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COMMENTS ON "SEASONAL ADJUSTMENT WHEN BOTH DETERMINISTIC AND
STOCHASTIC SEASONALITY ARE PRESENT" BY DAVID A. PIERCE

John P. Burman
Bank of England

This is a very illuminating paper, giving full practical
details of seasonal signal extraction, using a particular
ARIMA model.

The model (1, 0, l)u used for the seasonal operator is
different from the example in (1). But, both come within
the framework of the partial fraction technique, described
in the appendix of my discussion on Kuiper. An improve-
ment, suggested by Pierce, is the extraction of any
deterministic seasonal component (seasonal mean correc-
tion) from the differenced series.

He removes the trend by differencing and a nonseasonal
autoregressive filter, instead of including this in a single

seasonal ARIMA model; this makes for computational
simplicity in finding the minimum of the spectrum of the
seasonal component and also the weights of the signal
extraction filter. But, if there is any interaction between
the seasonal and nonseasonal parts of the model, this may
not be the optimal procedure.

Another difference from (1) is that Pierce includes the
positive real root of 12) in the seasonal model,
although it is usually close to 1 and, thus, generates a
spike in the spectrum at zero frequency. For example, for
U.S. unemployment, Pierce finds cI)=0.547, and its 12th
root is 0.95.
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COMMENTS ON "ANALYSIS AND MODELING OF SEASONAL TIME SERIES" BY GEORGE E.
P. BOX, STEVEN HILLMER, AND GEORGE C. TIAO

John P. Burman
Bank of England

I found this a most stimulating and original approach to For the model used here,
the problem of optimal seasonal adjustment. It combines

d1 d2 'I'(B,F)ARIMA stochastic modeling with signal extraction and O(B)O(F)
=d0+

(1 —B)(1 —B)2(l U(B)U(F)illustrates the method by an example. The. method is
presented in a more compact way, which shows how it
can be generalized to include other Box-Jenkins models.

My discussion of Kuiper's paper sets out the partial — $' F) 'I'(B, F)
fraction method of decomposing a seasonal model. Thus, (1 U (B)U (F)
Box, Hifimer, and Tiao's model can be written as follows:

where '1'(B, F) is a symmetric function of degree 10 and
F) is a symmetric function of degree 2 mB and F. If

çc(B)d(B) U(B) and b1 are independent white noises, with

where —B)(l —B 12)
an equation equivalent to Box et aL's (47) is produced.
The numerator 'P(B, F) can, in principle, be factorised
into 'I'(B)'I'(F), via a polynomial in cos w; but, some
roots of this may be inside the unit circle, in which case,

d(B)=(l—B)2 4'(B, F) could be negative and the solution unacceptable.
However, with the (0, 1, 1) (0, 1, model, this does not'I'(B)='I'0-'P1B---
occur m practice.

U (B)= I +B +B2——— +B" The minimum of the seasonal spectrum is given by

The spectrum of the
(1(B)O(F)

'I'(B, F)p(B)ço(F) e*=minl
]IBI1 LU (B)U (F)

where

(1) 'ri(B,F)
1811

(2)

The symmetry makes the operator in (1) a function of
terms like cos mu, and the latter is expressible With an obvious modification of the paper's notation,
as a polynomial of degree n in x=cos w. The denominator

be decomposed into factors of the form which is U(B)U
is a polynomial in x of the same degree as and can '4J.(B. F)

{

F)
CT. =

equivalent (apart from a numerical factor) to (l—a1B)
(l—a1F), where a1 is one of the roots of the equation Hence

134=2a/(l+aD
2

F)
=

F)
°' d(B)d(F)

Thus, the partial fraction of the function of x leads to a
decomposition of the form

is the spectrum of the optimal seasonally adjusted series.

—d0+
d1 These equations together are equivalent to (49) and (50).

(l—a18)(l—a,F) The optimum solution has the troughs of the spectrum of
the seasonal component as deep as possible—thus, min-

with higher powers appearing when there are multiple imising the loss of power of the spectrum of the adjusted
roots, series at interseasonal frequencies.
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The extraction filter for seasonal adjustment is given by

h B F) çc(B)ça(F)

0(B)0(F)

F)U(B)U(F)
0(B)0(F)

{ij(B, F)+E*d(B)d(F)}U(B)U(F)
0(8)0(F)

Note that factorisation of (B, F) into is
required for the elegant method of expansion of the filter,
described in the appendix to Box, Hilimer, and Tiao's
paper. However, it might be simpler to modify the

expansion of
co(B, F) (in the Box et al. appendix

-q(B)'q(F)
notation). (A-i) becomes ça(B, F)=r)(B)C (B, F), and

coefficients of C (B, F) can be derived recursively, starting
with the leading term (r being the degree of the
polynomials). (A-4) becomes

C(B, F)=-q(F)X (B, F)

and the first (r+ 1) coefficients of X (B, F) can be obtained
from a set of (r+ 1) linear equations like (A-5).

