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SABL: A RESISTANT SEASONAL ADJUSTMENT PROCEDURE WITH GRAPHICAL METHODS
FOR INTERPRETATION AND DIAGNOSIS

William S. Cleveland, Douglas M. Dunn, and Irma J. Terpenning
Bell Laboratories

ABSTRACT

SABL (Seasonal Adjustment-Bell Laboratories) is a new seasonal adjustment
procedure for monthly time series with a yearly penodicity. From a class of
transformations of the data, SABL selects the one that minimizes the lack of
stability of the seasonal component. It then decomposes the transformed time
series into additive trend, seasonal, and irregular components using resistant-
smoothing techniques. The smoothers consist of an initial resistant smooth using
moving medians, followed by one or more linear smooths. Graphical displays are
provided as diagnostic tools in assessing the nature and adequacy of the
decomposition into trend, seasonal, and irregular components.

INTRODUCTION

A Brief Overview of SABL

This paper has been organized to accommodate various
types of readers. Those interested only in a nontechnical
summary of the goals and general methods of SABL and
its relation to other approaches to seasonal adjustment
need read only the first two subsections of the introduc-
tion. Those readers who, in addition, are interested in
understanding the nature of the techniques used, but who
do not want a complete description of details, can also
read the third subsection of the introduction. Finally,
those interested in the details of SABL can find them in
the remaining sections of this paper.

Let us suppose that Z(t), for t=l N, is a monthly
time series which exhibits yearly seasonal fluctuations
and that the goal is to seasonally adjust the series. This
means computing values which portray, as well as possi-
ble, what the series would have been had the seasonal
component not been present; that is, with the seasonal
part of the series removed. SABL (Seasonal Adjustment-
Bell Laboratories) consists of numerical procedures for
carrying out the seasonal adjustment and graphical dis-
plays for interpreting the adjustment and for diagnosing
problems when they exist.

Z(t) is assumed to be the sum of three additive
components

Z(t)=T(t)+S(t) + 1(t)

where D(:) represents the long-term trend in the series,
S(t) represents the more-or-less periodic seasonal. part,
and 1(t) represents the irregular or noisy part. SABL

computes component estimates that will be denoted T(r),
S(t), and 1(z) and that satisfy

Z(z)=T(t)+S(t)+1(t) (I)

The seasonally adjusted series is then

Z(t)—S(t)=T(t) + 1(t)

The data and the three components of (I), computed by
SABL, are shown in figure 1 for the logarithm of U.S.
money supply (Ml). The vertical bars to the right of the
three component plots all represent the same number of
units and, thus, provide a comparison of the different
scalings on the three plots. Similarly, in figure 2, the data
and three components are shown for the logarithm of
U.S. manufacturing shipments.

The decomposition is achieved through a series of
filtering operations. Deviant observations, even if rela-
tively small in number, can substantially distort the results
of filtering operations unless precautions are taken. For a
specific decomposition task, SABL tailors recently devel-
oped filters that are resistant to deviant observations. The
overall approach is to first use resistant filters, such as
moving medians, that eliminate the distorting effects of
outliers and then to use more standard linear filters on
these resistantly smoothed results to achieve the desired
degree of smoothness.

When variation that properly belongs to one component,
say S(t), is incorporated in the variation of another
component, say 1(z), we shall say that leakage has
occurred. One goal of the seasonal adjustment process is
to provide an S(t) for which there is as little leakage as
possible.

For seasonal time series, the amplitudes of the seasonal
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frequently increase with increasing levels of
trend. This is illustrated in figure 3, which shows the

components estimated by SABL for U.S. manufacturing
Such instability is undesirable, since filtering

operations perform best when the seasonal is stable and
since, more fundamentally, the decomposition in (I) as-
sumes no interaction among the three components. This
kInd of seasonal instability may be eliminated if the

procedure is applied, not to the raw data,
but rather to the data transformed by a power transforma-

with parameter p. which has the form

The initial part of the SABL process is an automated
procedure to select the power tranformation that mini-
mizes the dependence of the seasonal amplitudes on the
trend. For manufacturing shipments the transformation
procedure selected the logarithm that, as can be seen by
comparing figures 2 and 3, successfully removed much of
the lack of stability of the seasonal amplitudes.

