AMERICAN TRANSPORTATION IN PROSPERITY AND DEPRESSION
Officers
(1948)
C. REINOLD NOYES, Chairman
H. W. LAIDLER, President
W. W. RIEFLER, Vice-President
GEORGE B. ROBERTS, Treasurer
W. J. CARSON, Executive Director
MARThA ANDERSON, Editor

Directors at Large
ARTHUR F. BURNS, Columbia University
W. L. CRUM, University of California
OSWALD W. KNAUTH, New York City
SIMON KUZNETS, University of Pennsylvania
H. W. LAIDLER, Executive Director, League for Industrial Democracy
SHEPARD MORGAN, Vice-President, Chase National Bank
C. REINOLD NOYES, New York City
GEORGE B. ROBERTS, Vice-President, National City Bank
BEARDSLEY RUMIL, Chairman, Board of Directors, R. H. Macy & Co.
HARRY SCHELMAN, President, Book-of-the-Month Club
GEORGE SOULE, New York City
N. I. STONE, Consulting Economist
J. RAYMOND WALSH, WMCA Broadcasting Co.
LEO WOLMAN, Columbia University

Directors by University Appointment
E. WIGHT BAKKE, Yale
C. C. BALDERSTON, Pennsylvania
G. A. ELLIOTT, Toronto
H. M. GROVES, Wisconsin
GOTTFRIED HABERLER, Harvard
CLARENCE HEER, North Carolina
R. L. KOZELKA, Minnesota
PAUL M. O'LEARY, Cornell
W. W. RIEFLER, Institute for Advanced Study
T. O. YNTEMA, Chicago

Directors Appointed by Other Organizations
PERCIVAL F. BRUNDAGE, American Institute of Accountants
ARTHUR H. COLE, Economic History Association
FREDERICK C. MILLS, American Statistical Association
S. H. RUTTENBERG, Congress of Industrial Organizations
BORIS SHISHKIN, American Federation of Labor
WARREN C. WAITE, American Farm Economic Association
DONALD H. WALLACE, American Economic Association

Research Staff
ARTHUR F. BURNS, Director of Research
GEORFFREY H. MOORE, Associate Director of Research
Moses Abramovitz
HAROLD BARGER
MORRIS A. COPELAND
DANIEL CREAMER
SOLOMON FABRICANT
MILTON FRIEDMAN
MILLARD HASTAY
W. BRADDOCK HICKMAN
F. F. HILL
THOR HULTGREN
SIMON HULGREN
CLARENCE D. LONG
RUTH P. MACK
FREDERICK C. MILLS
RAYMOND J. SAULNIER
GEORGE J. STIGLER
LEO WOLMAN
AMERICAN TRANSPORTATION
IN
PROSPERITY
AND
DEPRESSION

THOR HULTGREN

NATIONAL BUREAU OF ECONOMIC RESEARCH, INC.
INTRODUCTION

Upon its organization in 1920, the National Bureau turned to investigating national income. Two years later the Director of Research reported: "When the staff was approaching the completion of their work on income in the United States, the Executive Committee considered what problem should be taken up next. After canvassing several proposals the Committee decided to choose Business Cycles as the topic." Several reasons prompted this decision. "First, the subject is one of great importance to all classes in the community. Second, it is a subject in which quantitative methods can be employed to great advantage. Third, while several institutions and individuals are working on certain aspects of this subject, the Executive Committee does not know of anyone who is planning a comprehensive survey of the whole. . . . Fourth, the staff of the Bureau seems qualified by past experience and present interest to fill this want. Finally, this new undertaking will enable the staff to make effective use of much of the special knowledge they have gained in studying the fluctuations of the National Income."

These reasons have gained force with the passage of time, and they have spurred the National Bureau to increasingly thorough exploration of business cycles. The original plan called for a "systematic treatise" by Wesley Mitchell, supplemented by "two or three special studies of topics that have never been adequately investigated". This simple conception was progressively modified as the investigation unfolded. In the hands of an alert investigator, empirical research has the refreshing quality of springing ever fresh surprises. By working on the systematic treatise, Mitchell discovered not "two or three", but numerous topics "that have never been adequately investigated", and that nevertheless seemed indispensable to a scientific understanding of business cycles in the actual world. For a time he attempted to fill the gaps single-handed. As the task grew, other investigators joined in the enterprise and in their turn opened up new problems: work on "special studies" therefore expanded, the "systematic treatise" burst through the limits of a single volume, and various by-products of that treatise grew into independent studies. A
rough idea of how the program developed in the course of a quarter century's research is conveyed by the National Bureau's publications in this field, which now include seventeen volumes and fifteen briefer reports on business cycles, besides the numerous monographs that deal extensively with business cycles as a side issue.¹ And the investigation is still in process, with many of the most important results to be presented.

Through all changes of plan and conception, a systematic treatise that will deal comprehensively with business cycles and their causes has remained the goal of the investigation. The living shape of the treatise is the series on Studies in Business Cycles, of which this volume by Hultgren is one instalment. It follows Mitchell's Business Cycles: The Problem and Its Setting and Measuring Business Cycles, for which I share responsibility with Mitchell. The former sketched the economic organization of the Western World which developed business cycles, reviewed the contributions toward understanding them made over the years by economic theorists, statisticians and business commentators, and presented a 'working definition' that became the point of departure for Measuring Business Cycles. That volume was devoted to showing how business cycles may be identified, describing the range of observations needed to bring out the significant happenings in a modern economy during a business cycle, testing the assumptions underlying the general plan of measurement, and outlining 'working plans' for two groups of researches that build on the statistical foundation laid: first, a dozen monographs each of which would seek to establish what cyclical behavior has been characteristic of an important economic activity or group of activities, second, a volume or two that would weave the results yielded by the special monographs into a theoretical account of how business cycles run their course.

Hultgren's study of transportation, the third of the Studies in Business Cycles, is thus the first of the substantive monographs in that series. The volume is concerned mainly with railroads, which have long held high rank among our industries as employers of men and capital.

¹ See the list at the end of this book.
The first modern railroad built was the 12 mile line from Stockton to Darlington in England, opened to traffic in 1825. Several years later railroad construction got under way in the United States, France, and Germany. From its modest beginning in the 1830's the construction of new railroad lines increased rapidly, but the period of expanding construction was comparatively brief. The peak of new railroad mileage was apparently reached in 1848 in Great Britain, 1875 in Germany, 1884 in France, and 1887 in the United States. The general trend thereafter was definitely downward.

Secular expansion of new investment in railroads nevertheless continued. The wave of new line construction was followed by progressive improvement of existing railroads, especially in the United States where many of the original roads were lightly built. A tremendous effort was put into extensions and betterments, sometimes to accommodate the growing traffic, sometimes to reap the benefits of advancing technology. Over widening stretches of the railroad system single track roads were converted to double track, sidings added, grades reduced, curves eliminated, automatic signals installed, iron rails replaced by steel rails, light rails by heavy rails, wooden bridges by bridges of steel or concrete, and a hundred other improvements in road and equipment made. Whereas additions to road mileage in the United States reached a peak in 1887, additions to auxiliary track reached a peak in 1904; additions to total track mileage were about as large in 1904 as in 1887; the peak in rail consumption came in 1906, in additions to leading types of equipment between 1907 and 1911, in additions to book value of investment around 1910. Thus the peak in railroad investment expenditures apparently came after the turn of the century, or some twenty years after the building of new mileage had passed its maximum.

Meanwhile the total capital invested in the railroads of the country continued to grow. Traffic grew faster still. It increased partly in response to the economic growth and the territorial expansion of the country; partly at the expense of coaches, canals, and other waterways which the railroads gradually superseded. It is difficult to fix the precise date when railroads ceased gaining
on competing means of transport, but it could not have been much before 1910. By 1920, at any rate, the competitive trend was already definitely reversed. New agencies of transportation had arisen—trolley lines, trucks, motor buses, passenger automobiles, pipe lines, the airplane, and revived waterways—and they battled the railroads for traffic as vigorously as railroads in their youth had fought their rivals. Passenger traffic reached a maximum in that year, dropped a full third by 1929, and declined further during the 'thirties. Freight traffic continued to grow during the 'twenties, but at a lower rate than production. In 1937 the number of ton-miles of railroad freight was only about four-fifths the 1929 figure, despite an unchanged volume of mineral production, an increase of 6 per cent in the output of agriculture, and of 3 per cent in manufacturing.

