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7 The Matching Process
as a Noncooperative
Bargaining Game

Dale T. Mortensen

7.1 Introduction

The term “matching’ refers to any process by which persons and/or
objects are combined to form distinguishable entities with some common
purpose that none can accomplish alone. The allocation of apartments to
tenants, the assignment of jobs to workers or factories to sites, the pairing
of men and women in marriage, and the formation of collections of agents
known as firms are all examples. Problems of interest are those in which
matchings take place voluntarily, substitution possibilities exist in the
sense that no individual agent is an essential member of any coalition, and
the “value” of the joint activity engaged in by a coalition can be divided
among its members in many ways. There are two questions of interest.
First, for a given environment described by the set of agents, the ‘‘value”
of each possible coalition, and the technology by which coalitions can
form, whatis the “equilibrium” coalition structure? Second, is an equilib-
rium coalition structure “efficient” in any meaningful sense?

At this level of generality, there is a small but diverse literature. The
topics include location problems, the theory of coalition production
economies, labor managed firms, marriage and divorce, and the theory of
local public goods. That the value of a coalition’s activities depends on
the identities of its members and that the willingness of the members of a
coalition to participate depends on the division of that value are essential
ingredients. A further complication arises when the identities and/or
locations of potential members are not known with certainty ex ante. In
this case the existence of recruiting and search costs create quasi rents.
How these are divided affects the incentives that individual agents have
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234 Dale T. Mortensen

to allocate resources to the process of coalition formation. The focus of
the paper is on this aspect of the problem.

The problem of coalition formation under conditions of imperfect ang
costly information is most closely related to the search theoretic approach
to market analysis. There are two recent papers on the topic, one by the
author (1978) and another by Diamond and Maskin (1979). Both paperg
are attempts to extend existing search theory in ways that allow equilib.
rium analysis. The relatively simple problem of bilateral matching, pair.
ing, is treated. The divisions of the surplus attributable to the existence of
a match is by nature a bilateral bargaining problem. A particular solutiop
to this problem determines the value of the match to each member of 3
pair. If values associated with the potential pairings are not identical,
then an individual agent neither holds out for the best possible match nor
sticks with an existing one if a better opportunity presents itself. In the
absence of a requirement to compensate each other in the event of 3
separation, separations occur too frequently. In a partial equilibrium
context, I show that any matched pair maximizes their joint wealth,
however they choose to divide it, if each is required to compensate the
other for the lost share of the surplus in the event of a separatlon initiated
by the former.

Diamond and Maskin, using the descriptive language of contract law,
call an agreement concerning the division of the value of a match a
“contract,” a separation initiated by one of the two parties a “‘breach of
contract,” and required compensation equal to lost rent ““‘compensatory
damages.” Compensation for breach voluntarily written into a contract is
called “liquidated damages.”” By taking into account interactions that [
ignore, they show that liquidated damages are sometimes greater than
compensatory damages. They also study the issue of the efficiency of the
matching process under both damage regimes when the surplus attribut-
able to any match is divided equally between the members of the pair.

The focus of the paper is on the relationship between the bargaining
outcome expected by the as yet unmatched pairs and the incentive of each
unmatched agent to invest in the process of forming matches. This focus
is resolved by using a model based on two distinguishing assumptions.
First, no search by matched agents is allowed. Second, the aggregate rate
at which matches form is endogenously determined by the search intensi-
ties chosen by individual unmatched agents. The breach of contract issue
is ignored given the first assumption, but the divisions of the value of a
match that agents expect to be written into contracts are crucial as a
consequence of the second. Finally, following Diamond and Maskin,
both “linear” and “quadratic’’ matching technologies are considered.

The method of analysis follows. Given a particular individually rational
solution to the bargaining problem that any two agents of opposite type
face when they meet, the problem of determining the search intensity
choices is formulated as a many-person repeated game. The game is
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played by all the unmatched agents of the-two types. A constant steady
state fraction of matched agents of each type exists given a bargaining
outcome, any solution to the game, and a specification of the technology.
Each agent’s payoff function is the discounted flow of expected future net
benefits, and benefits are transferable across agents. The noncooperative
Nash solution to the game of search intensity choice is imposed.

Not surprisingly the joint Nash search intensity choices and hence the
matching process that is induced by it are generally inefficient in the sense
that another possibility exists which would make all players better off. If
the probability that a match will form in a short time interval is indepen-
dent of the number of unmatched agents—the ‘“linear” technology
case—no unmatched agent searches intensively enough given any fixed
division of the value of a match. The externality involved can be de-
scribed as follows. If an unmatched agent searches more intensely, he and
some agent of the opposite type will form a match more quickly on
average. However, in contemplating his search intensity choice, the
agent only takes account of his own expected benefit, which is pro-
portional to his share of the surplus obtained in the future match. The
share to be obtained by his future partner is ignored. An alternative
contract exists that will solve this incentive problem. Specifically, when
the agent responsible for the formation of a particular match is allocated
all the surplus attributable to it, the joint wealth of all players is maxi-
mized by the Nash solution to the game of search intensity choice.

Given a “quadratic’ technology, the probability that a match will form
in a short time interval is proportional to the number of unmatched pairs.
The contingent contract just described does not yield an efficient match-
ing outcome in this case. Although the externality discussed still exists,
more intensive search by all other agents reduces the number of agents of
the opposite type that each individual can expect to find in the future. As
a consequence of this second externality alone, unmatched agents search
too intensively. Interestingly, the effects of the two externalities in com-
bination cancel, given an appropriate bargaining outcome. In one limit-
ing case of the model, the Nash solution to the game of search intensity
choice maximizes the total wealth of all the searching agents if every
partnership divides the surplus equally. More generally, the agent re-
sponsible for the formation of each match must be allocated a share of its
surplus that lies between one-half and unity.

In sum, matching outcomes depend on the bargains that agents not yet
matched expect to negotiate. Although there is no reason to believe that
one individually rational outcome will occur rather than another, the
incentives induced by virtually all motivate inefficient search. However, a
particular bargaining outcome does exist that yields an efficient matching
process in each example considered in the paper. The imposition of this
contract can be viewed as an assignment of property rights that would
induce a cooperative solution to the game of matching.
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1.2 Matching Technologies

In this section we sketch an aggregate matching model, formally 5
stochastic process of the “birth/death” type. Following Diamond ang
Maskin, the problem is one of forming pairs composed of agents of twg
different types for the special case in which the numbers of agents of both
types are equal. Let m denote the common number of agents of the two
types or, equivalently, the number of possible pairs. Let n denote the
number of unmatched pairs. The state space for the matching process is
the set of all possible values that n can take on, the set {0,1,...,m}.