In the seasonal adjustment process, it is important to
have tools for assessing the adequacy of the adjustment.
It is our contention that one of the most effective
approaches to assessment is to study graphical displays of
the output, T(t), S(t), and 1(t). These graphical displays
serve a dual purpose. The first is to provide powerful
diagnostic aids to assess the adequacy of a three compo-
nent decomposition. The second is, given that the decom-
position is satisfactory, to assess the behavior of each of
the three components in determining the makeup of the
series. It is important to realize that these graphical
methods can be utilized for any three component decom-
position, whether based on filtering procedures, such as
SABL, or based on a model fit to the series.

itt should be emphasized that SABL is still very much
in the development stage. While performance for the
current version is quite good, changes will undoubtedly
be made as a result of continued experimentation with the
methodology.

A Comparison of SABL and Other Methods

The single most informative statement we can make to
categorize the SABL decomposition procedure among
others already in existence is that the philosophy of its
overall approach is exactly the same as that used in the
X—ll procedure of the Census Bureau [23]. In both cases,
filtering operations are utilized to achieve a decomposition
in which the tailoring of the decomposition to a particular
series is done only through the amount of smoothing of
the individual filters. This is in contrast to methods in
which a specific model is fit to an individual series.

The differences between SABL and X—l I are in the
techniques used to carry out and analyze the decomposi-
tion. For example, SABL utilizes resistant filters that,
from the start, are not unduly affected by a small number
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of deviant observations. In contrast, X—l I iterates between
nonresistant linear filters and downweighting observations,
identified as deviant by examining the irregular. In such
an approach, an initial nonresistant linear fit can cause
the effect of an outlier to be smeared across several
residuals so that good. observations appear as outliers
[10], or the initial results can be so badly distorted that
bad observations do not appear as outliers.

A second major difference between X—l I and SABL
lies in the nature of the three component decomposition.
X—l I offers two possibilities—an additive procedure and a
multiplicative one. SABL offers these two possibilities as
a subset of a broader range of possible power transforma-
tions of the data.

Finally, SABL provides newly developed graphical
methodology, which better enables the user to assess the
performance and behavior of the decomposition. The use
of any automated statistical procedure without a thorough
diagnosis of the results is dangerous. It is only through a
critical and penetrating look at the results that one can be
assured that they are sensible and that they achieve the
desired goals. A detailed comparison of the results of
SABL and X—l I decompositions is in progress. An initial
comparison, using some of the graphical methods of
SABL, is presented for a well-behaved series in the final
section of this paper.

The alternative to a general filtering routine, such as
SABL, is to fit specific models to individual series. For
example, regression models [7; 8; 9; 14; 17; 18; 20] and
time series models [13; 19] have been used to model
empirically and to seasonally adjust series. While modeling
can be successful and provide optimal seasonal adjustment
in specific cases [12; 14], any single class of models is
unlikely to have the flexibility of a filtering approach.
Thus, in a domain where it is necessary to have a
decomposition procedure that is easy to apply and that
must perform well for many different kinds of series, a
filtering approach is likely to be the more desirable. This
undoubtedly accounts for the success of X—l I in the past..

However, we do feel that SABL can be useful even in
those cases where a modeling approach is the one
ultimately utilized. Particularly when the modeling is
purely empirical, the output of SABL can be utilized in
choosing the form of the model to be fit and to assist in
diagnosing possible inadequacies in the fitted model.

A Detailed Summary of SABL

Power transforming the data—It is often the case that
the seasonal amplitude is a function of the general level of
the series. Since the level is described by the trend, the
first step of SABL is to select the power transformation
for which the trend and seasonal amplitudes of the
transformed series are least related. For example, figures
2 and 3 show that the seasonal amplitudes of the logarithm
of manufacturing shipments are more stable than those of
manufacturing shipments.