The adverse turn in the fortunes of railroads did not arrest technical progress in the industry. On the contrary, more powerful locomotives were installed; trains became longer and faster; maintenance work was largely mechanized; and economies of labor, fuel, and equipment were generally extended. Between 1929 and 1939, while the combined freight and passenger traffic of railroads fell off a fourth, traffic per man-hour increased a third. But physical progress did not leave a visible imprint on the annual statements of profit or loss. By the end of 1939 nearly a third of the railroad mileage of the country was in receivership.

The secular shifts in investment and operations were accompanied by changes in the organization of the industry and in its place in society. Once the continent was crisscrossed with railroads, the addition of new mileage not infrequently resulted in a duplication of existing facilities. A period of rate wars, maneuvers for control, and outright consolidations set in. Government, at first the eager patron of the industry, later became its vigilant overseer. Competitive pricing gave way to restrictive practices and sticky prices. Labor was unionized, and collective bargaining evolved into nation-wide negotiations and contract. The federal government added its taxes to those long levied by local authorities, and a progressively larger part of the traffic dollar was diverted to tax collectors. In the meantime, the character of entrepreneurship was itself subtly modified. Financing by stock issues gave way increasingly to bond flotations, and in more recent years internal financing supplanted both forms of external financing. Posts of authority,
INTRODUCTION

once so largely occupied by financiers, passed to managerial experts and technicians.

These momentous changes in the life of the railroad industry raise exciting questions for the student of business cycles. How closely was the current investment geared to the volume of traffic or its rate of change? What of the accumulated supply of facilities and equipment? Did traffic respond the same way to business cycles in the early stages of the industry as in the later stages? How did employment react to fluctuations in traffic? While the trend of traffic moved upward, did cyclical expansion create more jobs than were lost in the preceding contraction? By what process did railroads first encroach on other transport agencies, then lose out to new competitors? Did business depression accelerate or retard the competitive pressure of the innovator? Did the amplitude of fluctuations in traffic widen as the industry matured? What of the fluctuations in costs and revenues? Did government regulation modify the behavior of railroad rates during business cycles? If so, what were the repercussions on profits?

Hultgren's scholarly study clarifies most of these vital issues, and some of his findings have a significance that extends well beyond the boundaries of the railroad industry. For example, the market for freight service can be estimated for the years 1920 to 1925, and measured with some precision since 1926. The record discloses that the share of the business going to railroads fell almost uninterruptedly, year after year, from 1920 through 1938. However, the new transport agencies penetrated the market faster during contractions of business cycles than during expansions. I have noticed a similar cyclical regularity over much longer periods in the encroachment of open-hearth steel on Bessemer steel and of by-product coke on beehive coke, and suspect that it is characteristic of the onrush of new products or processes at large.

But if cyclical shifts do occur in the rate at which markets are diverted from old to new industries, are the shifts not induced by changes in price relations between the cyclical phases of expansion and contraction? In the railroad case there seems to be little need to speculate on this issue. General rate changes "became a conspicuous feature of the industry's price-making around the end of World War I and again in the great depression". Every one of the
general changes ordered by the Interstate Commerce Commission “promoted inverse conformity to freight traffic” (p. 248); in other words, the increases in rates came during contractions and the decreases during expansions of traffic. “During 1929–32 and 1937–38 rail freight rates, on the whole, declined little or rose” (p. 12). On the other hand, the rates charged by operators of trucks—which made the most serious inroads on the railroads’ freight business—not only declined, but probably declined sharply.

Another finding of broad significance concerns equipment. The era of secular growth in railroad traffic “was one of rather steadily increasing supplies of cars and locomotives”. The succeeding period “was one of persistently diminishing stocks” (pp. 150–52). But the positive relation between equipment and traffic over these long periods eluded the much briefer periods of traffic cycles. Up to the first World War railroads added to their stocks of equipment in cyclical expansions and contractions alike. From the middle of the 1920’s or earlier, depending on the type of equipment, stocks diminished whatever the cyclical phase. The rate of growth or decline in equipment stocks of course varied, but not in any regular relation to traffic cycles. Judging by the orders placed for equipment, Hultgren finds that railroad managers did make an effort to build up stocks faster during expansions. But they were not highly successful: partly because fairly long intervals elapsed between the placing of orders for cars or locomotives and their installation, and partly because retirements moved in quasi-independent fashion.

It is notable, however, that orders for railroad equipment conformed with substantial regularity to traffic cycles, and that cyclical downturns in orders usually preceded downturns in traffic. A familiar explanation of the early timing of orders is the ‘acceleration principle’—which asserts that equipment stocks tend to maintain a rather constant ratio to output, and that requirements of additional equipment therefore tend to vary with the rate of change in output. If this investment formula applied to railroads, the early decline in equipment orders would imply (except for possible complications arising from retirements) that the rate of increase in traffic tapers off toward the close of expansions. According to Hultgren’s tests this has not often happened; and
when it has, the cyclical peak in equipment orders has sometimes preceded, instead of accompanied or followed, the maximum rate of growth in traffic. After a minute examination of movements during successive traffic expansions, Hultgren concludes that orders have not, in general, been geared to the rate of growth in traffic. He carefully notes that his statistical tests may have put excessive strain on the rough statistics of equipment orders; yet he accepts the negative verdict on the acceleration principle by observing that good economic arguments are lacking for any firm belief in the principle.

Details aside, it is my impression that Hultgren’s conclusions on the cyclical behavior of railway equipment have a wide range of application. Other studies of the National Bureau suggest that during periods of business-cycle length a rather inflexible supply of plant and equipment is characteristic not only of railroads, but of industry at large. Contracts for industrial plant and orders for equipment—not to be confused with the volume of work currently done or the facilities currently installed—commonly turn down while national income is still rising, and turn up while national income is still falling. But the early timing cannot be satisfactorily explained by the acceleration principle. In tests over a range of industries, I have found that the contracts for new plant or orders for equipment placed by an industry are fairly closely geared to its output, but not to the rate of change in output as the acceleration principle would require. The acceleration principle seems to misrepresent the play of forces on investment in the short run; nevertheless, it is sometimes the key to movements over long periods.

As Hultgren takes the reader through the round of railroad operations, one fact emerges above all others and in a degree sums them up. That fact is the pervasive influence of business cycles on railroading. Secular changes in traffic, technology, and organization have sometimes modified the response to business cycles and frequently obscured it; they have rarely erased it. So also with wars, blizzards, strikes and other major disturbances that diversify railroad history. The influence of business cycles can be detected in almost every feature of railroad operations: in the volume of traffic, its composition, the length of hauls, the load of cars and
locomotives, their active time, the speed of trains, their length, the size of the labor force, its age composition, the length of the work month, the fuel consumed, prices received, prices paid, etc. But the direction, amplitude, and timing of the multitudinous adjustments to business cycles are highly variable. To find one's way through the maze of cyclical reactions, a plan is needed. Hultgren's plan is to focus attention on the behavior of costs and profits.

The relation of costs to prices during business cycles is of great theoretical and practical interest. If unit costs rise during expansion and prices are pushed up, sales may be inhibited. If the rise in unit costs outstrips the rise in prices, unit profits will decline; which may darken the prospect for profits and discourage investment. Both influences are widely thought to play a key role in bringing cyclical expansions to a close. Are the facts of the railroad industry consistent with thinking along these lines? What, in general, do they teach concerning cost-price relations during expansions and contractions? At this juncture Hultgren makes his most striking contribution to knowledge. As far as I know, no work since Mitchell's California classic of 1913 has dealt with cost-price relations during business cycles with equal thoroughness.

The behavior of costs depends partly on physical input-output relations, partly on rates of payment for the factors of production—labor, fuel, materials, and so on. In a strictly physical sense, unit costs appear to move inversely to cycles in railroad traffic. Labor requirements per unit of traffic tend to decline when traffic is expanding, and to rise when traffic is declining. Unit fuel requirements likewise tend to move inversely to traffic cycles, and so too does the ratio of equipment to traffic. But factor rates of payment normally increase during traffic expansions, while prices of fuel and materials—if nothing else—tend to decline during contractions. These movements of factor prices oppose the movements of unit physical costs, but do not dominate except during violent inflation such as accompanied World War I. Unit operating expenses therefore usually move inversely to traffic cycles, as do unit physical costs. Taxes per unit of traffic behave similarly, since this category of expense fluctuates over a narrower range than traffic. Rent and interest do likewise. Railroad rates, on the other
hand, are sluggish. As a net result, unit 'profits' are normally higher at the end than at the beginning of cyclical expansions in traffic, and are normally lower at the end than at the beginning of contractions.

