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1 Asset Prices in a
Production Economy

William A. Brock

1.1 Introduction

This paper develops an intertemporal general equilibrium theory of
capital asset pricing.' It is an attempt to put together ideas from the
modern finance literature and the literature on stochastic growth models.
In this way we will obtain a theory that ultimately is capable of addressing
itself to general equilibrium questions such as: (1) What is the impact of
an increase in the corporate income tax upon the relative prices of risky
stocks? (2) What is the impact of an increase in progressivity of the
personal income tax upon the relative price structure of risky assets? (3)
What conditions on tastes and technology are needed for the validity of
the Sharpe-Lintner certainty equivalence formula and the Ross (1976)
arbitrage theory and so forth?

The theory presented here derives part of its inspiration from Merton
(1973). However, as pointed out by Hellwig (undated), Merton’s inter-
temporal capital asset pricing model (ICAPM) is not a general equilib-
rium theory in the sense of Arrow-Debreu (i.e., the technological sources
of uncertainty are not related to the equilibrium prices of the risky assets
in Merton). We do that here and preserve the empirical tractability of
Merton’s formulation.

Basically what is done here is to modify the stochastic growth model of
Brock and Mirman (1972) in order to put a nontrivial investment decision
into the asset pricing model of Lucas (1978). This is done in such a way as
to preserve the empirical tractability of the Merton formulation and at
the same time determine the risk prices derived by Ross (1976) in his
arbitrage theory of asset pricing. Ross’s price of systematic risk k at date ¢
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2 William A. Brock

denoted by A\, which is induced by the source of systematic risk 8, is
determined by the covariance of the marginal utility of consumption with
84 In this way Ross’s A4, are determined by the interaction of sources of
production uncertainty and the demand for risky assets. Furthermore,
our model provides a context in which conditions may be found on tastes
and technology that are sufficient for equilibrium returns to be a linear
function of the uncertainty in the economy. Linearity of returns is neces-
sary for Ross’s theory.

The paper proceeds as follows. Section 1.1 is the introduction. Section
1.2 presents an N process version of the 1 process stochastic growth
model of Brock and Mirman (1972). The N process growth model will
form the basis for the quantity side of the asset pricing model developed
in section 1.3.

In section 1.2 it is indicated that optimum paths generated in the N
process model are described by time independent continuous optimum
policy functions & la Bellman. A functional equation is developed that
determines the state valuation function using methods that are standard
in the stochastic growth literature. It is also indicated that for any initial
state the optimum stochastic process of investment converges in distribu-
tion to a limit distribution independent of the initial state. The detailed
analysis of these questions is done in Brock (1979).

Section 1.3 converts the growth model of section-1.2 into an asset
pricing model by introducing competitive rental markets for the capital
goods and introducing a market for claims to the pure rents generated by
theithfirmi = 1,2,..., N. Eachof the N processes is identified with one
“firm.” Firms pay out rentals to consumers. The residual is pure rent.
Paper claims to the pure rent generated by each firm i and a market for
these claims is introduced along the lines of Lucas (1978).

Equilibrium is defined using the concept of rational expectations as in
Lucas. That is, both sides of the economy possess subjective distributions
on pure rents, capital rental rates, and share prices. Both sides draw up
demand and supply schedules conditioned on their subjective distribu-
tions. Market clearing introduces an objective distribution on pure rents,
capital rental rates, and share prices. A rational expectations equilibrium
(REE) is defined by the requirement that the objective distribution equal
the subjective distribution at each date. I hasten to add that no problems
of incomplete information will be dealt with in this paper.

In section 1.3 it is shown using recent results of Benveniste and
Scheinkman (1977) that the quantity side of an REE is identical to the
quantity side of the N process growth model developed in section 1.2.
The key idea used is the Benveniste-Scheinkman result that the standard
transversality condition at infinity is necessary as well as sufficient for an
infinite horizon concave programming problem.
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3 Asset Prices in a Production Economy

The financial side of the economy is now easy to develop. A unique
asset pricing function for stock i of the form P;(y) is shown to exist by use
of a contraction mapping argument along the lines of Lucas.

Section 1.4 uses a special case of the model in section 1.3 to develop an
intertemporal general equilibrium theory that determines the risk prices
of Ross endogenously. Capital asset pricing formulas such as the Sharpe-
Lintner certainty equivalence (SL) formula are derived in section-1.4. It
is shown there that the SL formula can be derived only if the asset pricing
function is linear in the state variable.

The convergence result in section 1.2 allows stationary time series
‘methods based on the mean ergodic theorem to be used to estimate the
risk prices of Ross, provided that the economy is in stochastnc steady
state.

In section 1.5 an explicit example of the N process model is solved for
the Optimum in closed form. The asset pricing function P;( y) turns out to
be linear in output y for this case. The risk prices of Ross can also be
calculated in closed form for the example.

Finally, the appendixes develop technical results that are needed but
somewhat tangential to the main issue addressed in each section.

1.1.1 Notations

Equations are numbered consecutively within each section. Thus, for
example, equation 2 in section 1.3 is written “(3.2).” Assumptions,
theorems, lemmas, and remarks are numbered consecutively within each
section. For example, assumption 2 in section 1.3 will be written ‘“‘as-
sumption 3.2.” :

The convention is the same in the appendlxes except that ““A” appears
to separate entities from those in the main text. For example, assumption
2 in the appendix to section 1.3 will be written “assumption A3.2.”

Finally, we should mention that after this paper was written we found
the papers by Cox, Ingersoll, and Ross (1978) and by Prescott and Mehra
(1977) which are similar in spirit to this paper. Other related papers are
Johnsen (1978) and Richard (1978). Nevertheless, the question ad-
dressed and the methods used differ substantially in all of these papers.

1.2 The Optimal Growth Model

Since the model to be given below is studied in detail in Brock (1979),
we shall be brief where possible.
The model is given by

@.1) max E, El B u(c),
t=
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N ~

(2.2) St.Cyy T X1 — X = i§1 [gi(xiu’:) = d:xy),
N

(2.3) X, = §1 XXy 20,i=1,2,... ,N,t=0,1,2,...,

(2.9), ¢z0,t=1,2,...,

(2.5) X0, Xi0,i=1,2,...,N, rohistorically given,

where Ey, 8, u, ¢, x,, &, Xi, I', and §; denote mathematical expectation
conditioned at time 1, discount factor on future utility, utility function of
consumption, consumption at date ¢, capital stock at date ¢, production
function of process #, capital allocated to process i at date ¢, random shock
which is common to all processes i, and depreciation rate for capital
installed in process i, respectively.

The space of {c};-;, {x,};=1 over which the maximum is being taken in
equation (2.1) needs to be specified. Obviously, decisions at date t should
be based only upon information at date t. In order to make the choice
space precise, some formalism is needed. We borrow from Brock and
Majumdar (1978) at this point.

The environment will be represented by a sequence {r};_, of real
vector valued random variables which will be assumed to be indepen-
dently and identically distributed. The common distribution of 7, is given
by a measure p.: B(R™) — [0,1], where B(R™) is the Borel o-field of R™.
In view of a well-known one-to-one correspondence (see, e.g., Loéve
1963, pp. 230-31), we can adequately represent the environment as a
measure space (Q, %, v), where Q is the set of all sequences of real m
vectors, ¥ is the o-field generated by cylinder sets of the form

™ A,

t=1
where ‘
A € B(R™), t=1,2,...
and

A=R"
for all but a finite number of values of t. Also v (the stochastic law of the
environment) is simply the product probability induced by p. (given the
assumption of independence).

The random variables r, may be viewed as the tth coordinate function
on Q; i.e., for any w = {w};=; € Q, r, (w) is defined by

r(w)=w,

We shall refer to w as a possible state of the environment (or an
environment sequence) and to w, as the environment at date ¢. In what
follows, %, is the o-field guaranteed by partial histories up to period ¢,
(i.e., the smallest o-field generated by cylinder sets of the form

e A Lkt g 4.0 sl
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Sl

m A,

=1
where A, is in B(R™) for all ¢, and A, € R™ for all T > f). The o-field &,
contains all of the information about the environment which is available
at date . '

In order to express precisely the fact that decisions c,, x, only depend
upon information that is available at the time the decisions are made, we
simply require that c,, x, be measurable with respect to %,

Formally the maximization in (2.1) is taken over all stochastic pro-
cesses {¢}r=1, {x}7=1 that satisfy (2.2) —(2.5) and such that for eacht = 1,
2, ..., ¢, x, are measurable with respect to %,. Call such processes
‘“‘admissible.”

Existence of an optimum {c,};_,, {x,};-; may be established by impos-
ing an appropriate topology I on the space of admissible processes such
that the objective (2.1) is continuous in this topology and the space of
admissible processes is I-compact. While it is beyond the scope of this
article to discuss existence, presumably a proof can be constructed along
the lines of Bewley (1972).

The notation almost makes the working of the model self-explanatory.
There are N different processes. At date ¢ it is decided how much to
consume and how much to hold in the form of capital. It is assumed that
capital goods can be costlessly transformed into consumption goods on a
one-for-one basis. After it is decided how much capital to hold then it is
decided how to allocate the capital across the N processes. After the
allocation is decided nature reveals the value of r,, and g;(x;, #,) units of
new production are available from process i at the end of period ¢. But
3;x;, units of capital have evaporated at the end of ¢. Thus, the net new
produce is g; (x;,, ) — 8;x; from process i. The total produce available to
be divided into consumption and capital stock at date ¢+ 1 is given by

(2.6) 'gl (gi(xirre) — Bixy] + x, = 'gl [gi(xinr) + (1 - 8:)xi]

N
Eiz'lfi(xinrl)zyt+l’
where

(2.7) fi(xinr) =gi(xie,r) + (1 = 8))x;,

denotes the total amount of produce emerging from process i at the end of
period t. The produce y, , , is divided into consumption and capital stock
at the beginning of date ¢t+1, and so on it goes.

Note that we are assuming that it is costless to install capital into each
“process i and it is costless to allocate capital across processes at the
beginning of each date .




6 William A. Brock

The objective of the optimizer is to maximize the expected value of the
discounted sum of utilities over all consumption paths and capital alloca-
tions that satisfy (2.2)-(2.5).

In order to obtain sharp results we will place restrictive assumptions on
this problem. We collect the basic working assumptions into one place:

Assumption 2.1. The functions u (*), f; (*), are all concave, increasing,
and twice continuously differentiable.

Assumption 2.2. The stochastic process {r};-; is independently and
identically distributed. Each r: (Q, &, w) — R™, where (Q, B, p) is a
probability space. Here () is the space of elementary events, B is the
o-field of measurable sets with respect to w, and p is a probability
measure defined on subsets B C ), B € &B. Furthermore, the range of r,,
r(Q), is compact.

Assumption 2.3. For each {x;}/Y,, r; the problem (1) has a unique
optimal solution (unique up to a set of realizations of {r,} of measure
Zero).

Notice that assumption 2.3 is implied by assumption 1 and strict con-
cavity of u, {f}/¥,. Rather than try to find the weakest possible assump-
tions sufficient for uniqueness of solutions to (2.1), it seemed simpler to
reveal the role of uniqueness in what follows by simply assuming it.
Furthermore, since we are not interested in the study of existence of
optimal solutions in this article, we have simply assumed that also.