A model which reasonably describes a dependence of

(raw data) P
log (raw data)
—(raw data)

for p >0
for p =0
for p <0
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seasonal amplitudes on the trend is the nonadditive model

Z(r) =T(t)+S(t)+c(S(t)—S(.)) (T(t)—T(. ))+!(t) (2)

where S(.) and i'(.) are the means of S and 1', respectively.
We want S(i) to be a component for which the amplitude
does not depend on t(t). To ensure such stability, we
shall assume S(t) is perfectly stable, so that = S(t+ 12).

Here, as elsewhere, we use Z(t) to denote the original
series or a power transformation of the original series.
For each value of p in the set —l.5(.5)1.5, model (2) is fit
to the power transformed data, Z(t). The fit is done by
filtering Z(t) to get a trend estimate T(t), computing an
estimate, S(i), of S(t) from Z(t)—T(t), and then regressing
Z(t)—T(t)—S(t) on (S(t).-S(.)) (T(t)—T(.)) using resistant

The value of p that is selected is the one for
which the r2 for this regression is minimized, i.e., for
which the contribution of the product term in the above
model is the smallest.

The decomposition into trend, seasonal, and irregular—
SABL employs resistant operations to carry out
the three-component decomposition. Following Tukey
[221, these filters are a combination of moving medians
that prevent distortion from outliers and the more standard
weighted moving averages, which achieve sufficient
smoothness. A small fraction of outliers can substantially
distort a moving average, whereas the moving median of,
e.g., Ii, will be resistant, provided no more than 5
outliers occur in any 11 consecutive values of the series.

The details of the SABL decomposition procedure were
developed partially as a result of empirical studies on
actual and artificial series. In addition, the following
overall goals guided the selection of the methods for
estimating the trend, seasonal, and irregular:

I. T(t) should reflect the low frequency or trendlike
behavior of Z(t).

2. S(t) should reflect the relatively stable behavior that
repeats every 12 months.

3. 1(t) should contain all behavior that is not seasonal
or trendlike.

4. There must be as little leakage as possible from one
component into another.

5. Extreme or unusual values of Z(t) should not distort
T(t) or S(t). This unusual behavior of Z(t) should be
reflected only in 1(t).

6. Estimates of trend and seasonal should be as respon-
sive as possible to change in their structure.

The decomposition procedure is iterative in the sense
that at each step a new estimate of the trend or seasonal
is made, based on the preceding iteration's estimate of
the other component. For example, if an estimate, S(t), of
the seasonal has just been computed, then an estimate,
T(t), of the trend is computed by filtering Z(t)—S(t) with a
resistant filter that passes only low frequencies. If an
estimate, T(t), of the trend has just been computed, then
the estimation of the seasonal is begun by filtering,
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separately, each of the 12 monthly series of Z(t)—T(t)
(i.e., all of the Januarys are filtered as a separate series,
then all of the Februarys, etc.). To decrease the danger of
trend leaking into this seasonal estimate, a low-pass filter
is applied to the estimate, and the result subtracted to
form new seasonal estimate. The only other adjustment
in the estimation of the seasonal follows the first seasonal
smooth which, for reasons to be described later, has 11
values missing at the end and at the beginning. The
missing values are estimated by predicting the seasonal
forward and backward.

The stages of the decomposition procedure and their
relationship to the transformation and graphical stages of
SABL are shown in table I. The remainder of this section
describes these decomposition stages in more detail.

The process begins by computing a trend estimate from
Z(:). The design of the trend filter must, in this case,
reflect the fact that the seasonal is present in Z(t) and,
thus, not allow seasonal to leak into the trend estimate.
The procedure is to—.

I. Resistantly fit and subtract a line from Z(t) so that
an application of moving medians will be more
effective.

2. Take moving medians of length 12 of the result of(l).
3. Filter the result of (2) by a weighted moving average

that eliminates the variation of seasonal frequencies
and passes quadratic polynomials.

