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4 Optimal Funding 
and Asset Allocation Rules 
for Defined-Benefit 
Pension Plans 
J. Michael Harrison and William F. Sharpe 

4.1 Introduction 

Considerable attention has been devoted to the funding of defined- 
benefit pension plans. Both the level of funding and the allocation of fund 
assets have been considered from the viewpoints of various interested 
parties (beneficiaries, corporate managers, corporate shareholders, and 
the Pension Benefit Guaranty Corporation). Both practical and theo- 
retical investigations have tended to characterize the asset allocation 
decision as one of choosing an appropriate “bond-stock mix.” 

Sharpe (1976) showed that, in the absence of taxes, if the parties 
bearing the cost of possible default behave rationally, neither the asset 
allocation decision nor the funding decision may affect the wealth of 
corporate shareholders. On the other hand, if some parties do not require 
compensation for actions that increase the risk of default, the optimal 
policy from the viewpoint of corporate shareholders may involve funding 
as little as possible and using asset allocation to maximize default risk. 

Two important papers, by Black (1980) and Tepper (1981), consider 
the effects of current tax law, assuming that there is no probability of 
default.’ Under these conditions shareholder wealth may be maximized 
by funding to the greatest possible extent and holding assets (such as 
bonds) taxed highly for other investors. This chapter considers a world in 
which pension funds may default, the  cost of the associated risk of default 
is not borne fully by the sponsoring corporation, and there are differen- 
tial tax effects. We explore ways in which the wealth of the shareholders 
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of a corporation sponsoring a pension plan might be increased if the 
Internal Revenue Service (IRS) and the Pension Benefit Guaranty Cor- 
poration (PBGC) follow simple (and naive) policies. This analysis sug- 
gests that the two agencies may want to consider more complex rules. 
Optimal policy for the PBGC is discussed briefly in Sharpe (1976); 
Tepper (1982) describes some of the issues involved in setting tax policy. 
We do not explore such issues here. Instead, we hope to provide useful 
inputs for addressing these more fundamental questions. 

4.2 The General Problem 

Throughout we will deal with a defined-benefit plan. An initial decision 
must be made concerning the amount of assets in the plan. Following this 
decision, we assume that the plan will be frozen. That is, no further 
benefits will accrue and no further contributions will be made. In addition 
to the decision concerning the level of initial assets, decisions must be 
made in subsequent periods concerning the allocation of assets among 
alternative investment instruments. The former is termed the funding 
decision, the latter are asset allocation decisions. All may be constrained 
by legal, regulatory, or other restrictions. 

The liabilities of a frozen defined-benefit plan can be described by a 
vector of benefit payments B1,  BZ, . . . , B ,  to be paid from the fund at 
times 1 ,2 ,  . . . Tif possible. We assume these are known with certainty.’ 
At each time t ,  the current market value of the fund’s assets is compared 
with the benefits then due. If assets exceed required payments, the 
benefits are paid and the remaining assets reinvested. If not, no further 
benefits are paid by the fund. If all benefits have been paid at date T, the 
remaining assets revert to the sponsoring corporation. Beneficiaries may 
be insured in whole or in part against default, but we assume that neither 
insurance premia nor wages paid by the corporation are affected by the 
level of funding or the allocation of fund assets. Moreover, we assume 
that the goal of those making these decisions is to maximize the wealth of 
corporate shareholders. 

4.2.1 Valuation of Contingent Claims 
To represent a market with “tax effects” we employ a modified version 

of the state-preference approach used by Litzenberger and Van Horne 
(1978). Individual investors can purchase claims to receive income con- 
tingent on the occurrence of alternative states of the world. However, 
different kinds of payments may be taxed differently for at least some 
investors. Thus a claim for a capital-gain dollar contingent on states may 
be valued differently in the market than one for a dividend dollar contin- 
gent on the same state. Given M such types of dollars and Nstates of the 
world, we assume that it is possible, explicitly or implicitly, for individual 
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investors to puchase all M X N primitive (Arrow-Debreu) contingent 
claims. This is similar to, but not the same as, the familiar complete- 
markets approach. The latter typically assumes that existing securities 
span the space of state-contingent claims and that unlimited short sales 
with no impounds and full use of the proceeds are possible. In a taxable 
world, if this were possible, riskless tax arbitrage between two investors 
in different tax brackets could occur, as shown by Schaefer (1978). Thus 
we implicitly assume the existence of boundaries on holdings and/or tax 
treatment. 