By assumption 2.3 we see that to each output level y,, optimum ¢,, x,,
Xi,» given y,, may be written

(2.8) ) c,=g(y,),'x,=h(y,), Xie =hiy,).

The optimum policy functions g(¢), h(*), h(*) do not depend upon ¢
because the problem given by (2.1)-(2.5).is time stationary.

Another useful optimum policy function may be obtained. Given x,, r,
assumption 2.3 implies that the optimal allocation {x;3™, and next
periods’ optimal capital stock x, ., | is unique. Furthermore, these may be
written in the form

(2.9) Xig = a;(Xr, 7 1),
(2.10) X1 =H(x,1).

Equations (2.9), (2.10) contain r,_, r,, respectively, because the alloca-
tion decision is made after r, _, is known but before r, is revealed but the
capital-consumption decision is made after y, , | is revealed (i.e., after r, is
known).

Equatlon (2.10) Iooks very much like the optimal stochastic process
studied by Brock and Mirman, and Mirman and Zilcha. It was shown in
Brock and Mirman (1972, 1973) for the case N = 1 that the stochastic
difference equation (2.10) converges in distribution to a unique limit

e e et a0 5 A A i i o eI
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7 Asset Prices in a Production Economy

distribution independent of initial conditions. We show in Brock (1979)
that the same result may be obtained for our N process model by follow-
ing the argument of Mirman and Zilcha. We collect some facts here that
are established in Brock (1979).

Result 2.1. Adopt assumption 2.1. Let U(y,) denote the maximum
value of the objective in (2.1) given initial resource stock y,. Then U(y,)
is concave and nondecreasmg in y;, and for each y, > 0 the derivative
U’ (y,) exists and is nonincreasing in y,.

Proof. Mirman and Zilcha (1977) prove in their equation (2) that

U')=u'(g(y1)),  fory, >0,

for the case N = 1. The same argument may be used here. The details are
left to the reader.
Remark 2.1. Equation (a) shows that g(y,) is nondecreasing since u” (c)
< 0 and U’(y) is nonincreasing in y as a result of the concavity of U(*).
Result2.2. Adopt assumption 2.1. Also assume that units of utility may
be chosen so that u(c) = 0, for all c. Furthermore assume that along
optima,

ER'U(y)—0, ast—ow. .

If {c)r 1, (ot (™, t=1,2, .. ., is optimal, the following condi-
tions must be satisfied: for each i, ¢

(2.10a) u'(c)ZBELu' (¢ 1 )filxir, 1)},

(2.10b) w'(c)x, = BE{u' (¢, )filxi, ro)Xis}s

and .

(2.10¢) | tim E,{B'~"u'(c)x} =0.

Proof. The proof proceeds much like the proof of lemma 3.1, which is
given in section 1.3 below. For details see Brock (1979).

Lemma 2.1. Assume that u’ (¢) > 0, u" (¢) < 0, u' (0) = +=.
Furthermore, assume that f;(0, r) = 0, fi(x,r) > 0, fj(x, r) = 0 for all
values of r. Also, suppose that there is a set of r values with positive
probability such that f; is strictly concave in x. Then the function h(y) is
continuous in y, increasing in y, and 0 when y = 0.

Proof. See Brock (1979).

Now by assumption 2.3 and equations (2.8)-(2.10) it follows that y,_ |

may be written

(2.11) Yerr = F(x,,rp).

Following Mirman and Zilcha (1977), define

(2.12) E(X)E'PQE F(x,r), I_‘"(X)Emr%); F(x,r),
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~ where R is the range of the random variable
r:(Q, B, u)— R™,

which is compact by assumption 2.2. The following lemma shows that F,
F are well defined.

Lemma 2.2. The function F(x,r) is continuous in r.

Proof. See Brock (1979).

Let x, x be any two fixed points of the functions

(2.13) H(x)=h(E(x)), H(x)=h(F(x)),

respectively. Then
Lemma 2.3. Any two fixed points of the pair of functions defined in
(2.13) must satisfy

(2.14), XS

Proof. See Brock (1979).

We may apply arguments similar to Brock and Mirman (1972) and
prove

Theorem 2.1: There is a distribution function F(x) of the optimum
aggregate capital stock x such that

F(x)—F(x)

uniformly for all x: Furthermore, F(x) does not depend on the initial
conditions (xg,7)-

Proof. See Brock (1979).

Here

(2.15) F(x)=prob {x,= x}.

Theorem 2.1 shows that the distribution of optimum aggregate capital
stock at date ¢, F,(x), converges pointwise to a limit distribution F(x).

Theorem 2.1 is important because we will use the optimal growth
model to construct equilibrium asset prices and risk prices. Since these
prices will be time stationary functions of x, and since x, converges in
distribution to F, we will be able to use the mean ergodic theorem and
stationary time series methods to make statistical inferences about these
prices on the basis of time series observations.

1.2.1 The Price of Systematic Risk

‘Steve Ross (1976) produced a theory of capital asset pricing that
showed that the assumption that all systematic risk free portfolios earn
the risk free rate of return plus the assumption that asset returns are
generated by a K factor model leads to the existence of “‘prices’ Ag, A, A,
..., Ag on mean returns and on each of the K factors. These prices

b Ry ot oo i emeni




9 Asset Prices in a Production Economy

satisfied the property that expected returns E%,; = a; on each asset i were
a linear function of the standard deviation of the returns on asset i with
respect to each factor k; i.e.,

K
(216) a,~=)\0+k2_1}\kbk,-, i=1,2,...,N,

where the original model of asset returns is given by

1

~ K = ~
(217) ffi=a;+k2_1bki8k+ei, i=1,2,...,N.

Here %, denotes random ex ante anticipated returns from holding the
asset one unit of time; 3 is systematic risk emanating from factor k; ¢, is
unsystematic risk specific to asset {; and g;, b,; are constants. Assume that
the means of 5, €, are zero for each k, i; that ¢, . . . , € yare independent;
and that §,, €, are uncorrelated random variables with finite variances for
each k, 1.

Ross proved that Ao, A, . . ., Ak exist that satisfy (2.16) by forming
portfolios € R" such that

N
by constructing the w; such that the coefficients of each'gk in the portfolio
returns

Z

N K - _
(2.19) 2 nZ = ,glni[ai"'kz_lbkisk"'ei]

i=1

N K N - N
=3 '“'Iiai'"k2 . (,zlbkini)ak"' _El'ﬂiei
= i= i=

i=1

are zero, and by requiring that
N
(2~20) g 'r',‘a,‘ = 0

for all such systematic risk free zero wealth portfolios.
Here (2.18) corresponds to the zero wealth condition. The condition,

N
(2.21) 0= 2% bymi, k=1,2,...,K,
i=1

corresponds to the systematic risk free condition. Actually Ross did not
require that (2.20) hold for a/l zero wealth systematic risk free portfolios
but only for those that are “well diversified” in the sense that the , are of
comparable size so that he could use the assumption of independence of
€, ..., €yto argue that the random variable

N ~
§ N:€;
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was “‘small” and hence bears a small price in a world of investors who
would pay a positive price only for the avoidance of risks that could not be
diversified away.

}'VOut of this type of argument Ross argues that the condition: for all n €
R

N N

(2.22a) 2 =0, 2 nby,=0,k=1,2,.. K,
i=1 i=1

- implies that in equilibrium

N
(2.22b) - 3 ma,=0

i=1
should hold.

All that (2.22) says is that zero wealth, zero systematic risk portfolios
should earn a zero mean rate of return. Condition (2.22) is economically
compelling because in its absence rather obvious arbitrage opportunities
appear to exist.

Whatever the case, (2.22) implies that there exists Ag, A, N2, ..., Ax
such that (2.16) holds and the proof is just simple linear algebra. Notice
that Ross made no assumptions about mean variance investor utility
functions or normal distributions of asset returns common to the usual
Sharpe-Lintner type of asset pricing theories which are standard in the
finance literature. :

However, Ross’s model, like the standard capital asset pricing models
in finance, does not link the asset returns to underlying sources of
uncertainty. Our growth model will be used as a module in the construc-
tion of an intertemporal general equilibrium asset pricing model where
relationships of the form (2.17) are determined within the model and
hence the \g, Ay, ..., g Will be determined within the model as well.
Such a model of asset price determination preserves the beauty and
empirical tractability of the Ross-Sharpe-Lintner formulation, but at the
same time will give us a context where we can ask general equilibrium
questions such as, What is the impact of an increase of the progressivity of
the income tax on the demand for and supply of risky assets and the Ao,
) ST e v :

Let us get on with relating the growth model to (2.16). For simplicity
assume all processes i are active (i.e., (2.10a) holds with equality). We
record (2.10a) here for convenience. '

(2.23) , u'(c) = BEAu' (cos )filxinr )}

Now (2.17) is a special hypothesis about asset returns. What kind of
hypothesis about “technological” uncertainty corresponds to (2.17)?
Well, as an example, put foreachi = 1,2,...,N

(224) f,'(X,',,r,)E(A?, + A}lgll + A:ngh +...+ A:(ngr)ﬁ(in)Erilfi(xit)a
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where '
k— ak
Ay=Aj

are constants and

{g/u};°= 1

are independent and identically distributed random variables for each k
and for each k, ¢ the mean of 8, is zero, the variance is finite, and 5, is
independent of §,, for each s, k, ¢. Furthermore, assume that f(s) is
concave, increasing, and twice differentiable, that f' (0) = +«, that f’
(@) = 0, and that there is a bound ¢, such that

r,«,> €0> 0
with probability 1 for all ¢;,. These assumptions are stronger than neces-

sary, -but will enable us to avoid concern with technical tangentialities.
Define, for all ¢,

8Olila

so that we may sum from k = 0 to K in (2.25) below.
Insert (2.24) into (2.23) to get for all ¢, k, i

K =
(2.25) w'(c)=BE{u'(c;+1) (kEOA’ftakr)fi'(xir)}
K —~
= kzzo ([A:flf:{(xir)]E{{Bu’(C1+ 13 }).
Now set (2.25) aside for a moment and look at the marginal benefit of

saving one unit of capital and assigning it to process  at the beginning of
period ¢. At the end of period ¢, r, is revealed and extra produce

- K .
(226) EZIIEA?I ;(xil) + k2= lAllflfl!(xil)Skl
emerges.
Putting
(2.27) ai':-A?: ;(x,-,), bkiEA/f: i'(xit)»gkl = Ska .

equation (2.26) is identical with Ross’s (2.17) with €, = 0. We proceed
now to generate the analogue to (2.16) in our model. Turn back to (2.25).
Rewrite (2.25) using (2.27) thus:

Q28)  w(e)= I buEB (e DBl + aEPBW ) f
Hence,

(229) a;,= u,(CI) g bki(El{ul(Cr+ l)gk{}/El{u'(Cl+ l)})

BEl{u’(Cl+ l)}k==1
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so that \g, Ay,...,\g defined by

(2.30) No=u'(c)/BE{u’ (i )}, —M=E{ut’ (i )81/ Eu' (¢ 1)}
= Ngcovariance [Bu’ (¢, )/u'(c,), 8l

yields

K
(2.31) a,-=)\0+k2_lbk,«)\k.

Here ¢ subscripts have been dropped.