Let a(n) denote the average instantaneous rate at which new matcheg
form and b(n) denote the average instantaneous rate at which new
unmatched pairs enter the process given that there are n unmatched pairs
at the moment. (Both of these functions are specified in detail later.)
Hence, the probability that exactly one new match will form in a short
time interval of length At is approximately a(n)At and the probability that
one new unmatched pair will enter the system is b(n)At. Since either or
neither of these two possibilities will occur during the interval with v1rtual
certainty for sufficiently small values of At, we have

P, a0) = Ata(1)P(1) + (1 - Atb(0)) P(0) + O(A¥)!,
Piadn) =Ata(n+1)P(n+1) + Atb(n—1)P(n—-1)
+ [1 - Ata(n) — Atb(n)]P(n) + 0(Ar)!, n=1,2,...,m

IPRm=1,

where P,(n) is the probability that there will be n unmatched pairs at time ¢
and 0(At)!/At— 0 as At— 0. The first equation reflects the fact that there
can be no unmatched pairs at the end of the interval (¢,¢ + Ar) only if
either there were one at the beginning and a match formed during the
interval or there were none at the beginning and none entered during the
interval. The second equation reflects the fact that either a “birth” or a
“death” can occur or neither does when n > 0. The last requirement
reflects the fact that [P(0), P(1),...,P(m)]is the probability distribution
over possible states at time ¢. '

Divide both sides of the first two equations by At, rearrange terms
appropriately, and take the limits as At — 0. The result is the system of
differential equations

P(0) = a(1)P(1) - b(0)P(0),
P(n) = a(n+1)P(n+1) + b(n—1)P(n—1) — [a(n) + b(n)]P(n),
n=12,....m

’EOP(n) =1.
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It is well known that the solution to this system converges to a unique
steady state as t— wif (a(n),b(n)) = 0. (See Feller 1968, pp. 454-58.) The
limiting distribution is the particular solution to the difference equation

1 a(n+1)P(n+1) + b(n—1)P(n—1) = [a(n) + b(n)]P(n)

associated with the boundary conditions

(2a) a()P(1) = b(0)P(0)
and
(26) 3 P =1,

For each n, the limiting probability is the relative frequency with which
the process is in state n along any sample path of infinite length.

I consider two alternative specifications of the matching rate a(n),
linear and quadratic. In the linear case, the probability that some one of
the n unmatched pairs will meet in a short time interval is independent of
the number of unmatched pairs. Hence, the average instantaneous rate at
which pairs form is proportional to n; i.e.,

(3) a(n) = an,

where oAt is the probability that a particular pair of the n possibilities will
form a match. In the quadratic case, the probability that a particular
unmatched pair will form a match during a short time interval is pro-
portional to the fraction of agents of either type that are not matched.
Hence,

(3) a(n) = a(n/m)n = an®m.

)

These alternative specifications can be interpreted as follows. Let
denote the frequency with which each unmatched agent of type 1 meets
agents of type 2, and let a, denote the frequency with which each
unmatched agent of type 2 meets agents of type 1. The contact frequency
per unmatched pair is the sum

@) a=a;+a;

If matched agents of the opposite type are never met, (3) obtains.
However, if all matched and unmatched agents of the opposite type are
contacted with equal probability, then (3') obtains because n/m is the
probability that a contact made will be unmatched. Hence, in the qua-
dratic case, matched and unmatched agents cannot be distinguished ex
ante.

For the specification of b(n), the rate at which new unmatched pairs
enter the system, we suppose that existing matches dissolve at an exoge-
nous average rate 3. Hence, '
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®) b(n) = B(m —n),

where 1/B is the expected duration of a match. In other words, B is the
“turnover’”’ rate.

In principle one can solve (1) for the explicit functional form of the
limiting probability distribution over the states of the process for each
specification of a(n) and b(n). For our purpose, it is enough to derive an
expression for the expected fraction of unmatched pairs. Since we are
primarily interested in the large numbers of agents case, this task is
facilitated by an appeal to the law of large numbers.

Given (2a), an inductive argument applied to (1) yields

(6) P(n) = [b(n=1)a(n)]P(n-1), n=1,....m,

in general. Of course,

En= gOnP(n)= glnP(n) =mi_r:nP(n)= go(n+l)P(n+l)

by virtue of the fact that (2b) implies P(m+1) = 0. Hence, in the linear
case, (3), (5), and (6) imply

En= go(n +1)[B(m = n)a(n +1)]P(n)

= (B/d)ngo(m—n)l)(n) = (B/a) [m—En]
or, equivalently, :
7 E(n/m) = B/(a+B).

Indeed, experts will recognize that P(n) is the binomial distribution with
“probability of success” B/(a+B) and ‘“sample” size m. Hence, the
variance of n/m,

25 (Bl + B[~ Bl +B)),

vanishes as m — o,

The explicit form of the distribution function is not so transparent in
the quadratic case, but the law of large numbers still applies. The latter -
fact allows us to derive the limiting value of E(n/m) using the following
argument. First, note that

m m m+1 m
En’= E_OnzP(n) = glnzP(n) = glnzP(n) = §O(n+ 1)2P(n+1)
by virtue of (2b). Consequently, (3'), (5), and (6) imply

En’= go(n +1)2[mB(m — n)la(n +1))|P(n)

= (mplo)) 3 (m—n)P(n) = (mpla) (m— En)
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or, equivalently,
E(n/m)* = (B/a)[1 — E(n/m)].

As the variance of n/m, E (n/m)2 - [E n/m]z, vanishes as m — o, the
mean is approximately equal to the positive root of the quadratic

[Enim]? + (B/a) E(n/m) — (B/a) =0

when m is large. In other words,
, 1 12 1
) E(nim) = —2-[(3/01)2 + 4(B/a)] - E(B/a).

Equations (7) and (7') imply that
(8) E(n/m) = f(B/a)

in both cases where f(x) is a strictly increasing concave function such that
f(0) = 0 and f(») = 1. Furthermore, the elasticity n(x) = xf'(x)/f(x) is
decreasing and tends to zero as x — = in both cases, but

1
"1(0) = {1

2 if quadratic.

if linear,

In other words, the expected fraction of unmatched agents is approxi-
mately B/a in the linear case and (B/a)'? in the quadratic when the
turnover rate B is small relative to the contact rate «. The specification
assumed by Diamond and Maskin (1979) is equivalent to this approxima-
tion. As the observed fraction of unmatched agents is small in many
contexts (the unemployment rates in labor markets and the vacancy rates
in the markets for apartments are examples), its consideration is not
without interest.