We assume that at time T the residual value of the fund, R (which will 
be zero if the fund has defaulted), will be used to pay shareholders. The 
amount may be subject to corporate tax, leaving less than R to be paid 
out. Let R(s) = the residual value if state s occurs; t' = the corporate tax 
rate, assumed to be independent of s and R(s); and v"(s) = the present 
value of a dollar paid to the corporation's shareholders in state s. If the 
residual is to be paid in the form of dividends, v"(s) will be the market 
price for a dividend dollar in state s; if the residual is to be paid in capital 
gains, v"(s) will be the market price of a capital-gains dollar in states. We 
assume only that the form each distribution would take is known and that 
the v'(s) values are selected accordingly. 

Letting v ( s )  = v"(s)(l - t ' ) ,  the present value of R(s) is V(s)  
= v(s)R(s) .  Henceforth we will focus on the v(s) values, with 
v ( l ) ,  . . . , v(N) termed the valuation function. 

Given a set of possible residual values R(l), . . . , R(N) the value of 
the pension fund for the corporate shareholders will be V =  Zs 
V ( s )  = Z,[v(s )R(s )] .  We assume that the objective of those making the 
decisions concerning the fund is to maximize V ,  given some valuation 
function v( l), . . . , v ( N ) .  A key ingredient in our analysis is the assump- 
tion that neither the corporate taxes nor the personal taxes paid on R(s) 
will be related to the choice of investments made by the managers of the 
pension fund. For example, the eventual taxes paid if a dividend dollar is 
received within the pension fund in a given state of the world would be the 
same as those paid if a capital-gains dollar had been received within the 
fund in the same circumstances. A dollar received in the pension fund in a 
given state of the world thus has the same value for the corporation's 
shareholders, whatever its type. However, the present price of a claim to 
receive such a dollar may depend on its type. Thus the presence of 
differential tax treatment will influence the relative attractiveness of 
alternative instruments, even for a tax-exempt pension fund. 

4.2.2 Choice of Assets 
While individuals may have some flexibility in their choice of state- 

contingent payments, we assume that the pension fund must choose from 
a limited set of combinations of such claims. The fund manager's choice 
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set thus does not span the set of state-contingent claims. In the next part 
of the chapter we consider a choice between two instruments (e.g. bonds 
and stocks) in a one-period setting. We show that in this case one of two 
extreme funding policies (fund either as much or as little as possible) will 
be optimal, as will one of two extreme asset allocation policies (invest 
either in bonds or in stocks but not in both). Later we obtain analogous 
results in a setting involving many periods and many assets. We then 
address the issue raised by Black and Tepper: given two instruments, 
bonds and stocks, with different tax status and different risks, we show 
that an all-bond, maximum-funding policy may not be optimal. The final 
section of the chapter provides suggestions for future research. 

4.3 One Period and Two Assets 

We begin with the asset allocation decision. Consider a pension plan 
with A dollars to invest. This may be used to purchase either or both of 
two types of assets. One unit of asset 1 can be purchased for one dollar 
and will pay D1(s)  dollars one period hence if the state of the world is s. 
Similarly, one unit of asset 2 can be purchased for one dollar and will pay 
D2(s) dollars in one period if state s occurs. We assume a simple regula- 
tory setting in which the plan's managers may select a value of X between 
X,,, and X,,,, where X =  the proportion of the fund's assets to be 
invested in asset 2. We also assume that there are no transactions costs. 

The value of assets one period hence will be (1  - X )  
AD1(s)  + XAD2(s) .  At the end of the period, a benefit of B dollars must 
be paid out of the fund's assets if possible. The amount (if any) left 
for taxes and payments to shareholders will be R ( A , X , s )  
= [(l - X)AD'(s) + XADL(s)  - B]+, where [ z ] +  denotes z if z 2 0 and 
zero if z<O. Assume that neither the firm's wage bill nor its insurance 
premium is a function of X or A . 4  The amount of the residual claim in 
states is R(A,  X ,  s) = {AID1(s) + X(D2(s)  - D'(s))]  ~ B } + .  The goal is 
to maximize the value of the residual claim V = C, v(s)  R(A ,  X ,  s) by 
choosing feasible values of A and X .  