I have put Hultgren's conclusions baldly, without stopping to allow for leads or lags. When they are taken into account, it appears that unit costs have often started to rise before expansion ceased, or started to decline before contraction ended. However, the tendency has not been especially strong; in a fair number of instances the decline in unit costs continued to the end of expansion, or the rise to the end of contraction. There has also been some tendency for unit profits to reverse their movement before a phase closed. But "an ominous narrowing of the profit margin while the physical volume of business is still growing, and an auspicious widening while volume is still diminishing, were not highly characteristic of the cyclical course of events. Yet... the maximum level was reached before the end in more than half the expansions... and... the minimum level was reached before the end in more than half of the contractions... The maximum and minimum were sometimes early, never late" (p. 315).

To what extent does Hultgren's demonstration of the power exercised by expanding output on unit costs apply to other major industries? What of the rest of his conclusions concerning costs and profits? What, in particular, of the highly regular tendency of railroads to defer maintenance during depression, or the tendency of their unit profits to rise fastest early in expansion and to fall fastest early in contraction—conclusions of great theoretical promise that I can no more than mention? And how seriously is the celebrated account of cyclical changes in efficiency, presented by Wesley Mitchell thirty-five years ago, now in need of amendment? Reliable answers to these questions will not be forthcoming until studies similar to Hultgren's are carried out for other important industries. The statistical records of railroads are unique in their excellence, abundance, and time span. Useful statistics nevertheless exist also for other industries. They merit intensive study, not only for their vital bearing on the cumulative and self-reversing processes that constitute the business cycle, but also because so much of the economic controversy that rages in the practical world centers about the relation of unit costs, prices,
and profits to the volume of production and hence to employment and national income.

Transportation events after 1938 are not traced in Hultgren's volume, except in passing. The war years were marked by an amazing burst of activity. By 1942 the number of passenger-miles was larger than in 1920, and by 1944 it was twice as large. Freight ton-miles likewise expanded at a furious pace, doubling between 1937 and 1944. But the tremendous traffic was due partly to the peculiar circumstances of war, and would not have accompanied a peacetime economic expansion of equivalent size. Between 1944 and 1947 the number of ton-miles fell off 11 per cent, and the number of passenger-miles 52 per cent.

In 1944 the National Bureau published Occasional Paper 15, which examined the experience of railroads during the war. Hultgren reached a conclusion of basic importance in this paper; viz., despite the vastly increased traffic, the behavior characteristic of costs and profits during earlier peacetime expansions reappeared. The duration and amplitude of future cycles in railroad traffic are, of course, no more predictable than is the course of business cycles itself. Who could have foreseen ten years ago that railroad passenger movement would ever again reach the 1920 level? But the concomitants that business cycles will have in railroad operations can probably be anticipated with considerable assurance. Hultgren rounds out his expert contribution to the economics of railroading in a chapter on Future Cycles that merits the most careful attention of economists.

ARTHUR F. BURNS

SEPTEMBER 1948
Author’s Preface

In naming this book I use the unqualified word ‘American’ for the sake of brevity. A more accurate but cumbrous title would refer to ‘the United States of Middle North America’. Many countries, of course, share the right to be called American.

A succession of able, careful, energetic, and pleasant research aides—in the order of time, Augustus J. Kelley, Vera Wantman Kopelman, Avery B. Cohan, Fred Lynn, and William I. Greenwald—participated in the work that led to the findings presented in the following pages. Of my staff colleagues at the National Bureau, Moses Abramovitz, Harold Barger, Arthur F. Burns, Millard Hastay, Clarence D. Long, Wesley C. Mitchell, and Geoffrey H. Moore read preliminary drafts of the manuscript with close attention and proffered many penetrating and useful criticisms. C. Reinhold Noyes of the Bureau’s Board of Directors gave the penultimate version a searching and fruitful examination.

Two members of the economic staff at the Interstate Commerce Commission also read that version. I have benefited both from their wide familiarity with the economics of transportation and from their especially relevant personal experience. Drawing on his diversified railroad operating career, William R. McLean made numerous observations that led to greater realism in my final product. Sam G. Spal effectively contributed his intimate familiarity with ICC statistical procedures.

The charts reflect H. Irving Forman’s skilful draftsmanship and sense of graphic style. Martha Anderson suggested many happy changes of phrasing and took care of the format and printing. Elma Oliver directed the proofreading with delicate precision.

A book like this owes much to the intellectual climate of recent decades. A growing realization that economists deal, or can deal, with observable and measurable events has been one feature of that climate. No one has done more to promote the spirit of empirical inquiry in this field, by influence and example, than Wesley C. Mitchell. The book would have been impossible without the uniquely long and rich statistical record of the railroad industry in the United States. For many years M. O. Lorenz, as Director of Statistics for the ICC, presided over the accumulation of that record.
Chapter I has been adapted in part from the National Bureau publication, _Occasional Paper 5_, and Chapter 2 in large part from _Occasional Paper 13._

Thor Hultgren
CONTENTS

1 The Movement of Goods
 Railway Tonnage Reflected Cycles in Flow of Commodities
 Cycles in total flow
 Corresponding cycles in tonnage
 Business Conditions Influenced Competition among Means of Transport
 Background factors after World War I
 Shift from railroads to motor trucks more rapid in contraction
 Longer Hauls in Depression
 Average haul inversely related to cycles in flow
 Changing composition of traffic a likely reason
 Cumulative lengthening over many cycles
 Aggregate Rail Movement, Like Tonnage, Reflected Commodity Flow
 Fluctuations in ton-miles conformed to cycles in business
 Turning points
 Big and little expansions and contractions
 Preceding peaks more widely and frequently exceeded in expansions before 1919–20
 Subsidiary fluctuations
 Changes in the Composition of Traffic
 Durable vs. nondurable goods
 Farm vs. other products
 Specific examples of stable traffic: Perishables and petroleum
 Diversity and Immediacy of Demand Prevented Extreme Fluctuations

2 The Movement of People
 Travel Reflected Fluctuations in the State of Business
 Expansions and contractions after 1908
 Changes in the rate of growth or decline of commuting
 Earlier times
 Net gains from cycle to cycle until 1920, losses afterward
 Turning Points
 Effect of war conditions
 Effect of motor competition
 Turns normally late?
 Longer Journeys (but Shorter Commuting Trips) in Prosperity
 Cycles in Travel Rather Mild
 Milder than in industrial production
 Milder than in freight traffic
CONTENTS

CHAPTER

- Commuting more stable than other travel 66
- Not much difference between other coach and Pullman traffic 68

3 Some Needed Composite Measures of Traffic
- Why They are Needed 73
- Traffic Units by Months 75
- Traffic Units by Years 77

4 Utilization of Equipment in Freight Service
- Meaning and Components of Utilization 80
- Heavier Carloads in Prosperity 81
 - Circumstances under which goods are loaded 81
 - Revenue shipments in carlot quantities 81
 - Other freight 86
 - All freight 89
- Heavier Trainloads, Too 92
 - Loaded cars in a train 92
 - Tons in a train 95
 - Loads behind locomotives 97
- Speed and Hourly Performance 99
 - Speed of trains 99
 - Hourly train performance 101
 - Hourly performance of equipment 103
- More Useful Hours when Traffic was Heavy 105
 - How a freight car spends its time 105
 - Loaded car-hours in trains 109
 - Locomotive-hours 111
 - Hours more important than loads 112
 - Useful hours before 1920 112
- Intensity of Use Varied with Traffic 114
- More Empty Movement, Relatively, in Depression 117

5 Utilization of Equipment in Passenger Service
- What Components can be Studied? 121
- More People in a Car or Train when Aggregate Travel was Large 121
 - Passengers in a car 121
 - Passenger-carrying cars in a train 123
 - Passengers in a train 125
 - Obstacles to readjustment of service 127
 - Performance per motive-power mile 129
- Miles per Car or Engine Increased in Expansion 130
 - Cars 130
 - Locomotives 133
 - Speed vs. hours in trains 134
 - Intensity of Use Varied with Travel 134

6 The Supply and Condition of Equipment
- Stock of Vehicles Poorly or Inversely Related to Traffic 137
- Positive Relation over Long Periods 148
- Car Buying and the Growth of Traffic 152
- More frequent orders in expansion 152
CONTENTS

