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I. INTRODUCTION
The purpose of this paper is to develop a simple model that evaluates
the instructional costs of educating student cohorts enrolled in an in-
stitution of higher education. We have the additional objective of analyz-
ing some of the cost implications of new operating policies and plans that
modify the content, number, and type of degree programs available to
these cohorts. Although the data we use is specifically adopted from
sources at the University of Colorado, the University of California (Berke-
ley Campus), and Stanford University, the underlying model of the
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educational process and the mathematical methods that we use to evalu- emphasis in th
ate, these costs may be applicable to other private or public educational interested in
institutions. Since our emphasis is on finding a scheme for predicting particular stud
budgets under specified policy constraints, no judgment is made or obtaining the
implied regarding the quality of educational programs. The assumption The connectioi'
is that quality standards determine some of the constraints on feasible while lifetimes
operating policies and that these may obviously differ from one institu- tion, they are ri
tion to another. of tF.... t)•1

Throughout this paper, student cohorts are identified by their status costs of those s
upon entering and by the sequence of educational programs which they attendance pat
undertake at the educational institution in question. For example, one are much less
cohort might consist of students who enter the lower division, continue accounting
into the upper division, and obtain a bachelor's degree. A second cohort which reveal th
might be students who enroll for the first time at the upper-division impact that
level and drop out prior to receiving a degree; still a third example is a pie, if dropouts
junior transfer who receives his bachelor's degree and then continues for we are interes
an additional period of time in order to receive his master's degree. types of studen
Although we do not do so in this paper, it is possible to define a cohort In the remai
by means of a finely divided classification which identifies such things as refers only to U
the student's major; his precise status, such as second quarter, third the instruction
year; his educational background, two years of high school, three years become involve
of preparatory school; and even socioeconomic factors such as income for converting
and educational background of parents. We have chosen to restrict the that includes n
problem and data requirements to a manageable level, but at the same and office
time, to select aggregations that allow us to evaluate the costs, of The organizr
administrative and institutional policies, such as the implementation of related work or
year-round operations, the imposition of various enrollment ceilings, the introduced in S
adoption of new undergraduate and graduate programs or the alteration a mathematical
of dropout rates through selective admission policies, characterized b:

As the reader will see, cohorts are defined in a way that makes it flows and costs
simple and straightforward to calculate the unit cost of educating a lead to interest
student member of that cohort. This accounting is straightforward when sociated with fir
the life history and costs of each student cohort are independent of all V gives source
others. Unfortunately, this is seldom the case, and possibly the most unit cost data fi
important feature of our model and its findings is the recognition that the model are I

different degree programs have substantial interactions with one an- one were to ad
other. Changes in the unit costs of one program usually affect a large Commission on
number of cohorts and hence the total costs of educating different be reduced fror
student cohorts. This feature is particularly important when a fraction of bibliography.
the students being educated are themselves used as teachers.

It is common practice in many institutions to allocate a large amount
of historical accounting data in such a way as to come up with a cost per

student
for every year that he attended the institution in question. The
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emphasis in this paper is quite the opposite: first of all, we are more
interested in estimating and analyzing the unit costs of educating a
particular student during his lifetime at the institution than we are in
obtaining the unit cost of enrolling a student for a single time period.
The connection between the two types of costs is not always obvious;
while lifetimes of the student at the institution enter the former calcula-
tion, they are not involved in the latter. In our experience, calculations
of th., make it difficult to distinguish between the unit
hosts of those students who do, or do not, drop out, so that the effect of
attendance patterns on unit costs is not explicitly made. Secondly, we
are much less interested in manipulating large amounts of historical
accounting data than we are in obtaining order-of-magnitude estimates
which reveal the underlying structure of marginal and unit costs and the
impact that new institutional policies have upon these costs. For exam-
ple, if dropouts affect enrollment levels in a reasonably predictable way,
we are interested in understanding how costs of educating different
types of students are sensitive to policies which affect these dropouts.

In the remainder of this paper, we assume that "instructional cost"
refers only to the direct salary cost of students and faculty who engage in
the instruction of students at a given institution. While we do not
become involved in such computations, standard accounting techniques
for converting these direct labor costs into a total ins•tructional budget
that includes related items, such as expenditures for nonacademic staff
and office space, do exist.

The organization of this paper is as follows: Section II discusses
related work on university cost models. Notation and terminology are
introduced in Section III, which we then use in Section IV to formulate
a mathematical model of student flow patterns and costs on a network
characterized by the degree programs available to student cohorts. The
flows and cosls have an apparent multi-commodity structure which can
lead to interesting and nontrivial interpretations for shadow prices as-
sociated with final demands, admissions and enrollment ceilings. Section
V gives source data for behavioral and institutional parameters and the
unit cost data for campuses that we study in Section VI. The data and
the model are used to analyze instructional costs at each institution if
one were to adopt the policy recommendation made by the Carnegie
Commission on Higher Education [19711 that lower-division programs
be reduced from two years to one year. The paper concludes with a
bibliography.
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II. RELATED WORK
Some interesting papers on unit costs as they relate to productivity in
education may be found in UNESCO [1967]. In this volume, the paper
by de Escondrillas describes two types of aggregate unit costs that are
commonly used for monitoring educational institutions: cost per student
year and cost per graduate. These are computed by dividing the total
annual operating cost by either the total enrollment or by the total
number of students graduating per year. Observe that the latter compu-
tation has the effect of attributing the cost of all students who do not
complete the curriculum (i.e. dropouts) to those who do, Moreover, de
Escondrillas did not discuss specific uses for. each type of unit cost. That
it is important to decide a priori on the type of cost most pertinent to a
given study was demonstrated in the paper by Chau who used real data
to calculate both the cost per student year and the cost per departing
student in the primary school systems of Cameroun and Senegal. The
results showed Cameroun to be more "efficient" with respect to the first
criterion, and Senegal with respect to the second. Finally, the paper by
Gem analyzes various components of the cost per student year, such as
the cost of teachers, capital equipment, and construction and mainte-
nance of buildings, in order to isolate the factors that influence them.
Cern also suggested a number of different unit cost comparisons which
might be made for the purpose of identifying efficient alternatives, for
example between similar institutions in a given country, between differ-
ent countries, or between different teaching techniques.

Several cost simulation models have recently been developed for
institutions of higher education to calculate costs in terms of levels of
instructional activity. Although the details of these models are not gen-
erally available in the open literature, mimeographed reports, such as
Weathersby [1967] and Judy [1969], have been widely circulated. Tak-
ing student enrollments to be the measure of instructional activity, these
models determine instructional costs in the following manner: let
x(t) = [Xj (t)] be an n-dimensional column vector of student enrollments
at time t (by grade level, major department, etc.) and let y(t) = [y 1(t)] be
an rn-dimensional column vector of faculty staffing levels at time t (by
rank, department, etc.). The assumption is made that y(t) is linear in
x(t), i.e. given x(t), one can compute y(t) by the rule

y(t) = Mx(t)

where M = is an rn X n matrix of faculty-student ratios. Given an
rn-dimensional row vector of average faculty salaries, s, one obtains the
total instructional cost for time period t, C(t), by taking the vector
product

C(t) = sy(t) = (sM)x(t)
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In such a scheme, the unit (per period) cost of instruction for students in
category i is expressed by the ith component of the vector (sM). We
emphasize that the elements of aM are holding costs, not product costs.

This basic model was extended by Koenig et al. [1967] to include
equations that describe the transitions of students as they flow through
the system. These authors made the ,,following assumptions regarding
student attendance behavior: (1) each student's progress through his
educational program does not depend on any other student's progress;
and (2) a student's status at time t + 1 does not depend on his status
prior to time t. Under these assumptions, it is reasonable to postulate
the existence of a Markov-like transitiQn matrix P = [Pu] whose (ij)th
element is the fraction of students in state i at the beginning of period t
that will be in statej at the beginning of period t + 1. If z(t) = is
an n-dimensional column vector of new admissions during period t,
student enrollments at t + 1 are related to the enrollments at t by the
equations

x(t + 1) = P'x(t) + z(t)

where prime denotes matrix transposition. These authors were particu-
larly interested in describing the cumulative instructional costs invested
in students as they flow through the system. Thus, defining to be
the average cumulative educational investment in students in state i at
the end of period t and assuming that new students have accumulated
the same average investment as those who entered previously, they
described the conservation of money flows for each state j as follows:

+ 1) + 1)

=
1 in continuing students who are

in state j in period t + 1]
+ [total cumulative investment in new

students entering at statej at the end
of period t]

+ [value added during period t + 1]

While their purpose was to investigate cumulative educational invest-
ments regardless of where these investments were made, we are in-
terested only in those investments made by the given institution. There-
fore, it is appropriate to delete the second term in the above equation. If
we then divide both sides by x,(t + 1), we obtain a set of linear equa-
tions that describe the propagation of the unit cumulative investment in
students in the various states j:
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ê3(t + 1) =

Observe that in order to calculate numerical values for the in this
recursive relationship, it is necessary that we first be given values for
investments in the initial period,

Models of this type are cross-sectional in the sense that the elements
of M and P are estimates of ratios observed at a particular point in time
or are, at best, the average of a small number of time periods. They tend
to suffer from the real difficulty that cross-sectional data is sensitive to
historical institutional policies, and it is often difficult to examine the
cost implications of new operating policies. In the Koenig model, for
instance, the meaning of the quantity ô1(t), computed for a group of
students undifferentiated by where they entered the system, is not
clear. Nor is it clear how the will be affected by changes in student
admission and dropout rates.

Because these models are usually formulated to include a great deal of
detail (i.e. numerous categories of students and faculty), they are costly
to implement. An additional drawback is that, at such levels of disaggre-
gation, the existence of widespread substitutability between members of
a university instructional would seem to contradict the assumption
of a single-efficient-point technology in which resource inputs are always
used in fixed proportions; in addition, it may be unreasonable to assume
that individual instructional programs exhibit constant returns to scale.
These issues are discussed at greater length in Hopkins [1971].