These results are extremely suggestive and show that the model studied
in this section may be quite rich in economic content. Although the model
is a normative model, in the next section we shall turn it into an equilib-
rium asset pricing model so that the A, become equilibrium risk prices.
Let us explore the economic meanings of (2.30) in some detail.

Suppose that K = 1 and that there is a risk free asset N in the sense that

(2.32) , bai=ANS (Xn) =0;
ie., v

(2.33) Al =0.

Then by (2.33)

(2.34) ay=No,a;=an+by\
so that for all i, j # N

(2.35) . (a; — ay)/by; = (a; = ap)/by;.

The second part of equation (2.34) corresponds to the security market
line which says that expected return and risk are linearly related in a
one-factor model. Equation (2.35) corresponds to the usual Sharpe-
Lintner-Mossin capital asset pricing model result that in equilibrium the
“excess return” per unit of risk must be equated across all assets.

The economic interpretation of Ay given in (2.30) is well known and
needs no explanation here. Look at the formula for \,. The covariance of
the marginal utility of consumption at time ¢ + 1 with the zero mean finite
variance shock 8, appears in the numerator. Since output increases when
34 increases and since

Cx+1>=g()'r+\)

doesn’t decrease when y,.; increases, this covariance is likely to be
negative so that the sign of A, is positive. We will look into the determi-
nants of the magnitudes of Ag, Ay, . . . , A in more detail later. Let us show
how our model may be helpful in the empirical problem-in estimating the
Nos A1, - . ., Mg from time series data. ‘

e ——— —
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First, how is one to close Ross’s model (2.17) since the &, are subjec-
tive? The most natural way to close the model in markets as well orga-
nized as United States securities markets would seem to be rational
expectations: the subjective distribution of &; is equal to the actual or
objective distribution of &,. We shall show that our asset pricing model
under rational expectations which is developed below generates the same
solution as the normative model discussed above. Hence, the conver-
gence theorem implies that {x,, c,, x|, X3, ..., Xn};=) converges to a
stationary stochastic process.

Thus, the mean ergodic theorem, which says very loosely that the time
average of any function G of a stationary stochastic process equals the
average of G over the stationary distribution of that process, allows us to
apply time series methods developed for stationary stochastic processes
" toestimate Ao, Ay, . . ., Ag. Letus turn to development of the asset pricing
model.

1.3 An Asset Pricing Model

In this section we reinterpret the model of section 1.2 and add to it a
market for claims to pure rents so that it describes the evolution of
equlllbnum context in which to discuss the martingale property of capital

_asset prices, but also our model will contain a nontrivial investment
decision and a nontrivial market for claims to pure rents (i.e., a stock
market), as well as a market for the pricing of the physical capital stock.

We believe that there is a considerable benefit in showing how to turn
optimal growth models into asset pricing models. This is so because there
is a large literature on stochastic growth models which may be carried
over to the asset pricing problem with little effort. Although the model
presented here is somewhat artificial, we believe that studying it will yield
techniques that can be used to study less artificial models.

We will build an asset pricing model much like that of Lucas (1978).
The model contains one representative consumer whose preferences are
identical to the planner’s preferences given in equation (2.1). The model
contains N different firms which rent capital from the consumption side at
rate R, at each date so as to maximize

(3'1) Tie+1 Ef,-(x,-,,r,) - R 1o

Notice that it is assumed that each firm ¢ makes its decision to hire x;, after
r.is revealed. Here R;, .| denotes the rental rate on capital prevailing in
industry i at date ¢+ 1. It is to be determined within the model. These
“rental markets” are rather artificial. They are introduced in order to
obtain lemma 3.2 below.

The model will introduce a stock market in such a way that the real
quantity side of the model is the same as that of the growth model in
equilibrium. Our model is closed under the assumption of rational ex-
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pectations. The quantity side of the model is-essentially an Arrow-
Debreu model as is the model of Lucas. That is, we will introduce
securities markets in such a way that there are enough securities such that
any equilibrium is a Pareto optimum. However, there is a separate
market where claims to the rents (3.1) are competitively traded. In
Arrow-Debreu the rents are redistributed in a lump sum fashion.

Market institutions may be introduced into the model of section 1.2 in
an alternative manner than that done here in section 1.3. This alternative
formulation enables us to link the theory up with the Modigliani-Miller
(MM) formulation in their famous article on the variance of firm value to
dividend policy. We sketch this alternative model in the appendix to
section 1.3. ) :

The model is in the spirit of Lucas’s model, where each firm i has
outstanding one perfectly divisible equity share. Ownership of a % of the
equity shares in firm i at date ¢ entitles one to a% of profits of the firm i at
date r+ 1. Equilibrium asset prices and equilibrium consumption, capital,
and output are determined by optimization under the hypothesis of
rational expectations much as in Lucas. Let us get on with the model.

1.3.1. The Model

There is one representative consumer (or a ‘‘representative standin,”
as Lucas calls him) that is assumed to solve

(3.2) max E, EIB"'u(C;)
= )
subject to

N.
(3.3) G+x+PrZi=n,Z_\+PZ,_, +i§l Ryxi—1=y,

(3.4) ¢20,%,20,2,20,x,20, i=1,2,...,N,allr,
N
(3.5) O +x,+P*Zo=m*Zo+P*Zo+ X Ryxp=y,

=1
Zo=1, R,y =fi(xi0,70), ®in=fi(xi0,70) _f;(xiO’rO)xiOsxOv{xiO}li\;l

given, where ¢, x,, P;,, Z;,, m,, R, (all assumed measurable #,) denote
consumption at date ¢, total capital stock owned at date ¢ by the con-
sumer, price of one share of firm i at date ¢, number of shares of firm i
owned by the individual at date ¢, profits of firm i at date ¢, and rental
factor (i.e., R, = principal plus interest) obtained on a unit of capital
leased to firm i. Here “+” denotes scalar product.

Firm i is assumed to hire x;, so as to maximize (3.1).? The consumer is
assumed to lease capital x;, at date ¢ to firm i before r, is revealed. Hence
R, 41 1s uncertain at date t. The consumer, in order to solve his problem
at date 1 must form expectations on {P;};-,, {Ri};= 1, {w};= and maxi-
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mize (3.2) subject to (3.3)~(3.5). In this way notional demands for
consumption goods and equities as well as notional supplies of capital
stocks and capital services to each of the N firms are drawn up by the
consumer side of the economy. Similarly for the firm side. We close the
model with _ _

Definition. The stochastic process R = ({P.}7-1, {Rifi=1, (%=1
Fde i {Zor i = 1,2, N {€)7= 1, {£}7= 1) is a rational expectations
equilibrium (REE) if, facing ? = P ooy, AR, {7id72 1), the con-
sumer solves (3.2) and chooses ‘

(3.6) X, = Xy Xy = Xipy ¢, = €, 2y = Z; a.c.,

and the ith firm solves (3.1) and chooses

3.7) . Xy = X,

and furthermore

(3.8) (asset market clears) Z,=<1,if Z,<1,P,=0 a.e.,
N

(3.9) (goods market clears) ¢, +%,= 'glf"(f""“" ri—1) a.e.,

' N
(3.10) (capital market clears) '—21 X=X a.e.
Here “a.e.” means “almost everywhere.” This ends the definition of

REE that we will use in this paper.

It is easy to write down first-order necessary conditions for an REE.
Let us start on the consumer side first. We drop upper bars to ease typing.
At date ¢, if the consumer buys a share of firm i, the cost is P;, units of
consumption goods. The marginal cost at date ¢ in utils foregone is
u'(c,)P;. At the end of period ¢, r, is revealed and P, , 7;,, become
known. Hence, the consumer obtains

(3.11) wW(c 1) (Pigur + Migsr)

extra utils at the beginning of ¢+ 1 if he collects ; , . 1 and sells the share
“exdividend” at P, , . ,. But these utils are uncertain and are received one
period into the future. The expected present value of utility gained at r+ 1
is

(312) BE,{M'(CH_I) (Pi.l+l + wi.1+l)}-

Consumer equilibrium in the market for asset i requires that the marginal
opportunity cost at date ¢ be greater than or equal to the present value of
the marginal benefit of dividends and exdividend sale price at date ¢+ 1i:

(313(1) Pilu,(cl) = BEl{u’(Cl+l) (Tri.1+l + Pi,H-l)} a.c.
(3.13b) Pu'(c)Z;, = BEl{u,(C1+l) (“i.wl + P o)} a.c.
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Similar reasoning in the rental market yields
(3.14a) u'(c) = BE {u'(cs1) (R )} a.€.
(3.14)) u'(e)xi =BEfu'(cy1) (Ris )by a.e.

It would be nice if the first-order necessary conditions (3.13)-(3.14)
characterized consumer optima. But it is well known that a “transversal-
ity condition™ at infinity is needed in addition to completely characterize
optima. Recent work by Benveniste and Scheinkman (1977) allows us to
prove

Lemma 3.1: Adopt assumption 2.1. Furthermore, assume that @ is
such that W(y,t) > 0, t —> =, where W(y,,/) is defined by

(3.15) W(ynf)=maxE; 3 8~ lu(c,)
s=t

subject to (3.3)-(3.5) with ¢ replaced by s and 1 replaced by ¢. Here y,
denotes the right-hand side (R.H.S.) of (3.3). Then, given {P,}7_,,
{’ﬂ'il}r;n= 1s {Ril}T=l’ i= 1; 27 R Noptimum solutions {ZI'I}T= 1s {xit}:ﬂ= Iyi =
1,2,..., N, {c}i-1, {x}7=, to the consumer’s problem (3.2) subject to
(3.3)-(3.5) are characterized by (3.13)~(3.14) and

(3.16) TVC., (equity market) ;irrolc E {8 ()P, 2} =0,
(3.17)  TVC, (capital market) lim E, {B" 'u'(c) x} = 0.

Proof: Suppose {Z}, {¢}, {%} satisfies (3.13)~(3.17), and let {Z},{c}, {x}
be any stochastic process satisfying the same initial conditions and (3.3)-

(3.5). Compute for each T an upper bound to the shortfall:

T T
(3.18) E{ §l B~ u(c,) - §l B~ u(e)}
(3’19) = Ei{ gl B’_‘u'(éz) (Cr‘ él)}
T N
(3200 =E({ §1 B @) meZiy + P22y + ,§l Rixii—

_ - N
—B,'Z:—x:—l'f,'z,-_l =Pz - .21 Ritxi -

+P L+ ]}
(3.21) =E (BT W (ED[Pr(Zr—Z7) +%r—x7)}
(3.22) SEBTW(ED[Pr(Zr+x,}—0,T>.

Here equations (3.13)—(3.14) were used to telescope out the middle terms
in the series of R.H.S. (3.20).

e —————— <1 £ T T S S L . s o = il

e swa— 4
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The terms cdrresponding to date 1 cancel each other because the initial
conditions are the same. Hence, only the terms of R.H.S. (3.21) remain
of all the terms of R.H.S. (3.19) and (3.20). That R.H.S. (3.21) has an
asymptotic upper bound of zero follows from (3.16), (3.17), and the
nonnegativity of Zz, x. This shows that (3.13)—(3.14), (3.16)~(3.17)
imply optimality. Notice that no assumptions on W(y,,t) are needed to get
this side of the proof.