CHAPTER

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Purchases often declined before traffic</td>
<td>155</td>
</tr>
<tr>
<td>Rate of traffic growth does not explain early peaks in orders</td>
<td>157</td>
</tr>
<tr>
<td>Maintenance Deferred in Contraction</td>
<td>169</td>
</tr>
<tr>
<td>7 Workers and Their Performance</td>
<td></td>
</tr>
<tr>
<td>Jobs Were Steadier than Traffic</td>
<td>176</td>
</tr>
<tr>
<td>Longer Working Month in Prosperity</td>
<td>181</td>
</tr>
<tr>
<td>8 Fuel Economy</td>
<td></td>
</tr>
<tr>
<td>Economy Increased and Diminished with Traffic</td>
<td>221</td>
</tr>
<tr>
<td>No Growing Waste in High Prosperity</td>
<td>225</td>
</tr>
<tr>
<td>No Regular Tapering Off</td>
<td>227</td>
</tr>
<tr>
<td>Changes compared with time elapsed</td>
<td>227</td>
</tr>
<tr>
<td>Changes compared with those in traffic</td>
<td>230</td>
</tr>
<tr>
<td>9 Prices and Wages</td>
<td></td>
</tr>
<tr>
<td>Prices Received Did Not Rise and Fall with Traffic or Business Activity</td>
<td>231</td>
</tr>
<tr>
<td>Unit revenue must be our guide</td>
<td>231</td>
</tr>
<tr>
<td>It did not even conform positively to traffic</td>
<td>235</td>
</tr>
<tr>
<td>It did conform positively to business in earlier times</td>
<td>242</td>
</tr>
<tr>
<td>Restricted competition may have altered conformity</td>
<td>242</td>
</tr>
<tr>
<td>Effect of general rate proceedings</td>
<td>246</td>
</tr>
<tr>
<td>No Wave-like Cycles in Wage Rates</td>
<td>249</td>
</tr>
<tr>
<td>Purchasing Power in Man-hours of Prices Received Declined more Rapidly in Expansion</td>
<td>251</td>
</tr>
<tr>
<td>Prices Paid for Railway Supplies did Rise and Fall with Business and Traffic</td>
<td>255</td>
</tr>
<tr>
<td>Changes in Price Relations Unfavorable to Railway Profits in Expansion, Favorable in Contraction</td>
<td>260</td>
</tr>
<tr>
<td>Changes Favorable to Other Industries in Expansion, Unfavorable in Contraction</td>
<td>266</td>
</tr>
<tr>
<td>10 Cost and Profit</td>
<td></td>
</tr>
<tr>
<td>Introductory</td>
<td>267</td>
</tr>
</tbody>
</table>
CONTENTS

CHAPTER

- Theories about cost and profit 267
- What the terms mean 267
- Depreciation 268

Operating Expenses
- Lower unit cost at peaks than at troughs in traffic 271
- Is the end of expansion foreshadowed by rising costs? 278
- Most rapid fall, or rise, came early 280
- Conclusions similar for traffic and reference cycles 282
- Equal changes in traffic accompanied by larger changes in cost in earlier stages 283
- Effect of depreciation 285
- Physical relations usually more important than prices paid 290

Taxes
- Aggregate taxes positively related to traffic 293
- Cyclical differences among kinds of taxes 296
- Taxes less variable than traffic 302

Equipment and Joint Facility Rents
- What they are 303
- Rents less variable than traffic 304

Operating Profits
- Heavy traffic, high profits 307
- Do profits begin to fall before expansion ends? 311
- Most rapid rise, or fall, came early 316
- Greatest change in proportion to traffic came early 320
- Inflexible deductions intensified the typical fluctuations of unit profit 322
- Physical relations usually more important than price relations 324
- Aggregate sometimes continued to rise or decline after turn in unit profit 325
- Effect of inflexible items on aggregate profits 328

Corporate Profits
- Earnings from operations not the only factor in companies' profits 330
- Fixed charges left a highly variable residual 330
- Return on net worth rose and fell with traffic 334
- Dividends less variable than corporate earnings 336

11 Other than Steam Railroad Transportation

Transit
- Nature of the industry 341
- Patronage and business conditions 342
- Cyclical variation small 347

Highway Traffic
- Reflection of business conditions recent 348
- Use of vehicles far more stable than their production 349

Pipe Lines 353

Water Transport 354

Aviation 362

12 Future Cycles 363
CONTENTS

CHAPTER

Business and Traffic

Prospects for cycles in the movement of freight 363
Prospects for travel 363
Composition and amplitude 365

Familiar Concomitants of Traffic Cycles Likely to Recur 366

Features of Expansion

Supply and utilization of equipment 366
Employment, hours, and labor costs 368
Fuel 369
Prices and wages 369
Costs, taxes, rents 369
Profits 370

Features of Contraction

Equipment 371
Labor 373
Fuel 373
Prices, wages 373
Costs, etc. 374
Profits 374

Mounting Waves? 375

Note on the Magnitude of the Transportation Industry 376

Note on Sources 383

Index 387

TABLE

1 Tons Carried, Thirteen Railroads: Change per Year during Reference Phases, 1868–1885 6
2 Production Indexes, Commodity Flow, and Tons Originated: Peak Years in Business or Traffic, 1917–1926 8
3 Average Haul: Rate of Change in Phase Preceding Compared with Rate in Phase Following Each Reference Date 16
4 Railway Tonnage and Average Haul: Percentage Change between Reference Years, 1882–1920, Reference Quarters, 1920–1938 20
5 Turning Points in Ton-miles 28
6 Percentage Change in Ton-miles between Peaks and Troughs in Ton-miles 29
7 Duration of Phases and Full Cycles in Ton-miles 30
8 Ton-miles at Successive Peaks 30
9 Ton-miles, Production of Paper, and Production of Steel Ingots: Percentage Change in Each between Its Own Turning Points 40
10 Specimen Calculations for Table 9 41
11 Commutation Passenger-miles: Change per Month between Reference Peaks and Troughs, 1929–1938 48
12 Passenger-miles: Change per Year between Reference Peaks and Troughs, 1882–1910 51
13 Pullman Journeys: Change per Year between Reference Peaks and Troughs, 1878–1918 52
<table>
<thead>
<tr>
<th>Table</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>14</td>
<td>Noncommutation and Commutation Journeys: Change per Month between Reference Peaks and Troughs, 1921–1938</td>
</tr>
<tr>
<td>15</td>
<td>Length of Journeys of Noncommutation Passengers and of Commuters: Change per Month between Reference Peaks and Troughs, 1921–1938</td>
</tr>
<tr>
<td>16</td>
<td>Length of Journeys, All Passengers: Change per Year between Reference Peaks and Troughs, 1882–1938</td>
</tr>
<tr>
<td>17</td>
<td>Length of Pullman Journeys: Change per Year between Reference Peaks and Troughs, 1918–1938</td>
</tr>
<tr>
<td>18</td>
<td>Total, Noncommutation, and Pullman Passenger-miles; Industrial Production; and Ton-miles: Percentage Change in Each between Its Own Peaks and Troughs</td>
</tr>
<tr>
<td>19</td>
<td>Passenger-miles per 100 Ton-miles: Change per Year between Reference Peaks and Troughs, 1882–1910</td>
</tr>
<tr>
<td>20</td>
<td>Ratio of Noncommutation to Total Passenger-miles: Change per Month between Reference Peaks and Troughs, 1921–1938</td>
</tr>
<tr>
<td>21</td>
<td>Basic Passenger Fares, August 26, 1920–March 24, 1940</td>
</tr>
<tr>
<td>22</td>
<td>Ratio of Pullman to Noncommutation Passenger-miles: Change per Month between Reference Peaks and Troughs, 1921–1938</td>
</tr>
<tr>
<td>23</td>
<td>Traffic Units, 1911–1942</td>
</tr>
<tr>
<td>24</td>
<td>Traffic Units, All Roads, 1882–1913, and Change per Year between Reference Peaks and Troughs</td>
</tr>
<tr>
<td>25</td>
<td>Hypothetical Average Loads per Car, 1932: Illustrative Computations</td>
</tr>
<tr>
<td>26</td>
<td>Tons Originated per Car Originated, Carload Freight; and per Merchandise Car Loaded, Less-than-carload Freight: Change between Peaks and Troughs in Revenue Ton-miles, 1920–1938</td>
</tr>
<tr>
<td>27</td>
<td>Net Ton-miles per Car-hour: Change per Month between Peaks and Troughs in Revenue Ton-miles, 1920–1938</td>
</tr>
<tr>
<td>28</td>
<td>Car-days Spent by Freight Cars at Origin and Destination in Handling 49,104 Carloads terminated December 13, 1933</td>
</tr>
<tr>
<td>29</td>
<td>Car-days Spent by Freight Cars in Handling 49,104 Carloads terminated December 13, 1933</td>
</tr>
<tr>
<td>30</td>
<td>Disposition of Car-hours, All Freight Cars, December 1933 (estimated)</td>
</tr>
<tr>
<td>31</td>
<td>Time in Trains: Illustrative Computations, March 1929</td>
</tr>
<tr>
<td>33</td>
<td>Direction of Change in Stocks of Locomotives and Cars during Cycles in Ton-miles and Passenger-miles</td>
</tr>
<tr>
<td>34</td>
<td>Number of Comparisons suggesting Positive, and Number suggesting Inverse, Conformity of Equipment Stocks to Cycles in Ton-miles or Passenger-miles</td>
</tr>
<tr>
<td>35</td>
<td>Freight Locomotives: Change per Year between End-quarter Peaks and Troughs in Ton-miles, 1893–1914</td>
</tr>
<tr>
<td>36</td>
<td>Number of Locomotives assigned to Road Freight Service,</td>
</tr>
</tbody>
</table>
TABLE

and Number of Freight Cars on Line: Change per Month between Peaks and Troughs in Revenue Ton-miles, 1920-1938 140