Let 

V(s)  = v(s )R(A,  X ,  s) 
= v ( s ) {A[D' ( s )  + X(D2(s)  - D ' ( s ) ) ]  - B}' 

Figure 4.1 plots V(s)  as a function of X ,  given A ,  for three cases: (1) a 
state in which asset 2 underperforms asset 1, (2) a state in which the two 
assets have equal payoffs, and (3)  a state in which asset 2 outperforms 
asset 1. A key observation is that the function is (weakly) convex from 
above-going from left to right the slope never decreases. Note that V is 
simply the sum over states of such components of value: V = E,, V(s) .  
Thus it must also be weakly convex from above. It follows that, given A ,  
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X 

( b )  

Fig. 4.1 Convexity of V(s )  as a function of X .  

shareholder wealth will be maximized at either X,,, or X,,,, but every 
interior feasible value of X will be dominated. Depending on the situa- 
tion, all funds should be invested in either asset 1 or asset 2. No mixed 
solution5 will be optimal. 

Now consider the question of the appropriate funding level. Assets 
invested in a pension fund must come from somewhere. Corporate 
projects must be forgone, funds must be raised from bondholders or 
stockholders, etc. For simplicity, assume that dollars not invested in the 
fund will be used to finance an investment that will pay D'(s) dollars one 
period hence if the state of the world is s, and that such payoffs will be 
taxed in the same manner as those obtained as residual values from the 
pension fund. Then the opportunity cost of an investment of A dollars in 
the fund will be A C,[v(s) D'(s)J = A V', where V' = the present value of 
one dollar invested in corporate assets (at the margin, one dollar) and 
the net present value of the pension fund to the shareholders will 
be V"= &[V(s)  - v(s)D'(s)] .  Equivalently stated, V"= C, V"(s) ,  
where V'l(s) = v(s)([Ar(s) - B ] +  - AD'(s)} and ~(s) = (1 - X)D'(s )  
+ XD2(s) .  The value of V" will typically be negative; thus ( -  V " )  can be 
interpreted as the cost of the pension plan. We assume that the goal is to 
maximize the former value (i.e., to minimize the cost of the plan). 

Figure 4.2 shows the assumed regulatory climate. The fund may choose 
a value of A between A,,, and A,,, and a value of X between X,,, and 
X,,,. The value of A,,, might correspond to ERISA's full funding 
limitation and A,,, to its minimum funding standard. The values of X,,, 
and X,,, are intended to represent a naive policy on the part of the 
PBGC concerning prudent management of the fund. In this simple case 
the feasible region has four corners. In Section 4.4 we consider a some- 
what broader class of regulatory policies; however, the assumption is 
retained that the feasible region is convex, with linear borders. 

Figure 4.3 plots V"(s) as a function of A ,  given X ,  for three cases: (1) a 
state in which pension assets do better than corporate assets, (2) a state in 
which the two types of assets do equally well, and (3) a state in which 
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Fig. 4.3 Convexity of V"(s) as a function of A 

pension assets underperform corporate assets. This function is also 
(weakly) convex from above. And, since V" is the sum over states of such 
components of value, it too must be weakly convex from above. It follows 
that, give X ,  shareholder wealth will be maximized at either A,,,, or A,, , ,  
but every interior feasible value of A will be dominated. Depending on 
the situation, one should fund a plan as much or as little as possible. 

Given A ,  an extreme value of X should be chosen. Given X ,  an 
extreme value of A should be chosen. The overall optimum thus involves 
an extreme value of A and an extreme value of X .  In figure 4.2, a!l 
positions but those at the corners of the feasible region will be dominated. 

4.4 Many Periods and Many Assets 

Consider now a more general problem with defined benefits 
B, ,  . . . , BTpayable at times 1, . . . , T. Further suppose that the 



97 Optimal Funding and Asset Allocation Rules 

pension plan can invest in K assets, indexed by k = 1, . . . , K .  Gener- 
alizing the notation used earlier, we denote by 0," the return at time t to a 
dollar invested at time t - 1 in security k .  Of course D," further depends 
on the state s, but it will be convenient to suppress this dependence 
initially. 

