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6 Investing for the Short 
and the Long Term 
Stanley Fischer 

The expected real monthly return on Treasury bills is serially correlated, 
by some estimates following a random walk.' Expected real returns on 
stocks have axlifferent dynamics. This means that the relative risk charac- 
teristics of stocks and bills differ depending on how long they are held. 

For example, suppose that the expected real returns on Treasury bills 
are highly serially correlated and that expected real returns on stocks are 
less serially correlated. It is known that the variance of unexpected real 
returns on stocks, looking ahead one month, is about one hundred times 
the variance of the unexpected real return on bills. Stocks are of course 
much riskier than bills in the short run of a month. 

Now consider an investor making a long-term portfolio decision to 
allocate his wealth between two mutual funds-a bill fund and a stock 
fund-with the proceeds being automatically reinvested in the fund in 
which they originate. Given the assumed serial correlation properties of 
asset returns, the longer the investment period, the less risky are stocks 
relative to bills. 

Three questions are taken up in this chapter: (1) How does the term 
structure of risk arising from differences in the dynamics of asset returns 
affect optimal investment behavior? (2) What is the evidence on the 
dynamics of returns on stocks and bills in the United States? (3) Given the 
returns dynamics estimated in the paper, how do optimal portfolios 
change with the length of the holding period? 

Stanley Fischer is professor of economics, Massachusetts Institute of Technology, and a 
research associate of the National Bureau of Economic Research. Part of the work for this 
paper was done while he was a visiting scholar at the Hoover Institution. 

I am grateful to Sudipto Bhattacharya, Fischer Black, Barry Goldman, Hayne Leland, 
Thomas MaCurdy, and Robert Merton for helpful comments and discussions, and to Jeffrey 
Miron for excellent research assistance. Financial support was provided by the National 
Science Foundation and the Hoover Institution. 
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154 Stanley Fischer 

In section 6.1 I distinguish between the horizon of the investor and the 
portfolio holdingperiod and briefly review known results on the effects of 
the horizon on the investment decision. In section 6.2 I set out the 
dynamics of asset returns and uncertainty about those returns as a func- 
tion of the length of the holding period of an asset. Optimal mean- 
variance portfolios for investors choosing between two assets each with 
returns following a first-order autoregressive process are calculated in 
section 6.3. The dynamics of returns on stocks and bills are described in 
section 6.4, using United States data since 1926. Section 6.5 presents the 
results of simulations of optimal portfolios for holding periods of dif- 
ferent lengths, given the dynamics described in section 6.4. Section 6.6 
contains comments on the applicability of the analysis to pension invest- 
ing. Concluding remarks are in section 6.7. 

6.1 The Investment Horizon and the Portfolio Holding Period 

Consider an investor maximizing the intertemporal utility function 
r 

where C ( t )  is the rate of consumption at time t ,  U [  C ( t ) ]  is the instan- 
taneous utility function, 6 is the discount rate, W (  T )  is real wealth at time 
T ,  B( ) is a utility of bequests function, and 8 is a constant, 0 5  8 s  1. 

Suppose first that 8 is equal to zero, so that the individual maximizes 
only the expected utility of bequests EoB[  W ( T ) ] .  In this case T is the 
investment horizon. The function B ( ) is also called the terminal utility 
of wealth function. Research on growth and turnpike portfolios (for 
example, Hakansson 1971, 1974; Leland 1972; Merton and Samuelson 
1974; Ross 1974) has examined the effects of the length of the investor’s 
horizon on optimal portfolio composition. The main question here is 
whether as the horizon lengthens all investors tend to hold the same 
portfolio-the general answer is no. There is a further question whether 
investors should or might want to maximize the expected growth rate of 
the value of the portfolio (subject to no short sales); again, the answer is 
in general no. 

The investor’s holding period is the interval of time between successive 
portfolio actions.z At one extreme, the investor may have an arbitrarily 
short holding period, engaging in continuous trading to rebalance the 
portfolio. At the other extreme, the investor may make his only portfolio 
decision at time zero and thereafter not be able to adjust the portfolio’s 
composition. The important point is that the investor does not respond 
within the holding period to changes in actual and desired portfolio 
composition resulting from the behavior of asset returns. 

For any given holding period, the individual solves the optimal port- 
folio problem from the recursion relations 
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(2) J [  W(t)] = maxE,{J[W(t + A)]}, 0 5 t <  T ,  

with J[W(T - A)] = max ET-aB[W(T)]. In (2) J (  ) is the indirect or 
derived utility function, and A is the length of the holding period. The 
maximization is conducted with respect to the composition of the port- 
folio. 

Research on myopia in portfolio choice, by Mossin (1968), Hakansson 
(1970), and Samuelson (1969), considers the circumstances under which 
the investor’s optimal portfolio is, for any given holding period, indepen- 
dent of the horizon. For utility functions with constant absolute or 
relative risk aversion, the investor’s portfolio decision is independent of 
the length of the horizon, depending only on wealth. But, as shown by 
Goldman (1979), the composition of the optimal portfolio is not indepen- 
dent of the holding period, even when utility functions have constant 
relative risk aversion. 

The holding period for an individual managing his own portfolio is 
likely to be finite but not constant. Portfolio rebalancing will be under- 
taken only at discrete intervals because it is costly. But the interval is not 
fixed because the need for rebalancing varies with the behavior of asset 
prices. 

An investor who saves through regular contributions to a retirement 
fund, for which he specifies the breakdown of his portfolio between 
equities and bonds, may formally be permitted to change the composition 
of his retirement portfolio only once a year or every few years. However, 
if such an individual also has discretionary portfolio assets, he can effec- 
tively rebalance his portfolio more frequently than the rules of the 
retirement fund formally permit. He does this by using the discretionary 
funds to offset movements in portfolio composition in the retirement 
funds. 