Numerical estimation of (2) shows minima, as
at ü=0 and close to [j=1, 2———5].

The results are in tables 1 and 2. The lowest minimum
is always small and positive; for low values of 0, it is at
the right-hand end, but increasing with 0; and for high
values of 0 it is at zero, and decreasing with increasing 0.
The results for the model (0=0, 0=0.75) agree closely
with those given in the paper—though, of course, €* is
different, because we have started with a different accept-
able model.

Table 1. VALUE OF LOWEST MINIMUM

0= 0

0.3

0.6

0.9

0

0.3

0.6

0.9

0 = 0.5 0.75 0.9

Table 2. POSITION OF LOWEST MINIMUM

(w as a multiple of ir/6)

0.01 0.003 0.0004

.02 .006 .001

.036 .009 .002

.02 005 .0008

5.50 5.50 5.50

5.50 5.50 5.50

0 0 0

0 0 0



COMMENTS ON "A SURVEY AND COMPARATIVE ANALYSIS OF VARIOUS METHODS OF
SEASONAL ADJUSTMENT" BY JOHN KUIPER

Dennis Farley and Stephen Zeller
Federal Reserve System

INTRODUCIION

One method of seasonal adjustment, examined by
Kuiper in his paper, is X—l1 ARIMA, now being em-
ployed by Statistics Canada on labor force data.1 This
intuitively appealing method, described in the following,
has not been examined at the Board of Governors until
now. Our comment evaluates the performance of this
method of seasonal adjustment for one time series of
particular interest—monthly observations on the narrowly
defined money stock, Ml.

The difficulty with X-1l, or with any other method that
employs symmetric moving averages, is that symmetry
cannot be preserved at the end points of the sample of
data. For example, X— 11 estimates trends with a 12-month
moving average and also smooths the seasonal component
across years with a 3 x 5-moving average. Thus, symmetry
is lost for data within 3 years of the end of the sample.
Instead, asymmetric filters are applied, resulting in phase
shifts in the adjusted data. What the X—l 1 ARIMA
approach does is to provide X—1l with an augmented
sample of data so that all, or most, of the actual data are
smoothed with symmetric averages. ARIMA models are,
of course, employed in generating the extra observations.
The choice of an ARIMA model to generate forecasts is
merely one of convenience. Structural models that incor-
porate seasonality could also be used, although the distinc-
tion between these two approaches is somewhat artificial.
Under most conditions, there exists a correspondence
between the structural and time series representations of
an endogenous variable.2

We have selected Ml as an example of a series having
current seasonally adjusted levels that receive a great deal
of attention from the public and press. In addition, these
data are used as an input to policy decisions by the
Federal Open Market Committee (FOMC). Furthermore,
it is well known that these data, as first published by the
Board of Governors, Federal Reserve System, often revise
substantially as the seasonal factors are reevaluated in
light of additional data.3 Seasonal factors reestimated with

'See (3].
2See [8].
3The current practice is to reestimate seasonal factors for Ml once

a year. Some judgmental review does take place before publication.
For a description of this process, see [7].
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several additional years of data lead to a much smoother
series than that derived from the first published factors.4
Accepting these later estimates as correct implies that the
current seasonally adjusted data are not providing policy-
makers with good information about short-run movements
in the money stock. In this comment, the major emphasis
is on seasonal factors in the current year and those
projected for the following year.

There are serious problems in the application of any
seasonal adjustment method to the money stock. For
example, since Ml is composed of currency and demand
deposits, having structural equations that would be speci-
fied differently, we probably should use a multivariate
approach.' Furthermore, for a series that is at least
partially controllable, the policymaker's reaction function
must be introduced before we can begin to make any
meaningful statements about seasonality in these data.
Investigation of these issues is clearly beyond the scope of
this comment. Instead, we assume that seasonal factors
obtained with X-11 from the interior of a data sample are
correct seasonal factors.

