between output and
hours conditional on the technology shock. As reported in the second
row of Table 1, under the level specification, technology shocks still ac-
count for a (relatively) small fraction of the variance of output and
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Table 1
The effects of technology shocks on output and hours in the nonfarm business sector

Per-capita hours
Difference
Level
Detrended

Total hours
Difference
Level
Detrended

Contribution to

var(y)

0.07
0.37
0.07

0.06
0.10
0.15

var(n)

0.05
0.11
0.05

0.06
0.36
0.36

Conditional

corr(y, n)

-0.08
0.80

-0.11

-0.03
0.80
0.80

Impact on n and y

Sign Significance

—/+ Yes/yes
+ /+ No/yes
- / + Yes/yes

- / + Yes/yes
—/— Yes/no
- / 0 Yes/no

hours at business-cycle frequencies (37 and 11%, respectively), though
that fraction is larger than the one implied by the difference specifica-
tion estimates.19

While we find the encompassing approach adopted by CEV enlight-
ening, their strategy of pairwise comparisons with uniform priors
(which mechanically assigns a \ prior to the level specification) may
lead to some bias in the conclusions. In particular, a simple look at a
plot of the time series for (log) per-capita hours worked in the United
States over the postwar period, displayed in Figure 6, is not suggestive
of stationarity, at least in the absence of any further transformation. In
particular, and in agreement with the ADF and KPSS tests reported
above, the series seems perfectly consistent with a unit root process,
though possibly not a pure random walk. On the basis of a cursory
look at the same plot, and assuming that one wishes to maintain the
assumption of a stationary process for the stochastic component of
(log) per-capita hours, a quadratic function of time would appear to be
a more plausible characterization of the trend than just the constant
implicit in CEV's analysis. In fact, an OLS regression of that variable
on a constant, time and time squared, yields a highly significant co-
efficient associated with both time variables. A test of a unit root on
the residual from that regression fails to reject that hypothesis, while
the KPSS does not reject the null of stationarity, at a 5% signifi-
cance level in both cases.20 Figure 6 displays the fitted quadratic trend
and the associated residual, illustrating graphically that point. When
we re-estimate the dynamic responses to a technology shock using
detrended (log) per-capita hours, we find again a decline in hours in
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response to a positive technology shock, and a slightly negative (—0.11)
conditional correlation between the business-cycle components of out-
put and hours. In addition, the estimated contribution of technology
shocks to the variance of output and hours is very small (7 and 5%, es-
sentially the same as under difference specification; see Table I).21

To assess further the robustness of the above results, we have also
conducted the same analysis using a specification of the VAR using an
alternative measure of labor input, namely, (log) total hours, without a
normalization by working-age population. As it should be clear from
the discussion in Section 3.1, the identification strategy proposed in
Gali (1999) and implemented here should be valid independent of
whether labor input is measured in per-capita terms since labor pro-
ductivity in invariant to that normalization.22 The second panel in
Table 1 summarizes the results corresponding to three alternative
transformations considered (first differences, levels, quadratic detrend-
ing). In the three cases, a positive technology shock is estimated to
have a strong and statistically significant negative impact on hours
worked, at least in the short run. Under the level and detrended trans-
formations, that negative response of hours is sufficiently strong to
pull down output in the short run, despite the increase in productivity.
Note, however, that the estimated decline in output is not significant in
either case.23 The estimated contribution of technology shocks to the
variance of the business-cycle component of output and hours is small
in all cases, with the largest share being 36% of the variance of hours,
obtained under the level and detrended specifications.

As an additional check on the robustness of our findings, we have
also estimated all the model specifications discussed above using em-
ployment as labor input measure (instead of hours), and real GDP as
an output measure. A summary of our results for the six specifications
considered using employment and GDP can be found in Table 2. The
results under this specification are much more uniform: independent
of the transformation of employment used, our estimates point to a de-
cline in that variable in the short run in response to a positive technol-
ogy shock, as well as a very limited contribution of technology shocks
to the variance of GDP and employment. We should stress that we
obtained those findings even when we specify employment rate in
levels, even though the short-run decline in employment is not statisti-
cally significant in that case. In summary, the previous robustness ex-
ercise based on postwar U.S. data has shown that, for all but one of
the transformations of hours used, we uncover a decline in labor input
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Table 2
The effects of technology shocks on GDP and employment

Employment rate

Difference

Level

Detrended

Total employment

Difference

Level

Detrended

Contribution to

var(y)

0.31

0.03

0.15

0.21

0.09

0.09

var(n)

0.04

0.19

0.04

0.03

0.08

0.09

Conditional

corr(y,n)

0.40

-0.30

-0.43

-0.40

-0.72

-0.68

Impact on n and y

Sign Significance

- / + Yes/yes

—/+ Yes/no

—/+ Yes/yes

- / + Yes/yes

—/+ Yes/yes

- / + Yes/no

in response to a positive technology shock, in a way consistent with the
literature reviewed in Section 2. The exception corresponds to the level
specification of per-capita hours, but even in that case the estimated
positive response of hours does not appear to be significant. In most
cases, the contribution of technology shocks to the variance of the cycli-
cal component of output and hours is very small, and always below
40%. Finally, and possibly with the exception mentioned above, the
pattern of comovement of output and hours at business-cycle frequen-
cies resulting from technology shocks fails to resemble the one associ-
ated with postwar U.S. business cycles.

Fernald (2004) makes an important contribution to the debate
by uncovering the most likely source of the discrepancy of the esti-
mates when hours are introduced in levels. In particular, he shows the
existence of a low-frequency correlation between labor productivity
growth and per-capita hours. As illustrated through a number of simu-
lations, the presence of such a correlation, while unrelated to the
higher-frequency phenomena of interest, can distort significantly the
estimated short-run responses. Fernald illustrates that point most
forcefully by re-estimating the structural VAR in its levels specification
(as in CEV), though allowing for two (statistically significant) trend
breaks in labor productivity (in 1973:1 and 1997:11): the implied im-
pulse responses point to a significant decline in hours in response to a
technology shock, a result that also obtains when the difference specifi-
cation is used.

Additional evidence on the implications of alternative transforma-
tions of hours using annual time series spanning more than a century



250 Gali & Rabanal

is provided by Francis and Ramey (2003b). Their findings based on
U.S. data point to considerable sensitivity of the estimates across sub-
sample periods and the choice of transformation for hours. To assess
the validity of the different specifications, they look at their implica-
tions for the persistence of the productivity response to a nontechnol-
ogy shock, the plausibility of the patterns of estimated technology
shocks, as well as the predictability of the latter (the Hall-Evans test).
On the basis of that analysis, they conclude that first-differenced and,
to a lesser extent, quadratically detrended hours yields are the most
plausible specification. Francis and Ramey show that in their data,
those two preferred specifications generate a short-run negative
comovement between hours and output in response to a shock that
has a permanent effect on technology in the postwar period. In the
pre-World War II period, however, the difference specification yields
an increase in hours in response to a shock that raises productivity per-
manently. On the other hand, when they repeat the exercise using U.K.
data (and a difference specification), they find a clear negative comove-
ment of employment and output both in the pre-World War II and
postwar sample periods.24

In light of those results and the findings in the literature discussed
above, we conclude that there is no clear evidence favoring a conven-
tional RBC interpretation of economic fluctuations as being largely
driven by technology shocks, at least when the latter take the form
assumed in the standard one-sector RBC model. Next, we consider
how the previous assessment is affected once we allow for technology
shocks that are investment-specific.

3.3 Investment-Specific Technology Shocks

In a series of papers, Greenwood, Hercowitz, and Huffman (1988), and
Greenwood, Hercowitz, and Krusell (1997, 2000) put forward and ana-
lyze a version of an RBC model in which the main source of techno-
logical change is specific to the investment sector. In the proposed
framework, and in contrast with the standard RBC model, a technol-
ogy shock does not have any immediate impact on the production
function. Instead, it affects the rate of transformation between current
consumption and productive capital in the future. Thus, any effects on
current output must be the result of the ability of that shock in eliciting
a change in the quantity of input services hired by firms. Greenwood,
Hercowitz, and Krusell (GHK) motivate the interest in studying the
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potential role of investment-specific technology shocks by pointing to
the large variations in measures of the relative price of new equipment
constructed by Gordon (1990), both over the long-run as well as at
business-cycle frequencies. In particular, GHK (2000) analyze a cali-
brated model in which investment-specific technology shocks are the
only driving force. They conclude that the latter can account for about
30% of U.S. output fluctuations, a relatively modest figure compared to
the claim of the earlier RBC literature regarding the contribution of
aggregate, sector-neutral technology shocks in calibrated versions of
one-sector RBC models.

Fisher (2003) revisits the evidence on the effects of technology
shocks and their role in the U.S. business cycle and uses an empirical
framework that allows for separately identified sector-neutral and
investment-specific technology shocks (which, following Fisher, we
refer to, respectively, as N-shocks and I-shocks). In a way consistent
with the identification scheme proposed in Gali (1999), both types of
technology shocks are allowed to have a permanent effect on labor
productivity (in contrast with nontechnology shocks). In a way consis-
tent with the GHK framework, only investment-specific technology
shocks are allowed to affect permanently the relative price of new in-
vestment goods. Using times series for labor productivity, per-capita
hours, and the price of equipment (as a ratio to the consumption goods
deflator) constructed by Cummins and Violante (2002), Fisher esti-
mates impulse responses to the two types of shocks and their relative
contribution to business-cycle fluctuations. We have conducted a simi-
lar exercise and have summarized some of the findings in Table 3.25

For each type of technology shock and specification, the table reports
its contribution to the variance of the business-cycle component of out-
put and hours, as well as the implied conditional correlation between
those two variables.

The top panel in Table 3 corresponds to three specifications using
per-capita hours worked, the labor input variable to which Fisher
(2003) restricts his analysis. Not surprisingly, our results essentially
replicate some of his findings. In particular, we see that under the three
transformations of labor input measures considered, N-shocks are esti-
mated to have a negligible contribution to the variance of output and
hours at business-cycle frequencies, and to generate a very low correla-
tion between those two variables.

The results for I-shocks are different in at least two respects. First,
and as stressed in Fisher (2003), I-shocks generate a high positive
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Table 3
Investment-specific technology shocks: the Fisher model

Per-capita hours

Difference

Level

Detrended

Total hours

Difference

Level

Detrended

Employment rate

Difference

Level

Detrended

Total employment

Difference

Level

Detrended

Contribution of N-shocks to:

var(y)

0.06

0.12

0.08

0.07

0.05

0.10

0.21

0.08

0.06

0.19

0.04

0.04

var(n)

0.06

0.02

0.07

0.06

0.15

0.28

0.05

0.08

0.17

0.06

0.16

0.20

corr(y, n)

-0.09

0.16

-0.03

0.05

0.33

0.62

0.08

-0.32

-0.11

-0.05

-0.25

0.05

Contribution of I-shocks to:

var(y)

0.22

0.62

0.10

0.16

0.82

0.09

0.19

0.86

0.12

0.10

0.64

0.12

var(n)

0.19

0.60

0.09

0.14

0.78

0.08

0.13

0.89

0.10

0.06

0.52

0.09

corr(y, n)

0.94

0.96

0.94

0.94

0.97

0.93

0.93

0.95

0.92

0.90

0.96

0.90

correlation between output and hours. The last column of Table 3 tells
us that such a result holds for all labor input measures and transforma-
tions considered. As argued in the introduction, that property must
be satisfied by any shock that plays a central role as a source of busi-
ness cycles. Of course, this is a necessary, not a sufficient, condition.
Whether the contribution of I-shocks to business-cycle fluctuations is
large or not depends once again on the transformation of labor input
used. Table 3 shows that when that variable is specified in levels, it
accounts for more than half of the variance of output and hours at
business-cycle frequencies, a result that appears to be independent of
the specific labor input measure used. On the other hand, when hours
or employment are specified in first differences or are quadratically
detrended, the contribution becomes much smaller and always re-
mains below one-fourth.

What do we conclude from this exercise? First of all, the evidence
does not speak with a single voice: whether technology shocks are
given a prominent role or not as a source of business cycles depends
on the transformation of the labor input measure used in the analysis.
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Perhaps more interesting, the analysis of the previous empirical model
makes it clear that if some form of technological change plays a signifi-
cant role as a source of economic fluctuations, it is not likely to be of
the aggregate, sector-neutral kind that the early RBC literature empha-
sized, but of the investment-specific kind stressed in GHK (2000). Fi-
nally, and leaving aside the controversial question of the importance
of technology shocks, the previous findings, as well as those in Fisher
(2003), raise a most interesting issue: why do I-shocks appear to gener-
ate the sort of strong positive comovement between output and labour
input measures that characterizes business cycles, while that property
is conspicuously absent when we consider N-shocks? Below we at-
tempt to provide a partial explanation for this seeming paradox.

4. Explaining the Effects of Technology Shocks

In this section, we briefly discuss some of the economic explanations
for the anomalous response of labor input measures to technology
shocks. As a matter of simple accounting, firms' use of inputs (and
labor, in particular) will decline in response to a positive technology
shock only if they choose (at least on average) to adjust their level of
output less than proportionally to the increase in total factor pro-
ductivity. Roughly speaking, we can think of two broad classes of
factors that are absent in the standard RBC model and that could po-
tentially generate that result. The first class involves the presence of
nominal frictions, combined with certain monetary policies. The sec-
ond set of explanations is unrelated to the existence of nominal fric-
tions, so we refer to it as real explanations. We discuss them in turn
next.

4.1 The Role of Nominal Frictions

A possible explanation for the negative response of labor to a technol-
ogy shock, put forward both in Gali (1999) and BFK (1999), relies on
the presence of nominal rigidities. As a matter of principle, nominal
rigidities should not, in themselves, necessarily be a source of the
observed employment response. Nevertheless, when prices are not
fully flexible, the equilibrium response of employment (or, for that
matter, of any other endogenous variable) to any real shock (including
a technology shock) is not invariant to the monetary policy rule in
place; in particular, it will be shaped by how the monetary authority
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reacts to the shock under consideration.26 Different monetary policy
rules will thus imply different equilibrium responses of output and
employment to a technology shock, ceteris paribus.