7.3 Matching Equilibria

An equilibrium theory of search intensity choice by unmatched agents
is developed in this section. Since these choices determine the stochastic
rate at which matches form (specifically the parameter o in the previous
section), the theory provides a behavioral foundation for studying bi-
lateral matching processes. The model is special in the sense that only
unmatched agents are permitted to search. This restriction is imposed to
permit a clearer view of issues relating to efficiency of matching pro-
cesses.

An agent’s search intensity is defined as the expected frequency with
which agents of the opposite type are contacted. The cost of search per
unit time period ¢;(s),{ = 1and 2, is an increasing strictly convex function
defined on the positive real line with the property that ¢;(0) = 0. The
argument s; is the expected number of contacts made by the agent per unit
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time period. Hence, s;At is (approximately) equal to the probability that
agent i will initiate a contact with an agent of type j # i in a short time
interval of length Az. Hence, At(s, +5,) is the probability that a particular
unmatched pair will meet during the interval in the linear matching
technology case. In the quadratic case, At(s; +s,)n/m is the same prob-
ability.

Ex ante all unmatched pairs are identical in the sense that the expected
total value of any match is the same for all possible pairings. Prior to a
face to face meeting no one has information on which to base an inference
concerning how the value of a particular match will differ from that of any
other. However, ex post a statistic x € [0,1], which we interpret as the
“quality” or “fit” of the match, is observed. It determines the value of the
match w(x). In other words, at the actual meeting of the two agents the
‘“goodness of fit” is determined. This process of “getting to know one
another” is viewed as a random draw from a distribution characterized by
the c.d.f. F(x). This formalization of ex post heterogeneity is from Wilson
(1979). ,

Consistent with the interpretation of x as an indicator of quality, w(x) is
a positive increasing continuous function on [0, 1]. The distribution func-
tion F(x) is also assumed to be continuous.

A division of the value of a match between the members of a part-
nership contingent on the fit realized is a vector function (w(x), w,(x)),
where wi(x), i = 1and 2, is the allocation obtained by the agent of type i.
Ultimately, the division is determined as an outcome of the bargaining
that takes place between the members of actual pairs after they meet. For
now, the division and the c.d.f. F(x) are regarded as given, the same for
all potential pairs, and known to all unmatched agents.

Let v(t), i = 1and 2, denote the expected present value of an agent’s
future net stream of benefits given that he pursues an optimal search
strategy. The agent’s choice problem is one of dynamic programming,
and v(¢) is the value of the agent’s optimal program at time . We wish to
apply Bellman’s principle of dynamic optimality. To do so, we must
specify the outcomes of all events that can occur during a small future
time interval of length At.

I start with the case of a linear matching technology. The probability
that a particular agent of type i will meet some unmatched agent of type j
is At(s +s;(t)),] # i, where sis the search intensity to be chosen and s;(t) is

- the search intensity common to all agents of the opposite type. Suppose

that the latter is known to our agent and is regarded as given. If the agent
does not meet another of opposite type during the interval, then he
continues to search, which has expected value v,(¢+ At) by definition. If a
prospective partner is met during the interval, then a fit x € [0,1] is
realized and the pair considers the split (w;(x), w,(x)). An individually
rational match is consummated if and only if
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) (w1(x), wa(x)) = (n(t + B1), vt + A1),

Call A(t+ At) C [0,1], the subset of qualities defined by these inequali-
ties, the set of acceptable fits. Bellman’s principle then requires that our
agent’s optimal strategy and its value, given the same for agents of the
opposite type, satisfy

(10)  w(r) = max{-ic(s) + - f:m(sﬂ,-) [Prix € A(c+ A0}

X E{w(x)|x € A(t+A0)} + Pr{x £ A(¢+ Ar)}v(t+ Ar)]

1 C e
Ty (t+Ar)}, j#¥i,i=1and2,
where Atc(s) is the cost of search incurred by the agent during the interval
and r is the discount rate common to all agents.

A joint search strategy (sS(¢),53(¢)) that solves (10) for both i = 1 and 2
is a candidate for a Nash solution to the game of search strategy choice
played by unmatched agents. Because the supergame is a sequence of the
same instantaneous game continuously repeated, the solution is station-
ary. By requiring v(r) = v(¢+ At) for all (¢, Ar) and by making the obvious
limiting argument, (10) can be made to yield the following necessary and
sufficient conditions for a noncooperative stationary Nash search inten-
sity pair denoted as (s3,53). Letting (v,v9) denote the associated payoffs
obtained,

(10a) ng = max[(s1+s2)Pr{x € A [E{w(x)|x € A% Q] = cy(s1)]

and
(10b) rv§ = mag[(f? +55) Pr{x € A%} [E{my(x) | x € A% = v3] = c(52)],
.\‘22

where A is the set of acceptable fits defined by (9) when v(t+ Ar) = v,
i = 1and 2. In a Nash equilibrium every unmatched agent selects his own
search intensity to maximize the expected net benefit flow attributable to
his own search given the optimal choices made by all other unmatched
agents.

Now consider the bllateral bargaining problem that two agents of
opposite type face when they meet. Because the division (wy(x), wy(x)) is
arbitrary at this point, it can happen that the realized fit x is not in the
acceptable set A° even though w(x), the total value of a match exceeds
the sum of both agents’ values of continued search, v? + vJ. However, in
this situation an alternative division of the value of the match exists which
would make both agents better off by inducing a consummation of the
match even if both expect the division (w;(x),us(x)) to obtain for any
alternative matching opportunity. In other words, only divisions that are
feasible and both 1nd1v1dua1]y and jointly rational, i.e.,
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(11a) w(x) = wy(x) + wy(x)
and
(116)  w(x)=v] + 8> (w(x), ma(x)) = (],v9),  Yx€[0,1],

can be equilibrium outcomes of the bilateral bargaining problem that
unmatched agents face when they meet.

The existing theory of symmetric bilateral bargaining does not provide
any generally accepted restrictions on outcomes beyond those given in
(11). Hence, we must be content with the following definition of equilib-
rium.

Definition 1. An allocation of the value of every possible match
(w3,w9) : [0,1] > R% and a search strategy pair (s3,53) € R? is an
equilibrium solution to the combined noncooperative/bargaining game of
matching if they satisfy

(12a) nd = max[(sl +s9)Emax[wi(x) —v3,0] — ¢(s1)],
(12b) = rsrzlg)é [(s? +55) Emax[w3(x) —13,0] = cx(52)]
and !
(13a) wi(x) + wix) =w(x), Vx€][0,1],
(13b) w(x) = v] + 83 (wi(x), wi(x)) = (13,19)

given a linear matching technology. The equations of (12) are implied by
(10) and (11), and the equations of (13) are a restatement of feasibility
and individual rationality, respectively. In sum, an equilibrium search
intensity pair is a Nash strategy relative to a bargaining outcome and the
bargaining outcome is feasible and individually rational given the non-
cooperative Nash payoffs induced by it.