In the next section monthly ARIMA models for the
currency and demand deposit components of Ml are
identified. These models are then used to generate fore-
casts with 1-, 2-, and 3-year horizons. In the third section,
seasonal factor estimates based on samples, augmented
with forecasts, are compared to those obtained without the
forecasts.

THE MODELS

The current Board of Governors' staff procedure is to
seasonally adjust the currency and demand deposit com-
ponents of Ml individually and then to add them together

4See [2].
5See [4].

Dennis Farley and Stephen Zeller are economists in
the Banking Section, Division of Research and
Statistics, Board of Governors of the Federal Re-
serve System. All conclusions and recommendations
are the authors' and do not necessarily reflect the
opinions held by the Board of Governors.
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to get seasonally adjusted Ml. For each component, we
find that first and seasonal differencing are necessary for
stationarity but that a logarithmic transformation is not
required. Integrated moving average models of the follow-
ing general form are then estimated:6

(1)

where x1 is either the currency or demand deposit compo-
nent of Ml, V1 is the first difference operator
Xt_t), is the seasonal difference operator

9(B) is a polynomial in the backshift operator,
B(Bkae=at_a), and a, is white noise. The first estimation
period for the currency component of Ml is from July
1953 through June 1965 and for the demand deposit
component, from July 1950 through June 1965. These
equations are then reestimated, changing the specification
slightly, by "rolling up" the sample—adding a year at the
end and dropping a year at the beginning. This process is
continued nine times until June 1973, so that 3 years of
actual data are left outside the last estimation sample.1
Each equation is then used to generate a 36-month
forecast. In general, this forecast reproduces the seasonal
pattern quite well, although the level of the forecast after
36 months is often quite different from the actual level.

RESULTS

In assessing the results of the X— 11 ARIMA method,
we ask the following question: Do the conclusions reached
by Statistics Canada with respect to their labor force data,
namely increased stability of current and forecasted sea-
sonal factors, also hold for the U.S. money stock? To
answer it, we employ a measure of seasonal factor
stability, used by Dagum and Kuiper, which will be
described. Following Dagum [3] fmal seasonal factors are
those from X—ll when there are available 3 additional
years of data. For ordinary X—1 1, the current-year sea-
sonal factors are just those for the last year in the sample,
but we compute current seasonal factors in three additional
ways—by augmenting the sample with 1, 2, and 3 years of
forecasted data.8 Recalling that the end point of the first
sample of actual data is June 1965 and that this sample is
"rolled up" nine times to reach June 1973, there are now
108 (9x 12) observations on fmal and current seasonal
factors. Note that there are four sets of current seasonal
factors—one from ordinary X— 11, one from X—1 1 ARIMA
(1 year), one from X— 11 ARIMA (2 years), and one from

'For a discussion of ARIMA model fining, see [1, especially chs.
6—9].

estimates and summaiy statistics for these models are
available on request.

'In all of these adjustments, the total sample size is restricted to 10
years. Options, in effect, are: Standard multiplicative run, with 1.5- to
2.5-sigma range for graduation of extremes, 9-term Henderson average
for the trend cycle, 3X3- and 3X5-movjng average smoothing of
seasonal irregular ratios, and no preliminary trading-day adjustments.

X— 11 ARIMA (3 years)—all referring to the same months
and years. The Dagum-Kuiper measure of stability is

1
12

1

(2)

where S denotes a seasonal factor—either current or
forecasted, and the subscripts m and k denote month and
year, respectively. The lower this statistic is, the less the
current or forecasted seasonal factors are revising.9

In addition to current factors, policymakers are inter-
ested in forecasted seasonal factors, usually 1 year ahead.
In fact, first-published data are seasonally adjusted with
forecasted seasonal factors, because X— 11 is not rerun
until 12 new observations are obtained. These forecasted
factors are generated by X—ll as

Sm,k+I=Smjc+l/2 m=1, 2, . . . , 12 (3)

In practice, consecutive differences between seasonal
factor estimates for a month are small so that these
forecasts are essentially equal to the current factors. One-
year-ahead forecasted seasonal factors for the X— 11
ARIMA method are simply taken as end-year, next-to-
end-year, or third-from-end-year factors in each of the
augmented samples.