4. Add the line fit in (I) to the result of(3). This is the
trend estimate, T(t).

The seasonal smooth is now applied to Z(r)—T(t). Each
monthly sequence of Z(t>—T(t) is separately smoothed by
a succession of median and moving average filters, each
of which has length 4, 3, or 2. As examples, one of the
resistant filters takes repeated moving medians of length 3
until there is no change, while one of the linear filters is a
moving average with weights '/4. This same
seasonal smooth is also applied at each iteration. Let 5(1)
denote the output of the seasonal smooth.

Trend can leak into the seasonal estimate unless special
precautions are taken. To prevent this, a low pass filter
may be applied to S(t) and the result subtracted from S(t)
to form the seasonal estimate. Since S(t) has already
incorporated resistant filters, this trend smooth of S(t)
need not do so. The procedure is to—

1. Add six values to the beginning of S(t) and six
values to the end of S(t) by predicting S(t) forward
and backward.

2. Filter the result of (I) using a low pass filter which
completely removes the seasonal frequencies.

3. Subtract the result of (2) from 5(t) to get the
detrended estimate of the seasonal.

Once an estimate, S(t), of the seasonal has been
computed, the trend can be estimated by applying a low
pass filter to Z(r)—S(t). Unlike the first trend smooth, this
filter does not need to be designed to completely remove



Z = transformed data

1.11 = raw seasonal

Si

S2

Z-S3 = raw trend

Z-T2 = raw seasonal

S4

Z-S5 = raw trend

Z•T = raw seasonal

S6

Z, T, S

Z, T, S, I

Table 1. SUMMARY OF SABL

First trend smooth

Seasonal smooth

Seasonal trend smooth and removal

Seasonal component prediction

Trend smooth

Seasonal smooth

Seasonal trend smooth and removal

Trend smooth

Seasonal smooth

Seasonal trend smooth and removal

Compute irregular

Plot data and components

(raw forp >0
log (rawdata) for p0

Ti = first trend smooth of Z

Si = seasonal smooth of Z-T1

S2 = Si minus a trend smooth of Si

S3 = S2 together with ii values added to the
beginning and end

T2 = trend smooth of Z-S3

S4 = seasonal smooth of Z-T2

S5 = S4 minus a trend smooth of S4

T = trend smooth of Z-S5

S6 = seasonal smooth of Z-T

S = S6 minus trend smooth of S6

= Z-T-S

Graphical displays for interpretation and
diagnosis
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1. Fit and subtract a line from so that an
application of moving medians will be more effective.

2. Compute a moving median of length 12 of the result
of (1).

3. Smooth the result of (2) by a succession of short
length median and moving average filters.

4. Smooth the result of (3) by a weighted moving
average that passes quadratic polynomials.

5. Apply steps (2), (3), and (4) to the result of (I) minus
the result of (4), and add this new smooth to the
result of (4).

6. Add the line fit in (I) to the result of(5).

Step (5), which is called twicing [221, is intended to add
back effects that are missed by the initial smooth.

Graphical displays—The graphical presented
in this paper can be used to assess both the nature and
the adequacy of a three-component decomposition. Many
of the plots are oriented toward checking whether there is
leakage of one component into another. While the plots
are used to display the results of the SABL decomposition,
they can be used for any decomposition procedure.

Boxplots [22] are used in several of the graphical
displays of SABL. Figure 16 is an example. The boxplot
is a graphical summarization of the distribution of a set of
values. The line overprinted with an "x" in the middle of
the box shows the center of the distribution, the upper
and lower edges of the box portray quantities, that are
much like upper and lower quartiles and the ends of the
dotted lines portray tails of the distribution. Values that
lie beyond the ends of the dotted lines are shown
individually.

Table 2 summarizes the diagnostic and interpretive
displays of SAI3L and identifies a figure exemplifying
each. In this section, we attempt to give the general
flavor of each display. Details are given in the section on
graphical methods for assessing the decomposition.