Gali (1999) provided some intuition behind that result by focusing
on a stylized model economy in which the relationship yt = mt — pt
holds in equilibrium,27 firms set prices in advance (implying a prede-
termined price level), and the central bank follows a simple money-
supply rule. It is easy to see that, in that context, employment will
experience a short-run decline in response to positive technology
shocks, unless the central bank endogenously expands the money sup-
ply (at least) in proportion to the increase in productivity. Gali (2003)
shows that the previous finding generalizes (for a broad range of
parameter values) to an economy with staggered price setting, and a
more realistic interest elasticity of money demand, but still an exoge-
nous money supply. In that case, even though all firms will experience
a decline in their marginal cost, only a fraction of them will adjust their
prices downward in the short run. Accordingly, the aggregate price
level will decline, and real balances and aggregate demand will rise.
Yet when the fraction of firms adjusting prices is sufficiently small, the
implied increase in aggregate demand will be less than proportional to
the increase in productivity. That, in turn, induces a decline in aggre-
gate employment.

Many economists have criticized the previous argument on the
grounds that it relied on a specific and unrealistic assumption regard-
ing how monetary policy is conducted, namely, that of a money-based
rule (e.g., Dotsey, 2002). In the next subsection, we address that criti-
cism by analyzing the effects of technology shocks in the context of a
simple illustrative model with a more plausible staggered price-setting
structure, and a monetary policy characterized by an interest rate rule
similar to the one proposed by Taylor (1993). The model is simple
enough to generate closed-form expressions for the responses of out-
put and employment to variations in technology, thus allowing us to
illustrate the main factors shaping that response and thus generating a
negative comovement between the two variables.

4.1.1 A Simple Illustrative Model
The model we use to illustrate the role of nominal rigidities and mone-
tary policy in shaping the effects of technology shocks is a standard
new Keynesian framework with staggered price setting a la Calvo
(1983). Its equilibrium dynamics can be summarized as follows. On
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the demand side, output is determined by a forward-looking IS-type
equation:

yt = Et{yt+i} - a{rt - Et{nt+i}) (5)

where yt denotes (log) output, rt is the nominal interest rate, and
nt = pt — pt-\ denotes the rate of inflation between t — \ and t. The pa-
rameter a can be broadly interpreted as a measure of the sensitivity of
aggregate demand to changes in interest rates and thus of the effective-
ness of monetary policy.

Inflation evolves according to a forward-looking new Keynesian
Phillips curve:

nt=pEt{nt+\} + K{yt-yt) (6)

where yt is the natural level of output (or potential output), defined
as the one that would prevail in the absence of nominal frictions. The
variable yt can also be interpreted as the equilibrium output generated
by some background real business-cycle model driven by technology.
The previous equation can be derived from the aggregation of optimal
price-setting decisions by firms subject to price adjustment constraints
a la Calvo (1983). In that context, coefficient K is inversely related to
the degree of price stickiness: stronger nominal rigidities imply a
smaller response of inflation to any given sequence of output gaps.

For simplicity, we assume that exogenous random variations in pro-
ductivity are the only source of fluctuations in the economy and hence
the determinants of potential output. Accordingly, we postulate the
following reduced-form expression for potential output:28

Vt = $v
at (7)

where at represents an exogenous technology parameter. The latter
is assumed to follow an AR(1) process at = padt-\ + £t, where pa e [0,1].
Notice that under the assumption of an aggregate production function
of the form yt = at + (1 — a.)nt, we can derive the following expression
for the natural level of employment nt:

fit = 4>nat

where \j/n = (ij/y — 1)/(1 — a). Since we want to think of the previous
conditions as a reduced-form representation of the equilibrium of a
standard calibrated RBC model (without having to specify its details),
it is natural to assume t̂ y > 1 (and hence {j/n > 0). In that case, a posi-
tive technology shock generates an increase in both output and
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employment, as generally implied by the RBC models under conven-
tional calibrations. It is precisely this property that makes it possible
for any technology-driven RBC model to generate equilibrium fluctua-
tions that replicate some key features of observed business cycles,
including a positive comovement of output and employment.29

In that context, a natural question is, To what extent is the comove-
ment of output and employment in response to technology shocks
found in the evidence described above the result of the way monetary
policy has been conducted in the United States and other industrial-
ized economies? To illustrate that point, we use the simple model
above and derive the implications for the effects of technology shocks
of having the central bank follow an interest rate rule of the form:

rt = (t>nnt + (f>yyt (8)

A rule similar to equation (8) has been proposed by Taylor (1993)
and others as a good characterization of monetary policy in the United
States and other industrialized economies in recent decades. Notice
that, as in Taylor, we assume that the monetary authority responds to
output (or its deviations from trend), and not to the output gap. We
view this as a more realistic description of actual policies (which em-
phasize output stabilization) and consistent with the fact that the con-
cept of potential output used here, while necessary to construct any
measure of the output gap, cannot be observed by the policymaker.30

Combining equation (8) with equilibrium conditions in equations (5)
and (6), we can derive the following closed-form expression for equi-
librium output:

yt = e$yat

= \J/yat

where

K(<t>n ~ Pa)0 =

Notice that under the (weak) assumption that <j>n > pa, we have
0 < 0 < 1. The fact that 0 is greater than 0 guarantees that a positive
(negative) technology shock raises (lowers) output, as in the standard
RBC model. On the other hand, 0 < 1 implies that:
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i.e., in the presence of nominal frictions, the size of response of output
to a technology shock, \J/y, is bounded above by that implied by the
corresponding RBC model (ij/y) when the central bank follows the rule
in equation (8). Hence, the combination of sticky prices and a Taylor
rule will tend to overstabilize the output fluctuation resulting from
technology shocks. We can interpret parameter 0 as an index of effec-
tive policy accommodation, i.e., one that measures the extent to which
the Taylor rule in equation (8) accommodates the changes in potential
output resulting from variations in technology shocks, given the per-
sistence of the latter and the rest of the parameters describing the econ-
omy. Notice that the index of effective policy accommodation 0 is
increasing in the size of the inflation coefficient in the Taylor rule {(j)n),
and in the effectiveness of interest changes (as reflected by a). It is also
positively related to K (and hence inversely related to the degree of
price stickiness). On the other hand, it is inversely related to the size of
the output coefficient in the Taylor rule (<J>y).

Let us now turn to the equilibrium response of employment to a
technology shock, which is given by:

nt=

Notice that, in a way analogous to the output case, we have \jjn<\jtn.
In other words, the size of the employment response to a (positive)
technology shock in the presence of nominal frictions is bounded above
by the size of the response generated by the underlying frictionless
RBC model. It is clear that the impact of a technology shock on em-
ployment may be positive or negative, depending on the configuration
of parameter values.

We can get a sense for the likely sign and plausible magnitude for
\j/n by using conventional values used in calibration exercises in the lit-
erature involving similar models. Thus, Rotemberg and Woodford's
(1999) estimates, based on the response to monetary policy shocks, im-
ply a value of 0.024 for K. A unit value is often used as an upper bound
for a. Taylor's widely used values for <f>n and <f>y are 1.5 and 0.5, respec-
tively. In standard RBC calibrations, the assumption pa = 0.95 is often
made. Finally, we can set /? — 0.99 and u. = \, two values that are not
controversial. Under those assumptions, we obtain a value for 0 of
0.28. The latter figure points to a relatively low degree of effective pol-
icy accommodation.
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Using a standard calibrated RBC model, Campbell (1994) obtains a
range of values for \j/y between 1 and 2.7, depending on the persistence
of the shock and the elasticity of the labor supply. In particular, given a
unit labor supply elasticity and a 0.95 autocorrelation in the technology
process, he obtains an elasticity \jfy of 1.45, which we adopt as our
benchmark value.31 When we combine the latter with our calibrated
value for 0 computed, we obtain an implied benchmark elasticity of
employment \j/n equal to -0.87.

The previous calibration exercise, while admittedly quick and loose,
illustrates that condition \j/n < 0 is likely to hold under a broad range of
reasonable parameter values. Under those circumstances, and subject
to the caveat implied by the simplicity of the model and the charac-
terization of monetary policy, it is hard to interpret the negative
comovement between output and employment observed in the data
as a puzzle, as it has often been done.32

In his seminal paper, Prescott (1986b) concluded his description
of the predictions of the RBC paradigm by stating: "In other words
[RBC] theory predicts what is observed. Indeed, if the economy did
not display the business cycle phenomena, there would be a puzzle."
In light of the analysis above, perhaps we should think of turning Pre-
scott 's dictum over its head, and argue instead that if, as a result of
technology variations, the economy did indeed display the typical pos-
itive comovement between output and employment that characterizes
the business cycle, then there would be a puzzle!

4.1.2 Nominal Rigidities and the Effects of Investment-Specific
Technology Shocks
The logic behind the impact of nominal rigidities on the effects of con-
ventional aggregate, sector-neutral technology shocks, on which the
previous discussion focuses, would also seem consistent with the esti-
mated effects of investment-specific technology shocks, as reported in
Fisher (2003) and discussed in Section 3 above. The argument can be
made most clearly in the context of a sticky-price version of a model
like that in the GHK (2000) model. Once again, let us say for simplicity
that the relationship yt = mt - pt holds in equilibrium, and that both
mt and pt are pre-determined relative to the shock. In that case, firms
will want to produce the same quantity of the good but, in contrast
with the case of neutral technology shocks, to do so they will need to
employ the same level of inputs since the efficiency of the latter has
not been affected (only newly purchased capital goods will enhance
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that productivity in the future). That property of I-shocks is illustrated
in Smets and Wouters (2003a) in the context of a much richer DSGE
model. In particular, those authors show that even in the presence of
the substantial price and wage rigidities estimated for the U.S. econ-
omy, a positive I-shock causes output and labor input to increase
simultaneously, in a way consistent with the Fisher (2003) VAR evi-
dence. In fact, as shown in Smets and Wouters (2003a), the qualitative
pattern of the joint response of output and hours to an I-shock is not af-
fected much when they simulate the model with all nominal rigidities
turned off.

4.1.3 Evidence on the Role of Nominal Rigidities
A number of recent papers have provided evidence, often indirect, on
the possible role of nominal rigidities as a source of the gap between
the estimated responses of output and labor input measures to a tech-
nology shock and the corresponding predictions of an RBC model.
Next, we briefly describe a sample of those papers.

Models with nominal rigidities imply that the response of the econ-
omy to a technology shock (or to any other shock, for that matter) will
generally depend on the endogenous response of the monetary author-
ity and should thus not be invariant to the monetary policy regime in
place. Gali, Lopez-Salido, and Valles (2003) exploit that implication
and try to uncover any differences in the estimated response to an
identified technology shock across subsample periods. Building on the
literature that points to significant differences in the conduct of mone-
tary policy between the pre-Volcker and the Volcker-Greenspan peri-
ods, they estimate a four-variable structural VAR with a long-run
restriction as in Gali (1999) for each of those subsample periods. Their
evidence points to significant differences in the estimated responses to
a technology shock. In particular, they show that the decline in hours
in response to a positive technology shock is much more pronounced
in the pre-Volcker period and is hardly significant in the Volcker-
Greenspan. That evidence is consistent with the idea that monetary
policy in the latter period has focused more on the stabilization of in-
flation and not so much on the stabilization of economic activity.33

Some evidence at the micro-level is provided by Marchetti and
Nucci (2004), who exploit a detailed data set containing information
on output, inputs, and price-setting practices for a large panel of Italian
manufacturing firms. Using a modified Solow residual approach, they
construct a time series for total factor productivity at the firm level,
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and estimate the responses of a number of firm-specific variables to
an innovation in the corresponding technology measure. Among other
findings, they provide evidence of a negative impact effect of a tech-
nology shock on labor input. Most interesting is that Marchetti and
Nucci also exploit firm-specific information regarding the frequency of
price adjustments. They split the sample of firms according to the fre-
quency of their price revisions: flexible-price firms (adjust prices every
three months or more often) and sticky-price firms (adjusting every six
months or less often). They find that the negative response of employ-
ment to a positive technology shock is larger (and significant) in the
case of sticky-price firms, and much weaker (and statistically insignifi-
cant) for flexible-price firms. That evidence suggests that nominal
rigidities may be one of the factors underlying the estimated effects of
technology shocks.34

4.2 Real Explanations

Several authors have proposed explanations for the evidence described
in Section 2 that do not rely on the presence of nominal rigidities. Such
real explanations generally involve some modification of the standard
RBC model. Next, we briefly describe some of those explanations.

Francis and Ramey (2003a) propose two modifications of an other-
wise standard RBC model that can potentially account for the negative
comovement of output and hours in response to a technology shock.
The first model incorporates habit formation in consumption and capi-
tal adjustment costs. As shown in Francis and Ramey, a calibrated ver-
sion of that model can account for many of the estimated effects of
technology shocks. In particular, the response to a permanent improve-
ment in technology of consumption, investment, and output is more
sluggish than in the standard model with no habits or capital adjust-
ment costs. If that dampening effect is sufficiently strong, the increase
in output may be smaller than the increase in productivity itself, thus
causing a reduction in hours. The latter decline is consistent with the
optimal decision of households to consume more leisure (despite the
higher wage) as a consequence of a dominant income effect.35 A simi-
lar mechanism underlies the modification of the basic RBC model
proposed by Wen (2001), who assumes a utility function with a subsis-
tence level of consumption (equivalent to a constant habit).

The second modification of the RBC model proposed by Francis and
Ramey (2003a) hinges on the assumption of no substitutability be-
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tween labor and capital in production. In that context, the only way to
increase output in the short run is by increasing the workweek of capi-
tal. Hours beyond the standard workweek generate additional disutil-
ity. In such a model, a permanent increase in labor-augmenting
technology is shown to generate a short-run decline in hours. The intu-
ition is simple, and in the final analysis not much different from other
modifications proposed. While output increases in the short run (due
to increased investment opportunities), that increase is not sufficient to
compensate for the fact that any quantity of output can now be pro-
duced with less employment (per shift) and a shorter workweek.

Rotemberg (2003) develops a version of the RBC model in which
technological change diffuses much more slowly than implied by con-
ventional specifications found in the RBC literature. The rate at which
technology is adopted is calibrated on the basis of the micro studies
on the speed of diffusion. Rotemberg shows that when the smooth
technology process is embedded in the RBC model, it generates small
short-run fluctuations in output and employment, which are largely
unrelated to the cyclical variations associated with a detrended mea-
sured of employment and output. In particular, a positive innovation
to technology that diffuses very slowly generates a very large wealth
effect (relative to the size of the innovation), which in turn leads house-
holds to increase their consumption of leisure. As a result, both hours
and output experience a short-run decline in response to a technology
shock of a typical size before they gradually increase above their initial
levels. Because those responses are so smooth, they imply very small
movements at cyclical frequencies. It follows that technology shocks
with such characteristics will account only for a small fraction of
observed cyclical fluctuations in output and hours.