Sengupta and Fox [1969] formulated a linear programming model to
determine optimal policies for the recruitment of new faculty and the
allocation of total faculty time to various instructional and research
activities over a four-year planning period. Although they were not
concerned directly with the costs of educating students, these were
included as debit items in their maximand. The remaining coefficients in
the objective function corresponded to the value added by "producing" a
graduate from a bachelor's, master's, or doctoral program, this quantity
being measured as the difference in expected discounted lifetime in-
come due to the earning of the degree. The constraints specified de-
mands for faculty time in teaching, research, and administration; avail-
able supplies of faculty time; undergraduate and graduate student ad-
mission quotas; and various technological restrictions. A major weakness
of this model is its omission of the effects of dropouts and student
lifetimes, for it assumes that admissions are equivalent to degree outputs
and that all students are enrolled in a given degree program for the same
period of time.

Our model in this paper differs in several ways from earlier ones and
offers an alternative way to calculate the cost of educating a student at a
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given institution. First of all, the model is longitudinal rather than
cross-sectional in nature. That is to say, student cohorts and the unit cost
of educating a student cohort are defined over the lifetime of the cohort
in question, not at a single point in time. Attrition rates and other factors
related to student attendance patterns are defined for each student
cohort; again the relevant time period is the lifetime of the cohort at the
institution.

Secondly, we are concerned with the interactions that occur when an
institution is in equilibrium with respect to student flows, enrollments,
and various parameters of student behavior. We assume that input
flows, output flows, enrollments, cohort lifetimes, and dropout rates are
the same in each time period and make a concerted effort to attribute
costs to the actual output flow rates of the instructional process, namely
various types of degree recipients and dropouts per unit time.

Finally, our model is highly aggregated in the sense that individual
departmental majors are not taken into account. Thus, we are interested
in the implications of new policies at the campus-wide level, not at the
departmental level. In this sense, it is similar to one developed earlier
by Oliver, Hopkins, and Armacost [1970] expressing the enrollments of
students, the number of teaching staff, and the flow rates of students
who eventually drop out in terms of the final demand for degree recip-
ients at various degree levels.

The size of our model is such that the number of policy variables that
can be identified and studied is of the order of ten or twenty, not
hundreds or thousands; the amount of data that must be collected and
analyzed does not obscure one's understanding of the budgetary flow
process; and it is possible, with a minimal amount of computation and
analysis, to identify the effects of certain proposed policies.

III. NOTATION AND TERMINOLOGY
For our purposes it is convenient to represent the educational system by
a directed flow network [N, M], where N denotes an unordered set of
nodes and M is an ordered set of chains. In this scheme, each node is
equivalent to an educational program (e.g. the successful completion of
upper division, or the termination of master's studies prior to comple-
tion of the degree requirements), while a chain corresponds to the
sequence of programs pursued by a specific cohort of students (e.g.
entrance at the upper-division level, successful completion of upper-
division followed by admission to a master's program, with termination
as a master's dropout).

We define a chain in M as a sequence of distinct ordered nodes in N,
where the first node of the chain is the origin node and the last node of

A
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the chain is the destination node. All other nodes on a chain are
intermediate nodes. To uniquely chain in our networks it is a(1)
sufficient to list the sequence of nodes that comprise the chain.

Figure 1 illustrates the basic network used in analyses and calculations
throughout this paper. Nodes 1', 2', 3', 4' are dummy nodes uscI

to upper-division,
master's and doctoral degree programs, Nodes 1, 2, 3, 4 a(2)
represent the programs associated with completion of the above while 5,
6, 7, 8 are the programs identified with dropouts at these same levels.
Nodes 9 and 10 represent graduate students that are employed as
teaching assistants during part of their career at the institution. Although
the teaching assistantship is depicted in Fig. 1 as taking place at the end
of a graduate student's career, we recognize that the sequence may
differ in individual cases. It can be shown that the we obtain
in the model of Section IV do not depend on the actual timing of the
teaching assistantship.

There are 12 chains having origin node 1', 11 chains with origin 4node 2', 9 chains with origin node 3', and 3 chains with origin node 4'.
Three typical ones are

{1', 5} with destination node 5,
{3', 3, 8} with destination node 8,
{1', 1, 2, 3, 4, 9} with destination node 9.

The first chain represents the student cohort that enters at the lower FIGURE 1division and drops out before completing the lower division. The second
chain represents a student who enters the institution, obtains a master's
degree and drops out from the doctoral degree program. The third chain incidence mat]represents tne stucient conort tnat enters at tfle lower division, corn- .tionai programpletes the lower division, upper division, master s degree, and Ph. D., sents the totaland is employed as a teaching assistant before leaving the institution.

Associated with each node are the scalar quantities Lj: the enrollment variables are s

in the program represented by the ith node; v4: the lifetime required for
comp eting t e program at t e it n e; g4: t e tot flow rate entering
the program at the ith node; and c4: the unit (lifetime) cost of the The assumptio
program at the ith node. Finally, for certain nodes we specify exogenous

Ftsupplies a4 or exogenous demands bt. Lifetimes, costs and enrollments at .

ows

1 tic anaaummy noaes are zero.
Associated with each chain are the scalar quantities: flow on A2: An eq

the jth chain in the set of chains having origin node k; and Cj'—the
unit cost of the jth chain having origin node k.

Associated with the network is the vector h = (h . . . , . .

A3: Studen
which specifies the flow pattern at the educational institution, the tional

having
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incidence matrix B that defines the network configuration of the institu-
tional programs and flow patterns and finally the scalar C which repre-
sents the total instructional costs of educating all student cohorts. These
variables are summarized in Table 1.

IV. A COHORT MODEL
The assumptions of the paper are:

Al: Flows and stock levels are sufficiently large so that a determinis-
tic analysis is reasonable.

A2: An equilibrium exists with respect to flows, enrollments,
lifetimes, costs, and student dropout rates over time.

A3: Student dropouts from a given program are specified as a frac-
tional flow rate of all students enrolling in that program and
having a common origin node.

i 379 Robert M. Oliver and David S. P. Hopkins
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1. N: The set of nodes in the network [NM]
2. M: The set of chains in the network [NM]

3. i,j,k: Indices referring to nodes, chains, origins

4. The set of chains originating from node k

5. N1C: The set of chains ending in node k

The vector of chain flows on the network, i.e. the flow
pattern

The total network cost
The node-chain incidence matrix

A4: Technological requirements are specified in terms of teacher-
student ratios.

A5: The unit cost of a cohort equals the sum of unit costs of the
sequence of programs that define the cohort.

In our model there are four types of equations and inequalities that
must be satisfied by student flows. As the reader will see, all of these are
linear in the chain flows hjc. The first two types of equations are
inhomogeneous: admission equations require that chain flows with a
common origin satisfy certain equalities or inequalities, whereas final
demands imposed exogenously on the educational system constrain
chain flows with a common destination node. The third type expresses a
dropout cohort flow in terms of all other flows having the same origin
node. Finally, we impose technological requirements on teaching assis-

381
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TABLE 1 Summary of Notation

6, C1: The unit (lifetime) cost of the ith node

7. L1: The enrollment at the ith node
8. The lifetime in the ith node
9. g1: The total flow entering the ith node

10. &: The exogenous flow (admissions) into the ith node

11. b: The exogenous flow (final demands) from the ith node

12. hj: The jth chain flow with origin k

13. CJC: The unit cost of the jth chain with origin k
14. Ii = (1/ I',

):

is. C::

16. B = [bu]:
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tants. In the last two cases, the equations in chain flows are homogene-
ous.

In order to conserve flows among student cohorts, it is useful to
specify a node-chain incidence matrix Bc for the kth origin node of the
network. The elements of each such incidence matrix are given by

(1) bj'f, = 111 node i is in chainj with origin k
= 0 otherwise

To simplify notation for those cases where we include all origins we
write

(2) B = [B'; B2; . . . ; Bk: .

ith node
m the jth node

gin k

)rk, i.e. the flow

rms of teacher-

nit costs of the

inequalities that
all of these are

f equations are
in flows with a
s, whereas final
ystem constrain
type expresses a

same origin
fl teaching assis-

Thus the augmented matrix B has columns identical with columns of
Since a row corresponds to a node and a column corresponds to a chain,
summing entries of B in a particular column gives the number of nodes
in that chain, while summing a row of B gives the number of chains
passing through a given node.

Using this notation one can write the supply and demand equations in
terms of the chain flows and the flows entering or leaving each node of
the network. If is the total admission rate originating at the kth node,
then is simply the sum of all chain flows originating at k, i.e.

(3) ak= k€N

Similarly, when Nk denotes the set of all chains with destination node k,
then

(4) bk= i€N

denotes the total final demand with destination k. In (4) we retain the
convention that the index 1 refers to origin nodes on chains in Nec.
Equations 3 and 4 represent the inhomogeneous conservation equations
for admissions and final demands. In general there are as many con-
straints of type (3) or (4) as one chooses to impose. If no constraint is
imposed, no equation is written. Furthermore, if ak or are lower or
upper bounds, the appropriate inequalities are substituted for equalities.

We denote the average enrollment level at each node by the product
of the lifetime at each node with the total flow into the node (Assump-
tion A2). If we denote the total flow into node i by gj and the expected
lifetime by then

(5) L =gjoj iEN

where the total kth origin flow into i is

(6)

381
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(14)

where C, is th4
write total cos
multiply all ch
the appropriat
cost

(15)
k

To formulate
(6) to obtain

(16)
k

k

Thus, an alter
unit cost of eai
nodes.

In the rema
tional to teaci
ratios, i.e

(17) c, (I

in other words
flow. For this
degree output
affect the unit
which have to•

The reader
chains; thus, ci
many chains ii
destination noc
chains, for a to
costs of educat
total of 35 diffe
On the other h
the costs of low
student cohort

Our formula
linear equatior
right-hand sidi
demands, the

sati
pattern is four

383
I

Robert

and the total flow into node i from all origins is
(7) =

Specification of dropouts is, by Assumption A3, simply a matter of
expressing the flow rate of dropouts in terms of the total flow on chains
having the same origin node and enrolling in the same program. For
instance, the flow rate of students who enter as freshmen and drop out
from upper division is proportional to the total freshmen admission rate.
In general, if the jth chain with origin node k corresponds to a flow of
dropouts we write

(8) hjk =

where is the fractional dropout rate and the summation extends over
chains 1 containing the program of interest. If, as is often the case,
the term in brackets is given and fixed, as in equation 3, then the flow
rate of the dropout cohort is explicitly calculable. If, on the other
hand, the chain flows within the brackets are a priori unknown, then
equation 8 can be viewed as a single homogeneous equation restricting a
subset of the chain flows with a common origin.