Figures 1—3. The data and each of the three components
from SABL are plotted against time to enable appreciation
of the overall change in the components through time.
However, much detail which is of interest cannot be seen
in these plots.

Figures 9—10. The variability of a given component
through time is measured by a moving maximum of
length 12 minus a moving minimum of length 12. For the
trend and irregular components, this measure is smoothed
by a low pass filter. The three measures are plotted
against time to show how much of the variation in the
original series is attributable to each component and how
these relative influences change through time.

Figure ii. For each component, the unsmoothed values

of the variability measure described for figure 10 are
summarized by boxplots. In addition, the midmean [1] of
each monthly series of the seasonal component minus the
minimum of these 12 midmeans is portrayed. (The mid-
mean of a set of values is defined to be the average of the
order statistics between the upper and lower quartiles.)
This display shows the overall influence of each of the
three components in determining the variation of the
series.

Figure 12. The final seasonal smooth in the SABL
decomposition filters the raw seasonal, which is equal to
the final seasonal plus the irregular. To check the perform-
ance of the final smooth, the raw values are plotted
together with the smoothed values for each month.

Figure 13. The trend plot in figure 1 does not allow the
detail of local variability to be appreciated, because the
long-term change in the trend is large, compared with this
variability. To enable appreciation of detail, the first,
second, and third differences of the trend are plotted
against time.

Figure 14. To check the performance of the transforma-
tion in stabilizing the seasonal oscillations, a moving
maximum of length 12, a moving minimum of length 12,
and a low-pass smooth of the absolute values of the
seasonal are plotted. To check for trend in the seasonal, a
low-pass smoothing of the seasonal is also plotted.

Figure 15. Each of the 12 monthly series of the seasonal
is plotted on the same graph. This allows appreciation of
the shape and magnitude of the overall seasonal cycle and
also displays the magnitude of changes within each
monthly series, compared with the overall seasonal ampli-
tude.

Figure 16. Seasonal residuals are defined to be the
seasonal component with the midmean of each monthly
series subtracted from the series. Boxplots are used to
summarize the distribution of each of the 12 monthly
series of the seasonal residuals, thus, portraying the
relative variability in the 12 series.

Figure 17. The individual yearly cycles are stacked on
top of one another to allow identification of individual
months.

Figure 18. To allow better appreciation of the change in
the yearly cycle through time, the seasonal residuals
defined for figure 16 are plotted as in figure 17.

Figure 19. A two-way display is used to portray the
seasonal, with the columns as months, the rows as years,
and the absolute value of the seasonal proportional to
circle area. Negative values are indicated by a slanted line
inside the circle.

Figure 20. To allow better appreciation of the change in
the yearly cycle through time, the seasonal residuals
defined for figure 16 are plotted as in figure 19.

Figure 21. A measure of the autocorrelation in the
irregular and the spectrum of the irregular are plotted.
These can point out leakage of seasonal into irregular
when it occurs.

Figure 22. A variation of the boxplot is used to
summarize the distribution of each of the 12 monthly

variation at seasonal frequencies. (It is

here, however, to have variations at seasonal
substantially reduced to guard against leakage
jfltO Z(z)-S(t).) This trend smooth, like the
guard against the distorting effect of outliers.
Jure is to—

wise, even
frequencies
of seasonal
first, must
The proce-
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Table 2. SUMMARY OF DIAGNOSTIC AND INTERPRETIVE PLOTS

Irregular

A measure of autocorrelation of the irregular and an estimate of the spectrum of the irregular are plotted.

The distribution of each monthly series of the irregular is summarized by a variation of boxplots.

Smoothed moving quantiles of the irregular are plotted against time.

SECTION v

Simultaneous Plotting of Trend, Seasonal, and Irregular
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Figure 1. Data and three components are plotted against time.

Figure 10. Variability of each of the three components is plotted against time.

Figure 11. An overall summary of the variability of each of the three components.

Figure 12. For each month, the seasonal and the seasonal plus irregular are plotted.