The results appear in the table. The first row presents
the Dagum-Kuiper statistic computed on the X—l 1 method
for the currency and demand deposit components of Ml
for both the current and forecasted (1-year-ahead) seasonal
factors. The next three rows present these same measures
for the X— 11 ARIMA method with 1-, 2-, and 3-year
forecast horizons. Looking down the columns for current
factors, we see that most of the improvement in stability
comes from augmenting the sample with just 1 year of
data. While the factors for currency are more stable than
those for demand deposits, the absolute reduction in the
measure of stability is roughly the same for each compo-
nent.

The table also illustrates the difficulty of obtaining good
forecasts of seasonal factors. For demand deposits, the
stability measure jumps by one-third for all seasonal factor
forecasts. The situation is slightly worse for currency,
where seasonal factor forecasts are half again as unstable
as current factors in all cases. As we read down the
columns for forecasted factors, there are overall gains in
stability, for both demand deposits and currency, of 20—25
percent, but they occur at different forecast horizons.
These results suggest that significant improvements may
be had for demand deposits by using X— 11 ARIMA (3
years), but, for currency, a 1- or 2-year horizon is best.

'Compared to other criteria, such as root-mean square revision, this
statistic does not give as much weight to large revisions. Since
policymakers are probably more sensitive to large, rather than small,
revisions in published data, we computed root-mean square revisions
as well, with no qualitative change in the results of the table.



466 SECTION IX

Table 1. SEASONAL FACTOR STABILITY:
RESULTS OF THE DAGUM-KUIPER STATISTICS

FOR CURRENT AND FORCASTED FACTORS,
BY PERCENT

Mode'
Demand component Currency component

Current Forecasted Current Forecasted

X-11

X.11 ARIMA
(1 year). ..

ARIMA
(2 years) ..

X-11 ARIMA
(3years) . .

0.174

.155

.149

.142

0.231

.208

.202

.193

0.091

.068

.076

.072

0.131

.105

.104

.114

CONCLUSIONS

This exercise has shown that, on the average, increased
stability of current and forecasted seasonal factors is to be
derived from using X-ll ARIMA, rather than ordinary
X— 11, to seasonally adjust U.S. money stock data.
However, there are a number of points to consider before
adopting the X-lI ARIMA procedure. First, the method
is not fully automatic—an important consideration for an
agency that must seasonally adjust hundreds of series. An
ARIMA model for the series must be obtained, usually
with a substantial investment of time for specifying, fitting,
and testing. Second, the model chosen must provide good
forecasts of the series. Forecast accuracy is needed so that

X—l 1 is operating on a series that is consistent in terms of
its seasonal pattern. For an analysis ex post facto, there is
no problem, since forecasting performance may be
checked with actual data; but, for use ex ante, there are
no actual data against which to test the forecasts. One
must rely on goodness of fit within sample or on a
judgmental assessment of the forecasts as reasonable.
Third, the gain in seasonal factor stability (i.e., the amount
of revision) should be balanced against the cost of
achieving it. For instance, the greatest improvement in the
table for current factors for demand deposits comes from
using X— 11 ARIMA with 3 years of forecasts. The
difference versus ordinary X— 11 is 0.032 percent. This
means that, for a level of demand deposits of $230 billion,
the numbers adjusted by X— 11 ARIMA are, on the
average, $74 million closer to the fmal numbers than are
those adjusted by ordinary X—1l. In terms of levels, this
average improvement is not overwhelming. However, the
average is somewhat misleading, since improvements up
to 0.50 percent, or $1.2 billion, occur for particular
months.

In conclusion, the X— 11 ARIMA approach is to be
recommended for those series for which reasonable
ARIMA models can be built and where the gain in stability
justifies the expenditure of resources. (Quite often, such
models will already have been estimated for other pur-
poses.) For series that are highly visible economic indica-
tors and where small changes assume political significance,
any gain in stability is probably worth the effort needed to
achieve it. X— 11 ARIMA is also to be recommended to
individual researchers who want to seasonally adjust
relatively few series, while avoiding some of the asymme-
tries implicit in X— 11.
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COMMENTS ON "A SURVEY AND COMPARATIVE ANALYSIS OF VARIOUS METHODS OF
SEASONAL ADJUSTMENT" BY JOHN KUIPER

Martin M.G.Fase
De Nederlandsche Bank N.V.