If technological requirements are specified (Assumption A4) as a ratio
of teacher inventories required to instruct a given enrollment of stu-
dents, say

(9) Lm = I.LrnnLn

then (5) and (7) yield a homogeneous equation in chain flows as follows
(10) — /J.mnLn = Vmg,n — Vn

V =

Generalizations of (9) lead to essentially the same structure as that of
(11). If, for example, teachers at node m instruct several student cohorts
in programs at several nodes

(12) Lm ILmnLn

and equation 11 becomes
(13)

Just as a chain can be written as a sequence of distinct nodes, the unit
or average cost of thejth chain with origin k can be written as the sum of
the unit costs of the distinct nodes that comprise that chain, i.e.
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where is the unit (lifetime) cost of the ith node. It is now possible to
write total costs of the instructional program in two ways: the first is to
multiply all chain flows having a common origin node by the unit cost of
the appropriate chain and then sum over origin nodes to obtain the total
cost

(15) C =
k J€M

To formulate (15) in terms of unit node costs one makes use of (14) and
(6) to obtain

(16) C =
k

= =
i k

Thus, an alternative expression for total network cost is to multiply the
unit cost of each node by the total flow entering each node and sum over
nodes.

In the remainder of this paper, we assume that node costs are propor-
tional to teacher salaries, Sj, node lifetimes, and teacher-student
ratios, P.ij; i.e.

(17) c, =

in other words, the unit cost of a chain does not depend upon the chain
flow. For this reason, policies which might affect enrollment levels,
degree output rates, admission rates, staffing levels, and so on, do not
affect the unit costs of a chain but may affect the total costs or budgets
which have to be allocated to produce the chain flows.

The reader should note that a given node may be a member of many
chains; thus, changing a node cost will, in general, affect the unit costs of
many chains in the network. For example, node 4 in Figure 1 is the
destination node for 7 chains and is an intermediate node for 7 additional
chains, for a total of 14 chains. To put it another way, any change in the
costs of educating doctoral graduates will affect the costs of 14 out of a
total of 35 different student cohorts that are educated at the institution.
On the other hand, node 5 is a member of only a single chain; altering
the costs of lower-division dropouts will affect the costs of that particular
student cohort and of no other.

Our formulation of the input-output model is expressed as a set of
linear equations in unknown nonnegative chain flows For given
right-hand sides of equations 3 and 4, i.e. given admissions andlor
demands, the problem is one of finding flow patterns h . . .

satisfying equations 3, 4, 8, and 13. Once a feasible flow
pattern is found it is a simple matter to compute enrollments from
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equations 5 through 7. In our experience, it always been the case
that these inequalities contain a large set of feasible solutions, i.e. the
number of degrees of freedom is large. Stated another way, we have not
yet found an institution where administrative restrictions overconstrain
the system of inequalities.

Administrative and institutional policies can affect the model structure
in three ways: (1) by altering parameters such as lifetimes, Vj, dropout
fractions, a,, and teaching ratios, (2) by imposing constraints of
various types, e.g., an enrollment ceiling,

= a constant
i€N

or a budget restriction such as equation 16, or altering the types of
teachers assigned to students such as equation 13; finally, (3) the cohort
flows and programs in chains can be altered by choosing different network
configurations which change the incidence matrix {b (s]. Since the model
is a multi-commodity network flow problem with each origin-destination
pair serving as a single commodity, it will not, in general, be true that a
feasible flow pattern is obtained by superposing cohort flows that are
feasible with respect to each commodity. In general such flow patterns
violate equations 3 or 4 or 13.

How are these models similar to or different from the cross-sectional
models of Section II? (1) The model in this section is formulated in terms
of chain flows, not stock levels. (2) Parameters such as a3 or v3 are based
on longitudinal, not cross-sectional data. a, is the fracti.on dropping out
over the lifetime of a cohort, not the fraction of enrollments dropping
out in one time period. (3) Our chain flow model is not generally linear
in policy variables. By comparison, x(t) in the first equation of Section II
is often viewed as a policy variable, with y(t) being calculated in terms of
x(t) and M being estimated from historical data. Once historical policies
have been established, M is fixed and y(t) is linear in x(t). In our model,
neither the enrollments nor the cohort flows are policy variables; rather,
they are dependent variables which are functions of the policies dis-
cussed in the previous paragraph. Such policies not only determine
some of the coefficients in the system of constraints but also possibly the
set of constraints themselves. Finally, (4) adding or removing programs
that constitute a chain, force particular elements of b (5 to be 0 or 1, and
thus alter the coefficients and the number of cohorts in equations 3
through 16. In general, a feasible cohort flow is not a linear function of
these policy variables.

384
J

Instructional Costs of University Outputs I

V. SOURCES,
INSTITUTI
The model de
1969—70 acad
sity of Califor
institution
institution. w:
we relied on t
operations
and analysis
are: (1) we all
Outputs; (2)
various stude
teaches; and
assistants are
the same degr
the theoretical
bear in mind
Were it desin
three assumpt

Stanford Ur
Our data for St
Medical Schoo
enrollment cap

1. Student Enrollm
The enrolimen
were obtained
Study Office. S
in graduate en
begin with
Quarter of
and enrollment.
the total fall eni
years.

Observe that
tween undergr
graduates are a
junior transfers.

385 Robert



V. SOURCES AND ANALYSIS OF
INSTITUTIONAL DATA
The model described in Section IV was implemented using data for the
1969—70 academic year from Stanford University (SU) and the Univer-
sity of California, Berkeley campus (UCB). Seyeral data sources at each
institution were used to estimate paramet?.rs in the model for
institution. When good data were not available for estimating a parameter
we relied on the judgment and intuition of persons familiar with campus
operations and made no attempt to organize a large-scale data collection
and analysis effort. We have used three additional assumptions. These
are: (1) we allocate the entire salary cost of the faculty to instructional
outputs; (2) the salary of a given faculty member is allocated to the
various student levels in proportion to the formal courses that he
teaches; and (3) the nontenure and tenure faculty inputs for teaching
assistants are the same as those for other graduate students enrolled in
the same degree program. Since none of these assumptions is crucial to
the theoretical discussion of Section III, it is important that the reader
bear in mind the distinction between formulation and implementation.
Were it desirable to do so, one could modify or remove any of these
three assumptions.

A. Stanford University
Our data for Stanford does not include students or faculty at the Stanford
Medical School or at the various overseas campuses which have a total
enrollment capacity of approximately 400 undergraduates.

1. Student Enrollments and Flow Rates
The enrollment, admissions, and graduation figures shown in Table 2
were obtained from sources in the Registrar's Office and the Graduate
Study Office. Students classified as "Terminal Graduates" were included
in graduate enrollments. Admission and degree flows during the year
begin with the Summer Quarter of 1969 and end with the Spring
Quarter of 1970. Separate figures for master's and doctoral admissions
and enrollments were not available. Also, it should be mentioned that
the total fall enrollment has been virtually constant during the past five
years.

Observe that the Stanford enrollment is almost evenly divided be-
tween undergraduate and graduate programs and that most under-
graduates are admitted as freshmen with oniy a small fraction entering as
junior transfers. This contrasts with many state universities which are
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TABLE 2 Stanford University
Rates

1969-70 Enrollments and Flow

Student-Level
Fall 1969

Enrollment

1969—70
Admission

Rate
1969—70

Degree Output Rate

Lower division
Upper division

Total undergraduate

2,949
2,782
5,731

1,696
167

1,863

—

1,515

1,515

Master's 1
Doctoral j
Teaching assistants

Total graduate

5,163

465
5,628 2,227 a

1,555
441

1,996

Total students 11,359 4,090 3,511

Of this total graduate admissions, approximately 260 students earned their bachelor's degree From Stanford.

required to draw a significant portion of their undergraduates from
junior colleges within the state.

2. Student Dropout Fractions
For the dropout equations, we required estimates of thirteen distinct
fractions, aJc. For each origin k, these correspond to dropouts that occur
in each level at or above the level of admission. For example, there are
four dropout cohorts and chains in Figure 1 for k = 2', upper-division
admissions. These correspond to dropouts at upper division, {2', 6};
master's, {2', 2, 7}; doctoral, 2, 3, 8}; and doctoral following a
master's teaching assistantship, {2', 2, 3, 9, 8}.

The dropout fractions estimated for Stanford appear in Table 3. The
fractions &j and c4 were obtained directly from a Registrar's study of
successive freshman cohorts entitled "Survival of Freshmen Who Enter
Autumn Quarter to Baccalaureate Degree Objective." Although the
report did not state at what stage the dropouts occurred, there is much

TABLE 3 Stanford University Dropout Fractions

Origink: 1 1 1 1 1 2 2 2 2 3 3 3 4

Chaini: 1 2 3 4 5 1 2 3 4 1 2 3 1

a!': .15 0 .05 .45 .45 .15 .05 .45 .45 .05 .45 .45 .45
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Flow

1969—70
Output Rate

1,515

1,515

1,555

441

1,996

3,511
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3 3 4

2 3 1

.45 .45 .45

evidence to indicate that almost all occur during the first two years
following admission; therefore, the entire observed dropout fraction was
allocated to the lower division, i.e. we set c4 0. The dropout fraction

was taken directly from a Registrar's study of 1967—68 junior trans-
fers.

Data on graduate dropouts was not differentiated according to the
level at which students first entered the system. Therefore, it was
assumed that the fraction who drop out at each graduate level is the
same irrespective of the level at entrance. The master's dropout fraction
represents an educated guess by the Head of the Graduate Study Office,
while the doctoral dropout fraction was estimated from a study of doc-
toral students entering under the Ford Foundation Four-Year Guaran-
teed Assistance Program in the Humanities and Social Sciences. Accord-
ing to the Dean of the Graduate Division, this figure represents a low
estimate of the overall fraction because it was derived with reference to
a special cohort that was being provided with substantial financial aid as
an incentive to complete the degree program.