Now let {Z }, {¢}, {x;} be optimal given {P,, R,, 7}. Since u' (0) = +o
implies that ¢, > 0 a.e. and W is differentiable at y,, we have by concavity
of W, and u = 0 (dropping upper bars from this point on),

(3.23) W(y,t) ZW(y,f) = W(y,/2,0ZW' (y,,.0) (y:/2) = B~ 'u'(c))y. /2.
Hence,

(3.24) . E,W(y,)—0, (- implies E\8'~ '’ (c,)y,— 0, t—.

But

(3.25) Ve = Irr'Zr—l+E/'Zl—l+2Rirxi,r—l

so that, by the first-order necessary conditions,
(3.26) ER W (c)((m+P)Z, 1 + % Rixis-1)

= EIB'_zul(Cf;l)Bl—'l *Zi+EB T (e )Xy
because (in more detail) (3.13a)-(3.14b) imply

(3.27) ) Xig— ' (cioy) = BE, _ {u' (c)Ridxi -1,

(3.28) B x - (cr1) = E, - {u'(e) (X Rixi - 1)},

(329) P w'(c—1)Zi— 1 =BE,_{u'(c) (my+ Pi) Zi s -1},
(3.30) B~ (c-) Pt Zi— = E, {u'(c)(m* Zi-1 + B0 Z,- )}
Hence, because P,_, =0, Z,_, =2 0, and x,_, = 0, (3.24) implies
(3.31) EIB'—ZM'(Er—l) Piy*2,-,—0, [—x,

(3.32) EB %' (c,_)X—1—0, r1—>x,

as was to be shown.

The first part of this argument follows Malinvaud (1953), and the
second part is adapted from Benveniste and Scheinkman (1977). Lemma
3.1is important because it shows that (3.13)-(3.14), (3.16), (3.17) char-
acterize consumer optima.

Remark 3.1. The assumption that E,W(y,, 1) = 0, t— =, restrains P It
requires that & be such that along any path in % utils cannot grow faster
than B’ on the average. A general sufficient condition on ® for E,W(y,.r)
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— 0 can be given by what should be a straightforward extension of the

methods of Brock and Gale (1970) and McFadden (1973) to our setup.
An obvious sufficient condition is that the utility function be bounded,
e., that there be numbers B < B such that for allc = 0

B = u(c) = B.

Remark 3.2. The method used here of introducing a stock market into
this type of model where an investment decision is present was first
developed by Scheinkman (1977) in the certainty case.

A basic lemma is

Lemma 3.2 (i). Let X = ({¢}7=1, {%iu}i=1, {£}7=1) solve the optimal
growth problem (1.1); then define

(333) RiH— 1Efi'(iinr1), 'ﬁi,l+ 1 Ef,-(f,-,,)‘,) _fl!(xil’rl)x_it"
Then let {P,}7_,, i = 1,2,...,N, satisfy (3.27), (3:29), and (3.31). Put
(3.34) Z.=1,

Then <{Pu}:o 1s {R(!}i;c 1s {‘ﬁu}T 1> {x-il}T=l, {Zir}?;ls i= 1’2’”- 9N
{¢fr=1, {&}7=1) = R is an REE.

Lemma 3.2(ii). Let R be an REE. Then X solves the optlmal growth
problem (1.1).

Proof. The proof of this is straightforward and is done in the appendix
to section 1.3. Lemma 3.2 is central to this paper because it shows that the
quantity side of any competitive equilibrium may be manufactured from
solutions to the growth problem. This fact will enable us to identify the
Ross prices, for example. Furthermore, it will be used in the existence
proof of an asset pricing function which is developed below.

Turn back to the discussion of the relationship between the growth
model of section 1.2 and the risk prices of Ross. This will facilitate the
economic interpretation of an REE stochastic process

{RidT=1, (Pii= 1, =1
Drop upper bars off equilibrium quantities from this point on in order to
simplify notation. Assume that conditions are such that all asset prices
are positive with probability 1 in equilibrium. Then Z;, = 1 with probabil-
ity 1, and from (3.29) we get for each ¢
(3.35)  w(c)=BE{uw(cr ) Eih Zi=(Piysr + i 1) Pir
Now because profit maximization implies f{(x;,r,) = R +1,
(3'36) _ Tir+1 =fi(xirvr1) _f;(xi(irl)xit'

Turning to the rental market, suppose that all processes are used with
probability 1. Then (3.36) and (3.37) give us for each i,

(3-37) u’(c,). =BE{u'(c,+ )fi(xinord)}:

A < i <o et
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Examine the specification !
(338) Flkr) = (3 ASB k) =rufic)

developed in section 1.2. Now (2.28), (3.37), and (3.35) imply

(39 W)= 2 bR (cr )8+ a BB (crn )

= BEr{u'(CH- l)gzir}'

We are not entitled to write returns &%, defined by (3.35) in the linear Ross
form (2.17) unless P,(y,,) is linear in y,. |, even for the specification
(3.38) above. An example will be presented in section 1.5 below where
P(y,. ) turnsout to be lineariny, ., ,. But first we must show that an asset
pricing function exists.

1.3.2 Existence of an Asset Pricing Function

Since in equilibrium the quantity side of our asset pricing model is the
same as the N process growth model, we may use the facts collected in
section 1.2 about the N process growth model to prove the existence of an
asset pricing function P(y) in much the same way as Lucas (1978).

To begin with, let us assume

Assumption 3.1. Assume for all r € R,

(a)fi(0,r) = +, i=1,2,...,N,
(b) mi(x,r)=fx,r) — fi(x,r)x>0forallx>0.

Assumption 3.1(a) implies that (3.14a) holds with equality in equilib-
rium. Also, assumption 3.1(b) implies (3.13a) holds with equality in
equilibrium. Let us search as does Lucas for a bounded continuous
function P(y) such that in equilibrium

(3.40) Pyu'(c)= Py)u'(c) =BE{u (c,s1) (i + Py, + 1))}

Convert the foregoing problem into a fixed point problem. Note first
from section 1.2 that

(3.41) u'(c)=U'(y) =1,2,..., ‘
(3.42) iy =filxinr) — filxi,r)Xa = (Xisr) = T(Mi(X) X017

| = mn)RG) A=),
(343) yier= 2 5070 = 2 SOONAGD, rd=Y(r,r)
Put .
(3.44) Giy)=B [ UTY(unV(ypnu(dr),
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(3.45) F(y)=P(y)U'(y)),

(3.46) (TE)(y)=Giy) +B  FIY(yor)ludr).
Then, for each i, (3.40) may be written as
(3.47) - FE(y) =(T:F)(y)

Problem (3.47) is a fixed point problem in that we search for a function
F; that remains fixed under operator T;. In order to use the contraction
mapping theorem to find a fixed point F;, we must show first that T; sends
the class of bounded continuous functions on [0,%), call it C[0,%), into
. itself. The results of section 1.2 established that all of the functions listed
in (3.41)~(3.46) are continuous in-y,. We need

Lemma 3.3. If U(y) is bounded on [0,%), then G(y) is bounded.

Proof. First, by concavity of U we have

(3.48) Uy) -UO)=U'(»)(y - 0)=U'(p)y.

Hence, there is B such that

(3.49) U'(y)y = Bforally€[0,%).
Second,

JUY(y.nVily,nuldr) =] U’[Y( YYDy, Y (y,ryu(dr)
= BJIy,/Y(y,)p(dr)= B
since f; 2 0 implies » »
fi— fixu=Ji=fi, YE § Jpdid¥Y=1.

Thus, G; is bounded by 8B. This ends the proof.
We must show that if

(3.50) [Fll= sup |F(y)|
© y€[0,=)

is chosen to be the norm on C[0,%¢), then T is a contraction with modulus
B. It is a well-known fact that C(0,) endowed with this norm is a Banach
space.

Lemma 3.4. T;: C[0,»]— C[0,) is a contraction with modulus .
Proof. We must show that for any two elements A, B in C[0,»)

(3.51) |IT:A - T:B||= gllA - Bf.

Now for y € [0,%) from (3.46) we have

(3.52) |TA(y)-TB(y) = Blf(A[Y(y,r)'] = B[Y(y,")Dn(dr)|
=BJIA(y") = B(y")lu(dr)

PO ST —— )

e o————— 2 i ——— e

~
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=Bf sup |A(Y)—B(y)|u(dr)=plA—B].

' in[0.%)
Take the supremum of the left-hand side (L.H.S.) of (3.52) to get
(3.53) IT:A - T.B| = BllA - BJ.

This ends the proof.

Theorem 3.1. For each i there exists exactly one asset pricing function
of the form P,(y) where P; € C[0,%).

Proof. Apply the contraction mapping theorem to produce a fixed

point Fi(y) € C[0,»). Put
(3.54) P(t) = F(y)!U'().
. Itis clear that P,(y) satisfies (3.40). Furthermore, by the very definition of

T, any P,(y) that satisfies (3.40) is such that P,(+)U'(*) = F(*)is a fixed
point of T;. This ends the proof.

Remark 3.3. Assumption 3.1(a) is not needed for the existence
theorem. Assumption 3.1(b) is needed in the theorem so that (3.40) holds
with equality.

Our proof of existence, as does Lucas’s, leaves begging the question of
whether there exist equilibria that are not stationary, that is, equilibria
that cannot be written in the form of P,(y) for some time stationary
function P(*).

Indeed, the papers of Cass, Okuno, and Zilcha (1979) and Gale (1973)
have brought out in a dramatic way the multitude of non-time stationary
equilibria that exist in overlapping generations models. If we applied the
above fixed point method to overlapping generations models, we would
only find the time stationary equilibria. Calvo (1979) and Wilson (1978)
show that the same problem may arise even in infinite horizon monetary
models with only one agent type.

Fortunately for our case we may use the necessity of the transversality
condition (3.16) to show that there is only one equilibrium.

Theorem 3.1’. Assume the hypothesis of theorem 3.1. For each i, ¢,
there is only one equilibrium asset price P;, and it can be written in the

form P{(y,).
~ Proof. Look at (3.13a) and develop a recursion as is done in (A3.13)
below. We get

T .
P,‘[: El E HSTT,-S+ EIHTPiT'
s=2
We must first show that (3.16) implies
ElHTP,'T—)O, T—>.

- In order to see this, first note that Z; = 1 in equilibrium. Also by
definition of II,
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E\ILP, = El{[B'-lu’(cr)/ul(cl)]Pit}
= (V' (c))E{B ™' (c)Pi}—0, 1.
The last statement follows directly from (3.16) since Z;, = 1 in equilib-
rium.
Second, we must know the values of I, ;. But lemma 3.1 tells us that
the quantity side of the growth model is the same as the quantity side of
the “market” model in equilibrium. Hence, the solution of the growth

problem (2.1) determines the values of I, m; for all i, s.
Finally, P, is given by

(355) P|'1=E1 Ezns'n,-s, l=1,2,,N
The same argument may be used to show that
P,',=E, E HS’IT,'s, i=1,2,...,N, [=1,2,...
s=r+1

This ends the proof. )
Remark 3.4. We cannot overemphasize the fact that the methods of

proof used in theorem 3.1 will not characterize all of the equilibria in’

general. Such methods are incapable of proving uniqueness of equilibria.
In fact, one of the main contributions of our paper is to develop methods
of analysis that characterize all equilibria.