Next let X," denote the fraction of the pension plan's wealth that is 
invested in security k between times t -  1 and t ,  and define 

K 

k =  1 
M,= C X,D," f o r t = l , .  . . , T.  (1) 

If a total of Z dollars is invested at time t - 1, the wealth of the pension 
fund at time t ,  before payment of benefits, will be ZM,. We call M,  the 
pension fund's investment multiplier for period t. The portfolio propor- 
tions X :  are decision variables and can depend on the state s through 
information that is available at time t -  1 (see below), but we suppress 
this dependence for the moment. The pension fund manager's other 
decision variable is the initial investment level A .  We denote by W, the 
wealth of the pension fund at time t ,  immediately after payment of 
benefits. These wealth levels W, can be expressed in terms of the initial 
investment level A and portfolio proportions X," by the recursive formula 

(2) w , = ( W , p , M , - B l ) + f o r t = l , .  . . , T 

with W, = A by convention. 
PKOPOSIIION: The residual wealth R = WTis a convex function of each 

multiplier M I  alone, holding the other multipliers, the benefit obligations, 
and the initial investment level fixed. Furthermore, R is a convex function 
of the initial investment level A ,  holding all else fixed. 

PROOF: Let t be arbitrary, let M ;  2 = 0 and M Y 2  = 0 be two possible 
values for the multiplier in period t ,  and set M ,  = .5MI + .5MY. Let 
W ; ,  . . . , W t be defined by (2), with MI in place of M ,  (plus the conven- 
tion Wh = A ) ,  and let W:, W ; ,  . . . , WF be defined similarly. To prove 
the first statement of the proposition, we need to show that W T s  
.5 W ;  + .5W'+. Obviously W, = Wl' = W," for i = 0, . . . , t - 1. Then 

w, = ( W , - l M ,  - B,)+ = [W,(.5M;+ SM;') - B,]+ 

= [ . 5 ( w _ l M ; - B , )  f .5(W,p1M;'-B,)]+ 

- 5 .5(&1M;- B,)+ + . 5 ( w - , M ; -  B,)+ ( 3 )  
= SW,' + SW;', 

because ( ) +  is a convex function. But ( * )+  is also an increasing 
function, so from (3) we have next that 

w+1= (W,M,+I - & + I ) +  

(4) - 5 [( .sw;+ SW;') M I + ,  - BI+J f  
= [.5(wMr+1 - BI+I)  f .~(W:'M,+I - & + I ) ] + .  
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Using again the convexity of ( - ) +, 

[.5(W,'M,+, - &+d + . W ; ' M , + I  - B,+dl+  
( 5 )  5 - . 5 ( w M , + l  - BrLl)+ + .5(W;'M,+, - B,+,)+ 

= .~W;+I  + .~W;'+I.  

Combining (4) and ( 5 )  gives W,+ .5W,'+, + .5W:+,, and one can 
obviously continue in this way to prove by induction that W T S  

To prove that WTis a convex function of the investment level, let A' E 0 
and A S  0 be arbitrary, and set A = .5A' + .5A. Set WO = A '  and 
WE = A" and define W,, W;, and W;' in the obvious way for t = 1, . . . , T.  
We need to show that W T 5  .SW+ + .5WIJ. Steps (4) and ( 5 )  above can be 
used inductively to prove the stronger result that W, 5 .5 W;+ .5W; for all 
f = 1, . . . , T.  Thus the proof of the proposition is complete. 

4.4.1 
We assume that the pension fund manager wants to select an initial 

funding level A and relative portfolio proportions X :  so as to maximize 
the valuation of the residual claim R = WT subject to regulatory limita- 
tions imposed on the initial funding level or fund allocation among assets. 
One must also specify the fund manager's capability to adjust the alloca- 
tion dynamically in response to information received. The latter aspect 
makes formal representation to multiperiod problems fundamentally 
more complex than single-period problems. We will adopt a rather 
abstract representation of the manager's optimization problem, but one 
that is well suited to our objectives. 