Using the admissions rates from the second column of Table 2, the
master's and doctoral graduation rates from the third column of Table
2, and the dropout fractions from Table 3, one can compute the steady-
state output rate for bachelor'.s degrees. This computed value is 1,584,
which seems reasonably close to the observed 1969—70 value of 1,515. In
view of the many short-run fluctuations in flows and enrollments that
occur even under a fixed enrollment ceiling, we judged this to be a good
"fit" of model predictions and real data.

3. Student Lifetimes
The values for lifetimes in each program, were selected on the basis
of discussions with persons familiar with Stanford operations. These are
shown in the third column of Table 4. The only group of students for
which lifetimes have actually been recorded are those receiving a Ph. D.
According to a study by the Graduate Division entitled "Time Required
for the Ph.D. at Stanford," the average length of attendance for all
students receiving doctoral degrees in the 1967—68 academic year was
4.5 years. This figure was reduced to 4 years in our computations
because, in many cases, a one-year half-time teaching assistantship
(treated separately in our model) was included in the recorded data.

Observe that the estimated lifetime for lower division is actually less
than the customary two years. This is primarily due to the fact that a
substantial proportion of Stanford freshmen enter with advanced stand-
ing. There is a similar, yet less pronounced, effect from the group who
spend their sophomore year at an overseas campus.
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If one computes steady-state flows consistent with the actual admis-
sions rates and master's and doctoral grad'iation rates for 1969—70 and
with the attrition rates in Table 3, and then converts these to enroll-
ments using the lifetimes in Table 4, one obtains the figures 6,098 for
undergraduate enrollment and 5,213 for graduate enrollment, exclusive
of teaching assistants. The corresponding actual enrollments in the fall of
1969 were 5,731 undergraduates and 5,163 graduates. Again, the
agreement between calculations and data is quite good.

4. Teacher-Student Ratios
The parameters P'u represent ratios of teacher inventories to student
inventories. Instructional costs are computed in our model with refer-
ence to the following three categories of faculty: teaching assistants (i =
1), nontenure regular faculty (i = 2), and tenure regular faculty (i 3);
we did not include special temporary appointments such as lectureships
and instructorships, because they are relatively small in number at the
campuses we studied and policies regarding their use differ widely
among institutions.

While separate data were available at each institution on the inven-
tories of teachers by rank and students by level, it was necessary to
devise a rule for allocating the total inventory of teachers of a given rank
to students of each level. We chose to allocate each teacher on the basis
of the classes he taught in the fall of 1969. That is, we first assigned each
course taught by a given faculty member or teaching assistant to the
student level represented by the 'majority of the students enrolled in
that course (i.e., lower division, upper division, or graduate) and then
allocated the individual to student levels in the same proportions as his
courses. Summing up these allocations over all individuals of a given
rank yielded the desired total allocations.

At Stanford, the source for our data was the Registrar's report on fall
1969 courses of instruction. These figures include persons with visiting
and acting titles who were teaching at that time. We had to treat
teaching assistants as a special case, because, out of a total of 465
teaching assistantships recorded in the Graduate Student Support Table
for 1969—70 (Dean's Office, Graduate Division), only 99 appeared in the
Registrar's report. Therefore, we allocated all 465 T. A. 's in the propor-
tions established by the data on the smaller sample contained in the
Registrar's report. Once allocated, these fall 1969 teacher inventories
were divided by the appropriate fall 1969 enrollments from Table 2 to
obtain the teacher-student ratios shown in Table 4.

Observe that our data did not permit us to compute separate ratios for
different classes of graduate students. Thus, our figures assume that the
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same number of faculty of each rank are required for the instruction of a TABLE 5

doctoral student as for a master's student. Also teaching assistants are and F
assumed to have the same requirements for regular faculty as do other
graduate students. In spite of these limitations, however, the trend in Student Levelthe computed ratios appears quite logical. That is, teaching assistants are
used almost exclusively for instructing lower-division students, nonten- Lower division
ure faculty are associated more with upper-division and graduate stu- Upper division
dents, while tenure faculty are employed in increasing proportions as Total undergracluat
one proceeds from the lowest to the highest student level. Master s

Doctoral

5. Unit Node Costs Teaching assistants
Total graduateAnnual salaries of $2,100 for teaching assistants, $11,500 for nontenure

faculty, and $19,000 for tenure faculty were used together with the Total students
lifetimes and teacher-student ratios from Table 4 to compute the unit Of this total graduate adni
node costs of Equation 17. These are displayed in the last column of
Table 4. These faculty salaries were obtained from two sources. For
teaching assistants, we divided the total allocation for teaching assistant In contrast
salaries in the 1969—70 Instructional Budget by the total number of un
teaching assistants shown in the 1969—70 Graduate Student Support to one. In ad
Table. For regular faculty, we used the mean academic salaries reported graduate adm
for the year 1969—70 by the Controller's Office, rounded to the nearest
$500. . . .

. 2. Student DropoLThe results conform to a logical ordering of unit instructional costs.
The unit costs of degree programs vary from $1,839 for a master's degree All dropout f
to $4,328 for a Ph.D., with the cost of a bachelor's degree appearing in studies perfor
between at $3,188 (for those who enter as freshmen). Due to shorter graduates adr
lifetimes, the unit costs of dropouts are around one-half the unit costs of Since the gra(
the corresponding degree programs. mation to yie

judgment. In
Berkeley droj
counterparts,

B. The University of California, Berkeley Campus If one uses
dropout fracti

1. Student Enrollments and Flow Rates
The quantities in Table 5 were obtained directly from 1969—70 Campus TABLE 6 UnIV
Statistics (Office of Institutional Research), except for the teaching assis-
tant inventory which came from the November, 1969 Payroll Accounts. Origin k: 1 1

Flows correspond to the period: summer 1969 through spring 1970. Chain i: 1 2

Again, separate figures for master's and doctoral admissions and enroll-
ments were not available. As was the case with Stanford, the total fall .30 .20

enrollment at UCB has changed only slightly from its 1965 level.
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TABLE 5 University of California (Berkeley) 1969-70 Enrollments
and Flow Rates

Student Level
Fall 1969

Enrollment Ad
1969—70

mission Rate
1969—70

Degree Output Rate

Lower division
Upper division

7,198
10,918

4,250
2,925

—

5,107

Total undergraduate 18,116 7,175 5,107

Master's
Doctoral
Teaching assistants

Total graduate

1
J

8 940
'

1,032

9,972
•

4,067 a

2,358
859

3217

Total students 28,088 11,242 8,324

a Of this total graduate admissions, approximately 800 students earned their bachelor's degree from Berkeley.

In contrast to Stanford, Berkeley is predominantly an undergraduate
institution; undergraduates outnumber graduates by a ratio of nearly two
to one. In addition, Berkeley accepts a significant portion of its under-
graduate admissions as junior transfers.

2. Student Dropout Fractions
All dropout fractions shown in Table 6 were estimated from cohort
studies performed by the Office of Institutional Research on under-
graduates admitted in 1965 and graduate students admitted in 1960.
Since the graduate student cohort study did not provide enough infor-
mation to yield unique fractions for all dropout cohorts, the values of

a's, and in Table 6 are based partly on experience and
judgment. In comparing Table 6 with Table 3, we observe that the
Berkeley dropout fractions are uniformly higher than their Stanford
counterparts, as one might expect.

If one uses the 1969—70 Berkeley admission rates from Table 5, the
dropout fractions in Table 6, and some additional information contained

TABLE 6 University of California (Berkeley) Dropout Fractions

1 1 1 1 1 2 2 2 2 3 3 3 4

Chaini: 1 2 3 4 5 1 2 3 4 1 2 3 1

.30 .20 .30 .55 .55 .25 .30 .55 .55 .30 .55 .55 .45
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I
in the graduate student cohort study, one obtains the following steady-
state degree output rates: bachelor's, 4,574; master's, 2,122; and Ph.D.,

E772. Again, the discrepancy between these computed flow rates and
their actual 1969—70 values shown in the third column of Table 5 is of
the order of 10 per cent.

3. Student Lifetimes 0
With the exceptions of 03, Og, and v10, which were obtained directly
from the graduate student cohort study, lifetimes were estimated on the
basis of discussions with persons familiar with Berkeley campus opera-
tions. These are displayed in the second column of Table 7. Using these
lifetimes, one can convert the steady-state flows corresponding to
1969—70 admission rates to enrollments, obtaining values of 18,161 for
undergraduates and 9,247 for graduates, excluding teaching assistants.
The agreement between these computed values and the actual fall 1969
enrollments shown in Table 5 is excellent.

()

4. Teacher-Student Ratios
Due to data limitations, the Berkeley faculty was allocated to student
levels in a slightly different manner from that used at Stanford. The
essential difference is that, whereas at Stanford each faculty member was
allocated according to the level of students enrolled in the courses he
taught, at Berkeley the total inventory of faculty in each category was
allocated to lower-division, upper-division, and graduate students in
proportion to the total number of classroom contact hours spent by (I)

members of that category in lower-division, upper-division, and
graduate division courses. Thus, we assumed a one-to-one correspon-
dence between student level and course level and allocated the teaching
assistants and regular faculty (including visiting and acting appointments)
reported in the fall 1969 Schedule of Classes on the basis of the contact
hours reported in the same document. These allocations were then E
divided by the fall 1969 enrollments from Table 5 to yield the teacher-
student ratios shown in Table 7. Observe that these ratios exhibit exactly
the same trends as did those computed for Stanford.

0

5. Unit Node Cost
The average salary for teaching assistants was obtained in the following
way: the 1969—70 full-time equivalent (F'TE) salary reported by the C)

Chancellor's Office was multiplied by the ratio of FTE teaching assis- N
tants reported in the 1969—70 Instructional Budget to head-count teach-
ing assistants reported in the fall 1969 Payroll Accounts. The average J

I 4
I—
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regular faculty salaries were supplied by the Office of the Vice President
for Academic Afluiirs and were based upon all faculty engaged in instruc-
tion during the 1969—70 year (i.e. excluding the sum-
mer quarter). The resulting figures were $3,300 for teaching assistants,
$11,400 for nontenure regular faculty, and $19,400 for tenure faculty,

Using these salaries and the lifetimes and teacher-student ratios from
Table 7, we computed the unit node costs' displayed in the last column
of that table. Observe that although they are ordered in the same way,
the unit costs for degrees at Berkeley are significantly higher than at
Stanford, except in the case of junior transfers earning a bachelor's
degree. This finding is explained by the comLlnation of two factors, for
both the lifetimes and the tenure faculty-student ratios are generally
greater at Berkeley than at Stanford. Thus, forlexample, a large discrep-
ancy occurs at the doctoral level, where although the lifetimes are
identical, one finds nearly 60 per cent more tenure faculty per student at
Berkeley than at Stanford.