Remark 3.5. Itis interesting to note that (3.55) was derived by Johnsen
(1978). He did it by iterating (3.47). Given any initial approximation, the
contraction mapping theorem implies that the sequence of nth iterates
converges to the unique solution P,(y) as n— . It is important to note, as
pointed out earlier, that there are examples where there are equilibria of
anon-time stationary form. In such cases, the approximation method will
not get all of the equilibna.

1.4 Certainty Equivalence Formulas

What we shall do in this section is to use the asset pricing model of
section 1.3 to construct a Sharpe-Lintner formula for the pricing of
common stocks. In equilibrium our formula must hold. Furthermore, the
data used in the formula to discount future profits are observable. The
closest analogue to it seems to be that of Rubenstein (1976) in that
Rubenstein relates the “price of risk’ to tastes and technology.

The formula will be derived from the following special case of the
model of section 1.3:

(4-1) ) fi(xinrr)Ef-i(xir) (A?+A:S,),A?>O.

In other words, put K = 1in (3.38). Here {3,};-, is an independent and
identically distributed sequence of random variables with zero mean and

. A 4 e w Br e A A ————_ ATt S A A o Lt {m A —— PU—— )

~
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finite variance 2. The numbers A?, A} and the random variables §, are
assumed to satisfy the following: there is ¢, > 0 such that for each ¢

(4.2) prob(A?+ A5, z¢)) = 1.
Optimum profits are given by .
(4.3) mixi,r) =f-i(xu) (A? + A}gl) "'i;(xu)xu(A? + A:SI)Eﬁi(xil) (A?Sl)

In order to shorten the notational burden in the calculations below, put

(4.4) fixior) = wi+ 0,8,
(4.5) fixir) = i+ 013,
(4.6) m(Xii,1) = Dy + VB,
where

’ (4 7) i Eii(x,-,)A?, Ty Ef-i(x,',)A,l-, "';l =f; (xil)A?v (7 =ﬁAzl' s
Dy =w(x:)AY, Vi = Txi) Al

All quantities will be evaluated at equilibrium.levels unless otherwise
noted. The notation is meant to be suggestive with D;, standing for
average dividends or profits expected at date f, Vj, standing for the
coefficient of variability of profits with respect to the process {3 }7-;, and
so forth. For a specific parable think of the {8,)7-, process as ‘“the
market.” Then production and profits in all industries i = 1,2,...,N are
affected by the market. High values of §, correspond to “*booms” and low
values to “‘slumps.” Industries i with A} > 0 are procyclical. Those with
A} < 0 are countercyclical, and those with A} = 0 are a-cyclical.

Assumption 4.1. There is at least one industry, call it N, that is a-
cyclical. The Nth industry will be called risk free. For emphasis we will
sometimes say that N is systematic risk free.

In order that all industries be active in equilibrium and that output
remain bounded we shall assume

Assumption 4.2(1). fi(0) = +»,i = 1,2,...,N,

Assumption 4.2(ii). fi(») = 0,i = 1,2,...,N.

Assumption 4.2(i) guarantees that all x;, > 0 along an equilibrium.
Assumption 4.2(ii) implies there is a bound B such that x;, = B with
probability 1 for all i, ¢.

Although concavity of f(x) and f(0) = 0 imply optimum profits are
nonnegative, we shall require that profits are positive foreachx > 0;i.e.,

Assumption 4.3. For all x > 0, wy(x) = fi(x) — fi(x)x > 0.

Assumption 4.3 will be used to show that equity prices are positive in
equilibrium.

By the first-order necessary conditions of equilibrium (3.13)-(3.14),
(4.2), and assumptions 4.2(i) and 4.3, it follows that
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(4.8) Py’ (c) = BELu'(€os 1) (Tigh 1 + P )}
(49) u'(C,) = ﬁEr{u’(C1+ l)Ri.r+ = BErul(CH- D+ SE;(u’(c,+ 1)51)0':"1~

The R.H.S. of (4.9) follows from (4.5). It is clear from assumption 4.3
that equity prices are positive since ;.. is positive with probability 1.
Hence, both (4.8) and (4.9) are equalities and Z;, = 1.

The P = PDV formula will be derived from (4.8), (4.9) by recursion.
Use (4.3), (4.6) to get ’

(4. 10) TT;_,+| = 5;, + ‘/i!g!‘

In order to shorten notation put u'(c,+;) = u’,., for all t. From (4.8),
(4.10) we get

(4' 11) Pirul(cr) = BEru;+ lDir + BEt(u;+ lgr) Vt‘t + BEl{ul’+ lPi,1+ 1}~

Notice that p;, o}, D;, V;, are (in theory, at least) observable. Hence, if
we recurse (4.11) forward by replacing ¢ by ¢+ 1 in (4.8) and inserting the
result into (4.11), we can use (4.9) to solve for

BEzu;-(- L En= BEI(uII+ 1‘51)
7 y L= 7 M, 7
' u, u,
in terms of nj, o, and build up a P = PDV formula for P,.
Let us continue. From (4.11) we get

EB“;+I n= Bull+181

s

(4.12) Em,=

U

(4.13) Py=EmD; + EnVy+ BE{u - \F; s Yu;= EmD; + En,V,
+ E{m[E,+ \m s \Dyiysr + Ervitys Vit ¥ BE o ()4 2P,y 2)uf 1]}
=EmDy+ EnV,+ E{mE, . \my o \Di o+ mE, . in Vi + ...
+ E{mE, . \myy .. Ero{my Dy, 1)}
+E{mE m .. Ecrovmer Eopto Ve
+E{mME, .m .. . Eor{mPire)}b

For the next move we need

Assumption 4.4.-The utility function u(*) is such that for all {P,, 7,
Ribi-,i=1,2,...,N,the TVC., is necessary for aconsumer’s maximum.
Note that, as was pointed out in remark 3.1, boundedness of u(*) is
sufficient for assumption 4.4. Now the TVC.. implies that

(4.14) E{mE, . m,.\...E.fm  1P,i1.)}—=0,T>x.
By (4.9) we get for each t

(4.15) 1=Emp;,+ Eno,.

Therefore, if op, =0, (4.15) implies

P e amaind
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(416) Em, = Vpie, Eny = [(FL;V{ - p-;r)/o':f] (1/}"-;\/!) = - A/pp-

Note here that A, is the excess marginal return over the risk free marginal

return divided by marginal risk. Also pp, is principal plus interest
obtained by employing a marginal unit in process N. It is important to
. observe that A, is independent of i. Furthermore, the Ross risk price A, is
determined by A, = A,. This follows from (2.30) and (4.16).

Turn now to the K factor case. In the K factor case, put

(4.17) fixiery) f.(xu)( 2 A"B'fH) 87.1=0,47>0.

Put the same assumptions on the data as in section 1.3. Then as in (4.4),
(4.5), (4.6) we may write

K
(4' 18) fi(xilyrl) = i + kz— ) 0—5{[6”‘+ 1

K
(419) f;(xil’rl)zp'u 2 UH UH-ly
(420) Ti(Xipsl,) = Ei'+k§=:l Vi,:glt(+15'“i.l+_l,

where the entities in (4.18)—(4.20) are defined as in (4.7). Keep the same
assumptions as above. Then (4.8), (4.9) become

(4.21) Pou}=BE{u/ . (D;, + 2 V,’,‘S’,‘+ D+t Pl
(4.22) = BE{ul (i + 2 0”‘5"+ D}
Define
(4.23) m,=(Buj 1 )ug, n=(Buf 187 ).
Then, letting N be a free risk process (i.e., oax = 0, for all k, 1), we get
(4.24) Em,=1/ppn,

and for each i
K
(4.25) 1=(E,m1)u£,+k2=|0 F(Enk) = pidun + 2 02,‘(5'1‘)

Hence, from (4.25) it follows that

(4.26)  (mpe— RN = 2 A(EM),  i=1,2,.. N,

It is assumed that a unique solution of (4.26) for En¥ exists and is defined
by '

(4.27) Enf=—Afluy,.
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Also, the Ross price of systematic risk k, A, satisfies Aee = A%, This last
equality follows from (2.30) and (4.27). From (4.8) we get (putting &;, =
Dir - V;rAr)

(4.28) §1/P~M + El{[B l;'+ IW'W] (Pes)Ian={&; + Erpi.w 1B
r .

Hence,

(4.29) EP11+1+§11 TV

Equation (4.29) says that investing P, in the stock market must give the
same expected return after paying for the services of risk bearing as
investing itin the risk free process. It states that the stock market is a *‘fair
game,” taking into account the opportunity cost of funds and the cost of
risk bearing.

Clearly, restrictive assumptions on tastes and technology are necessary
to get a martingale. Also, only for specific preferences is equation (4.29)
testable. Its violation would signal “market inefficiency” in our model
world.

A far better test would be based on (3.55). But even verification of
(3.55) would not test Pareto optimality of the stock market allocation.
This is so because there may exist heterogeneous consumer economies
(e.g., overlapping generations models) where (3.55) holds, but the
allocation is not Pareto optimal. This question remains to be investigated.

It is worth pointing out here that if the random variable

(4.30) Bus s fuyun=1,

is independent of P, , at date ¢, then (4.16) implies that (4.29) may be
rewritten '

(4.31) l EP:H—I + &= pnFy

.Equation (4.31) contains no subjective entities—unlike (4.29). The prob-

lem of deriving equations like (4.31) that contain no entities that are
subjective and hence are directly testable is solved abstractly by (3.55).
Perhaps a formula analogous to (4.31) exists that holds in, at least, an
approximate sense.

1.4.1 A Testable Formula

In what follows a simple formula is developed under the hypothesis of
linearity of the asset pricing functions P(y). An example where P,(y) is
linear is given in section 1.5 below.

Theorem 4.1. Adopt assumptions 4.1-4.4. Furthermore, assume that
there are constants K;, L; such that

(4.32) P(y)=Ky+L, i=12,...,N.

EYSPR

——— —— s+ R i il ot
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Then, for each t,i
K Akck K kuk
(433) CbnbPu=ERP 11— kz— IAISiI + Et'“'i,r+l - kg IAtVir
must hold. Here by (4.32) and (4.20) we may write
(434) PlH-l—P(yH—l) n+ 2 SIfIBH-le EPI+15
(435) u+l-Du+ 2 Vlll(sl-o-lvDu Emi i,
where EP; ., Emi vy, Sk, V& do not depend upon y, . ; but depend on
(X1« -5 Xnr) Only.

Proof. In order to establish (4.33) it must be shown that (4.34), (4.35)
hold. By (4.17) and the definition of y,,, we have

(4.36) yl+1— E f,(x,H,r,) Ef}(x/r)( E AkBk—H)

=L(y)+ ;E M8t

Hence, y, ., is a linear combination of the shocks 8%, | with weights that
depend only upon (x,,,...,xy,). So also is P;,, ;. Thus, (4.34) holds for
appropriate Sk since P, islineariny,,,. Equation (4.20) is identical to
(4.39).

Divide both sides of (4.21) by u; to get

— K -
(437) P, = E,{m,(D,-, + kz= | ‘/II: 811‘4- l)} + El{mrPi.H- 1}-
Put, using (4.23),

(4.38) m,=Em,ns=En}.
By (4.37) and (4.34) we have
_ K ~ K
Py=mD; + 2_ V:’;”_Il‘ + E{m/(P; + 2_ Sli(rsll“-{- 0}
—mD,,+E Vit +im z_s
But (4.24) and (4.27) imply
- - kK
uniePi =D+ P, _'kz— lAl;(V:I: + Sllcr .