Collard and Delias (2002) emphasize an additional mechanism, spe-
cific to an open economy, through which technology shocks may
induce short-run negative comovements between output and labor
input even in the absence of nominal rigidities. They analyze a two-
country RBC model with imperfect substitutability between domestic
and foreign consumption goods. If that substitutability is sufficiently
low, a positive technology shock in the home country triggers a large
deterioration in its terms of trade (i.e., a large decline in the price of do-
mestic goods relative to foreign goods). That change in relative prices
may induce households to increase their consumption of leisure at any
given product wage, thus contracting labor supply and lowering
hours. The quantitative analysis of a calibrated version of their model
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suggests that while technology shocks may be a nonnegligible source
of output fluctuations, its role is likely to be very small as a driving
force behind hours fluctuations.

The papers discussed in this section provide examples of model
economies that can account for the evidence regarding the effects of
technology shocks without relying on any nominal frictions. On the ba-
sis of that evidence, it is not possible to sort out the relative role played
by nominal and real frictions in accounting for the evidence. The rea-
son is simple: there is no clear mapping between the estimated coeffi-
cients in a structural VAR and the underlying structural parameters
that determine the degree of those frictions. As a result, estimated
VARs cannot serve as the basis of the sort of counterfactual simula-
tions that would allow us to uncover the implied effects of technology
shocks if either nominal or real frictions were not present. Such coun-
terfactual exercises require the use of an estimated structural model. In
the next section, we turn our attention to one such model.

5. Technology Shocks and the Business Cycle in an Estimated
DSGE Model

In this section, we try to sort out the merits of the two types of expla-
nations discussed above by estimating and analyzing a framework
that incorporates both types of frictions and that is sufficiently rich to
be taken to the data. The features that we incorporate include habit for-
mation in consumption, staggered price- and wage-setting a la Calvo,
flexible indexation of wages and prices to lagged inflation, and a mon-
etary policy rule of the Taylor type with interest rate smoothing.

Several examples of estimated general equilibrium models can be
found in the literature. Our framework is most closely related to the
one used in Rabanal (2003), with two main differences. First, we allow
for a unit root in the technology process in a way consistent with the
assumptions underlying the identification strategy pursued in Section
2. Second, we ignore the cost channel mechanism allowed in Rabanal
(2003), in light of the evidence in that paper suggesting an insignificant
role for that mechanism.

We estimate the parameters of the model using Bayesian methods
and focus our analysis on the implications of the estimated model
regarding the effects of technology shocks and the contribution of the
latter to the business cycle. The use of a structural estimated model
allows us to determine, by means of counterfactual simulations, the
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role played by different factors in accounting for the estimated effects
of technology shocks. Last but not least, the estimated model gives us
an indication of the nature of the shocks that have played a dominant
role as a source of postwar business cycles.

The use of Bayesian methods to estimate DSGE models has
increased over recent years, in a variety of contexts.36 Fernandez-
Villaverde and Rubio-Ramirez (2004) show that parameter estimation
is consistent in the Bayesian framework even under model mis-
specification. Smets and Wouters (2003a, 2003b) estimate a model with
capital accumulation, and both nominal and real rigidities for the Eu-
ropean area and the United States. Lubik and Schorfheide (2003b) use
the Bayesian framework to estimate a small-scale model allowing for
indeterminacy. Rabanal (2003) estimates a general equilibrium model
for the United States and the European area in search for cost channel
effects of monetary policy.37

Next we summarize the set of equilibrium conditions of the model.38

The demand side of the model is represented by the Euler-like
equation:

bAyt = Et{Ayt+l} - (1 - b)(rt - Et{nt+1}) + (1 - pg)(l - b)gt (9)

which modifies equation (5) above by allowing for some external habit
formation (indexed by parameter b) and introducing a preference
shock {gt} that follows an AR(1) process with coefficient pg. Underly-
ing equation (9) is an assumption that preferences are separable be-
tween consumption and hours, and logarithmic in the quasidifference
of consumption to preserve the balanced growth path property.39 Ag-
gregate output and hours are related by the simple log-linear produc-
tion function:

yt=at + nt

Using a tilde to denote variables normalized by current productivity
(to induce lack of movement), we have:

yt = nt (io)

Log-linearization of the optimal price-setting condition around the
zero inflation steady state yields an equation describing the dynamics
of inflation as a function of the deviations of the average (log) markup
from its steady-state level, which we denote by juf :40

nt = ybnt-i + yfEt{nt+i} - Kp(tf - ut) (11)
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where yh = r,v/{l+PnP). Vf = fi/V+PiP)> *P = (I - POp)(l - 6p)/
6p(l + rjp(3), Op is the probability of not adjusting prices in any given
period, and rjp e [0,1] is the degree of price indexation to lagged infla-
tion. Notice that j / t = -log(Wt/PtAt) = -cbt is the price markup, where
cbt = <£>t — at is the real wage per efficiency unit. Variable ut denotes ex-
ogenous variations in the desired price markup.

Log-linearization of the optimal wage-setting condition yields the
following equation for the dynamics of the (normalized) real wage:

d b b A a ' + r b £ l { A " ' + l }

where 9W denotes the fraction of workers that do not re-optimize their
wage, rjw e [0,1] is the degree of wage indexation to lagged inflation,
and KW = (1 — 0W)(1 — P0w)/dw{l + ew<p), and ew is the wage elasticity
of labor demand in the steady state. Also notice that n™ = cbt —
((1/(1 - b))yt - (b/(l - b))^ -gt + (b/(l - b))Aat + <pnt) is the wage
markup. Variable vt denotes exogenous variations in the desired wage
markup.

Finally, we close the model by assuming that the monetary authority
adjusts interest rates in response to changes in inflation and output
growth according to the rule:

rt = <f>rrt^ + (1 - </>r)^nt + (1 - </>r)^Ayt + zt (13)

where zt is an exogenous monetary shock.41

The exogenous driving variables are assumed to evolve as follows:

at = flf-i + e"

gt=Pggt-i+£?

ut = puut-x + ef
M

vt = pvVt-\ + ef

Notice that while we do not observe wt and yt, the two variables are
related as follows:

cot-yt = cbt- yt
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and cat — yt is an observable variable, which should be stationary in
equilibrium. In the next section, we explain how to write the likeli-
hood function in terms of the five observable variables: output growth,
inflation, the nominal interest rate, hours, and the real wage-output
ratio.

5.1 Parameter Estimation

5.1.1 Data
We estimate the model laid out in the previous section using U.S. quar-
terly time series for five variables: real output, inflation, real wages,
hours, and interest rates. The sample period is 1948:1 to 2002:4. For
consistency with the analysis in Section 2, we use the same series for
output and hours. Our measure of nominal wages is the compensation
per hour in the nonfarm business sector (LXNFC), and the measure for
the price level is the nonfarm business sector deflator (LXNFI). Finally,
we use the quarterly average daily readings of the 3-month T-bill
(FTB3) as the relevant nominal interest rate. To render the series sta-
tionary, we detrend hours and the real wage-output ratio using a
quadratic trend. We treat inflation, output growth, and the nominal in-
terest rate as stationary, and express them in deviations from their
sample mean.

As is well known from Bayes's rule, the posterior distribution of the
parameters is proportional to the product of the prior distribution of
the parameters and the likelihood function of the data. Until recently,
only well-known and standard distributions could be used. The advent
of fast computer processors and Markov Chain Monte Carlo (MCMC)
methods has removed this restriction, and a more general class of
models and distributions can be used.42 To implement the Bayesian es-
timation method, we need to be able to evaluate numerically the prior
and the likelihood function. Then we use the Metropolis-Hastings algo-
rithm to obtain random draws from the posterior distribution, from
which we obtain the relevant moments of the posterior distribution of
the parameters.

5.1.2 The Likelihood Function
Let \jj denote the vector of parameters that describe preferences, tech-
nology, the monetary policy rule, and the shocks of the model; dt

be the vector of endogenous variables (observable or not); zt be the
vector of shocks; and et be the vector of innovations. The system of
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equilibrium conditions and the process for the exogenous shocks can
be written as a second-order difference equation:

A(xlj)Et{dt+1} =

Zt =

We use standard solution methods for linear models with rational
expectations (see, for example, Uhlig, 1999) to write the law of motion
in state-space form and the Kalman filter, as in Hamilton (1994), to
evaluate the likelihood of the five observable variables xt = [rt, 7ihojt-
yt,nt:Ayt]'. We denote by L({xt}J=1 \ i//) the likelihood function of

l
5.1.3 Priors
In this section, we denote by FI(i//) the prior distribution of the parame-
ters. We present the list of the structural parameters and its associated
prior distributions in the first three columns of Table 4. Most of the pri-
ors involve uniform distributions for the parameters, which simply re-
strict the support. We use uniform distributions for the parameter that
explains habit formation, for the probabilities of the Calvo lotteries, and
for the indexation parameters. The prior for all these parameters has
support between 0 and 1, except the probabilities of the Calvo lottery,
which are allowed to take values up to 0.9; i.e., we are ruling out aver-
age price and wage durations of more than 10 quarters.

We try to supplement as much prior information as possible for the
model's exogenous shocks. The AR(1) coefficients have uniform prior
distributions between 0 and 0.97. Gamma distributions for the stan-
dard deviations of the shocks are assumed (to guarantee nonnegativ-
ity). We select their hyperparameters to match available information
for the prior mean standard deviation of the innovations, while allow-
ing reasonable uncertainty in these parameters. For instance, for the
monetary policy rule, we choose the means of the inflation and output
growth coefficients to match the ones proposed by Taylor.43 For the
monetary policy shock, we use the standard deviation that comes
from running an OLS regression for the Taylor rule equation.

In addition, we fix some parameters. We set the discount factor at
/? = 0.99. The elasticities of product and labor demand are set to 6
(implying steady-state markups of 20%). These values are pretty con-
ventional in the literature.
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Table 4
Prior and posterior distributions

Para-
meter

b

<P

nv

Pr

*1
<j)n

Pg

Pu

Pv

Oz

Oa

°S

<?u

Prior distribution

Uniform(0,1)

Normal(l,0.25)

Uniform(0,0.9)

Uniform(0,0.9)

Uniform(0,l)

Uniform(0,l)

Uniform(0,0.97)

Normal(0.5,0.125)

Normal(1.5,0.25)

Uniform(0,0.97)

Uniform(0,0.97)

Uniform(0,0.97)

Gamma(25,0.0001)

Gamma(25,0.0004)

Gamma(16,0.00125)

Gamma(4,0.0025)

Gamma(4,0.0025)

Mean

0.50

1.00

0.45

0.45

0.50

0.50

0.485

0.50

1.50

0.485

0.485

0.485

0.0025

0.01

0.02

0.01

0.01

Standard
deviation

0.289

0.25

0.259

0.259

0.289

0.289

0.284

0.13

0.25

0.284

0.284

0.284

0.0005

0.002

0.005

0.005

0.005

Posterior distribution

Mean

0.42

0.80

0.53

0.05

0.02

0.42

0.69

0.26

1.35

0.93

0.95

0.91

0.003

0.009

0.025

0.011

0.012

Standard
deviation

0.04

0.11

0.03

0.02

0.02

0.28

0.04

0.06

0.13

0.02

0.02

0.01

0.0001

0.001

0.0024

0.001

0.001

5.1.4 Drawing from the Posterior
From Bayes's rule, we obtain the posterior distribution of the parame-
ters as follows:

The posterior density function is proportional to the product of
the likelihood function and the prior joint density function of \J/. Given
our priors and the likelihood functions implied by the state-space solu-
tion to the model, we are not able to obtain a closed-form solution
for the posterior distributions. However, we are able to evaluate both
expressions numerically. We follow Fernandez-Villaverde and Rubio-
Ramirez (2004) and Lubik and Schorfheide (2003a) and use the random
walk Metropolis-Hastings algorithm to obtain a random draw of size
500,000 from p{\p \ {xt}J=1,m). We use the draw to estimate the
moments of the posterior distribution and to obtain impulse responses
and second moments of the endogenous variables.
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5.2 Main Findings

5.2.1 Parameter Estimates and Second Moments
The last two columns of Table 4 report the mean and standard devia-
tion of the posterior distributions for all the parameters. Notice that
the habit formation parameter is estimated to be 0.42, a value some-
what smaller than that suggested by Christiano, Eichenbaum, and
Evans (2003) or Smets and Wouters (2003b). The parameter that mea-
sures the elasticity of the marginal disutility of hours, <p, is estimated to
be 0.80, which is close to values usually obtained or calibrated in the
literature.

The average duration of price contracts implied by the point esti-
mate of the price stickiness parameter lies slightly above two quarters.
We view this estimate as a moderate amount of price stickiness in the
economy. Perhaps most surprising is the low degree of wage stickiness
uncovered by our estimation method. Such an implausible low esti-
mate may suggest that the Calvo model is not the best formalism to
characterize wage dynamics.44

The price indexation coefficient is estimated at a low value, 0.04,
suggesting that the pure forward-looking model is a good approxima-
tion for inflation dynamics, once we allow for autoregressive price
markup shocks. On the other hand, indexation in wage setting is more
important, with a posterior mean of 0.42. The coefficients of the interest
rate rule suggest a high degree of interest rate smoothing, 0.69, a small
response of the interest rate to output growth fluctuations, and a coeffi-
cient of the response of the interest rate to inflation of 1.33, which cor-
responds to a lean-against-the-wind monetary policy. The estimated
processes for the shocks of the model suggest that all of them are
highly autocorrelated, with parameters between 0.95 for the price
markup shock and 0.91 for the wage markup shock.45

Table 5 displays some selected posterior second moments implied
by the model estimates and compares them to the data.46 The first two
columns present the standard deviation of the observed variables, and
their counterparts implied by the estimated model. We can see that the
model does a very good job in replicating the standard deviations of
output, inflation, and the nominal interest rate. The model also does
well in mimicking the unconditional correlation between the growth
rates of hours and output: in the data, it is 0.75; in the model, it is 0.72.
However, it overestimates the standard deviation of hours (3.11% in



Technology Shocks and Aggregate Fluctuations 269

Table 5
Second moments of estimated DSGE model

Original data

Output growth

Inflation

Interest rate

Hours

Real wage/output

Correlation between (dy, dn)

Bandpass filtered data

Output

Hours

Correlation between (y, n)

Standard deviations (%)

Data

1.36

0.72

0.72

3.11

3.69

0.75

2.04

1.69

0.88

Model

1.27

0.73

0.67

4.60

4.44

0.72

2.04

1.69

0.88

Technology
component

0.60

0.18

0.04

0.42

0.13

-0.49

0.87

0.26

-0.14

Contribution
to variance
technology shocks

22.3%

6.0%

0.3%

0.8%

0.1%

18.2%

2.3%

the data and 4.6% in the model) and to a lesser extent the real wage-
output ratio (3.69% in the data, 4.44% in the model).