Trend

Figure 13. First, second, and third differences of trend are plotted against time.

Seasonal

Figure 14. A summary of the change of the seasonal amplitudes through time is plotted together with a seasonal trend smooth.

Figure 15. Each of the 12 monthly series of the seasonal is plotted on the same scale.

Figure 16. The monthly midmean is subtracted from each monthly series and the distribution of each monthly series of residuals
is summarized by boxplots.

Figure 17. The yearly cycles of the seasonal are stacked and plotted.

Figure 18. The monthly midmean is subtracted from each monthly series and the residuals plotted as in figure 17.

Figure 19. The seasonal is portrayed in a two-way display, with the columns as months and the rows as years.

Figure 20. The monthly midmean is subtracted from each monthly series and the residuals plotted as in figure 19.
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series of the irregular. This allows appreciation of the
dependence of the distribution of the irregular on the
month of the year and can aid in an appreciation of the
magnitude of seasonal leakage into the irregular when it
0ccurs.

Figure 24. The irregular, a moving upper quartile, and a
moving tower quartile of the irregular are smoothed and
plotted against time. This allows appreciation of changes
in the distribution of the irregular through time, and also
ailows detection of leakage of the trend into the irregular
when it occurs.

THE SABL DECOMPOSITION INTO TREND,
SEASONAL, AND iRREGULAR

Table 3 gives a summary of the decomposition proce-
dures used by SABL. In this section. each of these
procedures will be described in detail.

First-Trend Smooth (FTS)

The first-trend smooth (ETS) is applied directly to Z(t),
which is the data or a power transformation of the data.
•Since Z(t)=T(t)+SQ)+!(t), FTS must be designed to
eliminate S(t) and 1(1) in order to produce a trend estimate
T(i). FTS must also prevent outliers from distorting the
estimated trend. If we attempt to guard against outliers
and to remove the seasonal by taking moving medians of
length 12 of Z(t), two difficulties arise. The first is that
the moving median of length 12 will not in general
completely remove the seasonal in the presence of a
trend component. even if the seasonal component is
perfectly stable. To see this point clearly, suppose Z(t) is

— made up of a cosine seasonal component plus a linear
trend.

Z(t)=cos (irt/6)+at, t0, 1, 2,

The greater the slope, a. the less the seasonal is removed
by smoothing with medians of length 12. This is demon-
strated in figure 4, which shows the moving median
centered at k÷0.5 minus a(k+0.5) for k= I 13, and for
a=0.l(O.l)0.5. The amplitudes of the curves increase with
increasing a. For a>irI6, Z(t) is monotone. the moving
median becomes a moving average of length 2. and the
seasonal amplitude is reduced by only 7 percent.

The second difficulty, closely related to the first, is that
the outlier-removing capacity of the moving median is
reduced for a series with a strong trend component. For
example. in a monotonic segment of a series, the moving
median cannot decrease the influence of an observation
that is unusual, because its increase over the previous
observation is relatively small.

Thus, the smoothing capacity of moving medians is
greatly reduced if the change in the trend component is
large, compared to the variation about the trend. One
solution is to fit a smooth function, such as a polynomial,
to Z(t) as an initial estimate of the trend, apply smoothing

procedures to the residuals, and then take the final
estimate of trend to be the smoothed residuals plus the
fitted line. Since much of the trend is not present in the
residuals, the severity of the two problems, described
previously, is not as great.

In carrying out the above fit, we use a linear polynomial.
calculated by a resistant procedure called TILT, which is
similar to a suggestion in [4]. TILT first divides the
independent variable, in this case time, into nine groups,
each consisting of approximately N19 consecutive values
of the variable. The midmean of the values of the
dependent variable, Z(i). in each group, and the midmean
of the values of the independent variable are computed.
A line is then fit to the resulting nine points using least
squares.