This ends the proof.

It is worth pointing out that, although (4.33) contains no subjective

entities and, hence, is directly testable, it was derived under the strong
hypothesis of linearity of the asset pricing function P(y, . ). The linearity
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“hypothesis was needed to be able to write the one-period returns %;, to
holding asset i in the linear form (2.17) of Ross. The linear form of %, was
used, in turn, to derive (4.33). We suspect that strong conditions will be
required on utility and technology to be able to write equilibrium asset
returns in the form (2.17). Hence, (4.33) is not general: it holds only as a
linear approximation. Thus, it is likely to hold in continuous time rela-
tives of our model.

The economic content of (4.33) is compelling. It is a standard *“no
arbitrage profits” condition. The price of risk bearing over the time
interval ¢,¢ + 1 sells for A% per unit of risk of type k. At date t, risk emerges
from two sources: (i) m;, ., and (ii) P, ., ;. Profits contain V¥ units of risk
of type k. The price of stock i at date ¢+ 1 contains S¥ units of risk of type
k. Hence, the total cost of risk bearing from all sources of risk for all types
of risk is

K
2=1A'f(V;'f +85).

Thus, (4.33) just says that the risk free earnings from an investment of P,
must equal the sum of risk adjusted sale value of stock i at date t+1 and
risk adjusted profits.

Remark. The formula (4. 33) is exactly the Sharpe-Lintner formula of

finance. While the formula itself is textbook knowledge, the advantage of
deriving it from a general equilibrium model is that we can study exactly
what conditions on tastes and technology are required for its validity.
Namely, tastes and technology must be such that the asset pricing func-
tion is linear in y.

A set of approximate formulas of “‘accuracy’ a may be derived from
(4.37) by expanding -

» i
(4.39) Pi.H—lEPi(YH—l)=Pi[L(y:)+k2=le(yt)81r(]

in a Taylor series about L(y,) and discarding terms of order higher thana.
The Sharpe-Lintner formula (4.33) corresponds toa = 1. In order to see
how this type of development goes, we calculate the casea = 2, K = 1
and discard terms of order higher than 2 Doing this, we get, putting

M'(y) = M(y),

(4.40) P[L(y) + M(y)8,] = P[L(y)] + P{[L(y)IM(y)3,
+ SPULO)IM () 8.

Inserting (4.40) into (4.37), we get for i = i,2,...,N

(4.41) P(y)=Py=mD; + 7V, +mP[L(y)]+7P{[L(y)IM(y,)
+ B3 PIL(IIMA(y,),

" — . -'-‘.,--o—-—-‘.

e e e kot v ol S o =
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where
(4.42) o,=E(m3}).

Since (4.41) holds for all i, the subjective entities m,, 1,, 6, may be
expressed in terms of observables as before in the a = 1 case.

Space limitations prevent us from pursuing the development of asset
pricing formulas further.

1.5 Example

In this section we present a solved example where equilibrium returns
are linear in the stocks. Let the data be given by

(5.1) u(c) =logec,
(5.2) filxi,r) =A(Nx},i=1,2,...,N,0<a<l.
We shall assume that for all i

Ai(r)>0forallr¢ R

and A,(r) is continuous in r. Since R is compact, each A,(r) has a positive
lower bound A; > 0.
First-order necessary conditions (1.10a), (1.10b) become for all ¢

(5.3a) Lzpab A lr)x ),
(536)  Lx,=BaEl A b, i=12,....N,
Co t . t+1
t—1
(5.3¢) lim £,(B_—x}=0.
—> t
Conjecture an optimum solution of the form

N
(54) C:=(1—)\))’nxr=?\}’nxn=mxni§1m= 1,
where
(5.5) A>0,7m,20, i=1,2,...,N.

Insert (5.4) into (5.3a); solve (5.3b) for A, {n}'_ ,; and check that (5.3c) is
satisfied. Doing this, we get

.
(5.6) T B(xE,{

iff (if and only if)

1 a—1
m{%(ﬁ)% }

Ar) ©

Z, 1 Aj(r,)x;}

i
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iff L
-;—‘EBQE, 7]:'N xi 7 Alr)
jElA;‘(’r)Ylf‘x?
iff
%EBQE, NA"(") }n?—l=[3mﬁ-“ll",-/x,
1_§1A,-(rr)n,‘~’ X,
iff ‘
(5.7) x,ZBan? "'y,

Set (5.7) aside for the moment. From (5.3b), following the same steps
that we used to get (5.7), we are led to

C9 2~ pamT,
Y
iff
(5.9) x; = Boni iy, = mux,.

Hence, (5.7) holds with equality for all t,i. Since it is well known and is
easy to see that for N = 1

A =Ba,
it is natural to conjecture for N 2 1 that
(5.10) A =Ba,m®"'T[,=1, i=1,2,...,N,

and test (5.3c). If (5.10) satisfies (5.3c), then we have found an optimum
solution and hence the unique optimum solution.
Continuing, we have

A(r)

(5.11) Ii=E ~
jElAj(’)Tlf

-

_ N
=" 3 =1
j=1

Itis shown in the appendix to section 1.5 that (5.11) has a unique solution
{nHli- .

It is straightforward to check that (5.4) with N=oB, m=mn,i=
1,2,...,N, generates a solution that not only satisfies (5.3a), (5.3b) by
construction but also satisfies (5.3c). We leave this to the reader.

Let us use the solution to calculate an example of an equilibrium asset

price function from the work of section 1.3. From (3.13a) and (3.37) we
get :

g s e el
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(5.12) E[u'(crs 1) (Prysr + Ty e 1)/ Pl = ELaA(r)ES ™ W/ (¢ )]
= E[aA(r)mg ™ " ()],
(5.13) Tiie1 = Ar)xG — 0 Ar)Es ™Ry
={1 - a)Alr)xq = (1 — )A(r)nix7.

Hence, the first-order necessary condition for an asset pricing function of .
the form P, = Py(y,) becomes for u(c) = log c, using ¢, = (1 — Ay,

(5-14) R(YI)/)’!:BEI{(PI'(}’MI)+'“'i,1+l)/)’1+l}'
Equations (5.13) and (5.14) give us

(515) POy =BEL - AC)TE 2 AG)T]

+ Pi(YH-l)/,VH l}EB(l —a)n;
+BEr{Pi(yr+l)/Yr+l}y i=1,2,...,N.
Here by (5.11) ‘

(5.16) o= AT S AT

The system of equations (5.15) is in particularly suitable form for the
application of the contraction mapping theorem to produce a unique
fixed point P(y) = (P\(y),...,Pnx(y)) that solves (5.15). Rather than do
this, we just conjecture a solution of the form

(5.17) P(y)=Ky, i=,2,...,N,

and find K, from (5.15) by equating coefficients. Obviously from (5.15) K;
satisfies

(5.18) K;=B(l1-a)n;+BK;, i=12,...,N,
so that
(5.19) Ki=(1-B) 'Bl-o)m;, i=12,...,N.

Since R.H.S. (5.15) is a contraction of modulus B on the space of
bounded continuous functions on [0,%) with values in R", the solution
(5.17) is the only solution such that each P(y)/y is bounded and con-
tinuous on [0,%).

We now have a solved example. It is interesting to examine the de-
pendence of P(y) on the problem data from (5.17), (5.19).

First, in the one asset case we find ny = 1 from (5.16) so that

(5.20) P(y)=1—E——B(1 ~a)y.
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Hence, (i) the asset price decreases as the elasticity of output with respect
to capital input increases; (ii) the variance of output has no effect on the
asset price function; and (iii) the asset price increases, when B increases.

Result (i) follows because profit’s share of national output is inversely
related to a. One would expect (ii) from the log utility function. One
would expect (iii) because as B increases, the future is worth more
relative to the present—hence, savings should increase, forcing asset
prices to rise. ‘

Furthermore, (5.20) says that asset price increases as y increases.

Secondly, in the multiasset deterministic case we have

(5.21) P(y)=l—?-_—é(l-a)ﬁy, i=1,2,...,N,

where ¥; is given by equation (A5.4) in the appendix to section 1.5. We
can see that if the coefficient A; measures the productivity of firm i using
the common technology x* so that output of i is Ax*, then firms that are
relatively more productive bear higher relative prices for their stock.
Absolute productivity does not affect relative prices. This is so because %;
is homogenous of degree zero in (A4;,...,A).

This is again one of those results that looks intuitively clear after
hindsight has been applied. The consumers in this economy have no other
alternative but to lease capital or to invest in stock in the N firms. Hence,
if the productivity of all of them is halved, the constellation of asset price
relatives will not change although output will drop. This type of result is
specific to the log utility and Cobb-Douglas production technologies.

The technique of Mirman and Zilcha (1975) may be applied to find the
closed form solution for the limit distribution F mentioned in section 1.2.
Once Fis known the limit distribution of asset prices may be found from
(3.40) and the limit distribution of Ross’s risk prices may be calculated,
from (2.30). We leave that to the reader.

1.6 Suminary, Conclusions, Comments and
Suggestions for Further Research

Most of the results of this paper are summarized in section 1.1. There-
fore, we will first comment on what we think has been done here. What
has been done is to turn normative stochastic growth theory into positive
theory by introducing market institutions into received stochastic growth
theory.

Furthermore, we have specialized the model so that received stochastic
growth theory may be modified to generate the recursive structure that is
so useful for preserving the empirical tractability of Merton’s (1973)
ICAPM. This has been done in such a way as to link our theory up with
the K factor arbitrage theory of Ross (1976).

gt ot el
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The reader may ask, Why not decentralize the N process growth model
along the lines of Arrow-Debreu where the pure rents are redistributed
lump sum, assume constant returns to scale so that pure rents are zero,
and price the capital stock along Arrow-Debreu lines? The reason we did
not do this is because it has already been done in the stochastic growth
literature for the general N process multisector case. However, implica-
tions of this type of model for finance have not yet been explored in any
great detail. But what we have done here may easily be modified to
include this case.

This literature has been surveyed by Roy Radner (1974). It was
pointed out in my comment on Radner (Brock 1974) that simple stochas-
tic growth models could be turned into “‘rational expectations models™ by
introducing a representative firm and consumer and finding decentraliz-
ing prices for them along standard Malinvaud (1953) lines provided that
the initial Malinvaud price is chosen so that the consumer’s transversality
condition at infinity is satisfied. For Malinvaud prices, see, for example,
the papers in Los and Los (1974) on “‘stimulating prices’ for the Russian
literature and Zilcha (1976) and his references for the Western literature.

By our modification of the Malinvaud price technique mentioned
above, all stochastic growth models may be turned into rational expecta-
tions models by introducing a representative consumer who has the same
preferences as the planner in the growth model and using the resulting
“decentralizing prices” as the rational expectations prices. After choos-
ing the initial Malinvaud price so that the TVC,, holds for the representa-
tive consumer, growth models become ‘“asset pricing models” by this
device.

More advances should be expected along the lines of introducing
imperfect information and inquiring into what rules firm managers should
follow in order to maximize equilibrium welfare of the representative
consumer when some contingency markets are absent.

Existing results on stochastic stability in the multisectoral growth liter-
ature could be used to extend the stochastic stability theorem that was
presented here to the multisector case.