37 Freight Train-cars: Change per Year between End-quarter Peaks and Troughs in Ton-miles, 1920-1921 143

38 Passenger Locomotives: Change per Year between End-quarter Peaks and Troughs in Passenger-miles, 1908-1913 141

39 Number of Locomotives assigned to Road Passenger Service: Change per Month between Peaks and Troughs in Revenue Passenger-miles, 1922-1938 142

40 Passenger-carrying Cars: Change per Year between End-quarter Peaks and Troughs in Passenger-miles, 1908-1938 143

41 Aggregate Capacity of Railway-owned Freight Cars: Change per Year between Peaks and Troughs in End-quarter Ton-miles, 1903-1938 144

42 Aggregate Seating Capacity of Passenger Cars: Change per Year between Peaks and Troughs in End-quarter Passenger-miles, 1921-1938 145

43 Freight-train Cars Installed and Retired per Year between End-quarter Peaks and Troughs in Ton-miles, 1907-1938 146

44 Passenger-train Cars Installed and Retired per Year between End-quarter Peaks and Troughs in Passenger-miles, 1908-1938 147

45 Freight Cars Ordered per Quarter during Phases of Ton-miles, 1877-1938 154

46 Passenger-cars Ordered per Quarter during Phases of Passenger-miles, 1908-1938 155

47 Increase per Quarter in Ton-miles; Freight Cars Ordered per Quarter: during Segments of Expansions in Ton-miles 158

48 Increase per Quarter in Passenger-miles; Passenger Cars Ordered per Quarter: during Segments of Expansions in Passenger-miles, 1908-1938 161

49 Car Orders and Rates of Traffic Growth: Number of Like and of Unlike Signs of Change 164

50 Freight Car Orders and Increase in Ton-miles: Illustrative Computations for Table 47, Col. (1), (3), and (6), Second Segment of 1877-84 165

51 Unserviceable Locomotives assigned to Road Passenger Service: Change per Month between Peaks and Troughs in Passenger-miles, 1922-1938 173

52 Traffic Units and Number of Workers, 1908-1914 177

53 Traffic Units, Number of Workers, and Man-hours, 1915-1921 178

54 Traffic Units and Number of Workers at Peaks and Troughs, 1921-1938 179

55 Ton-miles and Number of Employees, 1890-1908 180

56 Percentage of Employee Compensation Charged to Additions and Betterments, 1921-1940 184

57 Traffic Units per Man-hour Worked: Illustrative Calculations, 1927-32 Traffic Cycle 186
TABLE

58 Traffic Units per Man-hour Worked: Averages for Successive Stages of Cycles in Traffic Units 187
59 Traffic Units per Man-hour Worked: Change per Month during Segments of Phases in Aggregate Traffic Units 188
60 Traffic Units per Man-hour Worked: Change per Month. Number of Phases in which Specified Sequences Occurred 189
61 Traffic Units per Man-hour Worked: Change per Billion-unit Change in Aggregate Traffic Units 190
62 Traffic Units per Man-hour Worked: Change per Billion Units of Traffic. Number of Phases in which Specified Sequences Occurred 190
63 Revenue Ton-miles per Man-hour Worked in Freight Train and Engine Service: Change per Month between Peaks and Troughs in Revenue Ton-miles, 1921–1929 192
64 Ratio of Overtime and of Time not Worked to all Hours Paid for, Passenger Train and Engine Service: Change per Month between Peaks and Troughs in Passenger-miles, 1922–1938 198
65 Maintenance Man-hours Paid for per 100,000 Traffic Units: Change per Month between Peaks and Troughs in Traffic Units, 1921–1938 206
66 Workers for Whom Days are Reported: Average Number, 1929 209
67 Days Paid for, Workers for whom Days are Reported: Percentage Change during Specific Phases, 1923–1938 211
68 Workers in Various Age Groups: Thirteen Railroads, July 1, 1924, July 1, 1929, and December 31, 1933 219
69 Revenue Ton-miles per Ton of Fuel Consumed in Road Freight Service: Averages for Stages of Cycles in Revenue Ton-miles 226
70 Passenger-miles per Ton of Fuel Consumed in Road Passenger Service: Averages for Stages of Cycles in Passenger-miles 226
71 Revenue Ton-miles per Ton of Fuel Consumed in Road Freight Service: Change per Month during Segments of Phases in Revenue Ton-miles 228
72 Passenger-miles per Ton of Fuel Consumed in Road Passenger Service: Change per Month during Segments of Phases in Passenger-miles 228
73 Productivity of Fuel: Change per Month. Summary of Comparisons among Segments 228
74 Revenue Ton-miles per Ton of Fuel Consumed in Road Freight Service: Change per Billion-mile Change in Revenue Ton-miles 229
75 Passenger-miles per Ton of Fuel Consumed in Road Passenger Service: Change per Billion-mile Change in Passenger-miles 229
76 Productivity of Fuel: Change per Billion-unit Change in Traffic. Summary of Comparisons among Segments 229
TABLE