When the possibility of consuming at intermediate dates, t< T ,  is 
reinstated by setting 8 in (1) at a value other than zero, the notion of the 
horizon loses its crispness. Date T is still the horizon in the sense that the 
individual looks no further ahead than T. But now events that occur at 
t<T matter not only because they affect the situation at T but also 
because consumption at t and later depends on the state of the world at 
time t .  Despite the ambiguity, I continue to refer to T as the horizon. 

The notion of the portfolio holding period retains its meaning, how- 
ever. Even if consumption is continuous, optimal portfolio behavior may 
involve infrequent rebalancing of the portfolio. Inventories of goods and 
liquid assets are used to finance consumption within the holding period, 
while the investment portfolio is rebalanced at discrete intervals. 

The optimizing problem of the investor-consumer is again solved as in 
(2), with the aid of recursion relations and an indirect utility function. For 
any given frequency with which decisions are made, questions about 
myopia in portfolio behavior receive the same answers as they do without 
intermediate consumption. 
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I do not in this chapter analyze optimal investment strategy for an 
individual faced with costs of portfolio management and given dynamic 
properties of asset returns. Optimal strategy in such a case will involve a 
finite but not constant holding period. Instead, I study the simpler prob- 
lem in which the holding period is given. My analysis focuses on the 
effects of the length of the holding period on the optimal composition of 
the portfolio when asset returns are serially correlated.’ I assume that 
there are a significant number of individuals for whom the portfolio 
holding period is on the order of months or even years. For such indi- 
viduals the distinction between the short-run and the long-run properties 
of asset returns may be important. 

6.2 Rates of Return and the Length of the Holding Period 

In this section I briefly examine the distribution of per period rates of 
return on an asset as a function of the number of periods for which it is 
held. The returns are assumed to follow a stable first-order autoregressive 
process. 

( 3 )  t n ( 1  + r l ) = x t  = a + pxt-l + E,, 

where E ,  is serially uncorrelated and normally distributed with expecta- 
tion zero and variance uf. 

Let W, be the amount obtained by buying one dollar of the asset at the 
beginning of period 1 and reinvesting the returns for N periods. Then 

Suppose the rate of return on an asset, r,, is described by 

(4) In W, = In n,”( 1 + ri) 
= c ; y x i .  

From (3) and (4), 
N t l - r  

( 5 )  In W,= - 
1 - p  1 - p  

W, is therefore lognormally distributed, with 

and 

The expectation and variance of terminal wealth, W,, are given by 
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and 

(9) var(wNlx,) = e N (esk - 1). 2mN t S 2  

Now define the expected rate of return per period on an N-period 
investment, p ( N ) ,  by 

(10) N F ( N )  = mN. 

(11) Na2(N)  = s$. 

The variance of the per period return, u2(N), is defined by 

Asymptotically, the per period expected rate of return is just [d(l  - p)], 
with the additional term in (6) reflecting the effect on expected returns of 
initial conditions. 

The per period variance of returns goes asymptotically to 

For N = 1, of course, 

(13) d(1)  = a:. 

Thus the variance of the per period rate of return on an asset increases by 
a factor of (1 - p)p2 as the number of periods for which it is held rises 
from one to many. For a highly autocorrelated series, p = .9, the ratio of 
the asymptotic to the one-period variance of the per period return is 100. 

Table 6.1 shows how the variance of the per period rate of return 
changes with the number of periods for a first-order autoregressive 
process, for alternative values of p. The effects of the serial correlation on 
the variance of the per period return are highly nonlinear in the pa- 
rameter p. 

Table 6.1 Variance of per Period Returns for a 
First-Order Autoregressive Process 

N p = 0.9.5 p = 0.9 p=0.7.5 p=0 .5  

1 
2 
3 
6 

12 
24 
48 

120 

1.0 
2.4 
4.3 

12.5 
36.2 
02.7 

186.9 
304.5 

1.0 
2.3 
4.0 

10.4 
25.1 
48.6 
71.6 
88.6 

1 .o 
2.0 
3.1 
6.2 

10.0 
12.9 
14.4 
1.5.4 

1 .o 
1.6 
2.1 
2.9 
3.4 
3.7 
3.9 
3.9 

Nore: Entries show variances of per period returns for holding period of length Nrelative to 
variance for one period. 
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6.3 Minimum Variance and Optimal Mean-Variance Portfolios 

In this section I examine minimum variance and optimal mean- 
variance portfolios when asset returns follow first-order autoregressive 
processes like (3). The consumer-investor is understood to be maximizing 
an intertemporal utility function with indirect utility function that is 
quadratic in the portfolio return, and with portfolio holding period of 
length N .  

Suppose there are two assets, 1 and 2, with returns described by 

(14) = cri + P i ~ i , f - l  + E ~ ~ ,  i = 1,2 ,  

with E ( e l t  E ~ ~ )  = u12 and variances of E~ denoted af .  
Define the variance of the per period rate of return for each asset by 

d ( N ) ,  as in ( l l ) .4  Let w be the share of the first asset in the portfolio and 
define the variance of the portfolio rate of return as 

(15) u$(N) = w2a?(N) + 2w(l - w)u,~(N)  + (1 - w)’&(N), 

where a,,(N) is the covariance of the per period rates of return, given by 

6.3.1 The Minimum Variance Portfolio 
The minimum variance portfolio is given by 

In particular, 

and 

(19) w * ( m )  = 
(1 - P d 2 d  - (1 - P d l  - P 2 b 1 2  

(1 - P2)2(J: - 2(1 - Pd(1 - P Z > @ l 2  + (1 - PI)%. 
The difference between the one-period and asymptotic minimum 

variance portfolios depends largely on P2 - P I :  
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where D1 and D, are the denominators of the expressions in (18) and 
(19), respectively. 

For both p1 and p2 less than one in absolute value, and for zero 
covariance of asset returns (uI2 = 0), the minimum variance portfolio 
moves toward or away from stocks as the holding period lengthens, 
depending only on the sign of (p2 - P I ) .  When asset returns are positive- 
ly correlated (uI2 > 0), the direction of the shift in the minimum variance 
portfolio apparently becomes less certain. However, for stocks as the 
riskier asset (so u: > uI2) and provided w* (1) is positive (so u$ > u12), the 
direction of shift is of the same sign as (p2 - pl). 