Because (13a) implies that the converse of (13b) is true the set of
equilibrium acceptable fits is

A% ={x€[0,1]|w(x) =) +vI}.

Because w(x) is nondecreasing in x, a critical reservation fit x < 1 exists
such that all fits x = x° are acceptable. The minimally acceptable fit is the
smallest solution to

(14) w(xo) = +9.

As a consequence of the well-known indeterminacy of the bilateral
bargaining problem, many equilibria exist in general. To illustrate this
point, consider the following family of divisions of the value of every
possible match as candidates for equilibrium bargaining outcomes:

(15a) w?(x) =0+ B[w(x)— W9 —vg], Vx €[0,1],
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(156) wi(x) =v3+ (1-0)[w(x)—vi—13],  Vxe€[o,1].

This rule satisfies both conditions of (13) for every choice of 8 € [0,1].
Obviously the family is the class of rules—divide the surplus of the match
between the two types of agents according to the shares 6 and (1 —6). The

special case of 6 = 5 is Nash’s (1950) solution to symmetric bilateral
bargaining problems.

Proposition 1. Given a linear matching technology, a unique nontrivial
matching equilibrium exists for every 6 € [0, 1] if either (i) ¢{(0) < O0E
w(x) or (ii) ¢5(0) < (1-0)E w(x).

Proof. Combine (12) and (15) to obtain

(16a) nd = ma)(g[(s1 +5%)0 Emax[w(x)—v°,0] = ¢1(s))],
slz
(16b) nf= mag[(s?+s2)(l —8) E max[w(x) —°%,0] — ¢5(s,)],
322

where v? = v + vJ. Since every element of the class of rules defined by
(15) satisfies (14), we need only show that unique strategy/payoff pairs
exist that solve (16) for every 8 € [0, 1]. As the cost functions are strictly
convex, the solutions to the two optimization problems implicit in (16)
are unique for an arbitrary value of v°, call it v. Let (s,,5,) =
(o((v),03(v)) denote the functions implicitly defined by the following
sufficient conditions for optimality:

(17a) ci(sy) =0E max[w(x)—v,0], equality if s; > 0,

" (17b)  c3(s2) = (1 —6) Emax|w(x)-v,0], equality if s, > 0.

Since ci(s,) and c3(s,) are both continuous and increasing, the implicit
functions defined by (17), o(v) and o,(v), are both continuous and
nonincreasing. Furthermore, ci(s;) = 0, c3(s;) =0, and w(1) = w(x) V x €
[0,1] together with (17) imply o,(w(1)) = o,(w(1)) = 0. Finally, the
hypothesis implies either o(0) > 0, 0,(0) > 0, or both.

An inspection of (16) and (17) reveals that v’ = v + v is a fixed point
of the continuous function ¢(v) defined by

(18) ré(v) = ?}i’é ((s1+02(v))0 E[w(x) —v,0] = c(s1)]
+ ‘Sgi’é [(o1(v) +52) (1 —-8) E[w(x) —v,0] = cy(s5)].

Since (59,59) = (o,(v°),0,(v°)), it suffices to establish that ¢(v) has a
unique fixed point. Because Ew(x) > 0 and ¢,(0) = ¢,(0) = 0, the fact
that either o,(0) > 0, 05(0) > 0, or both implies ¢(0) > 0. Furthermore,
¢(w(l)) = Obecause o(w(1)) = o2(w(1)) = 0. Hence, the continuity of
&(v) is sufficient to guarantee a v° = & (v°) € (0,w(1)). Finally, the fixed
point is unique because (18) and o,(v), i = 1 and 2, nonincreasing imply
that ¢(v) is decreasing.
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The hypothesis is necessary as well as sufficient for a nontrivial equilib-
rium. If both (i) and (ii) fail, then the equilibrium is (s3,53) = 0. No
unmatched agent searches because the marginal cost is too high relative

~ to the expected benefit of trying to find a match.

In equilibrium, the matching rate is
(19) a® = (s +sY)Pr{xe A%} = (s§+sY[1 - F(xY)],

where x° is the marginally acceptable fit as defined by (14). In other
words, the equilibrium matching rate is equal to the product of the
equilibrium meeting rate and the equilibrium probability that a random
meeting of an unmatched pair will yield an acceptable match. Both of
these and, hence, the equilibrium steady state fraction of unmatched
agents E(n/m) = /(o + B) vary with 8, the shares of the surplus obtained
by the two agent types.

Given an appropriate modification of the equations of (12), the exis-
tence of a matching equilibrium can also be established for the quadratic
matching technology. During a short interval of length A¢, the probability
that an individual agent of type i will either find or be found by some
unmatched agent of the other type, j # i, is.

At[s +s;](n/m).

Here s is the agent’s own search intensity, s; is the common intensity at
which agents of the other type search, and n/m, the fraction of unmatched
agents of each type, is both the probability that an agent found by our
individual is not matched and the probability that some one of the n
unmatched agents of the other type will find our individual. With large

13

_numbers of agents, n/m is (almost) nonstochastic and equal to f(B/a) in a

steady state, where f(*) is the function defined by (7).
By virtue of Bellman’s principle, a particular agent of type i selects an
intensity that solves

At
1+rAt

(1 = Ar(s +s;)f (Bl)]wi},

(s+5,)f (Bla) Emax [w; ()]

v, = max { — Atc;(s) +
s=0

1
1+ rAte

+

providing that bargaining outcomes are individually rational. If the
search intensities chosen by all other agents are known and regarded as
given, then the joint solution for all agents is the noncooperative Nash
search intensity pair (s3,s3) with associated payoff that satisfy ‘

(20a) nf= max [(s1 +s2)f (Bla®) Emax [wi(x) —1,0] = ci(s1)].

(206) nf= max (59 +52)f (B/a®) E max [wa(x) = v8,0] ~ ca(s2)],

|
!
i
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where

(21a) o = (s§+59)[1 - F(x%)]

and

(21b) x0=w1(W0).

Replacing the conditions of (12) with (20), we obtain sufficient conditions
for a matching equilibrium in the quadratic case.

Consider again the family of feasible and individually rational bargain-
ing outcomes that divide the surplus of every match according to fixed
shares, those defined by (15) for all values of 8 € [0,1].