<table>
<thead>
<tr>
<th>Table</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>77</td>
<td>Effect of Change in Composition of Carload Traffic on Revenue per Ton-mile: Illustrative Computations</td>
<td>233</td>
</tr>
<tr>
<td>78</td>
<td>Operating Revenue per Traffic Unit: Change per Month, 1908–38, and per Year, 1882–1919, between Peaks and Troughs in Traffic Units</td>
<td>236</td>
</tr>
<tr>
<td>79</td>
<td>Freight Revenue per Ton-mile at Peaks and Troughs in Ton-miles, 1908–1938</td>
<td>237</td>
</tr>
<tr>
<td>80</td>
<td>Revenue per Ton-mile: Change per Year between Peaks and Troughs in Ton-miles, 1868–1919</td>
<td>238</td>
</tr>
<tr>
<td>81</td>
<td>Revenue per Passenger-mile: Change per Month, 1920–38, and per Year, 1882–1920, between Peaks and Troughs in Passenger-miles</td>
<td>241</td>
</tr>
<tr>
<td>82</td>
<td>Unit Revenue: Conformity Suggested by Comparisons of Adjoining Reference Phases</td>
<td>243</td>
</tr>
<tr>
<td>83</td>
<td>Operating Revenue per Traffic Unit: Change per Month, 1908–38, and per Year, 1882–1919, between Reference Peaks and Troughs</td>
<td>244</td>
</tr>
<tr>
<td>84</td>
<td>Freight Revenue per Ton-mile: Change per Month, 1908–38, and per Year, 1868–1919, between Reference Peaks and Troughs</td>
<td>245</td>
</tr>
<tr>
<td>85</td>
<td>Revenue per Passenger-mile: Change per Month, 1919–38, and per Year, 1882–1920, between Reference Peaks and Troughs</td>
<td>247</td>
</tr>
<tr>
<td>86</td>
<td>Ratio of Operating Revenue per 100 Traffic Units to Straight-time Hourly Earnings: Change per Month between Peaks and Troughs in Traffic Units, 1921–1938</td>
<td>253</td>
</tr>
<tr>
<td>87</td>
<td>Estimated Effect of Changes in Price-wage Relations on Profit per Traffic Unit, 1921–1938</td>
<td>254</td>
</tr>
<tr>
<td>88</td>
<td>Charges to Operating Expenses: Peak and Trough Years in Traffic Units, 1921–1938</td>
<td>256</td>
</tr>
<tr>
<td>89</td>
<td>Unit Revenue and BLS Wholesale Price Indexes at Peaks and Troughs in Traffic Units, 1908–1938</td>
<td>257</td>
</tr>
<tr>
<td>90</td>
<td>Operating Revenue per 10,000 Traffic Units, BRE Index of Prices of Railway Materials, Supplies and Fuel, and Ratio of Former to Latter, May 1, 1933–December 1, 1938</td>
<td>258</td>
</tr>
<tr>
<td>91</td>
<td>Operating Revenue per 10,000 Traffic Units, Railway Age Index of Prices of Railway Materials and Fuel, and Ratio of Former to Latter, 1914–1941</td>
<td>259</td>
</tr>
<tr>
<td>92</td>
<td>Revenue per 10,000 Traffic Units, BLS Wholesale Price Indexes, and Ratios, 1891–1908</td>
<td>260</td>
</tr>
<tr>
<td>93</td>
<td>Estimated Effect of Changes in Price Relations on Profit per Traffic Unit, 1908–38, 1914–38, 1893–1908</td>
<td>262</td>
</tr>
<tr>
<td>94</td>
<td>Summary of Methods by which Depreciation was Estimated</td>
<td>269</td>
</tr>
<tr>
<td>96</td>
<td>Computation of Estimated Depreciation of Freight Cars: July 1925 and June 1926</td>
<td>271</td>
</tr>
<tr>
<td>Table Number</td>
<td>Description</td>
<td>Page</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>------</td>
</tr>
<tr>
<td>97</td>
<td>Operating Expenses per Traffic Unit: Averages for Stages of Cycles in Traffic Units, 1908–1938</td>
<td>276</td>
</tr>
<tr>
<td>98</td>
<td>Number of Segments of Cycles in Traffic Units in which Unit Cost Increased and Number in which it Decreased</td>
<td>280</td>
</tr>
<tr>
<td>99</td>
<td>Operating Expenses per Traffic Unit: Change per Month during Segments of Cycles in Traffic Units, 1908–1938</td>
<td>281</td>
</tr>
<tr>
<td>100</td>
<td>Unit Cost: Summary of Changes from Segment to Segment of Phases in Traffic Units</td>
<td>282</td>
</tr>
<tr>
<td>101</td>
<td>Operating Expenses, including Depreciation, per Traffic Unit: Change during Segments of Reference Cycles</td>
<td>283</td>
</tr>
<tr>
<td>102</td>
<td>Operating Expenses per Traffic Unit: Change per Billion-unit Change in Aggregate Traffic Units during Segments of Cycles in Traffic Units</td>
<td>284</td>
</tr>
<tr>
<td>103</td>
<td>Unit Cost: Change per Billion-unit Change in Traffic. Summary of Comparisons between Segments of Cycles in Traffic Units</td>
<td>284</td>
</tr>
<tr>
<td>104</td>
<td>Aggregate Depreciation: Change per Month between Peaks and Troughs in Traffic Units, 1911–1938</td>
<td>286</td>
</tr>
<tr>
<td>105</td>
<td>Depreciation and Operating Expenses, per Traffic Unit: Percentage Net Change during Phases of Cycles in Traffic Units</td>
<td>288</td>
</tr>
<tr>
<td>106</td>
<td>Ratio of Depreciation to Operating Expenses including Depreciation: Change per Month between Peaks and Troughs in Traffic Units, 1911–1938</td>
<td>289</td>
</tr>
<tr>
<td>107</td>
<td>Railway Tax Accruals: Change per Month between Peaks and Troughs in Traffic Units, 1908–1938</td>
<td>295</td>
</tr>
<tr>
<td>108</td>
<td>State Taxes: Change per Year between Peaks and Troughs in Traffic Units, 1893–1938</td>
<td>299</td>
</tr>
<tr>
<td>109</td>
<td>State Taxes, Property and Total, 1901–1916</td>
<td>300</td>
</tr>
<tr>
<td>110</td>
<td>Federal Taxes, 1933–1942</td>
<td>300</td>
</tr>
<tr>
<td>111</td>
<td>Railway Tax Accruals per Traffic Unit: Change per Month between Peaks and Troughs in Traffic Units, 1908–1938</td>
<td>302</td>
</tr>
<tr>
<td>112</td>
<td>Aggregate Equipment and Joint Facility Rents: Change per Month between Peaks and Troughs in Traffic Units, 1918–1938</td>
<td>306</td>
</tr>
<tr>
<td>113</td>
<td>Equipment and Joint Facility Rents per Traffic Unit: Change per Month between Peaks and Troughs in Traffic Units, 1918–1938</td>
<td>306</td>
</tr>
<tr>
<td>114</td>
<td>Revenue, Expense, and Net Revenue, per Traffic Unit: Direction of Net Change during Phases of Cycles in Traffic Units</td>
<td>306</td>
</tr>
<tr>
<td>115</td>
<td>Profits per Traffic Unit: Averages for Stages of Cycles in Traffic Units</td>
<td>309</td>
</tr>
<tr>
<td>116</td>
<td>Profits per Traffic Unit: Direction of Change from Stage to Stage of Cycles in Traffic Units</td>
<td>315</td>
</tr>
<tr>
<td>117</td>
<td>Profits per Traffic Unit: Change per Month during Segments of Cycles in Traffic Units</td>
<td>317</td>
</tr>
<tr>
<td>118</td>
<td>Unit Profit: Summary of Change from Segment to Segment of Phase in Traffic Units</td>
<td>318</td>
</tr>
</tbody>
</table>
CONTENTS

TABLE

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>119</td>
<td>Net Operating Revenue after Depreciation, per Traffic Unit: Changes during Segments of Reference Cycles</td>
</tr>
<tr>
<td>120</td>
<td>Change in Unit Profit during Each Segment of Cycles in Traffic Units Divided by Change in Traffic Units</td>
</tr>
<tr>
<td>121</td>
<td>Unit Profit: Change per Million-unit Change in Traffic. Summary of Comparisons between Segments of Cycles in Traffic Units</td>
</tr>
<tr>
<td>122</td>
<td>Deductions and Profits, per Traffic Unit; and Traffic Units: Percentage Net Change during Phases of Cycles in Traffic Units, 1908–1938</td>
</tr>
<tr>
<td>123</td>
<td>Taxes and Profits, per Traffic Unit; and Traffic Units: Percentage Net Change during Phases of Cycles in Traffic Units, 1893–1908</td>
</tr>
<tr>
<td>124</td>
<td>Aggregate Net Operating Revenue after Depreciation: Averages for Stages of Cycles in Traffic Units</td>
</tr>
<tr>
<td>125</td>
<td>Unit and Aggregate Net Operating Revenue after Depreciation: High and Low Stages, 1908–1938</td>
</tr>
<tr>
<td>126</td>
<td>Aggregate Profits: Percentage Net Change during Phases of Cycles in Traffic Units, 1908–1938</td>
</tr>
<tr>
<td>127</td>
<td>Aggregate Profits: Percentage Net Change during Phases of Cycles in Traffic Units, 1893–1908</td>
</tr>
<tr>
<td>128</td>
<td>Corporate Income Accounts, 1917–1922: Selected Items</td>
</tr>
<tr>
<td>129</td>
<td>Dividend Appropriations compared with Net Income before Dividends: Class I Line-haul Railroads, 1931–1939</td>
</tr>
<tr>
<td>130</td>
<td>Transit Rides, United States: Change per Year between Reference Peaks and Troughs, 1918–1929</td>
</tr>
<tr>
<td>131</td>
<td>Transit Rides, New York City: Change per Month between Reference Peaks and Troughs, 1908–1929</td>
</tr>
<tr>
<td>132</td>
<td>Street Car and Rapid Transit Rides, New York City: Change per Year between Reference Peaks and Troughs, 1900–1910</td>
</tr>
<tr>
<td>133</td>
<td>Transit Rides, United States, and Railroad Revenue Ton-miles: Percentage Change between Specific Peak and Trough Years</td>
</tr>
<tr>
<td>134</td>
<td>Transit Rides, New York City, and Revenue Ton-miles: Percentage Change between Specific Peak and Trough Months, 1929–1938</td>
</tr>
<tr>
<td>135</td>
<td>Domestic Disappearance of Gasoline or Motor Fuel: Change per Month between Reference Peaks and Troughs, 1918–1938</td>
</tr>
<tr>
<td>136</td>
<td>Production of Passenger Cars and Motor Trucks: Percentage Change between Specific Peaks and Troughs, 1913–1938</td>
</tr>
<tr>
<td>137</td>
<td>Percentage Change in Domestic Disappearance of Motor Fuel between Its Own Peaks and Troughs, 1931–1938</td>
</tr>
<tr>
<td>138</td>
<td>Motor Vehicle Registration: Percentage Change between Its Own Year-end Peaks and Troughs, 1929–1938</td>
</tr>
<tr>
<td>139</td>
<td>Percentage Change in Domestic Disappearance of Motor Fuel per Motor Vehicle Registered between Its Own Peaks and Troughs, 1919–1938</td>
</tr>
</tbody>
</table>
TABLE