5.2.2 The Effects of Technology Shocks
Next, we turn our attention to the estimated model's predictions
regarding the effects of technology shocks.47 Figure 7 displays the
posterior impulse responses to a permanent technology shock of a size
normalized to one standard deviation.48 We can observe that the model
replicates the VAR-based evidence fairly well, in spite of the differ-
ences in the approach. In particular, the estimated model implies a
persistent decline in hours in response to a positive technology shock,
and a gradual adjustment of output to a permanently higher plateau.
It takes about four quarters for output to reach its new steady-state
level. Hours drop on impact, by about 0.4 percentage points, and con-
verge monotonically to their initial level afterward.49

The third column of Table 5 reports the second moments of the
observed variables conditional on technology shocks being the only
driving force. The fourth column shows the fraction of the variance of
each variable accounted for by the technology shock.50 We can see that
technology shocks do not play a major role in explaining the variability
of the five observed variables. They explain 22% of the variability
of output growth and 6% of the variability of inflation. For the rest of
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Figure 7
Posterior impulse responses to a technology shock: model based estimates

variables, including hours, they explain an insignificant amount of
overall volatility. A key result emerges when we simulate the model
with technology shocks only: we obtain a correlation between
(Ai/f, Attf) of —0.49, which contrasts with the high positive correlation
between the same variables observed in the data.

The last three rows of Table 5 report statistics based on bandpass fil-
tered data. In this case, the series of output growth and hours gener-
ated by the estimated model (when all shocks other than technology
are turned off) are used to obtain the (log) levels of hours and output,
on which the bandpass filter is applied. Once again, we find that tech-
nology shocks can account for only a small fraction of the variance of
the business-cycle component of output and hours. The conditional
correlation between those two variables falls to —0.14, from a value of
0.88 for the actual filtered series.

The previous findings are illustrated in Figure 8, which displays the
business-cycle components of log output and log hours associated with
technology shocks, according to our estimated model. It is apparent
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Figure 8
The role of technology shocks in U.S. postwar fluctuations: model-based estimates
Note: Solid line: technology component (BP-filtered); dashed line: U.S. data (BP-filtered).

that technology shocks explain only a minor fraction of output fluctua-
tions. This is even more dramatic when we look at fluctuations in
hours, in a way consistent with most of the VAR findings. Similar qual-
itative findings are found in Altig et al. (2003), Ireland (2004), and
Smets and Wouters (2003b), using slightly different models and/or es-
timation methods.

5.2.3 What Are the Main Sources of Economic Fluctuations?
Which shocks play a more important role in explaining fluctuations in
our observed variables? In Table 6, we report the contribution of each
shock to the total variance of each variable implied by our model esti-
mates. The shock that explains most of the variance of all variables in
our framework is the preference shock, which we can interpret more
broadly as a (real) demand shock. It explains above 70% of the vari-
ance of hours, the real wage-output ratio, and the nominal interest
rate. The preference shock also explains 57% of the variance of output
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Table 6
Variance decomposition from estimated DSGE model

Output growth

Inflation

Nominal rate

Hours

Wage — output

Shocks

Monetary

4.8%

27.1%

5.0%

0.4%

0.1%

Technology

22.3%

6.1%

0.4%

0.8%

0.1%

Preference

57.1%

36.3%

72.3%

70.0%

73.6%

Price
markup

8.0%

13.7%

9.8%

17.6%

12.0%

Wage
markup

7.1%

14.7%

11.8%

9.6%

12.8%

and 36% of the variance of inflation. On the other hand, the monetary
shock explains only approximately 5% of output growth and the nomi-
nal interest rate, and is an important determinant of inflation variabil-
ity, contributing to 27% of total volatility. Price and wage markup
shocks both have some importance in explaining the volatility of all
variables, with contributions to the variance that range from 7% to
17%. Overall, the picture that emerges from Table 6 is that preference
shocks are key for explaining the volatility of all variables. The mone-
tary and technology shocks have some importance in the sense that
they explain about 20% of the variance in one of the variables (output
growth in the case of technology, inflation in the case of monetary
shocks), but their contribution to the remaining variables is very small.
The price and wage markup shocks explain a small fraction of variabil-
ity in all variables.

5.2.4 Structural Explanations for the Estimated Effects of
Technology Shocks
Finally, we examine which features of the model are driving the nega-
tive comovement between hours and output in response to technology
shocks. In Table 7, we present the correlation between the business-
cycle components of output and hours that arises under several coun-
terfactual scenarios. For each scenario, we shut down some of the
rigidities of the model and simulate it again while keeping the same
value for the remaining parameter estimates.

Three features of the model stand out as natural candidates to ex-
plain the negative correlation between output and hours: sticky prices,
sticky wages, and habit formation. When we shut down each of those,
we find that the remaining rigidities still induce a large and negative
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Table 7
Technology-driven fluctuations output and hours: correlations implied by alternative
model specifications (BP-filtered data)

Original
Flexible wages
Flexible prices
No habit formation
Flexible prices and wages
No frictions (RBC)
Inflation targeting

-0.14
-0.16
-0.18
-0.29
-0.21

0.22
-0.15

conditional correlation. For instance, in the second row of the table, we
can see that assuming flexible wages (6W = rjw = 0) delivers basically
the same correlations. This result is not surprising given that nominal
wage rigidities do not appear to be important in turn given the param-
eter estimates. When we assume flexible prices but keep sticky wages
and habit formation, things do not change much either.

A particular scenario would seem to be of special interest: one with
flexible prices and wages, and habit formation. In that case, once again,
a similar pattern of correlations emerges. A similar result is obtained
by Smets and Wouters (2003b), who interpret it as evidence favorable
to some of the real explanations found in the literature. Yet when we
turn off habit formation in our estimated model but keep nominal
rigidities operative, we find a qualitatively similar result: the condi-
tional and unconditional correlations between hours and output have
the same pattern of signs as that observed in the data. It is only when
we shut down all rigidities (nominal and real) that we obtain a posi-
tive correlation between hours and output, both conditionally and un-
conditionally, and in a way consistent with the predictions of the basic
RBC model.

Finally, we consider a calibration in which the central bank responds
exclusively to inflation changes but not to output. Some authors have
argued that the negative comovement of output and hours may be a
consequence of an attempt by the monetary authority to overstabilize
output. Our results suggest that this cannot be an overriding factor:
when we set the coefficient on output growth equal to zero (but keep-
ing both habit formation and nominal rigidities operative), we still ob-
tain a negative conditional correlation between hours and output.

In light of the previous findings, we conclude that both real rigidities
(habit formation, in our model) and nominal rigidities (mostly sticky
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prices) appear to be relevant factors in accounting for the evidence on
the effects of technology shocks. By way of contrast, both nominal and
real rigidities seem to be required to account for the empirical effects
of monetary policy shocks (see, for example, Christiano, Eichenbaum,
and Evans, 1999, or the dynamics of inflation, for example, Gali and
Gertler, 1999).

6. Conclusion

In the present paper, we have reviewed recent research efforts that
seek to identify and estimate the role of technology as a source of eco-
nomic fluctuations in ways that go beyond the simple unconditional
second-moment matching exercises found in the early RBC literature.
The number of qualifications and caveats of any empirical exercise
that seeks to provide an answer to the above questions is never small.
As is often the case in empirical research in economics, the evidence
does not speak with a single voice, even when similar methods and
data sets are used. Those caveats notwithstanding, the bulk of the evi-
dence reported in the present paper raises serious doubts about the im-
portance of changes in aggregate technology as a significant (or, even
more, a dominant) force behind business cycles, in contrast with the
original claims of the RBC literature. Instead, it points to demand fac-
tors as the main force behind the strong positive comovement between
output and labor input measures that is the hallmark of the business
cycle.

7. Addendum: A Response to Ellen McGrattan

In her comments to the present paper, Ellen McGrattan (2004) dis-
misses the evidence on the effects of technology shocks based on struc-
tural VARs (SVARs) that rely on long-run identifying restrictions. The
purpose of this addendum is to explain why we think McGrattan's
analysis and conclusions are misleading. Since some of her argument
and the evidence she provides is based on her recent working paper
with Chari and Kehoe, our discussion often refers directly to their
paper (Chari, Kehoe, and McGrattan, 2004a).

Our main point is easy to summarize. McGrattan and Chari, Kehoe,
and McGrattan (CKM) study a number of model economies, all of
which predict that hours should rise in response to a positive technol-
ogy shock. Yet when they estimate an SVAR on data generated by
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those models, the resulting impulse responses show a decline in hours
in response to such a shock (with one exception, to be discussed
below).

McGrattan presents her findings and those in CKM as an illustration
of a general flaw with SVARs. But we find that conclusion unwar-
ranted. What McGrattan and CKM really show is that a misidentified
and/or misspecified SVAR often leads to incorrect inference. As
McGrattan herself acknowledges, in her example of a standard RBC
model (as well as in all but one of the examples in CKM), the assump-
tions underlying the data-generating model are inconsistent with the
identifying assumption in the VAR: either technology is stationary, or
nontechnology shocks have a permanent effect on productivity, or the
order of integration of hours is wrong.51 In those cases, the finding of
incorrect inference is neither surprising nor novel since it restates
points that have already been made in the literature.52 That conclusion
should be contrasted with that of Erceg, Guerrieri, and Gust (2004),
who show that when the SVAR is correctly specified and the identify-
ing restrictions are satisfied by the underlying data-generating models,
the estimated responses to technology shocks match (at least qualita-
tively) the theoretical ones.

We think that, when properly used, SVARs provide an extremely
useful guide for developing business-cycle theories. Evidence on the
effects of particular shocks that is shown to be robust to a variety of
plausible identification schemes should not be ignored when develop-
ing and refining DSGE models that will be used for policy analysis.
On the one hand, that requirement imposes a stronger discipline on
model builders than just matching the patterns of unconditional second
moments of some time series of interest, the approach traditionally
favored by RBC economists. On the other hand, it allows one to assess
the relevance of alternative specifications without knowledge of all the
driving forces impinging on the economy.53

Another finding in CKM that may seem striking to many readers is
that their business accounting framework produces a rise in hours in
response to a positive technology shock, in contrast with the evidence
summarized in Section 2 of the present paper. Below, we conjecture
that such a result hinges critically on treating the conventional Solow
residual as an appropriate measure of technology, in contrast to the
wealth of evidence suggesting the presence of significant procyclical
error in that measure of technology. By way of contrast, most of the
SVAR-based findings on the effects of technology shocks overviewed
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in the present paper rely on identifying assumptions that are much
weaker than those required for the Solow residual to be a suitable mea-
sure of technology.

Next, we elaborate on the previous points as well as on other issues
raised by McGrattan's comment. First, we try to shed some light on
why the estimated SVARs do not recover the model-generated impulse
responses. Second, we provide a conjecture about why CKM's esti-
mated model would predict an increase in hours in response to a posi-
tive technology shock, even if the opposite were true. Finally, we
comment on CKM's proposed alternative to SVARs.

7.1 Why Does the SVAR Evidence Fail to Match the McGrattan and
CKM Models' Predictions?

The reason why the SVAR estimates reported by McGrattan fail to
recover the joint response of output and hours implied by her RBC
model should not be viewed as reflecting an inherent flaw in the
SVAR approach. Instead, it is most likely a consequence of misspecifi-
cation and misidentification of the SVAR used.

First, and most flagrantly, the geometric growth specification of
technology assumed in the McGrattan exercise implies that technol-
ogy shocks will have only temporary effects on labor productivity. A
maintained assumption in Gali (1999) and in Section 2.1 above is
the existence of a unit root in the technology process, underlying the
observed unit root in productivity. It is clear that if a researcher holds
an inherent belief in the stationarity of technology, she will not want
to use that empirical approach to estimate the effects of technology
shocks. We find the notion that technology shocks don't have perma-
nent effects hard to believe, though we cannot offer any proof (and
though we have provided suggestive evidence along those lines in
Section 3.1). In any event, we find it useful to point out that the litera-
ture contains several examples, reviewed in Section 2, that do not rely
on the unit root assumption and that yield results similar to Gali
(1999).54

In principle, CKM appear to overcome the previous misidentifica-
tion problem by using as a data-generating mechanism an RBC model
that assumes a unit root in technology. They consider two versions of
that model (preferred and baseline), which we discuss in turn. Their
preferred specification fails to satisfy the identifying restriction of the
VAR in another important dimension: because of the endogeneity of
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technology in their model (reflected in the nonzero off-diagonal terms
in the process describing the driving forces), shocks that are non-
technological in nature are going to have an effect on the level of tech-
nology and hence on productivity. As a result, the identification
underlying the SVAR will be incorrect, and inference will be distorted.

The two misidentification problems just discussed should not affect
the CKM baseline specification because in the latter, technology is
assumed to follow an exogenous random walk process. Yet when we
look at the properties of that model, we uncover a misspecification prob-
lem in the VAR used. In a nutshell, and as is the case for most RBC
models found in the literature, CKM's baseline model implies that
hours worked follow a stationary process, though they estimate the
SVAR using first-differenced hours. The potential problems associated
with that misspecification were originally pointed out by CEV (2003)
and have been discussed extensively in Section 3 of the present
paper.55

CKM provide one example (the exception we were referring to
above) in which the estimated SVAR satisfies both the key long-run
identifying restriction (technology is exogenous and contains a unit
root) and is correctly specified (hours are introduced in levels). In that
case, and not surprisingly, the SVAR makes a correct inference: hours
are estimated to rise in response to a technology shock, as the model
predicts. While CKM acknowledge that fact, they instead focus on the
finding that the estimated impulse response shows a nonnegligible
bias. This is an interesting point, but it is not central to the controversy
regarding the effects of technology shocks: the latter has focused all
along on the estimated sign of the comovement of output and hours,
not on the size of the responses. Nor is it novel: it is one of the two
main findings in Erceg, Guerrieri, and Gust (2003), who already point
out and analyze the role played by the slow adjustment of capital in
generating that downward bias.