Proposition 2. Given a quadratic matching technology, a nontrivial
equilibrium exists for every 6 € [0,1] if either (i) c1(0) < 8Ew(x) or (ii)
c3(0) < (1-8)Ew(x). ,

Proof. Given (15), the equations of (20) can be rewritten as

(22a) r8= max [(s% +52)f (B/a®)B Emax [w(x) —v°,0] — ¢, (s1)],
s1=
(22b) S = max [(s?+52)f (B/a®) (1 —8) Emax [w(x) = v°,0] — c,(s,)],
. . so=

where 0 = v§+19. Again, consider the necessary and sufficient condi-
tions for an optional pair (s,,s,) given an arbitrary %, denoted as v. These
are

(23a) ci(s) =f(B/a)8Emax[w(x) —v,0], equality if s, >0,

(23b) c3(s;)=f(B/a) (1 —6)Emax[w(x)—v,0], equality if s,>0.

Because f(B/a) is increasing and a = (s; + 5;){1 — F(w™1(v))], the
equations define continuous functions (o,(v), o5(v)) such that (o,(0),
05(0)) > 0and o,(w(1)) = a,(w(1)) = 0. Hence, v(w(1)) = 0and v(0) >
0 so that a fixed point v* = ¢(+°) € (0,w(1)) exists, where ¢(v) is the
function defined by

ro(v) = max [(s, + o,(v)f (B/(v)) 8 Emax[w(x) = v,0] ~c(s1))
1=

+ max[(o1(¥) + s2)f (Ble(¥) (1= 6) Emax [w(x) — v,0] - co(s2)

and
a(v) = [o,(v) + o,(M][1 = F(w™'(M)].

Because the functions (o,(v), o,(v)) need not be nonincreasing, the argu-
ment used to establish uniqueness in proposition 1 does not go through.
Nevertheless, for every fixed point v%,(s9,5%3) = (0,(1°),0,(°)) is an
equilibrium search intensity pair.
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7.4 Matching Efficiency

In the linear matching technology case, unmatched agents do not
search intensively enough in any of the equilibria identified in the pre-
vious section. Specifically, an intensity pair (s,,5;) > (s3,53) exists that is
strictly preferred by every unmatched couple. Because the matching
frequency is determined by the search intensities of all agents, an increase
in that of one type augments the value of search to every member of the
other type. However, no individual agent takes account of this external
economy. In this section, I show that this externality is internalized by the
bargaining outcome that allocates all the surplus attributable to every
match to the agent responsible for making the match.

Although this same externality is present given a quadratic technology,
there 1s another with a countervailing effect. It arises because the ex-
pected meeting rate is proportional to the fraction of unmatched pairs
which is itself endogenously determined as a decreasing function of the
sum of the intensities with which the two agent types search. In the
absence of the first externality, more intensive search by all other agents
reduces the return to search for each individual by reducing the probabil-
ity that an agent met will be unmatched. Interestingly, ‘if the surplus
attributable to every match is shared equally, then the effect of the
second externality just cancels that of the first in the limit as the fraction
of unmatched agents tends to zero. In the general case, joint wealth
maximization requires that the matchmaker receive the larger share of
the surplus attributable to each match.

The principal purpose of this section, then, is to show that most
equilibria are inefficient but that joint wealth maximizing equilibria exist
- if a more general class of feasible and individually rational bargaining
outcomes is allowed. The class includes those that make the division of
the surplus attributable to every match between the partners contingent
on the identity of the agent responsible for making the match.

To formally establish that every equilibrium identified in the previous
section is inefficient given a linear technology, we use the fact that the
conditions of (16) implicitly define two functions v;(s,) and w(s,;) such
that (v3,v3) = (v(s9),%(s?)). Both are clearly continuous and strictly
increasing because of the external economy already discussed. If (s,59)
> 0, then these functions and the first-order conditions for a Nash
strategy choice by members of each agent type implicitly define the
equilibrium intensity pair (s,53) as the intersection of the two reaction
curves. Formally, (16) and (17) imply

ci(s9) = Emax[wi(x) = v(59),0]
and

c5(s3) = Emax[wi(x) — w(s),0].
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Letg;(s;),j # i, denote the two reaction curves implicitly defined by these
two equations. As ¢;(s;) and v;(s;) are all strictly increasing, the optimal
choice by one type given the other’s intensity g;(s;) is continuous and
decreasing as illustrated in figure 7.1. The curves labeled v} and v§ in the
figure represent the intensity pairs that yield the same value of search to
agents of type i = 1 and 2 as that obtained at (s,5%). Since the payoff
realized by each type increases with the other’s search intensity, all
intensity pairs in the shaded region in figure 7.1 are strictly preferred by
agents of both types to the equilibrium (s%,5%).

The average quality of the matches that form in equilibrium is also too
low. Since v = v; + v, > v = v + v for any intensity pair in the preferred
region, the minimally acceptable fit w ~!(v) is larger than in equilibrium.
As a consequence, the matching rate & = (s; +s5,)[1 — F(w™'(v))] can be
too small even though (s, +5,) > (s9 +53). In other words, the existence of
the externality does not unambiguously imply that the equilibrium frac-
tion of unmatched agents B/(a® + B) is too large except in the special case
in which all matches have identical values ex post (w(x) = w ¥ x € [0,1]).

No unmatched agent searches intensively enough because none ex-
pects to receive the net social benefit attributable to the formation of a
match, w(x) —v] —vJ, in the future in return for the marginal investment

Sy T
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Fig. 7.1 Nash equilibrium.
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required to seek out some agent of the opposite type. Viewed from this
perspective, it would appear that the externality could be internalized by
allocating the entire net benefit, the surplus attributable to such a match,
to the agent who succeeded in making the contact responsible for the
formation of the match. This particular allocation rule is a special case of
the class of bargaining outcomes that are contingent on this random
event.

Let w;(x) denote the value of a match with fit x € [0, 1] to the agent of
type i given that the pair met as a consequence of a contact made by the
agent of type j. The argument provided in the previous section justifies
the following generalization of the equlllbnum concept.

Definition 2. An allocation rule (wlj, w2,) [0,1]>R%,j = 1and2,and
a search intensity pair (s.,sz) € R%, is an equilibrium solution to the
noncooperative bargaining game of matching given a linear technology if

(24a) nY= max {s, Emax[w$,(x) —v3,0] + s3 E max[w®,(x)
1=

- V(IJ’O] - Cl(sl)})

(24b) ng = max {sl Emax[w21(x) v2,0] + 5, Emax[w3,(x)

~3,0] = cx(s2)}
and for j = 1 and 2,

(25a) w(x) = wi(x) + w(x), V xe€[0,1],
(25b) w(x) =]+ 3> (wh(x), Wz,(x)) 08,vY), VYV xe[o,1].