The composition of the minimum variance portfolio may be highly 
sensitive to the length of the holding period. To take a simple example, in 
which asset 1 should be thought of as stocks, assume that 
u12 = 0, p1 = 0, and p2 = .9. Then w*(l) = .01 and w*(m) = S O .  As the 
holding period lengthens in this case, stocks take up a larger part of the 
minimum variance portfolio. It takes a holding period of 19 periods for 
the optimal share of the first asset in the portfolio to reach 25%. The 
47.5% mark is reached only after 131 periods. 

= 

6.3.2 Mean-Variance Portfolios 
Although the usual justifications for mean-variance portfolio analysis 

do not apply when portfolio decisions are made for the long term, it is 
instructive briefly to consider optimal mean-variance portfolios as a 
function of the decision period. If utility is defined as a function of the 
mean and variance of the portfolio returns, the optimal proportion of the 
first asset in the portfolio is 

where A is a measure of risk tolerance and k j ( N )  is the expected per 
period return on asset i. 

In (21) we interpret the first asset as the stock, which has a higher 
expected return than bills. Two forces act on the portfolio as the horizon 
changes. In the first (excess return) term on the right-hand side of (21), 
the numerator stays constant as N increases while the denominator 
increases with N .  Thus the asset holder will want to hold less of the stock 
when the riskiness of the excess return on stocks rises relative to the 
expected return, as the holding period lengthens. Second, as seen above, 
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the share of the stock in the minimum variance portfolio, w* ( N ) ,  changes 
as the holding period N increases. 

For pz > P I ,  the two portfolio effects-that through the first, excess 
return, term and that through the minimum variance portfoli-work in 
opposite directions. Thus the effects of changes in the holding period on 
the composition of the portfolio will be ambiguous for this mean-variance 
case, if p2>p1. The net effect on the portfolio will depend on the 
parameters of the stochastic processes describing asset returns and on the 
investor’s risk tolerance. The presumption is that if p2>> P I ,  the shift in 
the portfolio will be toward stocks as the holding period lengthens, but if 
the serial correlation properties of the returns on the two assets are 
similar, it is less certain which way the portfolio will shift with the holding 
period. 

6.3.3 

Mean-variance portfolio analysis is difficult to justify when the holding 
period is long. But it turns out that ambiguities similar to those noted 
above emerge when utility functions are isoelastic and asset returns 
follow diffusion processes. 

Goldman (1979) has shown, for isoelastic utility functions, that port- 
folios become less diversified as the holding period lengthens when asset 
returns are generated by diffusion processes with no serial correlation. 
Portfolio proportions move away from one-half toward undiversified 
positions as the holding period lengthens. 

When serial correlation of asset returns is introduced, there is an effect 
additional to that of Goldman on the composition of the portfolio 
(Fischer 1982). As the relative risk of assets changes with the holding 
period, the composition of the portfolio changes for that reason as well as 
the Goldman effect. The net effect depends on the relative strengths of 
the Goldman effect and the risk-aversion effect. 

Portfolio analysis thus cannot unambiguously describe the effects of 
changes in the holding period on the composition of the portfolio. The 
effects depend on both the facts-the stochastic processes describing 
asset returns-and the investor’s preferences. In the next section we turn 
to the facts. 

Constant Relative Risk Aversion Portfolios 

6.4 Asset Returns 

Although knowledge of the stochastic processes generating asset re- 
turns is essential to portfolio behavior, there is no consensus on what 
these processes are. Nor are there well-known competing estimates of the 
stochastic processes. In this section I first present evidence that there are 
both serial correlation in bill returns and differential returns dynamics of 
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bill and stock returns. Then I present three alternative estimates of the 
stochastic processes generating asset returns. 

Method 1 estimates a simple autoregressive model for real bill returns 
and then treats the real return on stocks as a function of the anticipated 
real rate on bills and lagged stock returns. This method has been used by 
Fama and Gibbons (1982). 

Method 2 estimates a complete monthly vector autoregressive model 
of the economy, including stock and bill returns among the variables in 
the model. The vector autoregressive model implies the dynamics of 
stock and bill returns. Because the rate of inflation, growth rate of 
industrial production, and rate of money growth are included in the 
model, the dynamics of asset returns is potentially richer than in the 
simpler constrained processes estimated by method 1. 

Both methods 1 and 2 at times imply that the expected real return on 
bills exceeds that on stocks. Method 3 therefore imposes a constraint, of a 
type implied by the capital asset pricing model, on the processes generat- 
ing the returns. 

This section ends with a comparison of the alternative estimates of 
returns. 

6.4.1 Differential Returns Dynamics 
Simple time-series properties of realized real rates of return on stocks 

and Treasury bills are suggested by table 6.2. Stock and bill returns are 
monthly Ibbotson-Sinquefield data from the Center for Research in 
Security Prices; stock returns are from the Standard and Poor's Compos- 
ite Index. Real rates of return are calculated from the nonseasonally 
adjusted consumer price index.5 Returns are measured as logarithms of 
one plus the return. Returns for more than one month are compounded 
for nonoverlapping periods. 

The essential point made by table 6.2 is that the relative riskiness of 
stock returns falls with the length of the holding period. For data covering 
the entire 1926-80 period, the per period variance of returns on stocks is 
100 times that on bills over a one-month holding period; over a one-year 
holding period, the variance of returns on stocks is 20 times greater than 
that on bills. The ratio of variances over 5-year holding periods is only 
4.4, though this number should be treated with caution because it is based 
on only 11 5-year periods. A similar, though less dramatic, pattern holds 
over the 1948-80 period.6 I will from this point on work with monthly data 
for the period 1948-80. 