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>140</td>
<td>Petroleum Production; Crude and Refined Oil Moved by Pipe Lines Reporting to the ICC; 1925–1940</td>
</tr>
<tr>
<td>141</td>
<td>Tons Carried by Water, Selected Trades and Domestic Total; and Tons Originated by Railroads; Percentage Change between Specific Peak and Trough Years, 1920–1938</td>
</tr>
<tr>
<td>142</td>
<td>Tons Carried on New York State Canals: Change per Year between Reference Peaks and Troughs, 1838–1938</td>
</tr>
<tr>
<td>143</td>
<td>Passenger-miles, Domestic Airlines: Change per Month between Reference Peaks and Troughs, 1933–1938</td>
</tr>
<tr>
<td>144</td>
<td>Gainful Workers in Transportation and Other Industries as reported by Census of 1930</td>
</tr>
<tr>
<td>145</td>
<td>Estimated Manpower Available for Transportation and Other Industries, 1910–40</td>
</tr>
<tr>
<td>146</td>
<td>Estimated Manpower Available for Transportation and Public Utility Industries and for All Industry, 1870–1910</td>
</tr>
<tr>
<td>147</td>
<td>Net Income Originating in Transportation and Other Industries: Reference Peak and Trough Years, 1919–1938</td>
</tr>
<tr>
<td>148</td>
<td>Operating Revenues of Transportation Industries and Gross National Product: Reference Peak and Trough Years, 1919–38</td>
</tr>
<tr>
<td>149</td>
<td>Value of Equipment and Real Estate Improvements, End of Selected Years, 1880–1936</td>
</tr>
<tr>
<td>150</td>
<td>Monthly and Quarterly Publications of Interstate Commerce Commission Bureau of Statistics, and Basic Data Derived from Them</td>
</tr>
<tr>
<td>151</td>
<td>Man-hours: Illustrative Computations from Data in ICC Wage Statistics</td>
</tr>
</tbody>
</table>

CHART

<table>
<thead>
<tr>
<th>Page</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Tons Carried, Annually, 1882–1901; Tons Originated, Annually, 1899–1922</td>
</tr>
<tr>
<td>2</td>
<td>Tons Originated, First Quarter 1920–Fourth Quarter 1939</td>
</tr>
<tr>
<td>3</td>
<td>Ratio of Actual Railway Tonnage to Tonnage that would have been Transported if Traffic had Maintained (a) its 1923–25 or (b) its 1928 Relation to Supply of Commodities</td>
</tr>
<tr>
<td>4</td>
<td>Less-than-carload Freight: Tons Originated, First Quarter 1920–Fourth Quarter 1941</td>
</tr>
<tr>
<td>5</td>
<td>Average Haul, First Quarter 1920–Fourth Quarter 1940 (ton-miles per ton originated)</td>
</tr>
<tr>
<td>6</td>
<td>Average Haul, 1882–1922 (ton-miles per ton carried 1882–1901, per ton originated 1899–1922)</td>
</tr>
<tr>
<td>7</td>
<td>Ton-miles, May 1907–December 1939</td>
</tr>
<tr>
<td>8</td>
<td>Ton-miles: Thirteen Railroads, 1865–1885; All Railroads, 1882–1909</td>
</tr>
<tr>
<td>9</td>
<td>Ton-miles, Babson Estimates, August 1866–December 1908</td>
</tr>
<tr>
<td>10</td>
<td>Ton-miles per Mile of Line: Thirteen Railroads 1871–1886; All Railroads, 1882–1910</td>
</tr>
<tr>
<td>11</td>
<td>Number of Months by which Turn in Ton-miles Preceded or Followed Reference Turn</td>
</tr>
<tr>
<td>12</td>
<td>Flow of Consumer Durable Goods, Producer Durable</td>
</tr>
</tbody>
</table>
CONTENTS

CHART

Goods, and Construction Materials: Percentage of All Finished Commodities plus Construction Materials, 1889–1939 33
13 Durable Goods: Percentage of Total Tons Originated, 1899–1920 34
14 Units of Agricultural Output per Unit of (a) Mineral Output, (b) Manufacturing Output, 1899–1939 36
15 Flow of Farm and Other Products into all Forms of Disposal: Indexes Weighted by Tons Handled by Railroads in 1920 37
16 Products of Agriculture plus Animals and Products: Percentage of All Railroad Tonnage Originated, 1899–1939 37
17 Perishable Foods: Percentage of Total Tonnage Originated, 1899–1940 38
18 Manufactured Petroleum and Other Oils, 1899–1920; Crude Petroleum and Its Products, 1920–1939: Percentage of Total Tonnage Originated 39
19 Passenger-miles, July 1907–December 1940; Noncommutation Passenger-miles, July 1921–December 1940 44
20 Pullman Passenger-miles, January 1915–December 1941 46
21 Commutation Passenger-miles, July 1921–December 1940 47
22 Revenue per Passenger-mile: Commutation and Other Travel, 1922–1940 49
23 Passenger-miles, 1882–1910 50
24 Pullman Journeys, 1875–1918 51
25 Number of Months by which Turn in Passenger-miles Preceded or Followed Reference Turn 53
26 Soldier Journeys, July 1918–June 1920 55
27 Average Journey: Noncommuters, July 1921–December 1940 58
28 Average Journey: Commuters, July 1921–December 1940 58
29 Passenger-miles per Point of Industrial Production, January 1919–December 1939 64
30 Ratio of Pullman to Noncommutation Passenger-miles, July 1921–December 1940 69
31 Traffic Units, July 1907–December 1940 76
32 Load in a Car, Carload Revenue Freight, First Quarter 1921–Fourth Quarter 1941 (tons originated per car originated) 82
33 Tons of Less-than-carload Freight Originated per Merchandise Car Loaded, Third Quarter 1920–Fourth Quarter 1941 87
34 Load in a Car, All Freight, January 1918–December 1938 (net ton-miles per loaded car-mile) 90
35 Load in a Car, All Freight, 1901–1919 (revenue ton-miles per loaded car-mile) 90
36 Loaded Cars in a Freight Train, January 1920–December 1940 (loaded car-miles per train-mile) 93
37 Loaded Cars in a Freight Train, 1901–1922 (loaded car-miles per train-mile) 94
CHART

38 Tons in a Freight Train, January 1920—December 1939 (net ton-miles per train-mile) 96
39 Tons in a Freight Train, 1890—1922 (revenue ton-miles per train-mile) 96
40 Speed of a Freight Train, January 1920—December 1940 (train-miles per train-hour, freight service) 100
41 Net Ton-miles per Train-hour, January 1920—December 1940 102
42 Net Ton-miles per Car-hour, January 1920—December 1939 104
43 Loaded Freight Car-hours in Trains: Percentage of Total Serviceable Hours, January 1920—December 1940 110
44 Freight Locomotive Hours in Trains: Percentage of Total Serviceable Hours, January 1920—December 1940 111
45 Loads and Hours in Trains: Ratio of Average at End of Phase to Average at Beginning, 1920—1938 112
46 Loaded Car-miles per Freight-train Car, 1901—1922 113
47 Train-miles per Freight Locomotive per Year, 1894—1914 113
48 Ton-miles per Freight Car per Month, January 1920—December 1940 115
49 Ton-miles per Freight Locomotive per Month, January 1921—December 1940 115
50 Revenue Ton-miles per Freight Car per Year, 1891—1922 116
51 Revenue Ton-miles per Freight Locomotive per Year, 1894—1914 116
52 Percentage Ratio of Loaded to Total Freight Car-miles, January 1920—December 1939 118
53 Percentage Ratio of Loaded to Total Freight Car-miles, 1901—1922 118
54 Passenger-miles per Passenger-carrying Car-mile, January 1920—December 1940 122
55 Passenger-miles per Passenger-carrying Car-mile, 1908—1923 123
56 Passenger-miles per Train-mile, January 1920—December 1940 126
57 Passenger-miles per Train-mile, 1890—1923 126
58 Car-miles per Car per Year, Passenger Train Service, 1909—1939 131
59 Locomotive-miles per Passenger Locomotive per Month, January 1921—December 1940 133
60 Train-miles per Passenger Locomotive per Year, 1894—1914 134
61 Passenger-miles per Passenger-carrying Car per Year, 1910—1939 135
62 Passenger-miles per Passenger Locomotive per Year, 1894—1914 135
63 Freight-train Cars Owned by Railways at End of Year, 1876—1922 149
64 Passenger-carrying Cars Owned at End of Year, 1881—1939 149
65 Locomotives Owned by Railways at End of Year, 1876—1942 150
CONTENTS