Let s1 be the set of all states s that might pertain at time T.  A trading 
strategy will be formally defined as a collection ( A ,  XI, , . . , X,) where 
A is a constant, XI = (X i ,  . . . , X y )  is a vector whose components sum 
to one, and, for t = 2, . . . , T ,  X ,  = [&I@), . . . , X y ( s ) ]  is a vector of 
functions whose components sum to one for every state s. 

One interprets X,k(s) as the fraction of the fund's wealth to be invested 
in security k during period t if state s prevails, and it is obviously necessary 
to restrict the way in which this fraction may depend on s. We take as 
given a sequence P I ,  . . . , P T p  of successively finer partitions of 0, 
with cells of the partition P, representing those events whose occurrence 
or nonoccurrence will be known at time t. In addition to the restrictions 
stated above, it is required that X ,  (viewed as a vector-valued function of 
s) be measurable with respect to P, - meaning that X,(s)  = X,(s ' )  
whenever s and s' lie in the same cell of the partition P, , . 

To complete the formulation, we require that A E I and that X ,  (s)EA for 
all t = 1, . . . , T and s e n ,  where I is a compact interval and A is a set to 
be described shortly. As in the model of Section 4.2, I is the interval 
between a lower funding limit imposed by the PBGC and an upper limit 

.5W;= .SW';. This completes the proof of the first statement. 

Formulation of the Fund Manager's Problem 
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imposed by the IRS, while A is the set of all asset distributions (relative 
portfolio proportions) that are judged by the PBGC to be prudent. For 
the two-asset model of Section 4.2 we took A to be the set of all pairs (X ' ,  
X 2 )  such that Xmin S X' 5 X,,, and X' + X 2  = 1 .  For the general setting 
we assume that A is the bounded solution set of some finite system of 
linear inequalities and equalities, including the requirement 
X' + . . . + X K  = 1. (Thus A is a compact, convex, polyhedral set and 
has a finite number of extreme points.) 

The preceding paragraph contains a strong assumption. We are assum- 
ing that the definition of a prudent asset distribution does not depend on 
the initial funding level A ,  and more generally does not depend on the 
success enjoyed by the fund's investments up to an intermediate decision 
point. This assumption is essential in all that follows, although A can be 
allowed to depend on t and even s (subject to measurability restrictions) 
without substantially changing our analysis. 

For t  = 1, . . . , T ,  let r, be the set of all functions X ,  that map 1R into A 
and are measurable with respect to P, - The preceding discussion may 
be summarized as follows. The pension fund manager must choose A d ,  

. . . , X T E r T  so as to maximize 

V = C V(S) [R(s)  - AD"(s)],  

where v( - ) is the valuation function discussed in Section 4.2 and R(s) is 
defined in terms of A and the relative portfolio proportions X:(s) as at 
the beginning of this section. Ours is not a standard dynamic program- 
ming formulation of the fund manager's sequential decision problem. In 
particular, we have made no explicit mention of the way current portfolio 
decisions may depend on the fund wealth carried forward from previous 
periods. By coordinating the way successive portfolio descriptions 
X, ,  . . . , XT are made to depend on s, however, one can synthesize any 
desired dependency of current decisions on past success or failure. Our 
formulation is completely equivalent to the standard one. For future 
reference, we observe that this problem does have an optimal solution 
(the supremum is attained) because it amounts to maximization of a 
continuous function over a compact subset of a finite-dimensional Eucli- 
dean space. 

4.4.2 Optimality of Extremal Strategies 
Hereafter we denote by x = ( X I ,  . . . , x K )  a generic element of A,  by 

y = ( y ' ,  . . . , y K )  a generic extreme point of A,  and by E the (finite) set 
of all such extreme points y .  Since A is a compact, convex, polyhedral set 
by assumption, each point XEA can be written as a convex combination of 
the extreme points y e E .  That is, there exist nonnegative weights [u( y ) ,  
y eE]  such that z y u ( y )  = 1 and 
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(7 )  x = p ( Y )  Y 

or, equivalently, 

x k  = C a ( y ) y X ,  for k = 1, . . . , K .  