The conditions of (24) define a noncooperative Nash search intensity pair
and reflect the fact that the surplus obtained by each party to a match is
contingent on who made the contact. The conditions of (25) require that
the contingent allocation of the value be feasible and individually ra-
tional. One can easily establish existence in the sense of proposition 1 for
every rule that divides the surplus attributable to every match according
to shares contingent on the name of the agent making the match.

An inspection of (24) reveals that the externality is still present except
in the special case

(26) wii(x) =

W+ wx) —vd =8 ifj =1,
Vo ifj#1.
This rule obviously allocates all the surplus of every match to the agent
responsible for the contact that led to its formation. Given (24) and (26),
we have
0= ( max [(s1 +5,) Emax[w(x) —%,0] — ¢,(5,) — cx(s2)],
51,52

where v = 1§ +v9. Hence,
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Proposition 3. Given a linear technology, the joint wealth of every
unmatched couple is maximum in equilibrium if and only if all the surplus
associated with every match is allocated to the agent responsible for its
formation.

Given a quadratic matching technology, the analogous definition of an
equilibrium is obtained by replacing the conditions of (24) by

(@7a) = max {5, (Blo) Emax[wi(x) = 2,0] - ex(s)
+ 53 (B/a®) Emax [wl,(x) - v, 0]},

(27b) ng= max {s2f (B/a®) Emax [w3y(x) = v3,0] = cx(s2)
+ s3£(B/a%) E max w3 (x) - v§,0]},

where f(B/a) is the increasing function defined by (7') and

(28) o= (s§+s)[1 - Fw™ ()

is the equilibrium rate at which acceptable matches form. Again, equilib-
rium can be established for any rule that allocates the surplus according to
shares contingent on the name of the agent responsible for the contact
using the argument of proposition 2.

An inspection of (27) reveals the following fact. Were the efficient
allocation rule for the linear case (w% =9, j # i) adopted, then every
agent searches too intensely. The reduction of the probability that an
agent contacted in the future will be unmatched attributable to more
intensive search by all (f'(») > 0) is not taken into account by any
individual. This observation suggests that some rule that allocates less
than the entire surplus to the agent responsible for making a particular
match might have the desired incentive properties.

The joint wealth maximizing problem is

(29a) rv* = ma)x 0{(s, +5,)f (B/e) Emax [w(x) — v*,0]
- 51.52) =
= ¢)(s1) — ¢as2)}
= (s{ +53)f(B/o*) Emax [w(x) —v*,0] = ¢y(s7) —ca(s3),
where
(29b) a=(s5;+8)[1 = F(w™'(v*)))-

As f(+) is an increasing concave function such that f(0) = 0 by virtue of
(7"), the right-hand side of (29a) is strictly concave in (s,,5,). Hence, the
following first-order conditions are sufficient to determine the search
strategy pair (s7,s3) that maximize the sum of the values of search v, + v,:
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(30) clsH=|f(Bla*) + (st +s3)f (B/Q*)a?(ﬁla))]
l

X MEmax[w(;\c) —v*,0]
aS,'
= [1 = n(B/a*)]f(B/a™) Emax[w(x) - v*,0],

with strict equality holding if s} > 0, = 1and 2, where n(x) = xf'(x)/f(x)
is the elasticity of f(+). Asm(0) = %andf(O) = O while n() = Oand f(x)
= 1 by virtue of (7'), one can establish that v* exists by applying the now
familiar fixed point argument.

Equations (29) and (30) imply that the joint wealth maximizing inten-
sity pair is a Nash solution given the following feasible and individually
rational contingent bargaining outcome:

W+ [ =mBlan)]wi)~vi-v)]  ifj=1,
v+ m(Bla*) [w(x) - vi - VY] ifj £,
= 1 and 2. Given this rule, every Nash solution (s},s3) satisfies
(32) 0= max {(si+5)[1 = WBla)If(B/e)
x Emax|[w(x)—v°%,0] = ¢,(s,) — c2(s2)}

+ (s +s)m(Bla*)f(B/a®) Emax [w(x) —v°,0],
where ° = v +19 by virtue of (27). Consequently,
(33) ci(s?) =1 — n(B/a*)]f(B/a®) Emax [w(x) - v°,0]

with strict equality holding if s? > 0, i = 1 and 2.

Clearly, every solution to (29) and (30) satisfies (32) and (33). Hence,

Proposition 4. Given a quadratic technology and a contingent bargain-
ing outcome that allocates to the agent responsible for making every
match the share 1—m(B/a*) of its surplus, a search intensity pair that
maximizes the joint wealth of every unmatched couple is a Nash solution
to the game of search intensity choice.

Because of the possibility of multiple equilibria (see proposition 2), the
converse is not guaranteed. However, if there is an inefficient equilib-
rium, neither agent type searches intensively enough.

Proposition 5. Given the hypothe51s of proposition 4, the joint wealth
maximizing search intensity pair (sf,s3) is unique and at least as large as
(s9,59), any Nash solution associated with the allocation rule (31).

GD W) ={

Proof. Because i = n(B/a) = 0 and ci(s,) and c5(s,) are continuous and
strictly increasing, the functions v(s,,s,) defined by

rv(sy,82) = [sici(s1) + 5263(52)]/[1 = n(Bla*)] — c1(sy) — €a(s2)
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are continuous and strictly increasing,
vt =v(st,s3),
and
alst) =cs3)  if(sf,s3)>0
by virtue of (29) and (30), while
V0 = v(s9,s59)
and
ci(s) =c5(s3)  if(s9,59)>0

by virtue of (32) and (33). Hence, the fact that v* is unique and such that
v* =10 by definition implies (s} ,s3 ) unique and (s} ,s3) = (59,5%). QED.

- Furthermore, proposition 5 provides the means needed to establish the
following converse of proposition 4. ’

Proposition 6. Given the hypothesis to proposition 4, a Nash solution
to the game of search intensity choice maximizes the joint wealth of every
unmatched couple if all matches are identical ex post (w(x) = w ¥V x €
[0,1]). '

Proof. Because all matches are acceptable (w = 1°) in equilibrium o =
(s§+sD [1 = F(w™'(v*)] = s3+53. Hence, under the hypothesis, (33)
can be rewritten as

(34a) ci(sOH=[1~- n(B/a*)]f(B/(s?Jrsg))[w—vO], equality if 5§ > 0,
and
(34b) c3(sD =[1 — n(Bla®)]F(B/(sS+5))[w—1°],  equality if 55 > 0.