The per period variances in table 6.2 suggest both that stock returns are 
(approximately) serially uncorrelated and that bill returns are positively 
serially correlated. If stock returns were i.i.d., the per period variance 
would be independent of the length of the holding period. As it is, the per 
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Table 6.2 Real Monthly Returns on Stocks and Bills 

Mean return ,00511 - ,00008 ,00593 ,00003 

Variance of 
returns per month 

I-month holding period ,362 ,00353 102.5 ,160 ,00098 164.3 
2-month holding period ,402 .00547 73.5 ,164 ,00140 117.2 
4-month holding period ,355 ,00826 43.0 ,192 ,00177 108.8 

12-month holding period .381 ,01649 23.1 ,192 ,00330 58.3 
60-month holding period (.I88 ,04322 4.4) (.326 ,00683 47.7) 

Nofe:  The variances should all be multiplied by .01. Stock and bill returns are from the 
Ibbotson-Sinquefield File, Center for Research in Security Prices, University of Chicago; 
real returns are calculated using seasonally unadjusted CPI. Parentheses in last row of table 
are a reminder that statistics are based on only 11 and six data points, respectively. 

period variance for stocks increases slightly with the length of the holding 
period. The per period variance of returns on bills rises more sharply with 
the length of the period. 

Autocorrelation functions for real stock and bill returns are presented 
in table 6.3. Bill returns are significantly serially correlated, whereas 
stock returns are not. The autocorrelation function for bills suggests that 
the stochastic process for bill returns is something other than a first-order 
autoregression. 

I now present three sets of estimates of the stochastic processes gener- 
ating asset returns. Each method allows for correlation of stock and bill 
returns; such correlations can have a major impact on portfolio decisions. 
It will become clear below that method 3 is the preferred estimation 
method in this chapter, but methods 1 and 2 are included since they either 
have already appeared in the literature or else are typical of methods 
currently used to generate expectations. 

6.4.2 Estimation Methods 
Method 1 

The first method of estimating bill and stock returns dynamics is that of 
Fama and Gibbons (1982). The procedure is first to estimate a simple 
ARMA model for real bill returns and then to relate stock returns to 
expected bill returns. The rationale for this approach is that models of 
capital asset pricing imply that expected real returns on stocks are related 
to expected returns on bills. 

Table 6.4 presents estimates of a twelfth-order autoregressive process 
for the real bill rate, using data from the period 1948:2-1980:12. The 



Table 6.3 Autocorrelation Functions, Real Monthly Returns on Stocks and Bills, 1948:2-1980:12 

Real bill rate .39 .29 .22 .10 .09 . 0s .0s .14 .1s .14 .14 .13 
Real stock return .03 -.01 .07 .10 . l l  -.07 -.03 -.02 .06 - .03 .02 .08 

Lag Lag Lag Lag Lag Lag Lag Lag Lag Lag Lag Lag 
13 14 1s 16 17 18 19 20 21 22 23 24 

Real bill rate .03 .04 .06 .06 -.01 -.0S - . l o  0 0 .O1 . 0s .04 
Real stock return -.01 -.07 0 .03 .02 -.04 -.05 0 -.US -.02 -.02 - .04 

Notes: Real returns are calculated using seasonally unadjusted CPI; patterns using seasonally adjusted CPI show somewhat higher autocorrelations for real 
bill rates, no change for stocks. Standard error of coefficients is .0.5. (There are 395 observations.) 
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Table 6.4 Bill and Stock Returns, Method 1, 1948:2-1980:12 

Equation (R1): Real Bill Rate" 

Lag Lag Lag Lag Lag Lag 
1 2 3 4 5 6 

.25 .10 . l l  .04 - .03 - .06 
(1  3 9 )  ( I  .84) (2.09) (0.69) ( - 0.55) ( -  1.20) 

.Oh . 10 .07 .09 -.11 - .05 
(1.27) (1.95) (1.51) (1.80) (~ 2.30) ( - 1.05) 

Equation (R2): Real Stock Rate' 

RS, = ,0057 + 3.03 r -  ,RB, + .019RS,- I 

(2.83) (2.33) (0.38) 

Note: ,- ,R, is the expectation of RB, formed at the end of period t - 1, using eq. (Rl ) .  
Numbers in parentheses are t-statistics. 
'Regressed on constant, 11 seasonal dummy variables, and 12 lagsof real bill rate. R' = .20, 
SEE = ,0028, D-W = 1.92, Q = 59.7. 
hI?Z = ,0097, SEE = ,0398, D-W = 1.99, Q = 61.5. 

length of the autoregression was chosen to eliminate serial correlation in 
the residuals, as indicated by the @statistic. More parsimonious repre- 
sentations using moving average as well as autoregressive parameters did 
not improve on the properties of the real bill rate equation.' 

The real return on stocks is then regressed on the expected return on 
bills, as computed in regression (Rl) .  The real return on stocks is sig- 
nificantly positively related to the ex ante real return on bills. The share of 
the variance of realized stock returns accounted for by movements in the 
expected bill rate is however less than 1%.  The standard error of estimate 
of the stock rate of return over the next month is almost 4%, at a monthly 
rate. Thus actual movements in real stock returns are hardly at all the 
result of changes in the expected rate, at least according to the estimates 
presented in table 6.4. 

As a result of the constraints under which the stock and bill returns 
processes are estimated, the ex ante rates of return on stocks and bills 
follow very similar stochastic processes. The first-order autocorrelations 
of ex ante bill and stock returns are both about .7. 

Method 2 

Method 2 estimates a monthly five-variable vector autoregressive 
model of the United States economyfor the period 1948:2-1980:12. The 
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five variables are the rate of money growth (Ml-B), the rate of inflation 
(CPI), the rate of growth of industrial production, the nominal bill rate, 
and real stock returns. Variables are not seasonally adjusted. 