The residuals from the line fit by TILT are smoothed
first by a moving median of length 12. The results of this
resistant smooth will be denoted j=6.5. 7.5 N —
5.5. Since the smoothing length is 12, contains II
fewer values than Z(t) and is centered between the
original integer time points. a, is then further smoothed
by a weighted moving average

whose weights. will now be described.
One standard procedure for linear smoothing is to fit

polynomials, say quadratics, to successive blocks of points
[161. One property of such a smooth is that quadratic
polynomials are preserved by the smooth. We shall retain
this property but, in addition, require that a strictly
periodic component of period 12 be completely removed.
An easy derivation shows that the weights. Wr, can be
computed by minimizing

subject to the constraint

r2w,.
= (

2

which ensures that quadratic polynomials are preserved.
and also subject to the constraints

1

for r=0 II, which ensure that seasonals of period 12
are completely removed. The values of W,. can be found
using Lagrange multipliers. For the examples in this
paper. the value of q was taken to be 24. Since the initial
smooth, by moving medians, was also even in length. the
linear smooth of which we denote as /= 18 N—

17. is centered at integer values of time with being
centered at timej.

has 23 fewer values than the aj and 34 fewer values
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Table 3. SUMMARY OF THE DECOMPOSITION PROCEDURES OF SABL thai
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than Z(t) and extends from time points 18 to N—l7. It is
desirable, however, to have the smooth extend as far
toward the beginning and end of the series as possible.
The shortest length linear smoother (and, therefore, the
one that loses the fewest number of values at the
beginning and the end) that eliminates a seasonal compo-
nent of period 12 is an equal-weight moving average of
length 12. Let c12, . . ., be the first 18 values of such a
smooth applied to aj. Then d12, . . . d29 is the result of
splicing c12 into ..., b29 using cosine weights.
That is,

12 �j � 17

for 18 29

where A completely analogous
splice is performed at the other end, which results in

dN_lI. This completes the description of FTS,
which has an output of

d12, . . ., b30. . . dN_28, .. .,

Since we shall utilize separately the linear portion of FTS
(the weighted moving average of length 24 with the
moving average of 12 spliced to the ends), we shall refer
to it as QLSS (quadratic-linear seasonal stop).

Seasonal Smooth (SS)

The seasonal smoother (SS) is used after the first-trend
smooth (FTS) and after each application of the trend

— smooth (TS). The input to SS is the raw seasonal.
calculated as the difference between the data and the
current estimate of trend. This raw seasonal is the sum of
the smooth seasonal and the irregular components. Thus.
the goal of SS is to smooth the raw seasonal in such a
way as to eliminate the irregular component. In a large
proportion of the series that are seasonally adjusted, the
change in the seasonal component from I month to the
next is not smooth, but each of the 12 monthly series
changes slowly from year to year. Hence, a short-length
smoother is used to smooth, separately, each of the 12
monthly series of the raw seasonal. This smoother is
based on one suggested in [3] that, in turn, is based on
ideas in [22].

Let a1 be values of a monthly series of the
seasonal. The smoothing procedure consists of the follow-
ing two steps:

1. Smooth a2 Denote the smooth by
b2, . . .

2. Smooth a1, b2, .. .bk_l, ak.

The reason for treating the end points, a1 and a

special way arises from the nature of the trend smooth
(TS) used to compute the raw seasonals. The beginning
and end values of T(t), e.g.. the first and last 12 values,
are not as precisely determined as the interior values of
T(t), since the effective length of the IS smoother on the
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interior points is wider than 25 points. The most extreme
cases are the end points I and N, which can incorporate
information only from the right or from the left, whereas
the interior points can incorporate information from both
sides. We shall first describe the smoothers used in steps
(I) and (2) and then describe the end value rules.