It should be straightforward to extend the pricing results themselves to
the multisector case. " '

More difficult and more interesting would be to introduce heter-
ogeneous consumers so that borrowing on future income might be intro-
duced and investigate the impact of this new institution on the price of
risk. For example, in a finite horizon model where the individual is
constrained to plans that require only that the expected wealth at horizon
T conditioned at date 1 be nonnegative, one suspects that the price of risk
may be small and the security market line may be quite flat. But care must
be taken since “for each lender there must a borrower be.” Thus, the
institutional requirements on wealth at date T and the penalties for
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~ insolvency should have an impact on the price of risk. Furthermore,
following the same line of reasoning, the work of Truman Bewley (1977)
on the self-insurance behavior embedded in the permanent income
hypothesis of Milton Friedman via borrowing and lending leads to the
belief that the security market line (SML) generated by such a modifica-
tion of ourmodel will be flatter than the SML predicted by the standard
capital asset pricing model (CAPM). This observation may provide an
additional clue to why the observed SML is flatter than the SML pre-
dicted by the CAPM. See Merton (1973) and Fama (1976) for a discus-
sion of this issue. What we have said here about the issue is highly
speculative at best.

We close this paper with the hope that the methods developed here
should be of some use to economics and finance.

Appendix to Section 1.3

Let us prove lemma 3.2 first. Let X solve the optimal growth problem

(1.1). It is obvious that %t satisfies the first-order necessary conditions for

an REE by its very definition. What is at issue is the TVC.. (3.16), (3.17).
Put

(A3D) Voo D=maxE 3 g (),
N
S.t.CS +X_‘.= vzlf}(xj‘s_ l,rs_,l),
7= .

N ,
(A3.2) lej, =x5,%520,/=1,2,...,N, ¢, =0, x,20,
j=

s=tt+1,...,x,_; given.

Then, following a similar argument as that in (3.23)-(3.32), we have,
since u is bounded, that for any x, = 0, V(x,,t) = 0, t — 2, and

(A3.3) V(x,)ZV(x,t) = V(x,2,0)ZV'(x,,0)x,/2

= EI{Blu'(c1+ l)f,-’(x,»,,r,)x,/Z} = EI{BI- 'u’(c,)x,/Z}éO.
Since the L.H.S. of (A3.3) must go to zero, the R.H.S. must also. Hence,
(A3.4) E{B'w(c)x}—=0, 1—,

along any optimum program. This establishes (3.17).

What about (3.16)? Here the stochastic process {P,}7_ | was assumed to
have been constructed from the quantity side of the model by use of
(3.29) so that the TVC.. (3.31) was satisfied. Hence, TVC,. (3.16) is
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satisfied by the very construction of {P,}7- ;. This establishes the implica-
tion: (i) implies (ii).

In showing that (ii) implies (i) it is clear that the first-order necessary
conditions for the quantity side of an REE boil down to the first-order
conditions for the optimal growth problem. What must be established is
the TVC.. (A3.4). But this follows from (3.17) of lemma 3.1. This ends
the proof of lemma 3.2.

Remark A3.1. Lemma 3.2 is not really useful as it stands because, given
the quantity side of the growth model, it was assumed that {P,} was
constructed from use of (3.29) so that (3.31) held. How can we be sure
that such a solution to the stochastic difference equation (3.29) exists
even though Z;, = 1 for all i, r and m, is given by (3.33) from the quantity
side of the growth problem? Even though we have assumed that pure
rents are positive so that equity prices must be positive in any equilibrium
so that Z,, = 1forall i, ¢, there is still a problem to show that a solution of
(3.29) exists such that (3.31) holds.

Theorems 3.1 and 3.1’ take care of this problem. They establish the
existence of a solution of (3.29) that satisfies (3.31) under mild restric-
tions on the quantity side of the growth problem. The reason theorem 3.1
can be used is that standard arguments (see Brock and Mirman 1972;
Mirman and Zilcha 1975, 1976, 1977) using dynamic programming estab-
lish that the quantity side of the growth model is recursive. Hence, the
quantity side of any REE must be recursive too.

Appendix to Section 1.5

It is straightforward to show by direct calculation that for the example of
section 1.5 the solution to the Bellman equation

(AS.1) Uy, = max{u(}'l"xl)+BEU[§j}(le’rl]}
is of the form
(A5.2) U(y)) =K, +[1/(1 - aB)]logy,

for some constant K.
Hence, for any given x, the allocation functlons x; =m,(x,) are given by
solving the problem

(AS.3) max [ log [ g lAi(r,)n?x,]u(dn),

N
s.t.m;20,i=1,2,...,N, 2 n,=1.
. i=1

~—
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But the solution m to problem (A5.3) is the samé as the solution m to the
problem :

(AS.4) - max [log | _glA;(r,)n?‘]u(dr,)

because the log function is multiplicatively additive.
By strict concavity and monotonicity of the logarithm there is just one

solution m to (A5.4). It may be readily studied by use of (A5.4), and we

leave this to the reader.

Alternative Setup Where Firms Carry Capital
and Maximize Value

Let equity  now represent a claim on the dividends of firm i. Also, let
Z,, d;, and x, be chosen by the firm. The budget constraint of firm i is

(A5.5) PilZii— Z; 1) + gdxis—1,7i 1)
=Xy =X+ Oyt di iy

Here the new symbol d;, denotes dividends per share paid at the end of
period t. We will derive an expression for the value of the firm from the
consumer side of the model.

The budget equation for the consumer is from (3.3):

(A5.6) a+P(Z,-2Z,_)=d,_\*Z,_=y.

The consumer faces {B}, {d;} parametrically and maximizes (3.2) sub-
ject to (AS.6) and Z, = 0, ¢ = 1,2... Note that we do not allow short
-selling. There is not enough space to treat short selling.
Arguments analogous to those of section 1.3 allow us to show that the
necessary and sufficient conditions for a solution to the consumer’s
problem are

(A57) RléEl{rl+l(di!+ Pi.l+l)}a

(ASS) Pirzir = Er{FH- l(dir + Pi.l+ l)}Zin

(A5.9) lim E{g'~'u'(c)P,+Z}=0.
1—x% -

Here I, , | is defined by
(A5.10) F,+léBu'(é,+|)/u'(c,).

Equation (AS.8) may be rewritten to derive a recursion for the value of
the firm

(ASII) V‘-,EP‘-[Z,-,.
We have from (AS.S), (AS5.8)

e

AA, A

D T
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(A5.12) V,=PR,Z;=Efl,, l(di:Zil + P iZir + P2y
=PiZi )Y = ELL o (Vigs + diZ,,
= PiiiZiyir = Zi = E{L i \(Viisu
+8i(xinnr) = Wiy = X5 XN =EAT o (Vi w1 + Nigr )}

The L.H.S. and extreme R.H.S of (A5.12) correspond to Modigliani-
Miller’s (MM) equation (5) (Miller and Modigliani 1961, p. 414). They
use this equation to demonstrate that the firm’s value is invariant to
dividend policy. The same conclusion obtains in our general equilibrium
model. In order to see it, develop the recursion

(A5.13) V= E{l'y(Via + Np)t = E\(T3N3) + E\([L15N,)
+ El(rzr_}‘/,':;) =...= El(FZNiZ) +....

s=T s=T
+E( Hz [Ni7) + Ex{( H2 [5)Vig}.
5= s=

The {I'} sequence is a sequence of random discount factors. They were
exogenously given in MM’s model and were not endogenously deter-
mined by tastes and technology as in our setup. Hence, in order to get the
invariance result, MM had to assume that dividend policy did not affect
them.

More fundamentally, however, in order to get their invariance result,
MM had to assume that

s=T
(A5.14) lim E,{(TL [)Viq)

was not affected by dividend policy.
We can demonstrate that the consumer’s TVC, implies the limit
(A5.14) is zero in equilibrium as soon as we define equilibrium.
Definition.* A rational expectations equilibrium (REE) is a stochastic
process R = ( {Pui=, {&di=1, {Zuticy, {dibich, @ = 1.2,..N;
(e} AT }ro, ) if, facing @ = ({P,}7= 1, {d;}7= 1), the consumer chooses

(AS5.15) c=6.2,=Zyt=12,...;i=12,.. N,

and if, facing {T}7_5, the ith firm chooses

(AS5.16) Xp=X,t=1,2,...,

and the ith irm accommodates the optimum investment plan (A5.16) by
setting s

(A5.17) Z,=Zod,=dnt=1,2,...

Firms are assumed to solve
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(A5.18) max Vi, —x; s.t.x,=0,=1,2,...,
where

— St s=T _
(A5.19) : VnEEn{TE_Z( IIZF;N:‘T)}»

Furthermore, a firm’s expectations on the sequence of random discounts
must be ‘“‘rational” in the sense that

(A5.20) = T, =Bu'(é)u'(¢,-y), s=2,3,...

Finally, material balance must obtain:
N N
(A521) é! +x_I= .g’lfi(ji,l—lyrl— l)v 'glj”[: 1,2, e

This ends the definition of REE.

It is fairly straightforward to use the argument used in section 1.3 to
demonstrate that necessity of the TVC.,, from the consumer’s side implies
that the limit in (A5.14) is zero in equilibrium. It is also fairly straightfor-
ward to show that { ¢, %, {£}/_, ) ,Z| is equilibrium if it solves the
problem (2.1). Furthermore, the fixed point argument that was applied to
(3.40) to produce the asset pricing function of section 1.3 may be adapted
to produce a value function V,(y,) from the recursion (A5.12).

Hence, value is independent of dividend policy. The function V,(y,)
" may be used in conjunction with the “policy function form” of (AS5.12)

(A5.22) Vi(y) = EATea(Vi(yee ) + Ni(yee D)}

to develop valuation formulas for the firm as we didin sections 1.3 and 1.4
above. :

For example, at date ¢, y,, is a random variable. Suppose following
the development in section 1.4 that y,, , may be written

5 X ksk
(A5.23) L Ye=ht I VIS

Follow the development in (4.39)—(4.32), expanding V,,N; in Taylor
series about y,, keeping only first-order terms, we get

(A524) V’(y{) _ E,{FH— 1(‘/’()7')) + (k§,= , ‘I’l,(slf) v:()-’r) + N:(yr)
o+ (k§= | \VII‘SI:)N,'();,)} . *

=Fa MO+ NN+ 3 B YD VI + N,

where

(A5.25) Lo =El ., 08 =E([. ).
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Formula (A5.24) is the Sharpe-Lintner formula for firm value.

Banz and Miller (1978), Breedon and Litzenberger (1978) (BMBL)
propose a procedure that can be used to estimate {I',} from market data.
Hence we may use their methods to implement (A5.22) empirically. We
mention their methods here not only to implement (A5.22) empirically,
but also to counter the objection that firms have no way of inferring {I';}
from consumer behavior and, hence, there is no operational way that
firms can solve (AS5.18).

The BMBL idea is to use option pricing theory to price Arrow-Debreu
elementary securities. Prices of these securities at date ¢ reveal the
marginal rate of substitution between goods at date f and date event pairs
at t+1. Since I, is this marginal rate of substitution, therefore it is
revealed. Furthermore, in recursive systems like ours which can be
written as functions of a state variable the number of Arrow-Debreu
securities that are needed to reveal {I';} can be greatly reduced.