A vector autoregressive model (Sims 1980) imposes a minimum of 
theory in estimating dynamic equations. All variables are modeled as 
endogenous, lags are made long enough to eliminate any serial correla- 
tion of residuals in estimated equations, and no zero restrictions are 
imposed on coefficients beyond those implied by the choice of variables 
to include in the model and the length of lag. 

The form of the model is 

where X, is the vector of (in this case five) included variables, the maximal 
lag length I has to be specified, the coefficients in theA matrices are to be 
estimated, and u, is a white-noise vector of disturbances that may be 
contemporaneously correlated. 

In the model estimated here the lag length was taken to be 12, both to 
eliminate serial correlation of residuals and to pick up any potential 
residual seasonal patterns that were not eliminated by the presence of 
seasonal dummy variables in each of the five equations. The Box-Pierce 
Q-statistic was used to indicate serial correlation.8 

The lag coefficients were estimated imposing a Bayes-Litterman prior 
(Litterman 1980). The prior is that the model is purely first-order autore- 
gressive, with each variable following a random walk. Thus priors are 
that the coefficient of the first own lag in each equation is unity and all 
other lag coefficients are zero.' Prior estimates of the standard deviations 
of the lag coefficients are that the standard deviations fall geometrically, 
with an imposed decay coefficient of .9. The standard deviation for the 
first own lag coefficient is estimated from a first-order autoregression. 
Standard deviations on coefficients of all other variables in an equation 
follow the same decay pattern as those on the own variable, but with 
standard deviations that are half those on the own variables. 

The prior restrictions, which are tighter at the longer lags, reflect a 
general presumption that economic systems are low-order autoregres- 
sions. The priors typically prevent the alternation of coefficients that 
would be expected in any system in which the regressors are highly 
collinear. 

Summary statistics from the five equations are presented in table 6.5. 
The regressions themselves contain too many parameters to be pre- 
sented. The most striking feature of the system is the inability to predict 
stock returns well using the vector autoregressive approach. The F- 
statistic for the regression as a whole is not significant at the 5 %  level, 
though it is significant at the 10% level. 
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Table 6.5 

Equation (R3): Real Stock Returns 

Method 2, Five-Variable Monthly Vector Autoregressive Model 

I?2 = .15 SEE = ,0369 D-W = 2.00 
Q = 42.9 (significance level = .92) 

F-statistics for sums of coefficients on each variable are not significant at 10% level for any of 
the variables. F-statistics for all coefficients not significant at 5% level. 

(R4) Nominal Bill Returns 
B2 = .95 SEE = .00051 D-W = 1.98 

Q = 40.9 (significance level = .95) 
F-statistics show strong significance of lagged bill returns; no other variables significant at 
10% level. 

(R5) CPI Inflation Rate 
I72 = .59 SEE = ,00256 D-W 11.98 

Q = 58.5 (significance level = .42) 
F-statistics show strong significance of lagged inflation rate; lagged nominal bill rates are 
significant at 2% level, lagged money growth at 6% level. Sum of coefficients for each of 
these three variables is positive. 

(R6) Growth Rate of Industrial Production 
E2  = .85 SEE = .a116 D-W = 2.05 

Q = 30.4 (significance level = ,998) 
Lagged stock returns, lagged industrial production and lagged money growth are all 
significant at 5% level. Sum of lagged coefficients is positive for all three variables. 

(R7) Growth Rate of Money - 
R 2  = .92 SEE = ,0040 D-W = 1.99 

Q = 49.1 (significance level = .76) 
F-statistics show sum of coefficients on lagged nominal interest rates and lagged money 
growth strongly significant. Lagged stock prices have significance levelof .08. Sum of lagged 
coefficients positive for all three variables. Coefficients on bill rate lagged one and two 
periods are both negative. 

A vector autoregressive model of the type estimated here should be 
viewed as a statistically sophisticated extension of single-variable time- 
series forecasting methods. No attempt is made to estimate structural 
relations. The hypothesis implicit in the use of such models for forecast- 
ing purposes is that the underlying economic structure, including policy 
response functions, is stable. This approach is as vulnerable as more 
traditional econometric models to the Lucas policy evaluation critique 
that coefficients will change if policy rules change. 

The model was used to form within-sample one-period-ahead forecasts 
of real rates of return on stocks and bills. These predicted rates are 
serially correlated. The first autocorrelation of the real return on bills 
(equal to the nominal rate of interest minus the predicted inflation rate) is 
.61. The first autocorrelation of the predicted return on stocks is .34. 
However, there is a seasonal pattern in stock returns, resulting in a 
twelfth-order autocorrelation of .56. The predicted rates of return on 
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stocks have a high standard deviation, equal to 1.3% per month. The 
standard deviation of predicted real bill returns is 0.2% per month. 

The high variability of the ex ante stock rate also produces occasions on 
which the expected return on stocks is lower than the expected return on 
bills. Rather than attempt to correct this problem by tightening the priors 
on the lag coefficients in the stock returns equation, I imposed a con- 
straint of a type implied by the capital asset pricing model. This leads to 
method 3 for estimating bill and stock returns. 

Method 3 

Method 3 estimates a vector autoregressive model to generate ex- 
pected real returns on bills and then uses the one-period-ahead forecast 
of the real bill rate from that model to estimate an equation for the 
predicted real return on stocks. The assumption is that 

,- RS, - ,- RB, = a,- ls: + e, 

In (23), the left-hand-side variables are the expected real returns on 
stocks and bills, respectively. The variable t - l ~ :  is the expected or 
estimated variance of the excess return on the market. The variable e, is 
random, and a is a parameter to be estimated. 

Equation (23) is not exact, because the capital asset pricing model does 
not imply a constant value of the parameter a when the opportunity set is 
changing. The error term is included to reflect such changes. The coef- 
ficient a is estimated using the assumption that expectations of stock 
returns are rational. With rational expectations, 

RS, = ,- 1 RS, + v, ,  

where v, is a serially uncorrelated error term with expectation zero. 
Substituting (24) into (23), we obtain the estimated equation 

RS, - , - RB, = a, - ls: + e, - v, . 