C. A Comparison of Unit Chain Costs
The unit chain costs for each institution are shown in Table 8 along with
the chain descriptions. These figures were obtained 'by inserting the
node costs from Tables 4 and 7 in equation 14 of Section IV. It is clear
that they obey the following ordering scheme: each chain has a higher
unit cost than all other chains made up of a subset of its nodes;
moreover, the unit cost of any chain that ends in a dropout node
strictly less than the unit cost of the chain that has the same origin,
passes through the sequence of nodes, and ends with the corresponding
graduate node. Obviously, the least expensive way for an educational
institution to meet final demands for degrees is to admit students at the
highest level appropriate to the degree, and then to prohibit degree-
winners from continuing further. However, several factors contribute to
make this an unrealistic solution. (1) There are many reasons for prefer-
ring to admit freshmen instead of junior transfers to the undergraduate
program. (2) Master's graduates are generally free to decide whether
they wish to continue in the doctoral program. (3) There exist well-
established teaching assistant ratios for different undergraduate cohorts.
(4) Enrollment ceilings force certain cohorts to contribute to under-
graduate as well as graduate enrollments. The reader may be troubled
by the assumption that, for instance, the costs of a master's and doctoral
program are strictly additive for those students who pursue both de-
grees. While this represents an abstraction from reality, we do not
believe it influences our cost estimates in a significant way.
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TABLE 8 UnitC

Origin Chain
k /

1 1

1 21' 3
1 4

1 5
1 6
1 7

1 8
1 9
1 10
1 ii
1 12

2 1

2 2
2 3
2 4
2 5
2 6
2 7
2 8
2 9
2 10
2 11

3 1

3 2
3 3

3 4

3 5

3 6

3 7

3 8
3 9

4 1

4 2

4 3

'LD Lower-division graduau
• UD = Upper-division graduais

M Master's graduate
• D Doctoral graduate

TA = Teaching assistant
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A

TABLE 8 UnitChainCosts

Ongin

k

Chain

j
•

Description of Cohorta

Unit Chain

SU

Costs(Cj')

UCB

1 1 LD LID $3,188 $3,503
1 2 LD UD M 5,027 6,415
1 3 LD UD M D 9,355 12,887
1 4 LD UD M D TA 10,428 14,482
1 5 LD UD M D D/O 7,191 9,651
1 6 LD UD M TA 6,100 8,010
1 7 LD UD M TA D 10,428 14,482
1 8 LD UD M TA D ' TA 11,501 16,077
1 9 LD UD M TA D D/O 8,264 11,246
1 10 LD UD M DfO 4,270 5,121
1 11 LD UD DIO 2,233 2,528
1 12 LD D/O 853 821

2 1 UD 1,909 1,861
2 2 UD M 3,748 4,773
2 3 UD M D 8,076 11,245
2 4 UD M D TA 9,149 12,840
2 5 LID M D DfO 5,912 8,009
2 6 UD M TA 4,821 6,368
2 7 UD M TA D 9,149 12,840
2 8 UD M TA D TA 10,222 14,435
2 9 UD M TA D D/O 6,985 9,604
2 10 UD M DIO 2,991 3,479
2 11 LID D/O 954 886

3 1 M 1,839 2,912
3 2 M D 6,167 9,384
3 3 M D TA 7,240 10,979
3 4 M D D/O 4,003 6,148
3 5 M TA 2,912 4,507
3 6 M TA D 7,240 10,979
3 7 M TA D TA 8,313 12,574
3 8 M TA D DIO 5,076 7,743
3 9 M D/O 1,082 1,618

4 1 D 4,328 6,472
4 2 D TA 5,401 8,067
4 3 D D/O 2,164 3,236

'LD = Lower-division graduate
UD = Upper-division graduate

M Master's graduate
D = Doctoral graduate

TA = Teaching assistant

LD DIO = Lower-division dropout
UDD/O Upper-division dropout
M D/O Master's dropout
D D/O Doctoral dropout



Inter-institutional comparisons are also revealing. Chain costs at Stan-
ford are in the range $853 to $11,501, while those at Berkeley range
from $821 to $16,077. In nearly all cases, the unit chain costs are
substantially higher at Berkeley than at Stanford, due to the higher
program (node) costs, which we discussed earlier.

VI. AN ANALYSIS OF THE CARNEGIE
UNDERGRADUATE PLAN
In this section, we use the numerical data of Section V and apply the
model of Section IV to obtain some preliminary estimates of the unit and
total instructional costs that would result from the adoption of the
Carnegie Commission recommendation [1971] that the lower division be
effectively reduced from a two- to a one-year program. In all cases that
we discuss, we estimate lower bounds for the resulting instructional
budget.

To understand how these recommended policies can be incorporated
within the model of Section IV, it may be useful to characterize the
structure of solutions of constraints that we have discussed in Section IV.

Table 9 lists the coefficients of 20 equations in 35 chain flows
(cohorts). There are 5 dropout equations for the lower division, 4 drop-
out equations for the upper division, 3 dropout equations for master's
degree candidates and 1 dropout equation for doctoral students. There is
1 technological constraint on teaching assistants, 1 enrollment ceiling
constraint, 1 constraint on admissions to upper division, 2 constraints on
admissions to graduate programs and 2 constraints on final demand for
doctoral graduates. Flows are nonnegative, which is a simple way to
require that students flow in the direction of the arrows of the network
in Figure 1. While these constraints are obviously not representative of
all educational institutions, they seem realistic for the three campuses
which we studied.

In summary there are 20 linear constraints on 35 nonnegative chain
flows to describe each institution. It is interesting to note that only the
technological constraint (15), the enrollment ceiling (16) and the re-
quirements on final demands (19 and 20) prevent the system of equa-
tions from being decomposed into four independent subproblems with

:

solutions a ftmnction only of origin-dependent parameters. The reason
that the system of equations cannot be decomposed is that (1) students
in lower- and upper-division programs affect the number of teaching
assistants in graduate cohorts, (2) an enrollment ceiling places a con-
straint on the total number of students, including teaching assistants,
and (3) constraints on the output flows of a particular type of student, say w 0

-J
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doctoral graduates, place restrictions on chain flows having a common
destination rather than a common origin.

It is interesting to see how a lower bound for the instructional budget
and a feasible solution of the system of equations in Table 8 can be
generated. Consider, in the case of Stanford University, the chain costs
in the first column of Table 8, and the 1969—70 graduation rates of Table
2. To estimate the cost of producing 1,515 bachelor's degrees, 1,555
master's degrees and 441 doctoral degrees, one could select the three
cheapest chains ending in nodes 2, 3, 4 with costs

CI = 1,909, 1,839, Cl = 4,328

By forcing all students to use these three programs one obtains an
unrealistically low instructional budget of

(1,515)($1,909) + (1,555)($1,839) + (441)($4,328) = $7,660,428.

This estimate is approximately $3.2 million less than the actual 1969-70
budget of $10.9 million. What accounts for this large difference? With
the unrealistic flow pattern we have just used, the university is divided
into three independent components in which no students receiving one
degree continue at the same institution to obtain, a more advanced
degree. There are no dropouts from any program and the total enroll-
ment capacity of 11,359 is underutilized by approximately 4,300 stu-
dents. Neither teaching assistants nor associates are involved in the
instruction of undergraduate programs and no recognition is made of the
value that teaching experience has upon the quality of education of a
graduate student. We hasten to point out that each of these require-
ments costs money; the magnitude of the additional costs can also be
estimated and we proceed to do so.

By requiring that no more than 167 junior transfers be admitted to
Stanford, chain (1 ',1,2) with a unit cost of $3,188 rather than $1,909 is
introduced for the production of bachelor's degrees. By requiring that
admissions to Stanford graduate schools must have a nominal flow of
Stanford's undergraduates, we introduce a large number of chains with
unit costs beginning at $3,748 and ending as high as $11,501.

The recognition of distinct final demands for doctoral students with or
without teaching-assistant experience forces the use of chains such as
(4 ',4,10) with a unit cost of $5,401. Once the reader is convinced that
such chain flows are desirable it is then a simple (but tedious) matter to
consider all the associated dropout cohorts and their costs. Generally
speaking, for every chain flow that results in some degree recipient
there is a corresponding dropout flow.

By the time some minor readjustments in the flow patterns are made
to meet the constraints of Table 9, one moves from the unrealistic budget
estimate of $7.3 million to the more realistic estimate of $10.82 million.
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A similar set of calculations for the Berkeley campus begins with a
budget estimate of $21.93 million for positive flows on the three
cheapest chains and increases to an estimate of $31.56 million when one
includes the appropriate teacher-student ratios, enrollment ceilings,
dropout flows and restrictions on junior transfers. In each case, the
second estimate that we derive is still less than the instructional budget
one obtains for actual 1969—70 fiscal operations. In the 1969—70 Stanford
Budget, instructional salaries, excluding the Medical School, sabbatical
leaves, and overseas campuses amount to $10,900,000; Payroll Accounts
in November of 1969 give an instructional• budget at Berkeley of
$31,692,600. Both figures are in close agreement with estimates from
the model.

Comparative solutions for enrollments, degrees, and cohort costs for
Stanford University, the University of California at Berkeley, and the
University of Colorado at Boulder are summarized in Table 10. Columns
headed by BCC denote quantities predicted by our model before the
Carnegie Commission recommendation is implemented while ACC de-
notes after Carnegie Commission. The fifth and sixth columns in the table
refer to an unpublished study made by students in a graduate Opera-
tions Research course at the University of Colorado. It should be men-
tioned that the constraint set of the Colorado model differs from that
used to analyze the Stanford and Berkeley campuses. In the first case,
an enrollment ceiling is not imposed and the following are specified:
total output rates for bachelor's, master's, and doctoral degrees, a ratio
of entering junior transfers to entering freshmen and a ratio of external
graduate admissions to internal graduate admissions.