On the outset, I would like to emphasize that I found
Kuiper's paper quite interesting and useful. This is partic-
ularly true, because practitioners need guidelines since so
many methods are available. It was for this very reason
that, 5 years ago, we, at the special studies section of De
Nederlandsehe Bank (i.e., the Dutch central bank), did a
similar study, as Kuiper has presented now. I believe
Kuiper's work is in the same spirit and follows the same
methodology as we applied. We compared nine different
methods, including the methods Kuiper compared.1 How-
ever, keeping in mind our own results, I cannot believe
Kuiper's main finding. This seems to be that it is not
possible to discriminate between different methods of
seasonal adjustment.

Our analysis, based on five representative Dutch series,
employing the same criteria as Kuiper used, did suggest

468

that the X-ll and the Bunnan methods perform well.
This was particularly so, because these two methods
produce stable seasonals. Stability, in this context, means
that the seasonals did not change very drastically when
new data became available. To study this property, it is
useful to add, to a particular series, observations over 12
months successively over a reasonable number of years.
(We took 5 years.) I think Kuiper did not follow this
procedure quite well. Therefore, his remark that significant
differences occurred for the recent period seems, to me,
unjustified.

Finally, I would like to add that, for an analysis to
employ the additive or multiplicative model, the search
procedure, referred to by Durbin and Kenny [1], which,
incidentally, is quite common in practice, is more appro-
priate and simpler than Kuiper's strategy on this point.
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COMMENTS ON "ANALYSIS AND MODELING OF SEASONAL TIME SERIES" BY GEORGE
E. P. BOX, STEVEN HILLMER, AND GEORGE C. TIAO

Agustin Maravall
Federal Reserve System

IDENTWICATION

When decomposing an observed time series into unob-
served components, it is well known that underidentifica-
tion may be a problem. Let [T,], the observed time series,
be the outcome of the process

p( (1)

and let and e1 denote the two unobserved components,
so that

where et is white noise. Thus, the ARMA process
generating is of the form

where max (p, q). Model (3) is not uniquely
determined from (I) and (2). In order to achieve identifi-
cation of (3), Box, Hilimer, and Tiao (BHT) assume
q*max (p, q), and select the model for which oj is
maximum [1]. In this note, we mention some situations
where the appropriateness of these assumptions may be
questioned and where the BHT procedure may lead to
nonparsimonious specifications.

DECOMPOSITION

In an effort to estimate the permanent and transitory
component of Ml a similar decomposition was used.
The AR polynomial in (1), was estimated as (1—pB)

In investigating the MA specification, it was
found that the MA polynomial in (1) could be
explained simply by the noise-induced moving average

resulting from substituting the model (3) for rr1 into
(2). Quite nicely, the sample ACF of could be
explained by the specification

(1—pB)

'BHT apply their smoothing procedure to a trend-seasonal-irregular
decomposition. But the permanent transitory decomposition does not
require any seasonal extraction.
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where together with (2). Thus, a decomposi-
tion, such as (2), allowed a fairly parsimonious model to
explain a fairly complicated autocorrelation structure.
Also, as in this example, p =66, q*=l, identification of the
model did not require any additional assumption concern-
ing the variance of the noise, because the lemma 1 (from
[2]) could be applied.

Lemma 1

Let the zeroes of a(B) lie on or outside the unit circle.
(2) Then, model (3) is identified 1ff p>q*. When p>q*+ 1 the

model is overidentified.
Thus, an empirical type of consideration may lead to a

different smoothing strategy in which a more parsimonious
overidentifled model is obtained. Of course, one cannot

(3) expect all empirical applications to explain the observed
MA polynomial by the noise-induced one. Yet, even when
this simplification is not possible, an exactly identified
model with p=q+l can always be found. Since ARMA
(p. p -.1) models can be rationalized as the discrete time
representation of continuous processes, lemma 2 can be
easily proven.

Lemma 2

Let the zeroes of ct(B) lie on or outside the unit circle.
There is one, and only one, model (3) that satisfies (1) and
(2), for which there is an underlying continuous stationary
stochastic process.

Thus, a model-based consideration (continuity) leads to
an alternative smoothing strategy, where the assumption

is substituted by the assumption q*p_l
(i.e.,

2The CPI example, considered by BHT can certainly be represented
by the model with and oj=O.0016l. But, it is
also perfectly consistent with and

The views expressed are not necessarily related to
those of the Federal Reserve System. 1 would like to
express my gratitude to David A. Pierce.
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COMMENTS ON "ANALYSIS AND MODELING OF SEASONAL TIME SERIES" BY GEORGE
E. P. BOX, STEPHEN HILLMER, AND GEORGE C. TIAO

Christopher A. Sims
University of Minnesota

As Box, Tiao, and Hifimer point out, models of the
form

with e white noise and '1', 0, and y low-order polyno-
mials in their arguments, are successful in producing
forecasting models of a wide range of time series, including
seasonal components with period s.