Some comments on (25). First, the structure of the error term in (25), 
or equivalently the form in which (25) is estimated, is not known or 
determined by a priori considerations. It is possible that e, is het- 
eroscedastic'O and that the implicit assumption made in moving from (24) 
to (25) about the variance of v, is inappropriate. Estimation of (25) in the 
alternative form 

hardly affected the estimate of a, to be reported in table 6.6 below. 
Second, (25) is constrained not to allow a constant. When a constant is 

added on the right-hand side, the constant is small and insignificant, the 
estimate of a falls a little, but a loses its statistical significance. 
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Third, it is necessary in (25) to use an estimate of the variance of the 
excess return on the market." I experimented with variances of lagged 
realized stock returns over 12, 24, and 36 months. There were no major 
differences in the estimates of a. The final choice was the 36-month 
moving variance. 

Table 6.6 contains details of the estimated vector autoregressive sys- 
tem and of (R12), which is the estimated version of (25). The vector 
autoregressive system contains four variables, those of the previous 
section excluding the real return on stocks. Because real stock returns did 
not appear significantly in other equations in the five-variable model, the 
equations for the four-variable model are very similar to those estimated 
in method 2. 

The estimate of a in (R12) is significantly different from zero. The 
predictive power for real stock returns of an equation like (R12) is of 
course extremely small. The implied value of the coefficient of relative 

Table 6.6 Method 3, Estimated Four-Variable Vector 
Autoregressive Model and Stock Returns Equation 

(R8) Nominal Bill Returns 
R2 = .94 S E E  = .00051 D-W = 1.97 

Q = 43.5 (significance level = .91) 
F-statistics show strong significance of lagged bill returns; significance level for inflation 
variables is . l l .  

(R9) - CPI Infiation Rate 
R Z  = .58 SEE = ,00259 D-W = 1.99 

Q = 56.0 (significance level : .51) 
Coefficients on lagged bill returns and lagged inflation are strongly significant; significance 
level for money variables is .08. 

(R10) Industrial Production 
R2 = .84 S E E  = 0.01 19 D-W = 2.04 

Q = 31.6 (significance level = ,998) 
Coefficients on lagged industrial production and money are strongly significant. 

(R11) Growth Rate of Money 
Ez = .91 SEE = ,00408 D-W = 2.00 

Q = 49.5 (significance level = .75) 
Lagged bill rates, industrial production, and money are significant at 5% level. Sum of 
coefficients on bill rate is positive; first two coefficients are large and negative. Sum of 
coefficients on  industrial production is positive. 

(R12) Real Stock Returns 
RS,=, - ,RBr+3.42 , - , s :  

(2.94) 
R2 = .000046 S E E  = 0.0399 D-W = 1.95 

Q = 59.7 (significance level = .38) 
Variables are: [ -  ,RB, is expected real return on bills, equal to nominal rate minus, .  l ~ , .  

the expected inflation rate from (R9). ,- ,sf is the variance of real stock 
returns over the previous 36 months. t-statistics in parenthcses. 
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risk aversion is about 3 ,  corresponding to a utility function of the form 

The expected real rate of return on stocks is now highly serially 
correlated. This is in large part a result of the serial correlation built into 
the method of creating the variance. The first autocorrelation for ex- 
pected stock returns is .83. That for bills is 0.62, approximately the same 
as for method 2. The standard deviation of the expected real rate on 
stocks is now only 0.27% per month; that for bills is 0.18% per month. 
Expected stock returns always exceed expected bill returns, though the 
premium certainly varies. The highest premium is recorded in 1976 and is 
equal to 1.2% per month. The lowest premium occurs in early 1966 and is 
only 0.17% per month. If such variation is too large to be plausible, the 
source of the difficulty is no doubt to be traced to the variance estimator. 

The purpose of estimating the alternative forecasting models is to use 
them in examining portfolio selection over different holding periods. In 
the next section, I use methods 2 and 3 to simulate the behavior of 
different portfolios over one- and 60-period holding periods. 

( - W ) - Z .  

6.5 Simulated Portfolio Results 

The stochastic processes for bill and stock returns implied by methods 2 
and 3 in the previous section were used in simulating the behavior of 
alternative portfolios over holding periods of one month and 60 months. 
The utility function was taken to be isoelastic, of the form 

(26) J(W,) = wyy, y < 1. 
For y = 0, we have the logarithmic utility function. The smaller is y,  the 
more risk averse the individual. 

Four alternative utility functions were used to evaluate portfolio per- 
formance. They were the logarithm, y = -1.5. y = -4,and y = -10. 
The last utility function has risk aversion well beyond any that is usually 
estimated. It is included because the less risk-averse utility functions 
show little inclination toward portfolio diversification. 

The simulation procedure is to set each model off with starting condi- 
tions that are equal to historical means of the relevant variables over the 
estimation period. Drawings of the additive error terms in each equation 
are then made and first-period values of the variables in the simulation 
recorded. The process then repeats, with updated values of lagged vari- 
ables (in the 60-period simulation) and keeps doing so to the end of the 
holding period. 

Portfolios are allocated between bills and stocks, on a grid of 0.05, 
running from all stocks to all bills. The total return accumulated over the 
holding period by one dollar invested in each asset and the terminal 
wealth and utility obtained from each portfolio choice for each utility 



170 Stanley Fischer 

function are recorded for each simulation. There were 10,000 simulations 
of the portfolios generated using the stochastic processes of model 2, and 
2,500 of the portfolios generated using model 3. The mean of the utility 
level attained under each portfolio choice for each set of simulations is 
calculated and taken to be an estimate of expected utility. 

Because mean asset returns initially differed over the one-month and 
60-month holding periods, the means of the returns on both bonds and 
stocks were adjusted in the one-month-holding-period simulations to be 
the same as those in the 60-month simulations. The identity of the 
reported means of asset returns in one- and 60-month simulations in each 
table is thus the result of calculation and not chance. 