Neither McGrattan nor CKM emphasize Erceg, Guerrieri, and Gust's
(EGG's) second main finding, which is highly relevant for their pur-
poses: using both a standard RBC model and a new Keynesian model
with staggered wage and price setting as data-generating mechanisms,
they conclude that the estimated responses to a technology shock, us-
ing the same SVAR approach as in Gali (1999), look like the true
responses to that shock in both models, at least from a qualitative
viewpoint (leading to a rise in hours in the former case, and to a drop
in the latter, in a way consistent with the models' predictions).
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7.2 Why Does the CKM Accounting Framework Predict a Rise in
Hours?

The framework used by McGrattan in Section 2.2 of her comment
is unlikely to be recognized by most macroeconomists as a standard
RBC model, the title of the subsection notwithstanding. Instead, it con-
sists of a version of the business-cycle accounting framework originally
developed in Chari et al. (2004b). That framework consists of a stan-
dard RBC model with four driving forces (or wedges, in their terminol-
ogy). One of those driving forces, which enters the production function
as a conventional productivity parameter, is interpreted as a technol-
ogy shock. Two other driving forces are broadly interpreted as a labor
market and an investment wedge. The fourth is government spending.
After assuming functional forms for preferences and technology as
well as a conventional calibration of the associated parameters conven-
tional in the RBC literature, CKM estimate a VAR model for the four
driving forces using time series for output, hours, investment, and gov-
ernment consumption.

Let us put aside some of the issues regarding the suitability of
SVARs discussed in the previous section to turn to a different question:
Why does the estimated CKM accounting framework predict an in-
crease in hours in response to a positive technology shock? The interest
of the question may be puzzling to some readers; after all, the CKM
model looks like a standard RBC model augmented with many shocks.
But that description is not accurate in a subtle, but important dimen-
sion: the disturbances/wedges in the CKM accounting framework are
not orthogonal to each other, having instead a rich dynamic structure.
Thus, nothing prevents, at least in principle, some of the nontechnol-
ogy wedges from responding to a technology shock in such a way as
to generate a negative comovement between output and hours in re-
sponse to that shock. After all, the increase in markups following a
positive technology shock is precisely the mechanism through which a
model with nominal rigidities can generate a decline in hours.

Here, we can only speculate on the sources of the sign of the re-
sponse of hours predicted by the CKM model. But a cursory look at
the structure of the model, and the approach to uncovering its shocks,
points to a very likely candidate for that finding: the CKM measure
of the technology parameter corresponds to the gap between (log)
GDP and a weighted average of (log) capital and (log) hours, with the
weights based on average income shares. In other words, the CKM
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measure of technology corresponds, for all practical purposes, to the
conventional Solow (1957) residual. In adopting that approach to iden-
tification of technology, CKM are brushing aside two decades of re-
search pointing to the multiple shortcomings of the Solow residual as
a measure of short-run variations to technology, from Hall (1988) to
BFK (1999). In the absence of any adjustments for market power, vari-
able utilization of inputs, and other considerations, the Solow residual,
as an index of technological change, is known to have a large (and
highly procyclical) measurement error.

To illustrate this, consider an economy with a constant technology
(and no capital) in which output and (measured) hours are linked
according to the following reduced-form equilibrium relationship:

yt = omt

CKM's index of technology zt would have been computed, using the
Solow formula as:

z t = y t - s n t

where s is the average labor income share. Under Solow's original
assumptions, s = a. But the existing literature provides a number of
compelling reasons why in practice we will almost surely have a > s.
It follows that CKM's technology index can be written as:

zt = (a - s)nt

thus implying a mechanical positive correlation between measured
technology and hours.

The previous example is admittedly overstylized, but we think it
illustrates the point clearly. Thus, it should come as no surprise if the
estimated responses of the different wedges to innovations in that
error-ridden measure of technology were to be highly biased and may
indeed resemble the responses to a demand disturbance. In fact, the
use of VARs based on either long-run restrictions (as in Gali, 1999) or
purified Solow residuals (as in BFK, 1999) as well as the approach to
model calibration in Burnside and Eichenbaum (1996) was largely
motivated by that observation.

7.3 Some Agreement

We cannot conclude this addendum without expressing our agreement
with CKM's proposed alternative approach to the identification and
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estimation of technology (and other shocks), based on the specification
of a "state representation and a set of identifying assumptions that
nests the class of models of interest" and that can be "conveniently esti-
mated with Kalman filtering" techniques. But this is precisely the
approach that we have pursued in Section 5 of the present paper, fol-
lowing the footsteps of a number authors referred to in that section
(including the second author of the present paper).

In her comment, McGrattan criticizes the particular model that
we choose to implement that approach (which she refers to as the
triple-sticky model) on the grounds that it abstracts from capital ac-
cumulation. But our goal was not to develop a fully-fledged model,
encompassing all relevant aspects of the economy, just to provide an il-
lustration of a potentially fruitful approach to analyzing the role of dif-
ferent frictions in shaping the estimated effects of technology shocks.
Other authors have provided a similar analysis using a richer structure
that includes endogenous capital accumulation, among many other
features. The models used in that literature allow (but do not impose)
all sorts of frictions in a highly flexible way, and nest the standard
RBC model as a particular case. Most important for our purposes here,
some of those papers (see, for example, Smets and Wouters, 2003b)
have analyzed explicitly the effects of technology shocks implied by
their estimated models. In a way consistent with our findings above,
those effects have been shown to imply a negative response of hours
to a positive technology shock. McGrattan reports no comparable evi-
dence for her triple-sticky model with investment, though we conjec-
ture that the latter would imply a similar response.
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2. See Blanchard and Quah (1989) and Gali (1999) for details.

3. It is precisely this feature that differentiates the approach to identification in Gali
(1999) from that in Blanchard and Quah (1989). The latter authors used restrictions on
long-run effects on output, as opposed to labor productivity. In the presence of a unit
root in labor input, that could lead to the mislabeling as technology shocks of any distur-
bances that was behind the unit root in labor input.

4. With four lags, the corresponding f-statistics are -2.5 and and -7.08, the level and
first-difference, respectively.

5. That distribution is obtained by means of a Montecarlo simulation based on 500 draw-
ings from the distribution of the reduced-form VAR distribution.

6. Notice that the distribution of the impact effect on hours assigns a zero probability to
an increase in that variable.

7. See, e.g., King et al. (1988a) and Campbell (1994).

8. See also Francis and Ramey (2003a), among others, for estimates using higher dimen-
sional VARs.

9. Blanchard (1989, p. 1158).

10. See the comment on Shea's paper by Gali (1998) for a more detailed discussion of that
point.

11. The latter evidence contrasts with their analysis of long-term U.S. data, in which the
results vary significantly across samples and appear to depend on the specification used
(more below).

12. An analogous but somewhat more detailed analysis can be found in Francis and
Ramey (2003a).

13. Of course, that was also the traditional view regarding technological change, but one
that was challenged by the RBC school.

14. Exceptions include stochastic versions of endogenous growth models, as in King et
al. (1988b). In those models, any transitory shock can in principle have a permanent effect
on the level of capital or disembodied technology and, as a result, on labor productivity.

15. We are grateful to Craig Burnside and Ellen McGrattan for providing the data.

16. A similar conclusion is obtained by Fisher (2003) using a related approach in the con-
text of the multiple technology shock model described below.

17. In particular, we use their fully corrected series from their 1999 paper When revising
the present paper, BFK told us of an updated version of their technology series, extend-
ing the sample period through to 1996 and incorporating some methodological changes.
The results obtained with the updated series were almost identical to the ones reported
below.

18. That odds ratio increases substantially when an F-statistic associated with a covari-
ates ADF test is incorporated as part of the encompassing analysis.

19. With the exception of their bivariate model under a level specification, CEV also find
the contribution of technology shocks to the variance of output and hours at business
cycles to be small (below 20%). In their bivariate, level specification model, that contribu-
tion is as high as 66 and 33%, respectively.
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20. Given the previous observations, one wonders how an identical prior for both speci-
fications could be assumed, as CEV do when computing the odds ratio.

21. Unfortunately, CEV do not include any statistic associated with the null of no trend
in hours in their encompassing analysis. While it is certainly possible that one can get a t
statistic as high as 8.13 on the time-squared term with a 13% frequency when the true
model contains no trend (as their Montercarlo analysis suggests), it must surely be the
case that such a frequency is much higher when the true model contains the quadratic
trend as estimated in the data!

22. In fact, total hours was the series used originally in Gali (1999).

23. The finding of a slight short run decline in output was obtained in BFK (1999).

24. Pesavento and Rossi (2003) propose an agnostic procedure to estimate the effects of
a technology shock that does not require taking a stance on the order of integration
of hours. They find that a positive technology shock has a negative effect on hours on
impact.

25. We thank Jonas Fisher for kindly providing the data on real investment price.

26. See the discussion in McGrattan (1999); Dotsey (2002); and Gali, Lopez-Salido, and
Valles (2003), among others.

27. This would be consistent with any model in which velocity is constant in equilib-
rium. See Gali (1999) for an example of such an economy.

28. Such a reduced-form relationship would naturally arise as an equilibrium condition
of a simple RBC model with productivity as the only state variable.

29. The absence of another state variable (say, capital stock or other disturbances)
implies a perfect correlation between the natural levels of output and employment, in
contrast with existing RBC models in the literature, where that correlation is positive and
very high, but not one.

30. Throughout we assume that the condition K{<J>X - 1) + (1 — ff)4y > 0 is satisfied. As
shown by Bullard and Mitra (2002), that condition is necessary to guarantee a unique
equilibrium.

31. This corresponds to the impact elasticity with respect to productivity and ignores the
subsequent adjustment of capital (which is very small). The source is Table 3 in Campbell
(1994), with an appropriate adjustment to correct for his (labor-augmenting) specification
of technology in the production function (we need to divide Campbell's number by two-
thirds).

32. A similar result can be uncovered in an unpublished paper by McGrattan (1999).
Unfortunately, the author did not seem to notice that finding (or, at least, she did not dis-
cuss it explicitly).

33. The analysis in Gali, Lopez-Salido, and Valles (2003) has been extended by Francis,
Owyang, and Theodorou (2004) to other G7 countries. They uncover substantial differ-
ences across countries in the joint response of employment, prices, and interest rates to
technology shocks, and argue that some of those differences can be grounded in differ-
ences in the underlying interest rate rules.

34. A less favorable assessment is found in Chang and Hong (2003), who conduct a simi-
lar exercise using four-digit U.S. manufacturing industries, and rely on evidence of sec-
toral nominal rigidities based on the work of Bils and Klenow (2002).
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35. See Lettau and Uhlig (2000) for a detailed analysis of the properties of an RBC model
with habit formation. As pointed out by Francis and Ramey, Lettau and Uhlig seem
to dismiss the assumption of habits on the grounds that it yields "counterfactual cyclical
behavior."

36. However, the existing literature on estimating general equiilibrium models using
Bayesian methods assumes that all shocks are stationary, even when highly correlated. A
novelty of this paper is that we introduce a permanent technology shock. Ireland (2004)
estimates a general equilibrium model with permanent technology shocks, using maxi-
mum likelihood.

37. A somewhat different estimation strategy is the one followed by Christiano, Eichen-
baum, and Evans (2003); Altig et.al. (2003); and Boivin and Giannoni (2003), who esti-
mate general equilibrium models by matching a model's implied impulse-response
functions to the estimated ones.

38. Details can be found in an appendix available from the authors upon request.

39. Specifically, every household / maximizes the following utility function:

subject to a usual budget constraint. The preference shock evolves, expressed in logs, as:

gt = (1 - Pg)G + Pggt-\ + e?

40. See Smets and Wouters (2003a) for a derivation of the price- and wage-setting
equations.

41. Following Erceg and Levin (2003), we assume that the Federal Reserve reacts to out-
put growth rather than the output gap. An advantage of following such a rule, as Orpha-
nides and Williams (2002) stress, is that mismeasurement of the level of potential output
does not affect the conduct of monetary policy (as opposed to using some measure of
detrended output to estimate the output gap).

42. See Fernandez-Villaverde and Rubio-Ramirez (2004).

43. If a random draw of the parameters is such that the model does not deliver a unique
and stable solution, we assign a zero likelihood value, which implies that the posterior
density will be zero as well. See Lubik and Schorfheide (2003b) for an estimated DSGE
model allowing for indeterminacy.

44. Rabanal (2003) finds a similar result for an estimated DSGE model that is only
slightly different from the one used here.

45. We have also conducted some subsample stability analyses, splitting the sample into
pre-Volcker years and the Volcker-Greenspan era. While there were some small differ-
ences in estimated parameters across samples, none of the main conclusions of this sec-
tion were affected.

46. These second moments where obtained using a sample of 10,000 draws from the
500,000 that were previously obtained with the Metropolis-Hastings algorithm.

47. A related analysis has been carried out independently by Smets and Wouters (2003b),
albeit in the context of a slightly different DSGE model.

48. The posterior mean and standard deviations are based on the same sample that was
used to obtain the second moments.
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49. A similar pattern of responses of output and hours to a technology shock can be
found in Smets and Wouters (2003b).

50. We use the method of Ingram, Kocherlakota, and Savin (1994) to recover the struc-
tural shocks. This method is a particular case of using the Kalman filter to recover the
structural shocks. We assume that the economy is at its steady-state value in the first ob-
servation, rather than assuming a diffuse prior. By construction, the full set of shocks rep-
licate the features of the model perfectly.

51. In the one case where the VAR is identified correctly, it yields the correct qualitative
responses, though with some quantitative bias resulting from the inability to capture the
true dynamics with a low-order VAR. This result has been shown in Erceg, Guerrieri,
and Gust (2004).