This is all the more remarkable a fmding since, when
we examine these models in the frequency domain, this
class of models implies some restrictions on the properties
of X, which rule out a large part of all the stationary
processes displaying Granger's "property S".'

In particular, the spectral density of X is given by

Setting

we have

2

I
'I'( e_"°)O(

2

H is periodic with period 2ir/s, while G, if y and
0 are of as low an order as usual, is smooth. Thus, log
is the sum of an exactly periodic function and a smooth
function. If log has sharp narrow peaks at the seasonal
frequencies and if has the form (2), then the peaks are
all of exactly the same height and width. That the peaks
be all the same height rules out the possibility that the
annual seasonal pattern of the series be consistently
smooth or consistently rough. That the peaks be all the
same width rules out the possibility that some frequencies
in the seasonal pattern might be less stable than others,
e.g., that the monthly first difference of the seasonal
pattern might show more tendency to change from year to

See [1].
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year than 3-month moving averages of the seasonal
pattern.

This limitation on spectral densities of the form (2) does
(1) not mean that models of the form (1) will yield poor

predictions. In fact, the property S can be interpreted in
thç time domain as asserting simply that there is a slowly
changing annual pattern to a component of the series.
Hence, any forecasting scheme that estimates the average
annual pattern over the past several years and projects
that average pattern into the future with little change will
produce forecasts which are good in an absolute sense.
Differences between forecasts based on the model (1) and
those based on the correct model, when the series has the
property S but is not well represented in the form (1), will
show up mainly in differences in the accuracy with which
changes in the seasonal pattern (by construction, small to

(2) start with) are forecast. There are some applications where
this could be important, especially where we have a
structural model of relations between seasonal patterns in
different series and wish to extract seasonal components
accurately to study their interrelations.

For example,

1.71473 X

2(0.99)

This process consists of a strong 12-period seasonal and

very little else. However, it has a peak only at thus,

the seasonal pattern is purely a sinusoid of period 12.
Obviously this seasonal is better forecast from its own
recent past than from its value 12 months ago.

An interesting open question is whether there is any
convenient way to expand the class of models considered
by Box, Tiao, and Hiimer to avoid these restrictions.

Obviously, the frequency-domain methods of seasonal
decomposition and forecasting used by Geweke2 are not
subject to the limitations discussed here. They may, in
turn, of course, be limited by difficulty in handling
extremely sharp seasonal peaks properly.

2 See [2].
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COMMENTS ON "ANALYSIS AND MODELING OF SEASONAL TIME SERIES" BY GEORGE
E.P. BOX, STEVEN I ILLMER, AND GEORGE C. TIAO

Kenneth F. Wallis
University of Warwick

Two of the conference papers contain an empirical
example based on the same data set (one made available
by the organizers), and it is of interest to compare the
results of Box, Hillmer, and Tiao (BHT) with my own
results for the manufacturers' shipments, inventories, and
orders series, seasonally unadjusted. An initial handicap is
that BHT work with the logarithms of the variables,
whereas I do not, being influenced by the consideration
that a full model describing the determination of these
and other relevant variables would contain the identities
given in the first paragraph of the section on manufactur-
ers' shipments, inventories, and orders in my paper,
"Seasonal Adjustment and Multiple Time Series Analysis,"
and, hence, would be easier to handle by linear methods if
cast in terms of the untransformed variables. Despite this
apparent lack of comparability, some similarities between
the two sets of results do emerge.

First, in the univariate analyses, similarities in the
models for the shipments and new orders series can be
observed. Both BHT and I choose d=D=l, and once a
strong seasonal autocorrelation has been accommodated,
relatively little remains to be modeled: The comparison is
closest if the MA representations of seasonality, given in
footnote 1 of my paper, are considered. For the invento-
ries series the choice of model seems less clearcut, and
there is less agreement: BHT, again, choose d=D=l and
estimate a nonseasonal AR component of (l—0.85L),
whereas I am ambivalent between d= 1 and d=2, with
D=O in each case, but, nevertheless, the results with d=2
yield a seasonal AR operator that contains the factor
(1—0.78L'2).