CHART

66 Total Locomotives Assigned to Road Freight Service, February 1920—December 1940

67 Serviceable Locomotives Assigned to Road Freight Service: Total and Serviceable Freight Cars, First January 1920—December 1940

68 Total and Serviceable Locomotives Assigned to Road Passenger Service, January 1921—December 1941

69 Freight Car Orders, First Quarter 1870—Fourth Quarter 1939

70 Passenger Car Orders, First Quarter 1907—Fourth Quarter 1939

71 Daily Average Freight Car Shortages, May 1907—December 1924

72 Unserviceable Freight Cars on Line, January 1920—December 1939

73 Unserviceable Locomotives Assigned to Road Freight Service, February 1920—December 1940

74 Unserviceable Locomotives Assigned to Road Passenger Service, January 1921—December 1941

75 Railway Employees at Middle of Month, July 1921—December 1941

76 Hours Worked per Month per Employee, Occupations for which Hours are Reported, July 1921—December 1941

77 Traffic Units per Man-hour Worked, Occupations for which Hours are Reported, July 1921—December 1938

78 Revenue Ton-miles per Man-hour Worked, July 1921—June 1940, and per Man-hour Paid For, January 1926—June 1940: Freight Train and Engine Service

79 Passenger-miles per Man-hour Worked, and per Man-hour Paid For: Passenger Train and Engine Service, July 1921—December 1939

80 Overtime Paid for at Punitive Rates: Percentage of Total Man-hours Worked, All ‘Hourly’ Workers, July 1921—December 1941

81 Overtime Paid For: Percentage of Total Man-hours worked, July 1921—June 1940, and of Total Paid For, January 1926—June 1940, Freight Train and Engine Service

82 Overtime Paid For: Percentage of Total Man-hours Worked, and of Total Paid For, Passenger Train and Engine Service, July 1921—December 1939

83 Man-hours Paid For but Not Worked: Percentage of Total Paid For, All ‘Hourly’ Workers, January 1926—December 1941

84 Man-hours Paid For but Not Worked: Percentage of Total Paid For, Freight Train and Engine Service, January 1926—June 1940

85 Man-hours Paid For but Not Worked: Percentage of Total Paid For, Passenger Train and Engine Service, July 1921—December 1939
CHART

86 Man-hours Paid For in Maintenance Work per 100,000 Traffic Units, July 1921–December 1938 205
87 Man-days Paid For per Million Traffic Units, Occupations for which Days are Reported, July 1921–December 1938 210
88 Man-days Paid For, Occupations for which Days are Reported, July 1921–December 1940 210
89 Compensation of All Workers per Traffic Unit, July 1921–December 1938 212
90 Traffic Units per Man-hour Worked, and Aggregate Traffic Units: Averages for Stages of Cycles in Aggregate Traffic Units, 1921–1938 214
91 Traffic Units per Worker, and Aggregate Traffic Units, 1905–1939 215
92 Workers in Each Age Group: Percentage of Total in All Groups 219
93 Revenue Ton-miles per Ton of Coal or Equivalent Consumed in Freight Service, January 1920–December 1940 222
94 Passenger-miles per Ton of Coal or Equivalent Consumed in Passenger Service, January 1920–December 1940 223
95 Operating Revenue per Traffic Unit, July 1907–December 1938 234
96 Operating Revenue per Traffic Unit, and Freight Revenue per Ton-mile, 1890–1909 235
97 Freight Revenue per Ton-mile, July 1907–December 1939 239
98 Passenger Revenue per Passenger-mile, March 1919–December 1939 240
99 Passenger Revenue per Passenger-mile, 1890–1922 241
100 Straight-time Hourly Earnings, Occupations for which Hours are Reported, July 1921–December 1940 250
101 Ratio of Revenue per 100 Traffic Units to Straight-time Hourly Earnings, July 1921–December 1938 254
102 Ratio of Revenue per 10,000 Traffic Units to Three BLS Wholesale Price Indexes, July 1907–December 1938 264
103 Ratio of BLS Index of Wholesale Prices, All Commodities, to Revenue per 10,000 Traffic Units, July 1907–December 1938 265
104 Railway Operating Expenses, July 1907–December 1940 272
105 Railway Operating Expenses, 1890–1910 273
106 Operating Expenses per Traffic Unit, July 1907–December 1938 275
107 Operating Expenses per Traffic Unit, 1890–1910 277
108 Number of Months by which Turn in Operating Expenses (including Depreciation) per Traffic Unit Preceded or Followed Turn of Opposite Character in Traffic Units 278
109 Aggregate Depreciation, 1911–1940 285
110 Railway Tax Accruals, Depreciation, and Equipment and Joint Facility Rents, per Traffic Unit 287
111 Railway Tax Accruals, July 1907–December 1939 294
112 State, Federal, and Payroll Taxes, 1911–1939 297
113 Railway Tax Accruals, 1890–1911 298
CONTENTS

114 Railway Tax Accruals per Traffic Unit, 1890–1909 303
115 Equipment and Joint Facility Rents, January 1917–December 1938 305
116 Operating Profits per Traffic Unit, 1890–1911 311
117 Net Income from Railway Operations (after Depreciation), per Traffic Unit, July 1907–December 1938 312
118 Number of Months by which Turn in Net Operating Revenue Preceded or Followed Turn in Traffic Units 314
119 Number of Months by which Turn in Aggregate Net Operating Revenue Preceded or Followed Turn in Net Operating Revenue Per Traffic Unit 323
120 Operating Profits, 1890–1910 328
121 Rent for Leased Roads Plus Interest, and Net Income, per Traffic Unit, 1890–1941 331
122 Ratio of Net Income to Net Operating Income, 1890–1941 333
123 Percentage Ratio of Net Income to Net Worth, 1890–1941 335
124 Railway Dividends, 1890–1941 336
125 Ratio of Dividends to Net Income, 1890–1931 338
126 Transit Rides, United States, 1917–1940 342
127 Transit Rides, New York City, July 1907–December 1941 344
129 Tons Carried by Water, Selected Domestic Trades, 1920–1943 354
130 Ton-miles on Great Lakes and on All Inland Waterways, 1925–1943 356
131 Tons Carried by Water, All Domestic Commerce, 1920–1943 357
132 Tons Carried, New York State Canals, 1837–1943 360
133 Passenger-miles, Domestic Airlines, July 1931–December 1941 361
1. The object of the National Bureau of Economic Research is to ascertain and to present to the public important economic facts and their interpretation in a scientific and impartial manner. The Board of Directors is charged with the responsibility of ensuring that the work of the National Bureau is carried on in strict conformity with this object.

2. To this end the Board of Directors shall appoint one or more Directors of Research.

3. The Director or Directors of Research shall submit to the members of the Board, or to its Executive Committee, for their formal adoption, all specific proposals concerning researches to be instituted.

4. No report shall be published until the Director or Directors of Research shall have submitted to the Board a summary drawing attention to the character of the data and their utilization in the report, the nature and treatment of the problems involved, the main conclusions and such other information as in their opinion would serve to determine the suitability of the report for publication in accordance with the principles of the National Bureau.

5. A copy of any manuscript proposed for publication shall also be submitted to each member of the Board. For each manuscript to be so submitted a special committee shall be appointed by the President, or at his designation by the Executive Director, consisting of three Directors selected as nearly as may be one from each general division of the Board. The names of the special manuscript committee shall be stated to each Director when the summary and report described in paragraph (4) are sent to him. It shall be the duty of each member of the committee to read the manuscript. If each member of the special committee signifies his approval within thirty days, the manuscript may be published. If each member of the special committee has not signified his approval within thirty days of the transmittal of the report and manuscript, the Director of Research shall then notify each member of the Board, requesting approval or disapproval of publication, and thirty additional days shall be granted for this purpose. The manuscript shall then not be published unless at least a majority of the entire Board and a two-thirds majority of those members of the Board who shall have voted on the proposal within the time fixed for the receipt of votes on the publication proposed shall have approved.

6. No manuscript may be published, though approved by each member of the special committee, until forty-five days have elapsed from the transmittal of the summary and report. The interval is allowed for the receipt of any memorandum of dissent or reservation, together with a brief statement of his reasons, that any member may wish to express; and such memorandum of dissent or reservation shall be published with the manuscript if he so desires. Publication does not, however, imply that each member of the Board has read the manuscript, or that either members of the Board in general, or of the special committee, have passed upon its validity in every detail.

7. A copy of this resolution shall, unless otherwise determined by the Board, be printed in each copy of every National Bureau book.

(Resolution adopted October 25, 1926 and revised February 6, 1933 and February 24, 1941)