52. See Cooley and Dwyer (1998) and Christiano et al. (2003), among others.

53. See Christiano et al. (2003) for an illustration of the usefulness of that approach.

54. See, for example, BFK (1999), Francis et al. (2003), and Pesavento and Rossi (2004).

55. CKM's discussion of that problem is somewhat obscured by their reference to "the in-
sufficient number of lags in the VAR" as opposed to just stating that hours are overdiffer-
enced. See also Marcet (2004) for a more general discussion of the consequences (or lack
thereof) of overdifferencing.
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Comment

Ellen R. McGrattan
Federal Reserve Bank of
Minneapolis and University of
Minnesota

1. Introduction

An important task of macroeconomists is the development of models
that account for specific features of the business cycle. All policy-
makers would agree that having reliable models to analyze the effects
of policy is useful. In taking on the important endeavor of developing
reliable models, I applaud Gali and Rabanal (GR). I do, however, dis-
pute some of their key findings.

GR survey research in the structural vector autoregression (SVAR)
literature emphasizing the role of technology for the business cycle.
(See the many references in Section 2.2 of GR.) The findings of this lit-
erature are used to dismiss a line of business-cycle research beginning
with Kydland and Prescott's (1982) real business cycle (RBC) model.
The claim is that the data clearly show that RBC models are inconsis-
tent in crucial ways with the observed behavior of the U.S. economy in
the postwar period. This claim amounts to asserting that no RBC model
can produce time series for key macro aggregates—namely, produc-
tivity and hours—that have similar patterns to those in U.S. data. The
SVAR literature arrives at this claim by estimating empirical impulse
responses and noting that the responses are different from the theoreti-
cal impulse responses in most RBC models.

In these comments, I argue that the claim of the SVAR literature is
incorrect. I do this by estimating a standard RBC model with maxi-
mum likelihood for U.S. data. My estimation procedure ensures that
the model can account for the patterns of productivity and hours in
the data. With this RBC model, I then show that the SVAR procedure
is easily misled. I simulate time series for the model (many times), ap-
ply the SVAR procedure, and estimate empirical impulse responses. I
show that these empirical impulse responses look very similar to those
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estimated in the literature. Thus, given data simulated from my model,
the SVAR procedure would wrongly conclude that the data were not
simulated from a real business cycle model.

The problem with trying to use the SVAR procedure to make broad
claims about a class of models, like the entire class of RBC models,
is the following: most RBC models do not satisfy the narrow set of
identifying assumptions typically made in the SVAR literature. My
estimated RBC model is no exception. Hence, the SVAR procedure is
misspecified with respect to most of the models it tries to shed light on.

On this point, I think there is some agreement between GR and
myself.1 The SVAR procedure is not useful for evaluating models or
classes of models that do not satisfy the SVAR's precise identifying
assumptions. I conclude from this that since we do not know the as-
sumptions a priori, SVARs are not a useful guide to developing new
models. Since we do not know the identifying assumptions a priori,
the SVAR cannot robustly identify how the economy responds to
shocks, like technology or monetary shocks. SVARs are potentially
useful but only for classes of models that satisfy all of the identifying
assumptions. In every application of which I am aware, the class of
models that satisfy the (explicit or implicit) identifying assumptions of
the SVAR procedure is an extremely small subset of the class of inter-
esting models.

The false rejection of the RBC model motivates the second part of
GR's study, a study of business cycles using a model with sticky prices.
Like many other studies in the sticky-price literature, GR do not in-
clude investment in their model. I introduce investment into a version
of their model and analyze its predictions for business cycles. I find
that technology shocks, monetary shocks, and government consump-
tion shocks are of little importance in the sticky-price model. This
explains why GR find that preference shocks and shocks to the degree
of monopoly power play such a large role for aggregate fluctuations.

2. The Death Knell for RBC Theory

Gali and Rabanal first review the SVAR literature that considers the fit
of real business cycle models and the role of technology shocks for
business cycles. They ask, How well does the RBC model fit postwar
U.S. data? The answer they give is, Not so well. According to evidence
from the SVARs, hours fall in response to technology shocks, and the
contribution of technology shocks to the business cycle is small. In
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standard RBC models, the opposite is true. Francis and Ramey (2002),
who have contributed to the SVAR literature that GR review, sum-
marize the findings of this literature by saying that "the original
technology-driven real business hypothesis does appear to be dead."

2.1 Applying Blanchard and Quah

Let me start by summarizing how researchers in the SVAR literature
reach the conclusion that RBC theory is not consistent with U.S. data.
It is a direct application of Blanchard and Quah (1989). They estimate
a vector autoregression (VAR) using data on labor productivity and
hours, invert it to get a moving average (MA) representation, and im-
pose certain structural assumptions about the shocks hitting the econ-
omy. They then argue that the empirical impulse responses from the
structural MA are very different from the theoretical impulse responses
of a standard RBC model. They also show that the contribution of tech-
nology shocks to output fluctuations is empirically small, a prediction
at odds with standard RBC theories.

To be more precise, let Xt be a two-dimensional vector containing
the change in the log of labor productivity and the change in the log of
hours. The first step is to estimate a vector autoregression by regress-
ing Xt on a certain number of lags. GR choose four. They invert this
VAR to get the corresponding Wold moving average:

Xt = vt + Bivt-t + B2vt-2 H (1)

where vt is the residual from the VAR and Evtv't — Q. Mechanically, it
is easy to recursively compute the B coefficients having estimates of
the VAR coefficients. An estimate of the matrix Q is easily constructed
from the VAR residuals.

One more step is needed to derive the structural MA. The goal is to
work with an MA process that has interpretable shocks, namely, a
shock they call a "technology" shock and a shock they call a "demand"
shock. In particular, the structural MA they use is:

Xt = Coet + Ciet-i + C2et-2 + ••• (2)

where Eete't =2,,et = C^vt, and Cj — BJCQ for j > 1. The first element of
et is the technology shock, and the second element is the demand shock.

We need identifying restrictions to determine the seven parame-
ters in Co and X. Seven restrictions typically used in the SVAR lit-
erature that GR review are as follows. Three come from equating
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Figure 1

SVAR impulse response of U.S. total hours to technology
Dashed lines mark upper and lower values of the 95% confidence band for bootstrapped
standard errors.

variance-covariance matrices (CQLC'Q — Q). Three come from assuming
that the shocks are orthogonal (Z = I). The last comes from the as-
sumption that demand shocks have no long-run effect on labor pro-
ductivity (£.:C;(1, 2) = 0).

With these restrictions imposed, I can compute the empirical
impulse responses. Since I want to compare models to the national
accounts, I am actually going to work, not with the nonfarm business
sector as GR do, but with gross domestic product (GDP) and total
hours.2 In Figure 1, I show the response of total hours to a one-time,
1% innovation in technology (that is, a 1% increase in the first element
of eo). I also plot the 95% confidence bands computed using the
method described by Runkle (1987). Using the aggregate series for pro-
ductivity and hours is not a problem for GR since I reach the same con-
clusions as they do. In particular, Figure 1 shows that hours fall on
impact in response to a rise in technology. In standard RBC models,
hours rise on impact in response.

A second statistic emphasized in the literature is the contribution of
technology to the variance of logged output and hours, which is com-
puted after these series are filtered with a bandpass filter. With data
from the nonfarm business sector, GR find that only 7% of output flue-
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tuations are due to technology and 5% of hours fluctuations. For my
example with GDP and total hours, I find that 14% of output fluctua-
tions are due to technology and 9% of hours fluctuations. Thus, like
GR, I find that the SVAR predicts that technology plays a small role in
the business cycle.

2.2 A Standard RBC Model

I am going to evaluate the SVAR findings using a standard RBC
model. In particular, I work with a version of the model I used in
McGrattan (1994), with parameters estimated by maximum likelihood
for U.S. data. I simulate many time series from that model, and I apply
the SVAR procedure to the artificial data. This exercise allows me to
compare the SVAR statistics to their theoretical counterparts. I also de-
termine if the SVAR recovers the technology shocks that I feed into the
model.

The model economy is a standard growth model with house-
holds, firms, and a government. The representative household with
Nt members in period t chooses per-capita consumption c, per-capita
investment x, and the labor input / to solve the following maximiza-
tion problem:

max E
{ct,x,,lt} f£

subject to ct + (1 + Txt)xt = rtkt + (1 - xit)wtlt + Tt, Nt+ikt+1 =
[(1 —S)kt + xt]Nt, and ct,xt > 0 in all states and taking initial capital
k0 and processes for the rental rate r, wage rate w, the tax rates zx and
T/, and transfers Tt as given. I assume that Nt grows at rate yn.

The representative firm solves a simple static problem at t:

max Kf (ZtLt)1-0 - rtKt - wtLt (3)

where 9 is the share of capital in production, capital letters denote
economy aggregates, and Zt is the level of technology that varies sto-
chastically around a constant growth trend. In particular, I assume
that Zt = (1 + yz)

fzf, where yz is the trend growth rate and zt is stochas-
tic. Total factor productivity in this economy is Z}~B.

The government sets rates of taxes and transfers so that it can
finance a stochastic sequence of per-capita purchases gt and satisfy its
budget constraint:
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Ntgt + NtTt = Nt[Tltwtlt + rxtxt]

each period. In equilibrium, the following conditions must hold:

Nt(ct + xt+gt) = Yt = K°{ZtLt)1-e

Ntkt = Kt (4)

Nth = U-

The model has four exogenous shocks, namely, total factor produc-
tivity, a tax on labor, a tax on investment, and government spending.
The process governing these shocks is:

sm = Po + Pst + Qet+i (5)

where st = [log zt, rn, Txt, log gt — t log(l + yz)]. I compute maximum
likelihood estimates for PQ, P, and Q using data on U.S. output, invest-
ment, hours, and government spending for the period 1959:l-2003:4.3

These estimates are reported in Table 1.

2.3 The Model Predictions

Given estimates for the parameters, I compute an equilibrium for
the model economy that implies decision rules for Ct,xt,U, and kt+\ in
terms of the state variables kt,zt, t;f, zxt, and gt (once I have detrended
all variables that grow over time).

I can use these decision rules to compute impulse responses and con-
tributions to the output spectrum for each of the four shocks. Because
P and Q are not diagonal, a specification soundly rejected by a like-
lihood ratio test, estimates of the theoretical impulse responses and the
contributions to the spectrum depend on how I decompose QQ' (or
how I order s, keeping Q lower triangular). For the estimated parame-
ters in Table 1, d log lt/d log sZtt is positive for all decompositions,
where ezj is the first element of et. In terms of the contributions to the
output spectrum, technology shocks are important no matter how I
assign covariances. The contribution, averaged across all possible
assignments, is over 35%. If I compute the contributions for all exam-
ples with z first in s and Q lower triangular, I find that the average
contribution of technology to the output spectrum is 70%. Thus, as
most RBC models predict, hours rise in response to a technology
shock, and technology shocks are important contributors to the busi-
ness cycle.
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Table 1
Parameters of vector AR(1) stochastic process for the model*

P =

.769
(.0239)

-.0233
(.0601)

-.101
(.0186)

-.0306
(.0712)

.0108
(.00113)

-.00257
(.00120)

.00371
(.00101)

-.00501
(.00214)

.0471
(.0959)

.994
(.0133)

.0253
(.0445) (

.0423 -
(.0257)

0

.00623
(.00135)

.000888
(.00102)

.00505
(.00266)

.432
(.0756)

.0417
(.120)

1.18
.00780)

-.00160
(.136)

0

0

.00196
(.00165)

.0148
(.00102)

-.0419
(.0570)

-.00452
(.0128)

-.0180
(.0224)

.997
(.0212)

0

0

0

.00000202
(.0610)

Mean(s() = [-.122(.0306),.235(.0172),.218(.0201),-1.710(.0384)]

* Estimated using maximum likelihood with data on output, labor, investment, and gov-
ernment consumption. Numbers in parentheses are standard errors.
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Given the empirical findings of the SVAR, GR and others they sur-
vey conclude that RBC models such as the one I just described are sim-
ply not consistent with U.S. data.

2.4 The Death Knell for the SVAR Procedure?

I now describe an obvious check on the SVAR methodology. I act as
the data-generating process and let the SVAR user be the detective.
This is a game I play when I teach students at the University of Minne-
sota. I give the students data for an economy of my own making and
they have to tell me what is driving fluctuations in that economy.

With my RBC model, I draw 1000 random sequences of length 180
for the s vector in equation (5). I use decision functions to compute
1000 sequences for productivity and hours. I then apply the SVAR pro-
cedure to each model simulation to get impulse responses, lire result
is displayed in Figure 2, which shows the mean responses (with a solid
line). The dashed lines mark the upper and lower value of the interval
containing 95% of the responses. They are obtained by eliminating the
top 2.5% and the bottom 2.5% for each impulse response coefficient.

Figure 2 shows that for most of the simulations, and on average, a
researcher using the SVAR procedure would infer that hours fall in re-

0.75

0.25 •

95% of Impulse Responses Within Bands

-0.25 •

-0.5 •

-0.75
4 6

Quarters Following Shock

Figure 2
SVAR impulse response of model hours to technology
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sponse to a positive technology shock. This is the same inference I
would make for the U.S. data using this procedure. (See Figure 1.) If I
compute the contribution of technology to the variance of logged out-
put and hours (after applying a bandpass filter), I find that a researcher
using the SVAR procedure would infer that the fractions are 26.7% and
6%, respectively. Recall that when I apply the SVAR to U.S. data, the
contributions of technology to output and hours fluctuations are 14%
and 9%, respectively. Because hours fall in response to a positive tech-
nology shock and because the contribution of technology to the busi-
ness cycle is smaller than RBC theory predicts, an SVAR user would
conclude that the data could not have come from an RBC model. But
the data did come from an RBC model.

Figure 2 should not be surprising because the parameters of the
model are maximum likelihood estimates for the U.S. data. It simply
reflects the fact that my RBC model can produce time series for the
key macro aggregates that have similar patterns to those in the U.S.
data. In fact, I could think of the U.S. data as one draw of time series
from the model because I can choose the sequence of four shocks in et

to match exactly the observed sequences for output, investment, labor,
and government consumption. Unless the U.S. data were unlikely
given my probability model, I should get SVAR results similar to those
reported in Figure 1. It turns out that they are not unlikely.

In the exercise leading up to Figure 2, I treated tax rates as un-
observed. These tax rates can be interpreted as summarizing all dis-
tortions to factors of production. However, one could do the same
exercise with measures of a key component of these distortions,
namely, income taxes on labor and capital. In McGrattan (1994), I use
data from the U.S. Internal Revenue Service and the U.S. national
accounts to construct estimates for taxes on capital and labor. I esti-
mate the parameters of the model with tax rates observed and show
that the model produces time series for key macro aggregates that
have similar patterns to those in the U.S. data. A good fit between U.S.
data and the model time series implies an empirical impulse response
like that in Figure 1 if I apply the SVAR procedure to simulated time
series of the model.