The simulated optimal portfolios in table 6.7 are heavily in stocks for 
both short and long horizons. Diversification only occurs for utility 
functions with high risk aversion. The most interesting result in the table, 
from the viewpoint of this discussion, is that lengthening the holding 
period shifts the portfolio toward bills, rather than away from them, for 
the highly risk-averse investors. These investors are probably reacting to 
the increasing riskiness of the excess return on stocks over the return on 
bills, even though the relative riskiness of stocks is falling. A second 
factor that may account for the result is that the covariance of bill and 
stock returns can move investors into bills as the horizon lengthens, even 
if the relative riskiness of bills is rising (Fischer 1982). 

The results of 2,500 simulations made using the dynamics of method 3 
estimates are shown in table 6.8. The levels of the optimal portfolios are 
very similar to those in table 6.7. This is to be expected since the 
interactions between stock returns and the rest of the system in method 2 
were minimal. 

Table 6.7 Simulated Optimal Portfolios, Method 2 

Utility Function 
Holding 
Period en W - w-1s -w-4 - w 1 0  

1 month 1 1 1 .45 
60 months 1 1 .8S .4 

Variance of Variance of 
Mean Bill Mean Stock Bill Return Stock Return 
Return per Return per per Month per Month 

Statistics Month Month (1) (2) (2M 1) 

1 month .160 x .00600 .640 x lo-' ,00125 195.3 
60 months .i60 x 10-3 .006oo ,341 x ,00163 47.9 

Nores: Entries in first two rows are shares of stocks in optimal portfolio. There were 10,000 
replications. 
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Table 6.8 Simulated Optimal Portfolios, Method 3 

Utility Function 
Holding 
Period en w -w-lS -w-4 - w-l(l 

1 month 1 1 .75 .35 
60 months 1 1 .80 .35 

Variance of Variance of 
Mean Bill Mean Stock Bill Return Stock Return 
Return per Return per per Month per Month 

Statistics Month Month (1) (2) (2)/(1) 

1 month .00013 .00546 .633 X ,00162 256.4 
60 months ,00013 ,00546 ,330 X ,00159 48.1 

Notes: Entries in first two rows are shares of stocks in optimal portfolios. There were 2,500 
replications. 

However, the effects of the holding period on the optimal portfolio are 
now different from those in table 7. For all but one utility function, there 
is no change in the portfolio as the holding period changes. For the utility 
function ( -  W)-4,  the portfolio actually moves toward stocks as the 
holding period lengthens. This is more in accord with the intuition 
suggested by the discussion of Section 6.1, but it is not a strong effect. The 
effect is not a quirk of rounding, though. A search for optimal portfolios 
over a finer grid located the optimum for a one-month holding period at a 
share of .745 for stocks; for a 60-month holding period the optimum was 
,795. 

There are two main conclusions from these simulations. 
1 .  The differential dynamics of asset returns does not cause optimal 

portfolios to change dramatically with the length of the holding period. 
The direction of movement depends on the stochastic process generating 
portfolio returns. Because the stochastic process for method 3 is more 
soundly based, the results for this method should receive more weight. 
These indicate that the portfolio moves, if at all, toward stocks as the 
holding period lengthens. 

2. For the specified utility functions, and given the historical behavior 
of stock and bill returns, portfolios are heavily in stocks.” Indeed, for 
utility functions consistent with estimated coefficients of risk aversion, 
portfolios are entirely in 

6.6 Pension Investments 

Individuals investing in pension or retirement funds are investing for a 
long horizon. In some cases they are also, formally, investing for a long 
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holding period, since the portfolio proportions may be changed only at 
discrete intervals, typically a year. The possibility that optimal portfolios 
differ depending on the holding period is relevant to such investing. 

If the investor has other discretionary assets, he can use them to offset 
movements in the composition of the pension or retirement portfolio 
within the holding period for the latter portfolio. He may be able effec- 
tively to rebalance the portfolio continuously. Given the composition of 
the retirement portfolio, the individual’s discretionary portfolio will 
hedge against changes in the retirement portfolio composition. But for 
those for whom the pension fund is the only asset, the holding period may 
be of the order of a year or several years. 

Pension funds looking to create desirable long-term stock portfolios 
may also be concerned about the term structure of risk, something of 
which they are of course aware in the case of bonds. It is quite possible 
that some stocks may have relatively better long-term than short-term 
risk characteristics-though that cannot be demonstrated at the aggre- 
gate level of this chapter. 

6.7 Summary 

This chapter introduces the notion of the differential term structure of 
risk between stocks and bonds and then estimates stochastic processes for 
the generation of bill and aggregate stock returns. The stochastic process 
estimates are to be regarded as tentative, for it is clear that there are 
major problems in estimating these returns. Despite the difficulty, esti- 
mates of such processes are essential for making informed portfolio 
choices. 

The raw data and the estimated processes show more serial correlation 
of bill returns than of stock returns. But estimated bill returns are not 
sufficiently highly serially correlated relative to stock returns to make 
them anywhere near as risky as stocks for even long holding periods. 

The estimated returns processes are then used in stochastic simulations 
to estimate optimal portfolio proportions over different holding periods. 
There are two interesting findings. First, optimal portfolios change little 
as the holding period changes. The direction of movement depends on 
the estimated dynamic process for stock returns. Indeed, one of the 
implicit findings of this chapter is the lack of agreed or acceptable esti- 
mates of these dynamic processes. Second, and very striking, optimal 
portfolios for what are thought of as typical utility functions are very 
heavily in stocks. 
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Notes 
1. The random walk hypothesis is not rejected by Nelson and Schwert (1977), Garbade 

and Wachtel (1978), and Fama and Gibbons (1982). 
2. The terminology is slightly awkward. An alternative term is the portfolio decision 

period, which however i s  potentially misleading since for certain utility functions the 
investor keeps the portfolio composition fixed, and thus need make only one investment 
decision. Goldman (1979) uses the term “revision period.” 