Consider the following solution of the Stanford tableau in Table 9:

h'1 = 1,311, hI = hI0 = 6, h'12 = 252, = 2

= 133, = 7,h11 = = = 58

Elements in the first column of Table 10 are derived from these flows
and the chains of Table 8 in the following way: EnrOllments are obtained
by substituting these chain flows in equations 5 and 6 with lifetimes from
Table 4. Undergraduate degrees are obtained by summing hI through
h and through Master's degrees are obtained by summing
hI through hI, through and through Doctoral
degrees sum the flows hI, hI, hI, hI,
h h h h h Cohort costs are obtained by multiplying
these chain flows by their unit costs in Table 8. In those cases where a
cohort receives an undergraduate degree and then enrolls in graduate
programs, we allocated the program cost to the appropriate category of
degree-winner or dropout. For example, the cohort flow h = 6

401 Robert M. Oliver and David S. P, Hopkins
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results in 6 x $3,188 $19,128 for undergraduate degree costs and 6 X
I i

$1,082 = $6,492 for. graduate dropout costs.
To see how one calculates parameters relevant to the Carnegie Com-

mission plan, consider the lifetime of node 1, the lifetime for the lower
division program. This lifetime affects (1) the technological constraint
associated with teaching assistants that are required to instruct lower-
division students (see equation 11 or 13 of Section IV) and (2) the total

I
I lifetimes of all chains which contain node 1; thus, the coefficients of the

first eleven chain flows passing through node 1 are reduced in the
enrollment ceiling constraint which is obtained by substituting chain
lifetimes rather than unit costs in equation 15. Finally, (3) the unit costs,
as defined by equation 14 in that section, are also modified. In sum-
mary, the reduction in lower-division lifetimes affects the total lifetimes

Cl
and unit costs of 11 out of 35 possible chains, and affects a single
technological constraint for teaching assistants. We display the least-cost
budgets, enrollment levels, graduation rates, and costs of educating the
dropout and degree-winning cohorts in the ACC columns of Table 10.

The lower-bound estimates that we have just described can be
routinely calculated by using a linear programming algorithm to
minimize the sum of costs of all chain flows, i.e. the total instructional
cost of equation 15 in Section IV, subject to the constraints of equations
3, 4, 8, and 13 in the same section. Chain costs used are those of Table

N 8, with the modifications described above for calculations based on the
Carnegie plan; all parameters used in the constraints are derived from

— the appropriate terms in Tables 2 through 7 of Section V. For example,
the magnitude of the coefficient of the first chain flow in the first
restriction of Table 9 is a? (1 — = .1765.

— It appears that the major impacts the Carnegie Commission recom-

I

menclation would have if adopted in the long run are the following: (a) At
both Stanford and Berkeley the flow rate for graduating B.S. degrees
would increase substantially, from approximately 1,571 per year to 1,943
per year at Stanford, from approximately 4,603 to 5,359 per year at
Berkeley. (b) There would be an increased flow rate of the number of

• students that drop out each year at each institution. At Stanford, the
lower-division dropout flows would increase from 252 to 320 per year; at
Berkeley, from 1,292 to 1,698 per year. (c) Lower-division enrollments
would decrease and admissions would increase because of the reduction
in lifetime to complete the lower-division programs. At Stanford,
lower-division enrollments would decrease from 2,874 to 2,194; at Berke-
ley, from 7,302 to 5,647. (d) If enrollment ceilings were maintained at

a their current levels, as well as current restrictions on junior transfers,
0 upper-division enrollments would increase from 3,166 to 3,930 at Stan-

2 2 2 ford, from 10,994 to 12 771 at Berkeley. This increase is due of course
°
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to the increased admission rate into the lower-division program. (e)
Unless different admission policies were adopted, the graduate compo-
nents at both institutions would remain roughly the same, with one
important exception—(f) the enrollments of teaching assistants would
decrease at Berkeley from 1,042 to 921 and at Stanford from 458 to 374.
In both cases, the decrease is due to the fact that there is a substitution
of small teacher-student ratios at the upper division for large teacher-
student ratios at the lower division which more than offsets the in-
creased upper-division enrollments discussed in (d). (g) The total in-
structional costs increase slightly at both institutions—by approximately
$150,000 per year at Stanford and by $25,000 per year at Berkeley; this
small increase in total instructional budget is offset by (h) the very large
increases in total degree rates at both institutions; from 3,367 to 3,748 at
Stanford, and from 7,213 to 7,969 at Berkeley. The net result which
should be of primary interest to educational administrators is (i)—unit
costs of all degree recipients decreases from $3,211 to $2,927 at Stanford
and from $4,374 to $3,962 at Berkeley. To state it in another way, it
appears that if the total degree output rates were held constant at their
current values, the total instructional budget could decrease substan-
tially at both institutions.

REFERENCES
Carnegie Commission on the Future of Higher Education [1970]. "A Chance to Learn: An

Action Agenda for Equal Opportunity in Higher Education.' Special Report. New
York: McGraw-Hill.
• 119711. "Less Time More Options: Education Beyond the High School." Special
Report. New York: McGraw-Hill.

Sengupta, J. K.. and Fox, K. A. [1969]. Economic Analysis and Operations Research:
Optimization Techniques in Quantitative Economic Models. Amsterdam: North.
Holland.

Hopkins, D. S. P. [1971]. "On the Use of Large-Scale Simulation Models in University
Planning." Review of Edtzcational Research 41 (Dec. 1971): 467—478.

Judy, R. [1969]. "Systems Analysis for Efficient Resource Allocation in Higher Education:
A Report on the Development and Implementation of CAMPUS Techniques.'
Paper presented to the Conference on Management Information Systems: Their
Development and Application to the Administration of Higher Education. Washing-
ton, D.C.

Koenig, H.; Keeney, M.; and Zemach, R. [1968]. "A Systems Model for Management,
Planning, and Resource Allocation in Institutions of Higher Education." Final
Report, National Science Foundation Project C-518. Michigan State University:
East Lansing.

Oliver, R. M.; Hopkins, D. S. P.; and Armacost, R. L. [1970]. "An Equilibrium Flow
Model of a University Campus." Operations Research 20 (Mar.-Apr. 1972): 249—
264.

r

UNESCO [1967],
Educational

Weathersby, C. [1
tim Model.

COtv
Cohn E. Bell
University of Tennessee, I

There is little co
model. Given tht
ever, Considerab
such as this one
simulate the ope
comment on the
discuss the workj
of a model of thi

The Oliver-Hop
tions which cost
thousands of datE
[3], Koenig et aL
linear transformat
trices be specifie:
although to a cert
more disaggregat

In put-output ma
historical policy I
difficult to elimin;
simulated future. 1
other models is aI
rate estimates hay
of this model allo
lions.

Constant return:
large-scale simula
tions if this assumi
by this and by me

All of these modi
decision making. T
misleading as

404 Instructional Costs of University Outputs 405
(

Comments



UNESCO [1967]. Educational Costs and Productivity. Paris: International Institute for
Educational Planning.

Weathersby, C. [1967]. "The Development and Applications of a University Cost Simula-
tion Model." Office of Analytical Studies, University of California, Berkeley.

COMMENTS
Cohn E. Bell
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There is little controversy inherent in the description of the Oliver-Hopkins
model. Given their assumptions, their equations appear to be correct. How-
ever, considerable controversy arises when it comes time to apply a model
such as this one or any of a myriad of other mathematical models which
simulate the operation of a university system. In this note, then, I wish to
comment on the applicability of the Oliver-Hopkins model. Later I shall
discuss the workings of the model and some of the inevitable shortcomings
of a model of this size.

The Oliver-Hopkins model provides a contrast to many large-scale simula-
tions which cost hundreds of thousands of dollars to build and require
thousands of data inputs. Such simulations have been built by Weathersby
[3], Koenig et al. [2], Judy [11, and others. They rely on a sequence of
linear transformations and thus require that several large input-output ma-
trices be specified. The volume of computer output can be overwhelming,
although to a certain extent there can be an advantage in having information
more disaggregated than in the Oliver-Hopkins model.

Input-output matrices in the large simulations are filled with data based on
historical policy trends. Without guessing coefficients out of the blue, it is
difficult to eliminate the effect of presently irrelevant past policies in the
simulated future. This shortcoming which Oliver and Hopkins point out in the
other models is also present in theirs, where presumably cost and dropout
rate estimates have their basis partly in historical trends. However, the size
of this model allows for much more experimentation with different assump-
tions.

Constant returns to scale are assumed both in this model and in the
large-scale simulations. It would add unreasonable computational complica-
tions if this assumption were changed. A decision maker should be sobered
by this and by many other restrictive assumptions.

All of these models are designed to assist university administrators in their
decision making. To this end, they should provide outputs which are neither
misleading as regards accuracy nor too voluminous. The decision maker
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must interpret output of these models in light of possible future trends, which
cannot possibly be incorporated directly into the model.

For a moment, let us consider applying these models at a point in time ten
years ago in an attempt to predict future student enrollments and various
costs. We could use input data based on past enrollments, student-faculty
ratios, faculty salaries, building costs, and so on, and could project certain
changes in these input measures over past trends. However, could we have
reliably quantified the effects of such external environmental changes as the
abolition of student draft deferments, the changing public attitudes toward
education and resulting budget cuts, greatly decreased demand for PhD's,
mass unemployment in the aerospace field, and increased concern with
various forms of environmental pollution? My impression is that there are
many future influences external to the university that cannot be adequately
incorporated in any present model. Such influences introduce a great deal of
uncertainty into any future cost or enrollment estimates and add futility to the
process of calculating volumes of "precise' estimates based on past trends
and detailed disaggregated present figures. The calculations of a large-
scale simulation are analogous to an engineer's painstaking calculation of
one figure to seven significant digits when it must then be added to another
figure with only three-digit accuracy. The size of the Oliver-Hopkins model
represents a better match between input precision and detail and the predic-
tive power of the output.