What if I compare the technology implied by the SVAR procedure
to the log of total factor productivity implied by the model? Technol-
ogy backed out using the SVAR is the cumulative sum of the first ele-
ment of et in equation (2). The log of technology implied by the model
is log Zt in equation (4) computed with U.S. data for Y, K, and L. In
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Figure 3
Technology shocks from the model and those predicted by the SVAR

Figure 3,1 plot the two series after applying the Hodrick-Prescott filter.
The figure shows that the SVAR does not back out the true technology.

In fact, the realization of the SVAR technology has very differ-
ent properties than its theoretical counterpart. It is hardly correlated
with GDP and negatively correlated with total hours. The correlations
with GDP and hours are 0.42 and —0.04, respectively. The true tech-
nology is highly correlated with GDP and positively correlated with
total hours. The correlations with GDP and hours are 0.84 and 0.43,
respectively.

2.5 Why Does the SVAR Get It So Wrong?

The literature that directly or indirectly critiques the SVAR approach
gives us many possible answers to this question.4 The problem could
be mistaken assumptions about the dimension of the shock vector. It
could be mistaken assumptions about the orthogonality of the shocks.
It could be mistaken assumptions about whether growth trends are
deterministic or stochastic. It could be mistaken assumptions aLbout the
long-run implications of nontechnology shocks. Maybe data samples
are too short. Perhaps four lags in the VAR are not enough. It could be
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a more subtle problem, like the lack of invertibility of the RBC model's
theoretical MA. In fact, for the example above, which is based on a
standard RBC model and an SVAR procedure that has been applied
many times, the answer is: all of the above.

SVARs are held up as useful tools that reveal "facts" about the data
without having to get into the messy details of economic theories. Typ-
ically these "facts" are then used to point researchers in the direction of
a promising class of models and away from models that are not consis-
tent with them. If the identifying assumptions of the SVAR are relevant
for only a tiny subset of models within a class of models, then claims
should be made in the context of the tiny subset.

Chari, Kehoe, and McGrattan (2004) extend the analysis I have done
here and show that mistaken inferences are large even if my RBC
model is restricted to satisfy the key identifying assumptions laid out
in Section 2.1. That is, we restrict the model to have only two orthogo-
nal shocks: the technology shock Zt and the tax rate zu (or "demand
shock"), with a unit root in Zt and an autoregressive process for T/f.
We show that auxiliary assumptions that SVAR researchers make are
not innocuous. For the technology-driven SVAR analyzed by GR and
many others, an important assumption is the number of lags in the
VAR. If capital accumulation is a central component of the model, we
show that hundreds of lags are needed to detect the true impulse
responses. The sample we have, on the other hand, is only 180 periods
long. This is an important finding since the model being studied is the
growth model, the workhorse of applied macroeconomic research. Per-
haps this finding is the death knell for SVAR analysis.

At the risk of adding insult to injury, I want to also note that the
RBC model of Section 2.2 encompasses the statistical model generated
by the SVAR. That is, if the data come from this RBC model, we can ac-
count for the prediction of the SVAR that hours fall on impact when
there is a positive technology shock. On the other hand, the SVAR
model does not encompass the RBC model since it cannot be used to
make predictions about many of the statistics of interest to business-
cycle researchers, such as the relative variance of investment to output.

Let me summarize what I have learned from these exercises. We
should not view the empirical impulse responses from an SVAR as
something we want our theoretical impulse responses to reproduce.
SVAR users can and should do the same diagnostic checks as Chari,
Kehoe, and McGrattan (2004). The analysis has to be done within the
context of a theoretical model or a class of theoretical models. Of
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course, this brings us full circle: once we construct a theoretical model,
there is no reason to use an SVAR.

3. A Triple-Sticky Model Versus U.S. Facts

The second part of Gali and Rabanal's paper considers life after RBC
models (which was the original title of the paper). They describe a
model that, at least for some parameterizations, is consistent with the
VAR evidence laid out in the first part of their paper. This model,
which I call the triple-sticky model, has sticky prices, sticky wages,
and habit persistence (sticky consumption). They estimate the model
and report the contributions of different shocks to aggregate fluctua-
tions. From that, they conclude that demand factors—not technologi-
cal factors—are key for business cycles.

3.1 A Forgotten Lesson from RBC Theory

Before discussing the triple-sticky business-cycle model, I should
review an important lesson from the RBC literature. GR's triple-sticky
model includes lots of frictions, but it excludes the key component in
modern business-cycle models: investment.

One important lesson from previous business-cycle research is that
the main impact of technology on the cycle is through investment, not
through hours. By leaving out investment, GR are minimizing the role
that technology would have. For this reason, I bring investment back in.

3.2 A Triple-Sticky Model with Investment

The model I work with has many of the same elements as those in
Chari, Kehoe, and McGrattan (2000, 2002) and McGrattan (1999). To
compare my results to those of GR, I also allow for habit persistence in
consumer preferences and preference shocks.

3.3 Effects of Monetary Shocks

One of the main results in GR is that demand shocks are the main force
for the business cycle. Given the choice of model used by GR, it is nat-
ural to ask if money is an important demand shock. Nominal rigidities
let money shocks have real effects, and habit persistence extends the
effects.
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To investigate the role of money, I compare time series from data
(after detrending or demeaning) with time series from my triple-sticky
model. I set parameters to be consistent with GR's model wherever
possible and otherwise use standard estimates from the business-cycle
literature. In Figures 4 and 5,1 show simulations of the model hit only
by shocks to the Taylor rule in equation (13) in the appendix (see Sec-
tion 5). For the sequence of shocks, I use innovations from Clarida,
Gali, and Gertler's (2000) estimated Taylor rule. The figures confirm
the finding of GR that monetary shocks in these models play only a
small role. Even if I do not add habit persistence, the model predictions
are far too smooth relative to the fluctuations in the data.

If I include plausible shocks to technology and government spend-
ing, the match between actual and predicted improves slightly.5 But in-
flation in the model is still much smoother than in the data. Thus, any
missing demand shocks must fill in the gap between actual and pre-
dicted inflation, which was particularly large in the 1970s and early
1980s.
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Figure 5
Inflation relative to its mean

3.4 What Are the Demand Shocks?

If it is not money, government spending, or technology, what drives
business-cycle fluctuations? The answers for GR are preference shocks
and shocks to the degree of monopoly power. For GR, these un-
observed demand shocks account for 80% of the variance in hours,
72% of the variance in output, and 65% of the variance in inflation. As
I find with my triple-sticky model, observed factors account for a very
small fraction of the business cycle.

This is reminiscent of the finding of Rotemberg and Woodford
(1997). To generate U.S.-like business cycles, Rotemberg and Wood-
ford need large and variable shocks to preferences and to a variable
called aggregate demand appearing in the resource constraint. In the
appendix to their paper, they report that standard deviations of the
shocks to preferences are 13.7%. This is large relative to the standard
deviation of logged output, which is only 2.1%.

The fluctuations of aggregate demand shocks, which are shocks
to the resource constraint and enter additively with consumption, are
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even larger. The standard deviation is 29.5%, 14 times that of logged
output. Plotting the aggregate demand shocks yields a picture that
looks a lot like inflation. This is not surprising since there is a large
gap between actual and predicted inflation without the unobserved
shocks.

In summary, given my calculations and those of Rotemberg and
Woodford (1997), I was not surprised that GR find they need a large
role for unobserved preference shocks and shocks to the degree of mo-
nopoly power. I am not convinced that this is progress. It seems to me
that we are simply replacing an old black box ("technology shocks")
with a new black box ("demand shocks").

4. Conclusion

GR have written a thought-provoking paper claiming that RBC models
are not consistent with U.S. data. I have shown that the SVAR method-
ology they use fails a simple diagnostic test. When given data from an
RBC model, the SVAR procedure tells us that the data could not have
come from an RBC model.

I have analyzed a version of GR's triple-sticky model, extending it to
include investment. Like GR, I find that the model does a poor job gen-
erating U.S.-like business cycles with only technology and monetary
shocks. The fit of GR's model to U.S. data, therefore, requires the inclu-
sion of large unobserved shocks to preferences and to the degree of
monopoly power.

Finally, I should note that the RBC literature has moved far beyond
Kydland and Prescott (1982). Current research is modeling sources of
variation in total factor productivity in large part as arising from varia-
tions in government policies, not from variations in the stock of blue-
prints.6 This work came about partly in response to claims that total
factor productivity in Kydland and Prescott (1982) was an exogenous
black box. I encourage GR to consider these recent studies before shift-
ing the black box from technology to demand.

5. Appendix

This appendix provides details of the triple-sticky model I simulate.
For details on computation, see McGrattan (2004).

In each period t, the model economy experiences one of finitely
many events st. I denote by sf = (SQ, . . . ,st) the history of events up
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through and including period t. The probability, as of period zero, of
any particular history sf is 7r(sf). The initial realization so is given.

There are producers of final goods and intermediate goods.
Final goods producers behave competitively and solve a static profit-
maximization problem. In each period, producers choose inputs y{i)
for i £ [0,1] and output y to maximize profits:

r1 / f1 \1/9

max Py - P(i)y(i) di subject to y = ( y{i)° di (6)
Jo \Jo /

where y is the final good, P is the price of the final good, y(i) are in-
termediate goods, and P(i) are the prices of the intermediate goods.
The demand for intermediate goods, which I use later, is given by

Consider next the problem faced by intermediate goods producers.
Intermediate goods producers are monopolistically competitive. They
set prices for their goods, but they must hold them fixed for N pe-
riods. I assume that price setting is done in a staggered fashion so
that 1/N of the firms are setting in a particular period. I compute
a symmetric equilibrium, so I assume that all firms ie [0,1/N] be-
have the same way, all firms i e [1/N, 2/N] behave the same way, and
so on.

More specifically, the problem solved by the intermediate goods
producers setting prices is to choose sequences of prices P(i), capital
stocks k(i), investments x{i), and labor inputs /(/, /'), ; = 1 , . . . ,Jf to
maximize:

y)} (7)

T = 0

subject to the input demand, the production technology:

y(z,sf) = k(i,st~1)*(A(st)Ld(i,st))1~* (8)

the constraint on labor:
11/»

(9)

the law of motion for capital used in producing good i:

frs*-1) (10)
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and the following constraints on prices:

P(z,s
t-1) = P(i,sl) = • ••P(i,st+N-1)

and so on, where Q(sT) is the rth period Arrow-Debreu price (that is, a
product of the one-period Q(st\st'1)'s).

Consider next the problem faced by consumers of final goods who
are wage setters. One can think of the economy organized into a con-
tinuum of unions indexed by ;. Each union ; consists of all the con-
sumers in the economy with labor of type /'. This union realizes that it
faces a downward-sloping demand curve for its type of labor. It sets
nominal wages for Jf periods at t,t + jV,t + 2JV, and so on. Thus, it
faces constraints:

t+Jr+1) = • • • =t+Jr) = W{j,s

and so on, in addition to the ones I describe below.
The problem solved by a consumer of type / is to maximize utility:

t=0

which allows for habit persistence and preference shocks {(p), subject to
the sequence of budget constraints, the definition of labor supply, and
the labor demands of the firms:

P^M/, sf) + Md(;, sl) + ]T Q(st+1 |sf)B(/, s m )
Sf+l

< W(/\s ' -1)^; ,s l) + Md(y,s'"1) + Bij^s1) + n(sf) + T(sf) (12)

for all i.
There are also borrowing constraints B(st+1) > —P(st)b. M and B are

consumers' holdings of money and contingent claims, Q is the price
of the claims, W(;, st-1) is the nominal wage chosen by one cohort of
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consumers, FI are profits, and T are government transfers. The con-
sumer agrees to supply whatever is demanded at that wage chosen.

The government in this world behaves so that the nominal interest
rate set by the Federal Reserve is given by

r(sf) =«/[r(st-1),r(st-2)Jr(st-3),Ef log(P(st+1)/P(st)),

log(P(sf)/P(sf-1)),log(P(sf-1)/P(sf-2)),log(P(sf-2)/P(sf-3)),

log y(sl),log y(st~l),\og yis*'2)] + constant + er,f. (13)

The government also spends g(sf), and thus, the economy wide re-
source constraint is:

y(st) = f c(;>V/+f^fts') #
Jo Jo

(*')• (14)

For the simulations in Figures 4 and 5, I set N = 4, JV = 2,
U(c, c_i, /, m) = log(c - .42c_i) - /18/1.8 + .0076m-1-56/(-l-56), 0 = .9,
u = .87, a = 1/3, 0 = .971/4, £#(sf) = .6, (5 = 1 - .921/4, and ^(x/fc) =
10(x/A: — S) . The Taylor rule in equation (13) is that estimated by Clar-
ida, Gali, and Gertler (2000).

Notes

This discussion was prepared for the 2004 NBER Macroeconomics Annual. I received very
helpful comments from my colleagues at the Federal Reserve Bank of Minneapolis. Data,
codes, and notes used in this project are available at my Web site (minneapolisfed.org/
research). The views expressed herein are those of the author and not necessarily those
of the Federal Reserve Bank of Minneapolis or the Federal Reserve System.

1. See Section 7, where Gali and Rabanal note that "a misidentified and/or misspecified
SVAR often leads to incorrect inference In those cases, the finding of incorrect infer-
ence is neither surprising nor novel since it restates points that have already been made
in the literature."

2. See McGrattan (2004) for data sources.

3. I fixed parameters of utility and technology as follows: ij/ = 2.24, a = 1, /? = .9722,
0 = .35, d — .0464, yn = 1.5%, and yz — 1.6%. These values are standard in the literature. I
also restrict measurement errors in observed data to be very small. See McGrattan (2004)
for further details.

4. See, for example, Sims (1971, 1972), Hansen and Sargent (1991), Lippi and Reichlin
(1993), Faust and Leeper (1997), Cooley and Dwyer (1998), Erceg et al. (2004), and Uhlig
(2004).