A strategy ( A ,  X , ,  . . . , X,) for the fund manager's optimization prob- 
lem is said to be extremal if A is an endpoint (extreme point) of the 
interval I and X, (S)EE for each state s and each t = 1, . . . , T.  Inciden- 
tally, a single strategy component X ,  will be called extremal if X,(s)eE for 
all states s. 

It is the pupose of this subsection to prove there exists an optimal 
strategy which is extremal. Toward that end, first let (A, XI, . . . , X,) 
be an arbitrary feasible strategy. Adding a notational dependence on A 
for emphasis, let R(A, s) = W,(A, s) be defined in terms of A and the 
relative portfolio proportions X:(s) as at the beginning of this section, 
and then let V(A) be defined in terms of R(A, s) by (6). The Proposition 
shows that R ( A ,  s) is a convex function of A for each fixed s, and it follows 
immediately, because the contingent claim valuations v(s) are nonnega- 
tive, that V(A) is convex. Thus V(A) will be maximized by taking A to be 
an endpoint of the feasible interval I .  To repeat, the valuation associated 
with an arbitrary feasible strategy can be increased (or at least not 
decreased) by moving A to one of the extreme points of I ,  leaving 
XI, . . ., X,fixed. 

We now argue that a similar improvement can be effected by substitut- 
ing for any of the strategy components X ,  a well-chosen extremal strategy 
component. Again let (A, XI, . . . , X,) be arbitrary, fix a period t ,  and 
let S be any cell of the partition P, - Then there exists a point XEA such 
that X,(s) = x for all SES. Adding a notational dependence on x for 
emphasis, let us set 

Y 
(8) 

K 

k =  1 

K 

k = l  

M,(s, x) = c X:(s)D:(s). (9) 

= C x k ~ , k ( s )  for SES. 

Then R(s,  x) = WT(s ,  x) is defined in terms of M,(s ,  x) for states SES as at 
the beginning of this section, and we set V(S, x) = Z:, , .~v(s)[R(s ,  
x) - AD'(s)].  Obviously V(S, x) is the contribution to the total valuation 
Vmade by states in cell S ,  and it is only the contribution from these states 
that is affected by our choice of x. 

Recall that x can be represented in terms of the extremal points y via 
(7), and we now consider how the partial valuation V(S) would be 
affected if we were to replace x by some yeE.  By analogy with (9), let 

~ , ( s ,  y )  = C. y ~ , k ( s )  for Y F E  and SES, 
K 

k =  1 
(10) 
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and then let R(s, y )  and V ( S ,  y )  be defined in terms of M,(s, y) in the 
obvious way. From (7), (9), and (lo), we have 

(11) W ( s ,  x )  = x y F E 4 Y ) M , ( s ,  Y )  forseS. 
The Proposition says that R = W, is a convex function of M,, so (11) 
implies 

(12) R(s,  x )  s C,,.+(y)R(s, y )  for saS, 

and hence, because v ( s )  20 for all SES, 

(13) V(S ,  x ) 5  Zy,s4Y)V(S, Y). 
Obviously (13) can only hold if V(S,  y) 2 V ( S ,  x )  for at least one extreme 
pointy, so we can increase (or at least not decrease) V(s) by substituting 
this y for x in our specification of the strategy component X,. Repeating 
this argument for each cell of the partition P, - 1, we come to the follow- 
ing: one can increase the overall valuation V = & V(s), or at least not 
decrease it, by substituting for X ,  an extremal strategy component XT. 

The proof that there exists an extremal optimal policy is now essen- 
tially complete. We know that there exists an optimal solution 
(A, X I ,  . . . , XT) .  But one can substitute for A an extremal investment 
level A * ,  then substitute for X I  a well-chosen extremal strategy compo- 
nent X:, . . . , then substitute for X T  a well-chosen extremal strategy 
component XF, without ever decreasing the total valuation. Absolutely 
essential to this argument is the assumption that one can take A to be any 
point in the interval I and X ,  to be any element of r,, regardless of how the 
other componenets of the overall strategy have been selected. 