In their multivariate analyses, BHT estimate what
econometricians term "reduced forms," but the univariate
models can still be regarded as (fmal equation) solutions of
this system, and appropriate comparisons can be made.
For this purpose, I consider the second, restricted set of
estimates. (It should be noted that, in the first set of
estimates, the matrix 1 has a root outside the unit circle,
suggesting that these estimates were not obtained by an
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exact maximum likelihood procedure.) The estimated
autoregressive matrix is triangular, and the equation for I,
can be immediately separated and written as

(1 I,=(l —0.40L)(l —0.75L22)a3,

which is close to BHT's univariate estimate. For the new
orders series, the solution is

(1 —0.97L)(l

=(l —O.36L)(l —0.90L)(l —0.74L '2)a

—O.345L2(l —0.75L'2)a3,

and, if the contribtuion of a3, to the right-hand side is
ignored (its variance is but l'/2 percent of that of a2,), then
cancellation and slight simplification yields

NO,=(l —0.36L)(l —0.74L'2)a2,

which, again, corresponds well with their univariate re-
sults. In the residual covariance matrix, the most striking
feature is the strong correlation between the shipments
and new orders errors—our two estimates virtually agree
on a coefficient of 0.7, though it must be admitted that my
estimate is based on a slightly different multiple time-series
representation. The small correlation of the inventories
residuals with the shipments and orders residuals is noted
by BHT and is also present in my own results: This,
together with the decomposability of their reduced form
model leads BHT to suggest that the inventories series
behaves independently of the other two series. However,
an economist's structural model would no doubt include
the direct relationship between shipments and inventories,
referred to previously, and, while it is true that the failure
of my fmal form representation to pass the test of a
common autoregression could be due to decomposability,
inspection of the coefficients does not support the view
that the inventories series is causally prior.



COMMENTS ON THE NBER-CENSUS CONFERENCE ON SEASONAL ANALYSIS OF
ECONOMIC TIME SERIES

Allan H. Young
Bureau of Economic Analysis

I would like to comment on several points concerning
the X—ll method of seasonal adjustment.

The statement concerning trading-day variation in "An
Overview of the Objectives and Framework of Seasonal
Adjustment," by Shirley Kallek, views the subject too
narrowly. The statement implies that reasonable empirical
daily weights which express the percent of the week's
activity that occurs on each day of the week are preferred
to fitted weights, computed by the trading-day adjustment
option in X—ll. The research that provided the basis for
the trading-day adjustment option, however, indicated that
fitted weights perform better within and beyond the sample
period than do reasonable empirical weights. It should be
noted that, among other things, the research utilized daily
retail sales in obtaining empirical weights—na better basis
for such weights than would usually be available. The
reason for the superior performance of fitted weights is
that a substantial proportion of economic activity occurs
on the basis of monthly plans and schedules that are
drawn up with little or no attention to the number of
trading days in calendar months and/or is recorded and
reported on a basis that takes little account of the number
of trading days in calendar months. Therefore, allowance
must be made for the relation of each day of the week to
the monthly volume of activity, rather than for the relation
of the daily activity to the weekly volume of activity. The
relation of each day of the weekS to the monthly volume
can vary with the calendar composition of the month,
while the actual daily rates that are proportions of the
weekly volume remain fixed. Thus, Saturday and/or Sun-
day can be assigned substantial weight, even when simple
observation indicates the activity is shut down. (See [3]
for a further discussion of this point.)

In his discussion of the "Overview," Lawrence Klein
was concerned about the introduction of the Slutsky-Yule
effect in the seasonally adjusted series because of iteration
in X—l 1. Iteration is used in X—l 1 to improve the
identification of extreme values and the measurement of
the trend cycle. There are three rounds of two iterations,
each, as follows:

I. A, B
2. A, B

3. A, B

Iteration A is based on the 12-month moving average;
iteration B is based on the Henderson curve. The purpose
of rounds 1 and 2 is to find extreme values. The only
effect carried over from round 2 to round 3 is the
modification of extremes in the original series. Durbin [2]
showed that iteration B has no effect on a stable seasonal
factor, obtained as an average over all years, except for
an end-point correction. Young [4] showed that iteration
B has only a small effect on the moving seasonal factor in
X—l1. Thus, it does not seem that the Slutsky-Yule effect
plays much role in the seasonal factors, although I am not
aware that anyone has fully examined possible effects
arising from the treatment of extreme values.