3. Goldman has analyzed this question when asset returns are not serially correlated. 
4. Note thatx, is the logarithm of one plus the rate of return, so that the variance is that of 

5. Use of the seasonally adjusted price index does not much affect the results. 
6. There is one period in which the pattern seen in table 6.2 is absent, in that relative 

riskiness is independent of the holding period. This is the 1953-71 period-the period over 
which Fama (1975) showed the real interest rate on bills was constant. 

7. There is a question about the interpretation to be placed on the coefficients in 
regression (R1). Suppose, as is assumed by Fama and Gibbons (1982), that the stochastic 
process generating real bill returns is one between expected real rates. Thus, 

(F1) 

where a and b are constants and r - r R B r - l + I  is the expected bill rate. Given that, under 
rational expectations, 

the logarithmic returns on the portfolio. 

,- , RB, = a + b, *RB,. , + e , ,  

RB,=,-,RB,+ v,, 

where v, is serially uncorrelated, there is an error in variables problem when (FI) is 
estimated using realized bill rates of return. The estimated coefficient 6 is biased downward 
from the true b if (Fl) is estimated as a first-order autoregression. 

ZJone is willing to assert a priori that the true relation is a first-order autoregression, the 
coefficient b can be identified by estimating a (1,l)  ARMA model for the realized bill rate. 
It was by using a restriction of this type that Fama and Gibbons concluded that the ex ante 
bill rate follows a random walk-they were not able to reject the hypothesis that b in (Fl)  
was equal to one. However, separate knowledge of the coefficient b is not needed to form 
optimal forecasts of the real bill rate when there are errors in variables and no information 
other than realized bill rates to identify the expected real rate. The optimal forecast is 
obtained from the appropriate ARMA regression on realized bill rates. Thus, from a 
forecasting viewpoint the interpretation of the coefficients in (RI) is not important. 

8. The need for a twelfth-order system arose from the presence of serial correlation in 
the money growth equation residuals for shorter lags. 

9. An exception was made for stocks, for which the prior was that returns were white 
noise plus a mean. 

10. This possibility has been emphasized by Merton (1980) in his exploratory estimation 
of market returns. 

11. Fools rush in, despite the good example of Black (1976). The hope is that this 
foolishness will encourage those less foolish to do better. 

12. The assumption that the estimated stock market variance is formed in this way is 
obviously crude. In work in progress, Olivier Blanchard and I are attempting to provide a 
more sophisticated model for the variance. 

13. The results of the simulations are consistent with typical estimates of coefficients of 
relative risk aversion as being around 2. These estimates are based on the market risk 
premium. In equilibrium, the desired portfolio for the “market” must be the market 
portfolio, in which Treasury bills play only a small part. Hence the simulated optimal 
portfolios should have only a small share of Treasury bills. 
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14. What about taxes, it may be asked. The assumption is that the asset returns are 
untaxed. Alternative assumptions about taxation could be incorporated in future simula- 
tions of optimal portfolios. 

COmment Fischer Black 

I will start by restating some of Stanley Fischer’s points in my own words. 
Then I will ask some of the questions that his analysis raised in my own 
mind. 

Assume that you have a portfolio containing a single kind of security, 
like stocks or bills, and that you put all returns from the portfolio back 
into the portfolio. You reinvest all dividends or interest payments in 
shares of the same portfolio. Let us look at the variance of the value of 
this portfolio at the end of a period of fixed length. No matter how long 
the period is, the variance will be higher for a portfolio of stocks than for a 
portfolio of bills. Now let us set the length of the period at zero and raise it 
gradually. The variance will increase for any portfolio. It will increase 
faster in percentage terms for a portfolio of bills than for a portfolio of 
stocks. In arithmetic terms, it will increase faster for stocks than for bills. 

Assume one person has high fixed transaction costs for going into or 
out of stocks while another person does not. The first person will face a 
higher cost of adjusting her portfolio as conditions change. She will not be 
able to move freely between stocks and bills. Then she will want to hold 
less in stocks, on average, than the second person. This is true whether or 
not part of her portfolio is in a defined-contribution pension fund. In 
equilibrium, the average person will hold the market portfolio of all risky 
assets. A more risk-averse person will mix the market portfolio with 
lending, perhaps by holding a portfolio of bills, while a less risk-averse 
person will mix the market portfolio with borrowing. These points I 
understand. Other points raised questions in my mind. Some of the 
questions that came to me are as follows. 

Why should an investor be interested in a portfolio strategy with 
reinvestment of all returns in a single kind of security or a mix of two such 
strategies? Because a limited number of defined-contribution pension 
plans currently impose it on their participants? Why not consider a 
broader class of strategies? 

Why should anyone have high fixed transaction costs or a long holding 
period? Aren’t transaction costs on no-load mutual funds negligible? 
Can’t transfers be made frequently between two such funds in a single 
family of funds? Are the costs of deciding to make such transfers high, at 

Fischer Black is professor of finance at Massachusetts Institute of Technology and 
research associate. National Bureau of Economic Research. 
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the margin? Do most people have their marginal savings in pension 
claims that are hard to adjust? 

Why is the investigator interested in any model other than a generaliza- 
tion of equation (23)? Shouldn’t a sensible model say that the expected 
return on stocks changes in response to changes in risk and past returns 
and other shocks and then drifts gradually back toward a mean? 
Shouldn’t the mean itself depend on risk and other observables? 

Why should we model an individual as caring about his real bequest? If 
he doesn’t have children or care about them, he won’t derive utility from 
bequests. If he cares about his children, won’t his utility simply depend on 
their utility? For this paper, it does not matter much which assumption is 
made, but doesn’t it matter in other contexts? 

When one maximizes an expected utility function with consumption at 
various times and the utility of children, and when transaction costs are 
zero, investing for the short term and investing for the long term cease to 
be distinct, as Stanley Fischer noted at the end of the first section of his 
chapter. 
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