Because f(B/a) is strictly increasing and continuous and c|(s,) and c¢5(s;)
are both strictly increasing and continuous, the solution to (34) is unique
for every choice of v* and decreases as v% increases. As (s .s3) solves (34)
when v0 = v* v* > V0 implies (sf,s3) < (s1,5%), which contradicts
proposition 5. ’
One way to interpret these results follows. When the agent who makes
each match receives the entire surplus, a joint wealth maximizing equilib-
rium is possible if the agent’s share [w (x) — v"] is taxed at the proportional
rate n(B/a*) and if the proceeds of the tax are redistributed to the other
agent. The optimal tax rate depends on the joint wealth maximizing
meeting rate a* = (s} +s3)[1 — F(w™'(v*))]. To calculate it, one would
have to solve explicitly the joint wealth maximizing problem. However,

because E(n/m) = f(B/a), f(0) = 0and n(0) = %, and f(=) = 1 and n(=)
= 0, the optimal tax rate is approximately % (the surplus is shared

equally) if the equilibrium fraction of unmatched agents is near zero and
unique and is zero (the agent who makes a match gets all the surplus) if
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the equilibrium fraction of unmatched agents is near one and unique.
Finally, uniqueness of equilibrium is guaranteed if matches are not too
heterogeneous ex post.

7.5 A Summary and a Reinterpretation

A unique feasible and individually rational division of the surplus
attributable to every match that motivates all unmatched agents to search
efficiently exists given either technology. The allocation has the property
that a larger share is received by the agent responsible for making the
match. The sum of the ex ante present values of the future net incomes
accruing to the members of the typical unmatched pair is maximum when
they expect this allocation rule to obtain. However, no individual once
contacted by another has an incentive to agree to that division ex post.
Furthermore, the agent who made the contact has no special bargaining
position as a consequence once the meeting takes place. Hence, there is
no reason to believe that ex post bilateral bargaining will yield the
efficient agreement.

Agents who are as yet unmatched might precommit. Each may well be
willing to agree ex ante to assign the unknown agent who will make the
match the appropriate share of the surplus. However, there exists no
means by which the typical unmatched pair can meet ex ante for this
purpose. Once the pair meets, the two no longer have the incentives
required to obtain the agreement that might have motivated their meet-
ing. The fact of having met only presents them with the bilateral bargain-
ing problem as we formulated it in the text.

This paradox might be resolved by introducing a class of third parties,
brokers or middlemen, who supply matching services and by so doing
have a continuing interest in the bargaining outcomes. Of course, brokers
exist in many market contexts in which matching is important. Labor
markets, markets for housing, and at various times and places the “mar-
riage market” all serve as examples. The presumed ability of specialists to
provide matching services of better quality and at a lower cost is the usual
explanation given for the existence of such middlemen. Although these
advantages may be necessary to explain the existence of brokers, another
possible role is suggested by the following reinterpretation of the model.

Suppose that there are two types of principals that can be matched as
pairs for some purpose. However, assume that the cost of self-search by
each principal is prohibitive relative to the expected benefit attributable
to a future match. A principal can hire a broker to search in his stead at a
reasonable price because the latter can search more economically. Given
that none of the principals search for themselves, w(x) is the difference
between the total value of a match with fit x and the sum of the opportu-
nity cost that the two would incur were they matched. Given this inter-
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~ pretation, any match with fit x such that w(x) — p(x) = 0 is acceptable to

the pair, where p(x) is the sum of the contingent commissions that the two
principals pay to their brokers. If the sum of the opportunity costs of
being matched is the same for every unmatched pair, then competition
among the many unmatched principals for the scarce matching services
supplied by brokers would bid the sum of the commission up to w(x).
Given this price structure, the agents in our model can be interpreted as
the brokers who represent the 2n unmatched principals.

Because all the matches are equivalent from each principal’s perspec-
tive and each is indifferent to the length of time required to obtain a
match, the search intensities and the criterion for an acceptable match are
discretionary decisions taken by the brokers. Hence, s; is the intensity of
search chosen by a broker who represents a principal of type i and v; is the
present value of the profit that the broker can expect in return for his
effort to locate a match for that principal. An allocation of w(x) between
the two agents who meet to form a match is now a division of the
commission, that both principals are willing to pay, between their respec-
tive brokers.

The one difference is that the brokers have a continuing interest in the
market for matching services that principals searching for themselves
would not have. Having formed one match, they look forward to the
prospect of doing the same for other principals in the future. They not
only have an incentive to precommit themselves to the efficient allocation
rule; as third parties they also have the means to do so. The fact that in
some market contexts the broker responsible for creating a match re-
ceives the entire finder’s fee while in others commissions are split be-
tween the principals’ brokers in a prescribed manner is suggestive in the
light of our results concerning the dependence of the efficient allocation
rule on the form of the matching technology.

This reinterpretation of the model is obviously a very special case once
brokers are introduced. The opportunity costs of being matched is not the
same for all principals of the same type. This kind of heterogeneity will
create inframarginal rents for some and hence an interest in the intensity
with which the broker searches. A general model must also allow for
search by the principals as well as the brokers. These complications may
yield quite different results. Nevertheless, the reinterpretation suggests a
fruitful path for further research. '
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Comment Peter Diamond

Dale Mortensen’s analysis of matching equilibrium focuses on the incen-
tives for search effort. Each individual chooses a rate at which he tries to
contact potential partners. With the quadratic technology the rate of
success depends on the number of potential partners available. The
quality of any potential match is a random variable. Mortensen assumes
that matches are made (contracted) if and only if the value of the match
exceeds the (dynamic programming) value of continued 'search by the
pair of potential partners. Matches are not broken for better alternatives,

Mortensen’s analysis of efficient incentives for search takes this con-
tracting rule as given. Interestingly, this contracting rule is not socially
efficient with the quadratic technology. Passing up a match that is just
worthwhile improves the search process for others, at no cost to the pair
passing up a match. This external economy implies that the efficient
contracting rule involves passing up matches that are privately
worthwhile.' This result is shown below.

This issue did not arise in my work with Maskin since we assumed that
individuals could break a contract to form a better match with no re-
source cost. Once one assumes a setup cost for creation of a match, the
same inefficiency in private contracting appears in a model with breach of
contract.