It is important that the record be straight concerning a
point in the "Overview," which was commented on by
Klein. The "Overview" suggests that statistical agencies,
such as the Census Bureau, apply the seasonal adjustment
procedure in such a way that the impact of strikes on the
data is removed. That is not the case. The statement in
the "Overview" pertains to the X—ll strike adjustment
option that is available for improving the estimate of the
trend cycle in strike periods. With either that option or the
standard option, the impact of the strike remains in the
seasonally adjusted data.

There are several statements by the authors and discus-
sants that X—1l has been shown to be a fairly good
approximation to an ARIMA model for some economic
series, but not for others. These statements are based on
work most recently reported in an article by Cleveland
and Tiao [1]. In that article, X—1 1 is described as
performing creditably on an airline passenger series and is
compared with an ARIMA model that was fit to the series.
However, X—1 1 performed poorly on a telephone discon-
nection series for which a different ARIMA model is
appropriate. The poor performance is based on a misspec-
ification of X—ll for the telephone data. The telephone
disconnection series contains substantial trading-day vari-
ation. This is revealed by the autocorrelation structure of
the irregulars, as shown in chart F of the article by
Cleveland and Tiao. The autocorrelation structure corre-
sponds closely with that of trading-day factors, based on
equal activity for Monday—Friday, with near zero activity
on Saturday and Sunday. If the trading-day option had
been used, the autocorrelation structure of the irregulars
would not have shown this pattern, and X—11 probably
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would have performed about as well on the telephone data
as on the airline data.

Julius Shiskin indicated, in the keynote address, that
several variants of method II have served as the official
method of seasonal adjustment. It may be helpful to
describe how these variants differed with respect to the
calculation of the current and year-ahead seasonal factors.
The seasonal factors in the X-3 variant reduced the size of
revisions in many series by roughly one-third, compared
to the original specification of method H. This reduction
resulted from a change in the procedure for extending the
SI ratios for a given month to the 3 years beyond the end
of the series in order that the 3 x 5-moving average could
be computed to the end of the series. The original
procedure used an average of the SI ratios for the last 2
years as an estimate of the ratios for the next 3 years.
This was replaced in X—3 with an average of the SI ratios
for the last 4 years. The X—3 technique was retained in
X—9 and is the standard option in X—ll. The X—1O variant,
which was developed in cooperation with the OECD, was
never the official program in the United States. It fit a
different curve to each month, ranging from a very short

moving average to a stable seasonal, depending on a
signal-to-noise ratio. This option is available in X—1l and,
if used intelligently, can lead to reduced revisions for some
series. To the best of my knowledge, the only major use
of this option by the U.S. statistical agencies is for the
import and export series adjusted by the Census Bureau.
For these series, a 3 x 9-moving average is used for each
month in place of the 3 x 5-moving average.

The X—1l ARJMA variant,, developed by Statistics
Canada, is another approach to tailoring the procedure for
obtaining current seasonal adjustment factors to the series.
The reduction in revisions, reported at the conference, of
about one-fifth for X—l1 ARIMA is important news. One
hopes that the statistical agencies will follow up and test
the method on U.S. series. As with X—lO, the ARIMA
variant requires considerable skill and judgment. One
possibility, which should not be overlooked, is that tests
with X—ll ARIMA may indicate that much of the possible
improvement could be captured with a very limited
number of suboptimal modifications of the X—l1 weights.
If so, this would facilitate the uniform application of the
method on a large scale.



REFERENCES

1, Cleveland, William P., and Tiao, George C. "Decom-
position of Seasonal Time Series: A Model for the
Census X—1l Program." Journal of the American
Statistical Association 7! (September 1976): 581—587.

2. Durbin, John. "Trend Elimination for the Purpose of
Estimating Seasonal and Periodic Components of Time
Series." In Proceedings of the Symposium on Time
Series Analysis. Edited by M. Rosenblatt. New York:.
John Wiley and Sons, Inc., 1963, pp. 3—13.

3. U.S. Department of Commerce, Bureau of the Census.
Estimating Trading-Day Variation in Monthly Eco-
nomic Time Series, by Allan H. Young. Technical
Paper 12. Washington, D.C.: Government Printing
Office, 1965.

4. Young, Allan H. "Linear Approximations to the Cen-
sus and BLS Seasonal Adjustment Methods." Journal
of the American Statistical Association 63 (June 1968):
445—471.

477