4.5 Bonds versus Stocks 

We turn now to the issues raised by Black (1980) and Tepper (1981). 
Given a choice between bonds and stocks and a range of permissible 
funding levels, what policies will be optimal for corporate shareholders? 
To analyze these issues, we will use the simple one-period, two-asset 
setting of Section 4.3. 

Key to the Black-Tepper argument is the superiority of pension fund 
investment over corporate investment and, within the pension fund, the 
superiority of bonds (here, asset 1) over stocks (asset 2). In our notation 
this assumption takes the form 

(14) Cv(s)D’(s) > CV(S)D’(S) > xv(s)Dr(s) .  

From (14) it is easy to deduce the following: if all feasible (A,  X )  
combinations provide adequate coverage to pay every beneficiary in full 
in every state of the world, the optimal solution will involve full funding 
( A  =A,,,) and investment solely in bonds ( X  = 0). The argument goes as 
follows. Since there will be no default in any state, the positive part 
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([ -1') notation becomes redundant and the value of the residual can be 
written as 

V" = ~ v ( s ) [ A ~ ( s ) ]  - ?v(s)B - ACv(s)DC(s) 

= A[:v(s)~(~) - ~v(s)D"(s)]  - B:v(s). 

Note that at X =  0, &v(s)r(s) = C,v(s)D'(s) and at X =  1, 
Z,v(s)r(s) = C,v(s)D2(s). Given the tax effects, the expression in brack- 
ets is clearly maximized at X = 0. Moreover, at X = 0 this expression is 
positive. Conditional on the choice of an optimal X value, v" is thus 
maximized at A =A,,,. This is the conclusion reached by Black and 
Tepper. Our setting is different-we rely on a market structure, while 
they use arbitrage arguments that require explicit offsetting actions-but 
the conclusions are the same. 

The Black-Tepper result involves the use of pension funding and 
investment in bonds to take advantage of an asymmetric tax structure. 
Policies that involve possible default by the fund provide a way to take 
advantage of possible asymmetric behavior on the part of the PBGC, the 
insurer of pension benefits. If stocks are more effective than bonds in this 
role, and if the feasible (A, X )  region includes combinations that make 
default possible, the Black-Tepper strategy may not maximize share- 
holder wealth. The matter is not straightforward, even in this very simple 
setting. The value of the insurance depends on the relationship between 
the payoffs over states of fund assets and benefits. It is entirely possible 
that a risky bond might provide both tax benefits and a large value for the 
insurance. In effect, we are assuming that the manager will consider both 
the tax effect and the insurance effect of decisions concerning funding 
and investment. Our previous results indicate that in our setting, the 
optimal policy will involve an extreme point in the feasible (A,  X ) space, 
whether the choice of bonds versus stocks involves a trade-off of these 
two effects or not. It is instructive, however, to examine a very simple 
case in which there is such a trade-off. 

Assume that the payoffs from the two instruments are D1(l) = 1.1, 
D1(2) = 1.1 (bonds) and D2(1) = 1.2, D2(2) = .1 (stocks). Thevaluation 
functionisv(1) = .85, v(2) 5 . lo.  WeassumethatZ,v(s)D'(s) = 1. Note 
thatthereisataxeffect,since'C,v(s)Dl(s) = 1.045,XSv(s)D2(s) = 1.030, 
and Z:,v(s)D"(s) = 1.000. Benefits are 110, regardless of state, and reg- 
ulatory constraints are A,,, = 120, A,,, = 100, X,,, = 1.0, and 
Xmin = 0.0.5 Note that investment solely in bonds will cover benefit 
payments in every state, even at the minimum feasible funding level. 
Thus the value of the insurance will increase with X .  

Figure 4.4 shows the feasible region and the value of V" at each corner 
(as indicated earlier, the absolute value can be interpreted as the cost of 
the pension plan). One might think that, given the trade-off between the 
insurance and tax effects, and our previous results, the optimal policy 
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A 

Fig. 4.4 Values of V” at the four corners of the feasible region. 

would involve either full funding plus investment in bonds (corner 1 in fig. 
4.4) or minimum funding plus investment in stocks (corner 3 in fig. 4.4). 
However, as our example shows, this need not be the case. Here the cost 
of the plan is minimized by a policy involving full funding and investment 
solely in stocks (corner 2). 