5. This is also demonstrated in my earlier work: McGrattan (1999).

6. See, for example, Parente and Prescott (2000), Lagos (2003), and Schmitz (2004).
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Valerie Ramey
University of California-San
Diego and NBER

1. Introduction

Jordi Gali and Pau Rabanal's paper presents a comprehensive review
and synthesis of a rapidly growing literature on the role of technology
shocks in business-cycle fluctuations. The paper is a must read for any-
one who wishes to understand this literature. In addition to reviewing
and consolidating the evidence, Gali and Rabanal specify and estimate
the parameters of a model with both real and nominal rigidities to de-
termine which features of the model are important for matching key
aspects of the data.

The issues discussed in this paper are central to macroeconomics.
Four separate questions are raised by this paper:

• Does a positive technology shock lead hours to rise in the data?

• Do technology shocks account for an important part of the variance
of output and hours at business-cycle frequencies?

• What does the evidence on technology shocks imply about the rele-
vance of real versus nominal rigidities?

• What are the main sources of economic fluctuations?

Much of the paper can be characterized as reviewing the results from
the literature with respect to these questions, and then adding some
new results. Thus, I will organize my discussion around these four
questions.

2. Does a Positive Technology Shock Lead Hours to Rise in the
Data?

Gali and Rabanal give a thorough review of the literature on this
point. The main source of controversy concerns how labor input is
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specified in the empirical model. It should be noted that the identi-
fication restriction does not require labor to have a unit root, but it
appears that results can be sensitive to the way in which labor input is
included.

Gali and Rabanal perform a great service by combining in one place
many possible specifications for labor input. The results presented in
their Tables 1 and 2 show that in 11 of 12 possible specifications, a pos-
itive technology shock leads labor input to decline. It is only when
hours per capita (defined as nonfarm hours divided by the population
age 16 and older) are assumed to be stationary that labor input is pre-
dicted to increase.

Is this measure of hours per capita stationary? As Figure 6 of the
paper shows, this hours per-capita series displays some important
low-frequency movements. How important are these low-frequency
movements? Very important. If we ignore the low-frequency move-
ments in hours and we continue to assume that labor productivity and
output have a unit root, we must then revamp the stylized facts of
business cycles. While the correlation of hours growth with output
growth is 0.7, the correlation of the level of hours with output growth
is —0.017, contrary to the notion of positive comovement of hours and
output. Ignoring the low-frequency movements also means that we
should revise the business-cycle peak and trough dates. For example,
relative to the mean of the entire series, 2002 was more of a boom year
in employment than either the 1973 peak or the 1980 peak.

As Gali and Rabanal's review of the literature indicates, there are nu-
merous other reasons why one should not assume that this measure of
hours per capita is stationary. First, even Christiano, Eichenbaum and
Vigfusson (2003) find that standard Augmented Dickey-Fuller, Han-
sen, and Kwiatowski, Phillips, Schmidt, and Shin tests support a unit
root in the series that extends back to 1947. Second, Francis and Ramey
(2003) show that nonstationary hours is consistent with standard Real
Business Cycle theory. Third, Francis and Ramey (2003) suggest that
the specification with hours in levels is underidentified. While the
specification with hours in differences produces a technology shock
that is not Granger-caused by variables such as oil shocks and the fed-
eral funds rate, the specification with stationary hours produces a tech-
nology shock that is Granger-caused by these variables. Moreover, the
specification with hours in levels implies that the nontechnology shock
has a highly persistent effect on labor productivity, a result that is con-
trary to the key identifying assumption.
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Fernald (2004) explains the source of the problem with the specifica-
tion with hours in levels. He shows two statistically significant breaks
in the mean growth of labor productivity that coincide with some of
the key low-frequency movements of hours per capita. While the first
difference specification is robust to these breaks, the stationary hours
specification is not. Including these breaks in the hours in levels speci-
fications produces a negative response of hours to technology shocks,
consistent with the other specifications.

In summary, Gali and Rabanal are correct in their contention that the
weight of evidence supports the result that positive technology shocks
lead to a decline in hours.

3. Do Technology Shocks Account for an Important Part of the
Variance of Output and Hours at Business-Cycle Frequencies?

Even those who cling to specifications with stationary hours find that
neutral technology shocks are not an important source of fluctuations.
Recent work, however, suggests that we should be looking at another
type of technology shock: investment-specific technological change
shocks, abbreviated as I-shocks. Using a calibrated dynamic general
equilibrium (DGE) model, Greenwood, Hercowitz, and Krusell (2000)
find that I-shocks can account for 30% of the variance of output. Using
longrun restrictions, Fisher (2003) finds that I-shocks account for more
than 50% of the variance of output in the data.

These results on the importance of I-shocks are not without con-
troversy, however. Gali and Rabanal analyze the sensitivity of Fisher's
results to his assumption of stationary hours per capita. When hours
are in first differences, I-shocks still have a positive effect on hours.
However, the conclusions regarding variance change. When hours are
in first-differences, I-shocks contribute only 20% of the variance of out-
put and hours.

The evidence compiled so far suggests that these types of shocks are
more promising candidates than neutral technology shocks. How im-
portant they are remains to be seen.

4. What Does the Evidence on Technology Shocks Imply About
the Relevance of Real Versus Nominal Rigidities?

My reading of the evidence with respect to this question is "not much,"
at least at the aggregate level. As shown by Francis and Ramey (2003),



312 Ramey

Rotemberg (2003), and Linde (2003), RBC models with real rigidities,
such as slow technology diffusion or adjustment costs on investment,
can produce a negative effect of technology on hours. Similarly, work
by King and Wolman (1996) and Basu (1998) as well as this paper has
shown that certain parameterizations of sticky price models can repro-
duce the results as well. All models, with real or nominal rigidities,
produce a decline in hours through the same intertemporal sub-
stitution mechanism: real wages do not rise much initially, so indi-
viduals expect future wages to be higher and hence they work less
today.

Gali and Rabanal's estimated model supports the notion that it is
difficult to distinguish the importance of real versus nominal rigidities
based on aggregate data. They present and estimate a model with habit
formation in consumption, sticky wage and price setting, and a Taylor
rule. For simplicity, they assume constant returns to labor and no capi-
tal. In a very informative exercise, they shut down each of the rigidities
one by one and examine the ability of the model to reproduce the busi-
ness-cycle correlations. Either the real rigidity alone or the nominal
rigidities alone can reproduce the patterns in the data.

5. What Are the Main Sources of Economic Fluctuations?

The estimates of Gali and Rabanal's model implies a central role for
preference shocks. They find that preference shocks explain 57% of
output growth and 70% of hours growth. On the other hand, technol-
ogy shocks explain 22% of output growth and 0.8% of hours. Monetary
shocks account for only 5% of output growth and 0.4% of hours.

To what extent should we believe this variance decomposition? At
this point, I am led to the following conclusion.

6. Conclusion: It's Deja Vu All Over Again

After reading Gali and Rabanal's comprehensive review of the litera-
ture and the new results they present, I am struck by the similarity of
the current debate to one that began almost 20 years ago. The papers
in the earlier debate produced widely varying results about the impor-
tance of technology shocks. This lack of unanimity led some observers
to comment on the uncertainty concerning the source of shocks.

Consider the following series of quotes from that debate that are
now echoed in the present debate:
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• Prescott, 1986:

[Technology shocks account for more than half the fluctuations in the postwar
period, with a best point estimate near 75%.

• Shapiro and Watson, 1988:

Technological change accounts for roughly one-third of output variation.

[Permanent shocks in labor (supply) account for at least 40 percent of output
variation at all horizons

Hours now fall sharply in response to shock to technology

• Blanchard and Quah, 1989:

Demand disturbances make a substantial contribution to output fluctuations at
short and medium-term horizons; however, the data do not allow us to quan-
tify this contribution with great precision.

"Favorable" supply disturbances may initially increase unemployment.

• Eichenbaum, 1991:

What the data are actually telling us is that, while technology shocks almost
certainly play some role in generating the business cycle, there is simply an
enormous amount of uncertainty about just what percent of aggregate fluctua-
tions they actually do account for. The answer could be 70% ..., but the data
contain almost no evidence against either the view that the answer is really 5%
or that the answer is really 200%.

• Cochrane, 1994:

I conclude that none of these popular candidates accounts for the bulk of eco-
nomic fluctuations.

If this view is correct, we will forever remain ignorant of the fundamental
causes of economic fluctuations.

• Hall, 1997:

The prime driving force in fluctuations turns out to be shifts in the marginal
rate of substitution between goods and work.

The two key sets of questions in the study of business cycles are: (1)
What are the impulses? and (2) What are the propagation mecha-
nisms? The last 10 years of research has focussed more on the second
question. Current-generation DGE models now capture key aspects of
the data such as the effect of monetary shocks and the hump-shaped
responses of output to shocks. Thus, we now have a better mouse trap.
On the other hand, we are lacking in consensus about which shocks are
important, just as we were 20 years ago. Thus, it is clear that we need
continued research on the nature of the impulses, in the hope that we
can find some plausible mice to run through our mouse traps!
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Discussion

Some of the discussants were concerned about the details of McGrat-
tan's model in the discussion and wondered about the possible source
of differences with the authors' framework. Gali interpreted McGrat-
tan's results as implying that the identifying restrictions of their vector
autoregression (VAR) were incorrect, and then he wondered about the
source of the unit root on hours per worker if it was not technology
shocks. Harald Uhlig stated that if technology shocks were the only
source of permanent movements in labor productivity, then the iden-
tification strategy of Gali and Rabanal had to be right. On the other
hand, if there were other permanent shocks that also influenced labor
productivity, then the identification was wrong. According to Uhlig,
McGrattan's model had to have other permanent shocks other than
productivity and suggested that maybe one could be the investment
wedge shock. Matthew Shapiro commented that there were a variety
of variables that were not mean-reverting fast enough to fit McGrat-
tan's growth model well. According to Shapiro, the natural rate of un-
employment, the real interest rate, and hours per worker were all
variables with low-frequency movements that could not be explained
by technology or by demand shocks and might be driven by prefer-
ence shocks or tax wedges.

Gali mentioned a recent paper by Christopher Erceg, Luca Guerrieri,
and Christopher Gust in which they did the exercise McGrattan pro-
posed, but they used a real business cycle model and a new Keynesian-
type model, where the model and the driving forces were specified so
that the identifying restrictions were correct. They used the model to
determine to what extent the estimation procedure of Gali and Rabanal
captured well the predictions of the two models. Their conclusions, he
said, were that indeed it captured it well. Eva Nagypal commented
that according to her, the conclusions of the paper by Erceg et al. were
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that when one was using a VAR with 45 years of quarterly data and
one was trying to identify productivity shocks using long-run restric-
tions, then the Montecarlo simulation showed that one was going to
have a hard time making definite projections on the sign on the re-
sponse of hours and that to do so, one would need data for 300 years.

Gali responded to McGrattan's comment that economists who
once claimed technology shocks as important were not doing so any
more and instead were looking at other issues, such as the sources of
changes in total factor productivity. Gali said that although these were
very interesting exercises, he did not see their usefulness when trying
to explain business-cycle fluctuations. He also addressed her point that
their environment ignored investment and said that the reason behind
it was to simplify the model. He added that extended versions of their
framework, such as in recent papers by Pau Rabanal or Frank Smets
and Raf Wouters, found similar results on the role of technology
shocks as a source of fluctuations.

On McGrattan's remark that money did not seem to be important in
their model, he commented that he did not believe that many people
claimed that monetary policy shocks were an important source of eco-
nomic fluctuation. However, this did not mean, he added, that mone-
tary policy was not important, but that central banks did not act in
erratic ways. Frederic Mishkin seconded Gali's view and said that
what was important in terms of successful monetary policy was its sys-
tematic part and that reasonable models implied that these shocks
were an important source of fluctuations.

Gali agreed with Valerie Ramey about the idea of not taking a
dogmatic stand concerning the behavior of hours. According to
him, the data seemed to show hours and hours per worker as nonsta-
tionary and there were many factors, such as demographic factors
used in recent work by Robert Shimer, that could account for this non-
stationarity. Harald Uhlig was concerned about the use of first dif-
ferences of hours in the VAR. He noted that the paper by Lawrence
Christiano, Martin Eichenbaum, and Robert Vigfusson showed that
one could explain the difference results in terms of the level specifica-
tion but not the other way around, and hence it was more difficult to
explain their results away than just saying that hours worked were
nonstationary.

Uhlig also questioned the authors about the sign of the response of
measured productivity and if it was procyclical as in the data. Gali re-
plied that their model could not account for procyclical productivity in
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response to demand shocks or other shocks since by construction they
had a simple technology that was constant returns to labor. He added
that it would be easy to extend the framework by allowing for un-
observed changes in effort, as he did in his American Economic Review
paper.

Some of the discussants were concerned with the large variety of
models and shocks used to explain similar events and commented on
the need to set some common ground to compare results. David
Backus asked if there were some common shocks about which all econ-
omists could agree and that could be used as a common starting point.
Lucrezia Reichlin sugested the use of only two shocks, one of which
would be a large nonneutral shock on output that one should not nec-
essarily interpret as a technology shock due to the difficulties of fore-
casting output on long horizons. Susanto Basu suggested the use of the
same type of short-run model regardless of the source of shock and to
avoid adding frictions depending on whether one was studying techno-
logical, monetary, or fiscal shocks, as was done in the paper by David
Altig, Lawrence Christiano, Martin Eichenbaum, and Jesper Linde.

Robert Gordon commented on Figure 1 of the paper and noted the
different relationship between hours worked and output in the last two
jobless recoveries, 1991-1992 and 2001-2003. He thought that there
was a genuine change in behavior and that one could not explain what
was happening in the last two years using the experience of the previ-
ous twenty or thirty years.

Jesus Fernandez-Villaverde stated that some of the models in the lit-
erature had been unfair to the neoclasical growth model and with its
predictions. He noted that most of the exercises were conducted after
detrending output, but the neoclassical model was able to explain a re-
cession at the beginning of the century and a greater recession in the
1930s as a consequence of a change in the growth of technology. He
also thought that one should remember the distinction between tempo-
rary changes and changes in the trend when trying to identify technol-
ogy shocks. John Fernald responded to Villaverde and said that hours
worked fall if one conditions on the regime shift, so he did not think
that it was a growth trend change that drove any of the results in the
paper by Gali and Rabanal. Gali added to Fernald's point that al-
though one could modify the technology process to account for the
sort of evidence emphasized in the paper, that would not help the
model account for business cycles since those were characterized by a
positive correlation between output and hours.