To further simplify computations, there are no time dependencies included
in Oliver and Hopkins's inputs. The assumption that flows are stable from
year to year allows for computing characteristics of the resulting equilibrium.
Thus, rather than answering specific questions about enrollment patterns
and costs in 1972, 1973, 1974, et cetera, this model examines the equilib-
rium which would result from continued use of a given policy and thus gives
a picture of the direction in which such a policy is leading.

The most impressive features of this model then are its size and its
computational simplicity. The idea of computing steady-state characteristics
associated with the system, although not at all new to operations re-
searchers, has appeal in reducing the computational burden. However, there
are disadvantages arising from the fact that these computations do not
comment on the feasibility of immediately implementing the policy which
looks good at equilibrium. Perhaps the current state of the system prohibits
the use of a policy which would eventually meet all of the constraints if
allowed to run long enough.

There are a couple of puzzling features as regards the cost arguments in
this paper. The authors give a lower bound on the Stanford instructional
budget and then show how constraints cause more expensive chains to
enter the picture. It is clear that an upper limit on junior-college transfers
forces the school to give expensive four-year B.A. 's. However, the require-
ment of admitting some Stanford undergrads to graduate school does not
increase the budget in this model. The cost of educating one student from
freshman to Ph.D. does not differ from the cost of educating one student
through a B.A. and another from a B.A. to a Ph.D. The costs of these

406 Costs of University Outputs 407

r

alternative
differ by

and
duction Policy
into s
Swing depends
others to drop

This model a
student's status
he is currently e
very real that th
Then the optima
sensitive to
probability depe
policy with the s
less of the past

The problem
grams is a Some
of measuring
hours with facul
Hopkins stay
that educational
reach whatever

I

In focusing on
can attain a desi
undergrads at thE
ing lower-division
a degree while ir
wise policy for a
costs of providinc
as community col
by abbreviating
advantages of thi
value of the yea

The constraint
constraint (i.e. exa
cost assumptions,
would be negative
will be more than
need more justifi
Berkeley's).

Many different c
through this model
1) to place lower 1
constraints). Yet it
constrain the total
responsibility to se



alternative means of producing one B.A. and one Ph.D. could be made to
differ by assuming different dropout rates in graduate schoolfor Stanford
graduates and others. Depending on these specific rates, a least-cost pro-
duction policy might call for admitting either as many Stanford graduates
into graduate school as possible or as few as possible. Thus a wide policy
swing depends on whether Stanford graduates are more or less likely than
others to drop out of graduate school.

This model allows dropout rates from a given program to depend on a
student's status when he first enters the institution as well as on the program
he is currently enrolled in. It is only when this former type of dependence is
very real that the model is sensitive to the past history of any given student.
Then the optimal policy (although not necessarily the budget figure) is very
sensitive to different dropout-rate values. If, on the other hand, the dropout
probability depends only on the current program of a student, the cost of any
policy with the same enrollment levels in each program is the same regard-
less of the past history of students.

The problem of assigning instructional costs to students in various pro-
grams is a somewhat sensitive one but not nearly as difficult as the problem
of measuring the value of a student's experience as a function of contact
hours with faculty and faculty salaries. I was pleased to see Oliver and
Hopkins stay away from that issue; my experience with UCLA data showed
that educational values could be assigned to students in different ways to
reach whatever pet conclusion one had in mind,

In focusing on one institution, the authors naturally find that that institution
can attain a desired degree output at minimum cost by admitting as many
undergrads at the junior level as possible and avoiding the costs of educat-
ing lower-division students—many of whom drop out and none of whom earn
a degree while in lower division. In judging, for example, whether this is a
wise policy for a public university, one must really compare the savings to
costs of providing lower division schooling in other public institutions such
as community colleges. It is natural also that an institution can save money
by abbreviating the lower division to one year. Again, to really judge the
advantages of this policy one should compare the budget savings to the
value of the "year of education lost" to the student.

The constraint for junior-college transfers is expressed as an equality
constraint (i.e. exactly 167 should be admitted), It might be that with different
cost assumptions, the shadow price of changing that requirement to 168
would be negative. The argument that it is unlikely that the real shadow price
will be more than 2 or 3 times the estimate computed by the model seems to
need more justification (Stanford's shadow price is more than ten times
Berkeley's).

Many different constraints could be placed on the output of an institution
through this model. It appears most natural from the network diagram (Figure
1) to place lower bounds on and (or perhaps equality
constraints). Yet it seems hardly more reasonable to constrain than to
constrain the total flow out of node 2. In the first case, the university has a
responsibility to send a minimum number of B.A. graduates from the gradua-

407 Comments by Bellj

trends, which

in time ten
and various

student-faculty
project certain
could we have

changes as the
ttitudes toward
and for Ph.D.'s,
d concern with

that there are
be adequately
a great deal of

dd futility to the
on past trends

of a large-
calculation of

Ided to another
Hopkins model
and the predic-

encies included
are stable from
ing equilibrium.
Ilment patterns

nes the equilib-
and thus gives

g.

its size and its
characteristics
operations re-
However, there

utations do not
e policy which
ystem prohibits
e constraints if

bst arguments in
rd instructional
nsive chains to
ollege transfers
rer, the require-
school does not•
ne student from
ing one student
costs of these



tion ceremony immediately into the real world; in the second, there is a produce differen
responsibility to send a minimum number to the graduation ceremony. As problem more
the authors point out, the location of those constraints influences shadow

quirements gen
prices. nous to, and un

As I have mentioned, the form of an optimal operating policy is very
. I am more cor

sensitive to the various dropout-rate values. It would be valuable to find out others) have ovt
whether shadow prices are equally sensitive, spent on

In conclusion, I am pleased with the size of this model. It lends itself very cording to data
well to all sorts of sensitivity testing. Thus an administrator making use of it resource with wis in a good position to evaluate how big a grain of salt must be swallowed

barely 50 per CE
with the output. It is important that no operations research model be ac- takes account o
cepted by practitioners on blind faith; this model's simplicity and full faculty cost
sensitivity-testing features guard against that possibility in an admirable Research anc
manner. However, lacking personal computational experience, I still have together in fixet
some questions as to the outcome of many sensitivity tests, produce underc

cialize in resea
presumably, the

REFERENCES without doing s
tions. Thus, rese

1. Judy, R. (1969). 'Systems Analysis for Efficient Resource Allocation in Higher Education:
A Report on the Development and Implementation of CAMPUS Techniques." or, alternatively,
Paper presented to the Conference on Management Information Systems: Their De- graduate teachi
velopment and Application to the Administration of Higher Education, Washington. D.C. less. (I say "prot

2. Koenig, H.; Keeney, M.; and Zemach, R. (1968). "A Systems Model for Management, Plan- which one can a
ning, and Resource Allocation in Institutions of Higher Education." Final Report, Na-
tional Science Foundation Project C-518. East Lansing, Mich.: Michigan State Univer- testing the hypo

Whether this esity.
3. Weathersby, G. (1967). "The Development and Applications of a University Cost Simulation of course, on the

Model." Berkeley. Calif.: Office of Analytical Studies, University of California. research
undergraduates
relative instructi.
mix and a simile

Estelle James . similar mixes,

State University of New York probably unbias
at Stony Brook institutions with

these relative cc
My comments on the interesting paper by Oliver and Hopkins fall into two costs at a unive
categories. First, I shall give some general critical reactions, as an econo- probably predici
mist, to the operations research models which are much in vogue these days in studies that I
for experimental planning and budgeting in higher education. These reac- the community c
tions, which focus on some conceptual ambiguities in the definition and types by a legis
measurement of costs, apply to a broad class of models, including the one institution and
developed by Oliver and Hopkins. Secondly, I will make a few brief points undergraduate e
specific to the paper under discussion. Similarly, an il

The university is a multi-product institution and any attempt to measure faculty costs fo
unit costs must take cognizance of all the major outputs to which resources whereas I woulc
are allocated or else the resulting cost figures will be grossly distorted. teaching/researc
Oliver and Hopkins have decided to aggregate over all departments—which attributed to a Ia

408 Instructional Costs of University Outputs 409 Comme



tcond there is a
pn ceremony. As

shadow

.ig poliCy is very
luable to find out

lends itself very
making use of it
1st be swallowed
:h model be ac-

simplicity and
in an admirable
tnce, I still have
ts,

in Higher Education:
AMPUS Techniques."
on Systems: Their De-
tion. Washington, D.C.
for Management. Plan-
on." Final Report, Na-
Michigan State Univer-

ersify Cost Simulation
of California.

pkins fall into two
ons, as an eCono-

p vogue these days
pation. These reac-
'the definition and

including the one
a few brief points

attempt to measure
to which resources

grossly distorted.

produce different outputs using vastly different inputs—in order to make their
problem more manageable. Changes in university costs and resource re-
quirements generated by a varying departmental mix are therefore exoge-
nous to, and unpredicted by, their model.

I am more concerned, however, about the ease with which they (and many
others) have overlooked the fact that considerable university resources are
spent on nonteaching activities such as research and administration, Ac-
cording to data which I have collected at Stony Brook, the faculty—the
resource with which Oliver and Hopkins are primarily concerned—spends
barely 50 per cent of its time on classroom instruction, and even less if one
takes account of holidays, summers, and sabbaticals.1 Thus, allocating the
full faculty cost to teaching seems unwarranted.

Research and teaching activities of the faculty are not inherently tied
together in fixed proportions; indeed, we find liberal arts colleges which
produce undergraduate education exclusively and institutes which spe-
cialize in research. Graduate schools usually produce some research—
presumably, the faculty cannot teach graduate students how to do research
without doing some themselves—but the exact mix varies among institu-
tions. Thus, research may be viewed as an output, albeit difficult to measure,
or, alternatively, as an input into the graduate program. Its input into under-
graduate teaching, particularly at lower-division levels, is probably much
less. (I say "probably" because this is basically art empirical question about
which one can only make assumptions until an operationally sound means of
testing the hypothesis is devised,)

Whether this explicit treatment of research makes any difference depends,
of course, on the question being asked. When estimating unit costs, ignoring
research overstates the absolute cost of teaching in general and teaching
undergraduates in particular. It does not, however, significantly alter the
relative instructional costs of two schools with a similar teaching-research
mix and a similar undergraduate-graduate mix. Stanford and Berkeley have
similar mixes, so the specific comparison that Oliver and Hopkins make is
probably unbiased. If, on the other hand, they had chosen to look at two
institutions with different product mixes, their approach would have distorted
these relative costs. For example, when comparing lower-division teaching
costs at a university and a community college, Oliver and Hopkins would
probably predict much higher figures for the former than the latter, whereas
in studies that I have made, program costs were often the same or higher at
the community college. I would thus view the choice between these school
types by a legislature as a decision about the optimal product mix for the
institution and the state, rather than a response to differential costs of
undergraduate education.