4.6. Summary and Conclusions 

The main conclusion of this chapter is the indication that a fund 
manager should focus on extreme funding and investment strategies if 
our assumptions about regulatory constraints are valid. The IRS and the 
PBGC, on the other hand, may want to adopt regulatory policies such 
that the fund manager’s optimal strategies will be more consistent with 
broader social objectives. 

Notes 
1 .  Tepper makes this assumption explicitly, Black implicitly. 
2. Since the only source of uncertainty is mortality, appeal may be made to the law of 

large numbers for justification. 
3. This rules out decisions made to maximize the utility of risk-averse managers or 

shareholders who are unable to diversify sufficiently to regard the decision as one of 
maximizing current wealth. 

4. Realistically, given ERISA and the behavior of the PBGC. 
5.  Given the contingent liability of the corporate sponsor under ERISA, the values of A 

should include 30% of the corporation’s net worth. With this interpretation, our numeric 
example is not overly fanciful. 
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COmmeIlt Irwin Tepper 

I expected the Harrison-Sharpe analysis to produce an interior solution to 
pension funding and investment policy. This would have been a major 
finding since, to date, the theory of optimal pension policy is one of 
extremal solutions, obviously at odds with practice. Yet Harrison and 
Sharpe’s optimal policies are extremal: all bondsifull funding or all 
stocks/minimum funding. This occurs even though the model incorpo- 
rates competing influences-taxes and put options. I believe that the 
results stem largely from the partial equilibrium framework that is em- 
ployed. 

The single-period properties of the model are the key to understanding 
the results. The objective is to maximize the expected value of state- 
contingent claims, since this will maximize the wealth of shareholders. 
With an objective such as this, as opposed to one which focuses on the 
expected utility (and which would exhibit diminishing marginal utility of 
wealth), it is clear that this is a partial equilibrium approach. The valua- 
tion factors applied to the cash flows bear the burden of reflecting the 
general equilibrium prices. These valuation factors are set up to indirectly 
represent shareholder opportunities and the impact of other corporate 
assets and liabilities on pension plan decisions. In particular, the tax 
effects are embedded in these valuation factors. The valuation factors do 
not change in response to a policy decision for the pension plan. In a 
general equilibrium approach the other assets and liabilities of the firm 
and of its shareholders are explicitly introduced and optimal policies are 
identified by examining shifts in the distribution of holdings among these 
entities. All of this is analogous to the traditional approach to capital 
structure as it contrasts with Miller-Modigliani analysis. In the Miller- 
Modigliani world changes in the cost of capital in response to capital 
structure changes reflect the market opportunities of the shareholders. In 
more traditional work, the cost of capital changes because of changes in 
the profile of returns from the firm. 

The essential trade-off in the Harrison-Sharpe chapter is between tax 
benefits and default risk. In this regard, a key assumption is that the cost 
of potential default is not fully borne by the company. The IRS and the 
PBGC follow simple and naive policies. Insurance premia and wages are 
unaffected by funding and/or asset allocation decisions. These assump- 
tions, which are not rational, might match reality fairly closely, also 
contribute to the extremal policies. 

I am not surprised that the single-period solution properties carry over 
into the multiperiod world, although this is a major result. In order to get 

Irwin Tepper is affiliated with Irwin Tepper Associates. Newton, Massachusetts 
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this to happen the authors do not have wealth appearing in the value 
functions, and there are no intermediate contributions. 

The search will continue to find a rationalization for the interior 
policies that exist in the real world. It is likely that some form of manage- 
rial discretion model in a world of imperfect markets will produce a result 
more comforting to those who believe that current practice is rational. 
The central problem, I think, is that theory assumes a complete integra- 
tion of firms’ assets and liabilities with those of the pension plans they 
sponsor. It also assumes integration with the assets and liabilities of 
shareholders and of beneficiaries. Yet companies do not manage their 
plans in this framework. They do not look at equity risk in the pension 
plan as a substitute for equity exposure on the corporate balance sheet. 
They do not think of arbitraging pension assets against corporate liabili- 
ties. It is these fundamental differences between theory and practice that 
must be met head on if progress is to be made in the development of a 
more satisfactory explanation of pension practice as it currently exists. 
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