To focus on the issue of contracting, Mortensen’s model is simplified by
eliminating search intensity as a decision variable. Let s, and s, be the
(positive) rates of search of the two types of agents. Search is assumed to
be costless. Since search does not vary with the division of the surplus
from a match, we can assume that the surplus is divided evenly between
partners, with no loss in generality. »

With these simplifications, the equilibrium with a quadratic technology
(Mortensen equations (20)—(21)) becomes

Peter Diamond is professor of economics at Massachusetts Institute of Technology.
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= (51 + ) f(Bla’) 3 Emax[w(x) = ¥} = ¥5.0],
@ =Gt s BRdFEmaxln) — v - 0]

a® = (s; +52) (1 = F(x%),
X0 = w1 (4 449,

where r is the interest rate; v?, the value of the search process; w(x), the
value of a match of quality x; F(x), the distribution of the random
variable x; 8, a constant of the search process; f a positive increasing
function determined by the search process; and 2, an integer lying be-
tween 1 and 3. With the equal division rule, we have v§ = v9, further
simplifying the analysis.

Let us make the minimum acceptable quality of match a control
variable. Denoting it by x*, we can write the value equation as

@ P8 =G5+ 52 fB/Gs1 +5) (1 = FeM3) " (w() - 208,

Individual incentives call for accepting any worthwhile match, i.e., hav-
ing w(x*) = 2vY. If f did not vary with x*, this would also be efficient for
the matching process. However, since f increases in x*, there is an
external diseconomy in forming a match and v is maximized at a higher
level of x*, one with w(x*) > 219. The level of x* maximizing the steady
state value satisfies

S 'F' -
3) w(x*) — 20 - +LZ)(1 o f (w(x) — 2V9) dF.

As long as match quality is variable, this expression is positive,

Note

1. Unemployment compensation is one method of inducing individuals to pass up
matches that would otherwise be worthwhile.

Reference

Diamond, P., and Maskin, E. 1979. An equilibrium anélysis of search
and breach of contract, I: Steady states. Bell Journal of Economics 10:
82-105.
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Comment Steven A. Lippman | :

In the game-theoretic spirit of two earlier papers (Diamond and Maskin
1979; Mortensen 1978) with costly and imperfect information, Mortensep
considers an environment in which homogeneous agents of two types
meet pairwise via a search process in order to form a match. (We shall
utilize marriage, apartment rentals, and the labor markets as prototypical
examples.) The matches provide the sole source of benefits, search is the

- only cost, and each agent’s payoff function is the expected discounted

' flow of net benefits. The focus of Mortensen’s equilibrium analysis is on
the incentives of unmatched agents for engaging/investing in search,
Presumably, the incentives vary directly with the number n of unmatched
pairs. We shall refer to n as the state of the system.

An important feature of Mortensen’s approach is that the aggregate
matching model is set up as a birth/death process. This structure, whichis
hinted at in Diamond and Maskin (1982) and Mortensen (1978), is quite
general and admits a hearty mix of examples; employed in full-blown

_generality, however, the ensuing analysis would be nearly intractable. As
formulated by Mortensen, a birth—an increase in the state n—occurs
whenever a new unmatched pair is created; dissolution of an extant
match (e.g., divorce) and immigration (e.g., entry into the labor force
and creation of a new job) are the obvious means of increasing n, with the
latter possibility explicitly excluded in this paper (and included in Di-
amond and Maskin 1979). A death occurs when a match is formed. This

\ leads Mortensen to posit the birth and death rates

(1) Ny = (m—n)B ‘
an , the linear technology, |
@ Mo = [

a(l), the quadratic technology,

where B is the dissolution (or turnover or divorce) rate and m is the
number of each type of agent in the total population. Using these rates,
the expected fraction of unmatched pairs is calculated and this quantity is
then utilized in deriving properties of the equilibrium solution(s).

‘ With the above setup an analysis different from Mortensen’s could be
pursued. Assuming that signals effective in revealing individual agents’
existence and availability are in place—viz., absence of a wedding ring
and presence at a singles bar, vacancy sign, or help wanted ad—a search-
ing unmatched agent can avoid contacting an already matched agent.
Moreover, these signals reveal the state of the system to all interested

Steven A. Lippman is professor, Graduate School of Management, University of Califor-
nia, Los Angeles.
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parties, including potential entrants. With knowledge of the state of the
system as revealed by the agents (or even their brokers), markets with
system dynamics such as agglomerative and imitative effects can be
included. For example, there are many contexts in which the immigration
as well as the turnover rate should be modeled as increasinginn, fornis a
measure of matching opportunities.

Further complications are presented by the fact that the birth and
death rates are not exogenously given but rather affected (in a nonlinear
manner) by the agents’ strategies. We illustrate this and other complica-
tions in the following example.

Assume that the contract flow rate for each agent associated with any
given contact is a random variable X with cumulative distribution func-
tion F, and X is independent of the past history of the system. To simplify
matters, assume that the agents in any match must evenly divide the
contract benefits, thereby eliminating the bargaining aspects of the
model. In such a simple system with agglomeration, the agent’s optimal
strategy is characterized by two increasing sequences {(d,) and (v,) as
follows. When the state of the system is #, an unmatched agent will accept
a match with flow rate in excess of v,; matched agents will willingly
(attempt to) separate when their current benefit is less than d,, (=v,,). Itis
clear that

B = n(1 = F(v,)), ‘

but the birth rate is a function not only of n but also of the set of existing
contracts. In order to maintain the Markovian nature of the process we
can utilize Mortensen’s assumption that matches are not voluntarily
broken for better alternatives, though “involuntary” dissolutions are
allowed; that is, dissolution for a particular match is not dependent upon
the contract flow rate for that particular match. In this case we have

Nojm = Ba(m —n) + g,

where 2m is the total population of agents, B, is the dissolution rate, and
8nis the immigration rate. As exposited we assume that B, and g, increase
in n, with B, serving as measure of population ‘“malaise.”

Now the value V, ,,(v) of a match with flow v when there are n and
m — n unmatched and matched agents of each type is given by

LT 8n
Vv = . | 7 _on
(3) n,m(v) (1+An'm + (1+An,m A"‘m n 1.m(v) + An,m Vn+l.m+l(v)
m—1-n Bn Bn
+ (/\T)Vn+l.m(v) + A Vs 1.m(0)

and
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— An,m p’ll/nfx -
@) Vam(0) = m{ A, Vet dF[L = FO)
n‘lu
n m—n), n
b0+ Ry ) Ai—vmm.w)},

where a is the discount factor, A, ,,, = W, + Ny, Ap/(atA,,,) =
Ee°T is the expected discount factor,

v T
= vEf e~y
0-+An.m 0

is the expected discounted earnings till a change of state, and T is an
exponential random variable with parameter A, ,,,.
The difficulty in determining the existence and qualitative properties of

- {va) is apparent; nevertheless, success in such an undertaking would

surely provide valuable insights.
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