Similarly, an increase in teaching loads at a given institution would reduce
faculty costs for each student or degree in the Oliver-Hopkins model,
whereas I would view this primarily as a shift in product mix, to a higher
teaching/research ratio. Any cost-saving for a given enrollment would be
attributed to a lower quantity of research and to a lower quality of graduate
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education—a more accurate and useful way of looking at the matter, in my
opinion.2

Faculty spend their time, too, on administrative activities—curriculum
planning, recruitment, and so forth. Oliver and Hopkins simply ignore this,
implying that such activities are current costs which should be allocated
among various student cohorts in the same proportion as teaching time. I

suggest that much of this administrative activity may more properly be
regarded as an investment in the future research and teaching functions of
the university than regarded as an input into its present instructional func-
tions. If the university were to close down next year there would b'e no need
to introduce new courses, revise requirements, hire additional faculty, and
so on. Such costs are thus relevant only when considering whether to extend
the life of the institution into the future, and not when discussing its current
operations. This year's research and teaching depends, of course, on past
administrative inputs, but by now these are sunk costs. Furthermore, there is
no reason to believe that the "depreciation" of these past administrative
activities is exactly equal to, and therefore measurable by, the current
activities. The distortion is particularly significant in an old, declining institu-
tion or in a young, growing university, of which we have many today.

The multi-product nature of a university comes to the fore again when
dealing with the cost of teaching assistants. Teaching assistants have been
variously interpreted as a "slave labor" input into the undergraduate pro-
gram or as "parasites" who are paid in excess of their true marginal product.
Oliver and Hopkins adopt a variant of the former, considering teaching
assistants a cost of undergraduate education, without even mentioning other
definitions. I prefer to value the input of teaching assistants into the under-
graduate program according to the market price of equivalent resources.
The difference (if any) between this figure and the total payment to teaching
assistants represents a subsidy to graduates, a portion of forgone earnings
which is borne by the university rather than the student, or, alternatively, a
purchase by the university of the student input into its graduate program.
Using the wage for moonlighters at a nearby community college and for high
school teachers in the area as a proxy for market value, I found that, in

general, only half of the cost of teaching assistants at Stony Brook should be
allocated to the undergraduate program. The remainder should be consid-
ered a cost of, or transfer payment to, the graduate students.

I have, in effect, been arguing that the operations research models in
general, and Oliver-Hopkins in particular, overstate the real undergraduate
instructional costs at a university by ignoring its joint supply of multiple
products.3 The key distinction between money and real (opportunity) costs is
overlooked in other ways as well. I would question, for example, whether we
are justified in using annual salaries as an index of faculty services, and
wage differentials as an index of real cost differences. Since faculty tends to
be hired on a long-term contractual or tenured basis, the university reaches
its hiring decision on the basis of lifetime wages and expected performance,
and current wages are not necessarily tied to current performance. Although
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the university will not become a 'net lender" to the professor, who is free to
leave, the professor may become a 'net lender" to the university, knowing
that he will afterwards be compensated. Thus, wages of young people may
be less, and of older people more, than their current productivity. On the
other hand, tenured professors are buying insurance as well as wages with
their lifetime services, so the latter is understated by looking at the wage
payment alone. Similar comments regarding the complex measurement
problem might be made about other university resources which are not
included in the Oliver-Hopkins model and which, therefore, will not be dis-
cussed here.

It is true, of course, that the university administration may be more in-
terested in money than in social costs. More generally, there are many levels
of decision makers at a university, and costs relevant at one level may not be
relevant at another. Consequently, we must distinguish not simply between
social and private costs but also among private costs perceived by varying
decision makers. For example, the secretarial staff may be considered a
variable cost to the central campus administration, a constraint to the de-
partment chairman who is not permitted to hire additional people, and a free
good to the professor as he ponders whether to have a manuscript typed.
Benefits of different activities also vary among decision makers, depending
on the precise consequences and objective functions involved. Therefore, in
building a useful operations research model one must clearly and consis-
tently specify the decision maker for whom it is intended, in order to ascer-
tain the appropriate set of costs, constraints, and goals. Oliver and Hopkins
score well on this point, with one exception noted below.

Returning to the paper directly at hand, I have only a few specific criti-
cisms. These could be handled easily in theory, but sometimes at the cost of
a rather more complicated model.

1. No note is taken of faculty inputs into the graduate program other than
regular course work; e.g. time spent advising students and supervising
theses without corresponding credit hours appears to be omitted. This may
help explain why the Oliver-Hopkins differences between undergraduate
and graduate costs are not as great as other sources claim.

2. Although graduate students who serve as teaching assistants are rec-
ognized to spend a longer lifetime at the institution, it is also assumed that
their annual course load and faculty input are the same as for non-
teach ing-assistants. Thus, the cost to the institution of educating a Ph.D. who
has served as a teaching assistant is considerably greater than educating
one who hasn't. Empirically, I wonder whether teaching assistants tend to
take fewer courses and use less faculty time per year, which would reduce
somewhat the unit cost for that cohort.

3. I am troubled by the possible emphasis on destination modes, particu-
larly for the lengthy chains which include one or more intermediate degrees.
If one is interested in finding the least-cost method of obtaining a fixed
number of degrees, I presume that such intermediate degrees would also
count. I see no reason, for example, why Berkeley should prefer taking a
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Stanford B.S. into its Ph.D. program, rather than its own (as the discussion on NOTES
page 396 seems to imply), in order to meet specific degree constraints.

1 am referrin
I

For the educational system as a whole, such emphasis on final rather than research." Whit
intermediate destinations might be useful (stemming from national man- departmental b

power needs) but for a single institution it is difficult to justify. Conversely, a broader coricep

single institution may, following Oliver and Hopkins, focus on different entry fl the folio

points and ignore the previous investment in human capital embodied in
their students, but for the system as a whole such previous investment is 2. Parenthetically,

fully relevant. As discussed above, a model builder should determine whose well. For

viewpoint he is adopting and consistently use that same viewpoint, while this reason;

contrasting it, if he desires, with the viewpoint which would be appropriate to
a different decision maker. ductivity, two to1

4. In the Oliver-Hopkins model, costs of all degrees are additive and correction for n

independent of where the student's.earlier work was done. This strikes me as problem might

a somewhat questionable assumption, especially when dealing with M.A.'s a

and Ph.D.'s. In many fields, one goes directly from a B.S. to a Ph.D., some- are
times picking up a master's en route at virtually no extra cost. The lifetimes input into under
associated with these two programs are then not sequential but simultane- 3. To indicate the

ous, and the corresponding costs should not be added together. Fur- apProximately 6

thermore, students switching institutions after the master's may require
greater time toward completion of the Ph.D. than those continuing on at the
same school. Such interaction between program costs and points of entry or
destination may be important for certain policy questions but is not explored
by the Oliver-Hopkins formulation.

5. I should like to underscore the word of caution Oliver and Hopkins
rightly extend about interpreting their shadow prices and other results, which
depend so critically upon the particular constraints assumed. For example,
their very low shadow price for a junior transfer is based on a constant
enrollment figure, thereby implying fewer freshmen. If we held the number of
freshmen constant and broke the enrollment ceiling instead, the shadow
price on junior transfers would be much higher. Conversely, if we held
degrees constant instead of enrollment, increasing junior transfers would
actually have a negative shadow price, since this is the cheapest way of
granting a given number of bachelor's degrees. Similarly, if one examines
the effects on total instructional costs of the Carnegie Commission recom-
mendation to compress lower-division work to one year (Table 10), one gets
completely divergent results depending on whether an enrollment constraint
or degree constraint is assumed. Thus, this analysis can certainly be useful,
but the structure of the model and changes resulting therefrom must be
clearly specified and understood.

Finally, I should emphasize that many of the above observations belong
more to the domain of economists than operations research specialists, so it
is hardly a surprise that they have not been dealt with in the operations
research literature on education. Oliver and Hopkins have developed a
promising way of applying network theory to educational planning. Every
attempt should be made by economists to provide conceptually meaningful
inputs for their model.
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NOTES
I am referring here to the taculty budgeted under "departmental instruction" not "organized
research," While some research is funded separately, much of it is financed out of the regular
departmental budgets at most universities. My particular results for Stony Brook, as well as the
broader conceptual and measurement problems outlined in this comment, are discussed by
me in the following Stony Brook working papers: "Resource Allocation and Costs in Higher
Education"; "Some Notes on the Faculty as a University Resource"; and 'Methods of Resource
Measurement and Allocation."

2. Parenthetically, I am worried when an adjustment for research is not made in other contexts as
well. For example, subsidies to undergraduates at state universities are frequently overstated
for this reason; community college students are subsidized at least as much, contrary to the
usual impression. The social rate of return to college teaching is understated if it is based on
an unadjusted calculation. Changes through time in faculty-student ratios and teaching pro-
ductivity, two topics discussed at this conference, might well have looked different if an explicit
correction for research costs had been attempted. I also wonder whether this measurement
problem might help to account for the apparent lack of connection between level of college
expenditures and quality of educational output in cross-sectional studies. The "high-
spending" universities may be the research-oriented institutions, whose true teaching costs
are relatively overstated, and we may be observing, in part, that research is not an important
input into undergraduate education.

3. To indicate the rough order of magnitude of this effect, my own figures for undergraduates are
approximately 60 per cent of those of Oliver and Hopkins. My graduate costs are also
somewhat less, unless research is counted as art input into graduate study, in which case,
costs of a master's or Ph.D. skyrocket by a multiple of six.
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