The prices of the Arrow-Debreu securities that are needed to reveal
{I';} may be found to any degree of accuracy desired by writing options
that pay off on certain intervals of values of the state variable and using
Black-Scholes theory to price such options. This is the heart of the BMBL
theory. We do not have space to discuss it any more here. At any rate,
using it, firms can, in principle, at least, get enough information from
market data to solve (A5.18) to some degree of accuracy.

Notes

1. This research was supported partially by NSF Grant SOC 74-19692 to the University
of Chicago. Part of this paper was written in the summer of 1977, while I was at the
Australian National University. The stimulating research environment at the Australian
National University was very helpful. The paper was finished at the California Institute of
Technology. where I was a Fairchild Scholar. ’

This work has been presented at the Australian Graduate School of Management, the
University of Texas Business School at Austin, the University of Houston, Department of
Economics, the University of Wisconsin, Madison Workshop on Economic Theory, and the
Graduate School of Industrial Administration, Carnegie-Mellon University. [ would like to
thank T. Bewley, S. Bhattacharya, R. Lucas, S. Magee, M. Magill, L. McKenzie. M.
Miller, E. Prescott, J. Scheinkman, R. Kihlstrom, L. Mirman, S. Richard. and M. Roth-
schild for helpful comments. Most of all, I would like to thank F. R. Chang for a careful
reading of this paper and for finding errors. I also thank Editor McCall and the conference
participants for helpful comments.

None of the above are responsible for any errors or shortcommgs of this paper. This paper
is half of my *‘An Integration of Stochastic Growth Theory and the Theory of Finance.”

9 February 1978. The other half of the 9 February 1978 paper is Brock (1978).

2. A parable may be helpful. There is one good. Call it "shmoos.’” Imagine that there are
N “‘cottage” industries that consumers operate. Industry i costlessly turns one shmoo into
capital of type i with a one-period lag. The consumer, at date ¢, must commit x;, shmoos to
cottage technology i before r, is revealed.
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Afterr,isrevealed by nature the one-period-lag production pfocess of type i emits x,, units
of capital of type /. Hence, after r, is revealed this precommitted capital is inelastically
supplied. It cannot be changed until period ¢+ 1.

Now imagine that there are a large number of firms of each type and a large number of -

consumers of each type so that the price-taking assumption makes sense. The demand for
capital services of type i at date ris determined by the marginal physical product of capital.
The intersection of demand for capital services of type ¢ with the perfectly inelastic supply x;
determines R;,,..,. At the beginning of ¢ + 1 capital becomes “‘unfrozen.” It is reallocated by
the consumption side to supply x;,,..before r, | is revealed, and so on it goes.

Notice that the fact that capital is frozen into capital of type / is what causes risk to be
borne. If capital can be instantly adjusted when r, is revealed, then there is no risk to be
borne. Adjustment costs give rise to risk in our model.

It may be helpful for the reader to think of Z; as units of perfectly divisible *“‘land” and
Ti+1, given by (3.1), to be the landowner's period earnings. The supply of land of type i is
perfectly inelastic at unity. The price P, is just the price of a unit of land of type  at date t.

3. It may be easier for the reader to follow this discussion if we operate in a slightly
different space.

Suppose that consumers have read accounting textbooks so that they know (AS.5) in
forming their expectations. Let

Sit = Z‘:’/Z_\n-l
denote the percentage of firm i's shares demanded by the consumer. Upper d,s denote

demand and supply, respectively. Using (A5.5), rewrite the consumer’s budget constraint
(AS.6) thus:

N N N d N
¢+ b I)IIZ‘;II =c¢+ zlsitvit = Zl (di,t— vt P)Zi -1 = lei,l— 1(Vie + Nig).
i=1 i= i= i=
The last equality follows from (A5.5). Hence, view the consumer as choosing {c,, 5;} to solve

maxE{3 B u(c))

s.t.c,+ 2 §;, Vi = Els,-_,_l(V,-,+N,-,),r=1,2,...,

=

s,-,=0,r=l,2,...N, t=12,...,
so=1,i=1,2,....N.
Here the consumer faces {V,,V;} parametrically. Notice that MM value invariance is
embedded in the consumer’s expectation that the value at ¢ plus net cash flow at ¢ (i.e., V;, +
N;) must equal (d;,_, + P,)Z},_, via the firm's accounting constraint (AS5.5).
We may now define REE as above. The only difference is that the consumer faces Vi, N,,}

and chooses {s;} instead of choosing {Z,}. In equnllbnum we require the optimal choice of
the consumer to satisfy

§,=1,i=1,2.... N, 1=12,...

Itis easy to follow the argument of section 1.3 (i.e., lemma 3.2) and use the necessity of the
transversality condition at infinity from the consumer’s side to prove

V,=E % [N,
=141

where {I1,,N,} are evaluated from the planner’s problem (2.1).
Notice that only V,, is unique in equilibrium. Any P,.Z; such that

. PuZu n
is equilibrium.

O Pt . ..
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Comment Edward C. Prescott

The last decade has seen a proliferation of empirical studies documenting
the stochastic behavior of security prices and returns. Defining a secu-
rity’s risk premium to be its expected return relative to the expected
return of some chosen market portfolio, the predominance of evidence is
that sizable risk premiums do exist. Some securities have expected re-
turns that are 10 percent or more higher than the expected return of some
other securities. These premiums are not associated with the uncertainty
in the return per se but are associated with the covariance of the return
with the selected market portfolio. Securities with high covariance with
the market return have above-average expected returns, and those with
small or negative covariance have below-average expécted return. These
facts have been well-documented by Black, Jensen and Scholes (1972),
Fama and MacBeth (1973), and others.

The motivation for examining the relationship between a security’s
expected returns and its covariance with a market portfolio was provided
by the capital asset pricing model developed by Sharpe, Lintner, and
Mossin. This theory assumes a distribution of security returns along with
some strong assumptions about individual preferences. The problem
addressed Uy the theory was the allocation of this risk among investors
and the pricing of the risk. It was not a theory of the source of variations in
returns, as it considered only the demand side of the market.

Tests of the capital asset pricing model have found some important
empirical anomalies. This motivated Ross (1976) to develop an alterna-
tive theory which he called the arbitrage pricing theory. Rather than
making strong assumptions on preference, he merely assumed monoto-
nicity and concavity of utility functions and based his theory primarily on
an assumed linear return generating process. Recently Roll and Ross
(1979) subjected that theory to a number of tests and concluded that the
theory performed well under empirical scrutiny. This empirical analysis
finds three and possibly four factors affecting returns.

Neither the two-parameter capital asset pricing model nor the arbi-
trage pricing theory explains why the returns vary. Brock develops a
dynamic general equilibrium model which he contends, and I concur, is

Edward C. Prescott is professor of economics at the University of Minnesota.
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needed if the source question is to be addressed. His is a simple model
with homogeneous, infinitely lived consumers with a time separable
utility function, a single capital good, and shocks to technology which are
identically and independently distributed over time. His model is very
similar to the one of Lucas (1978) except that capital accumulation is
permitted. For specification of his technology, a return generating pro-
cess results which is approximately equal to the linear one assumed by the
arbitrage theory.

‘The single capital good might be thought to be potatoes, which can be
either eaten or planted in any one of # fields. The next period’s capital is
the resulting output of potatoes summed over all fields. The source of risk
is that the output of a field depends not only upon the capital invested
there but also upon a random shock r,. Different fields are affected in
different ways by the realization of the random variable r,. For example,
if rain is plentiful, fields at the top of hills where drainage is good will have
large output while fields in valleys with poor drainage will not. The
converse is true if there is little rainfall. The distribution of rainfall, the
relative supplies of land types, and the beginning of period capital deter-
mine the price of the different types of land jointly with the consumption
and investment allocation decision. '

The principal point of these comments is that one could obtain three
factors if one applied the arbitrage pricing theory, even if there were a
single type of field and only a single multiplicative shock to the produc-
tion function. To see why this is possible, consider the following very
simple example of Brock’s environment:

preference: E B'u(c,),
) T=0

technology: 0<c,=<r,.

We abstract away from capital because it is not needed to establish the
point, and one can use Lucas’s (1978) analysis to conclude the asset price
is

P=E{X B (r)' (7).

This security corresponds to ownership of the divided stream r, for s =t at
time ¢. The period return of this equity is

P/+l +r-F
P,
as r, is the dividend paid in period ¢. The price P, is the predividend price.
All prices are in terms of potatoes.
If one applies the methods of Arrow and Debreu, one prices units of
consumption in period ¢ + 1 conditional upon the event r, ., with all such

’
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securities priced in terms of consumption in period ¢. These prices are
denoted by o(r,,; r,). Assuming a finite number m of possible events
(that the distribution of r is discrete), any security can be represented as a
linear combination of these elementary securities.

In a sense, there are m sources of risk associated with the possible
realizations of r,. ;. In another sense, there is a single source of shock,
namely, the output shock. The latter sense seems more natural and will
be implicit in the subsequent discussion. '

Three interesting derived securities are as follows: The first is the linear
combination of the Arrow elementary securities which correspond to
dividend payment r, in period s with s = ¢. This is just the equity share of
the firm. The second security pays one unit of consumption in period # + 1
for all realizations of r, . ,. This is a real bill, or if there is no uncertainty in
the price level, it corresponds to a period bond or bill. The third security
is a consol paying one unit of consumption not only in period ¢+ 1 but in
all future periods. They are three linear independent combinations of the
elementary securities.

If different firms correspond to different combinations of these three
derived securities, applications of the Ross arbitrage pricing theory will
yield three factors and one might incorrectly assume that there are three
sources of risk. This illustrates that new securities which are not linear
combinations of existing securities can introduce new factors in the
returns generating process.

Development of a theory to explain the source or sources of risk is
needed if we are to answer the questions posed by Brock at the beginning
of his paper. The structures which we can analyze are limited to be of the
variety considered by Brock or closely related ones; the next stage is to
determine whether such abstractions are consistent with the data. For
such a theory to be a good theory, it must not only explain the observed
risk premiums but also be consistent with the observed variability of
consumption and output over time. Possibly, in order to explain the large
risk premiums which characterize security markets, it will be necessary to
impose such extreme curvature on the utility function that the resulting
equilibrium variability in consumption is less or variability in output
greater than is observed.

My conjecture is that the principal source of risk is the business cycle. If
this is correct, it surely will be necessary to introduce the labor supply
decision, for most fluctuations in output are associated with variation in
labor input—not with variation in the capital stock or with variation in the
productivity of factors. Another possible generalization of the model (see
Prescott and Mehra 1980) is to relax the assumption of a linear produc-
tion transformation curve between the investment and consumption good
and to take into consideration multiplicity of capital-good types. Brock’s
technology implies a constant relative price of the consumption and
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investment good, and this is inconsistent with the cyclical varlablhty of
this relative price. Such factors would clearly explain the serial correla-
tion properties of the stock market. Possibly assuming persistence in the
process governing the technology shock will prove fruitful. All these
generalizations are feasible.

To conclude, it is time to determine whether the Brock abstraction or
more likely a close cousin of it can be used to develop a theory of the
source or sources of nondiversible risk. Rajnish Mehra and I have begun
such a search. Such a theory might explain why the risk characteristics of
particular securities change over time and might be of use in selecting -
corporate investment decisions as well.
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