The smoother used in step (I) is denoted 4(3RSR)2
twice and consists of the application of a sequence of
smoothers of lengths 4, 3. or 2. (The suggestion has been
made in [24] that even length-moving medians are prefer-
able to odd.) At each stage, an end value rule is used to
extend the smoothed series to the ends. We now describe
the procedure as applied to a sequence c1 m at
positions I to m. The first smooth of 4(3RSR)2 is a
moving median of four, which is denoted in the smoother
notation as 4. This yields smoothed values at points 2.5,
3.5 ,n—l.5. End value rule G1 (to be described later)
is used to form smooths at time points 1.5 and m—O.5.
Then a smoother consisting of medians of three is applied
repeatedly until the values do not change. This is denoted
as 3R. At each application of the moving median, the
smooth at the end point is taken to be the end point
itself. After 3R has been applied, end-value rule T1 is
used to smooth the ends. 3R tends to produce local
maximums and minimums of length 2 (e.g., 1, 2, 2. 0 or
5, 3, 3, 6). To smooth these maximums and minimums,
the following rule is used: Treat the left value of the
double maximum or minimum as a right-hand end point
and use end-value rule T1 to smooth it; then, treat the
right value as a left-hand end point and use end-value rule
T1 to smooth it. For example, if the sequence is I, 2, 2,
3, 4, 4, 3. 2, 1, then the left value of 4 is smoothed by
applying end value rule T1 to 2, 3, 4 and the right value
of 4 is smoothed by applying end value rule T, to 4, 3. 2.
After this smoothing of maximums and minimums, called
splitting [22], 3R is again used to smooth the sequence.
The splitting, followed by 3R, is applied repeatedly until
there is no change in the sequence. This is denoted SR.

We have, thus far, applied 4(3RSR) to produce
smoothed values at points 1.5, 2.5 in—O.5. The result
is now further smoothed by a moving average of length 2,
denoted in the smoother notation as 2. which produces
smoothed values at points 2. 3 rn—I. End-value rule
G2 is used to. provide smooths at points I and rn. The
result is the output of the smoother 4(3RSR)2. Now.
twicing [22] is used to recover some of the effects that
might have been missed by 4(3RSR)2. Recall that the
sequence being smoothed is c1 Cm. Let d1 dm be
the result of 4(3RSR)2. 4(3RSR)2. twice is equal to plus
4(3RSR)2 applied to

The smoother used in step (2), which is applied to
a1, b2 bk_l, ak. tirst smoothes the ends using end-value
rule T1, then applies a moving average with weights /4

(denoted by H) to yield smoothed values at points
2, 3 in—I. End-value rule is then used to extend
the smooth to the ends.

The end value rules will be described for left-hand end
points. Completely analogous rules hold for the right-hand
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end pointS. We begin with rules T1 and T2. Let the first
three values of the sequence be u1, U2, u.s. A prediction,
u, of the sequence one step to the left is achieved by
linearly extrapolating and U:1 to position 0. Thus,
u,—3u2—2U:i. For end value rule T1, the smooth at position

I is the median of u1, and U2. For end-value rule T2,

the smooth at position I is

End-value rule G1 extends, to position 1.5. the result of
applying a moving median of length 4 to c1, ..., Cm. Let

and be the first two values of the smooth. A
value, e05. for position 0.5 is achieved by linearly extrap-
olating eu-, and to position 0.5. l'hus, e15=3e25—2e35.
The smooth at position 1 .5 is then the median of e5, c1,
e.,, and

End-value rule G2 extends, to position I, the result of
applying a moving average of length 2 to the output of
4(3RSR). Let this output be denoted f15, f25 and let
g2 and g3 be the results of the moving average of 2 at
positions 2 and 3. A value, at position 0.5 is achieved
by linearly extrapolating g2 and g3 to position 0.5. Thus

The smooth at position I is then
+f10)/2.

Seasonal Trend Smooth and Removal (STSR)

The iterative process of successively computing trend,
then seasonal, is designed to keep either seasonal from
entering trend or trend from entering seasonal. Nonethe-
less, examples show that trend can leak into seasonal,
using these techniques as well as others. STSR combats
this by applying a trend smoother. to S(i), the result of
SS, and then subtracting the estimated trend from S(t) to
form a new estimate of the seasonal.

This trend-estimation problem is similar to that encoun-
tered in applying a trend smoother to Z(t) in that Z(t) and
S(t) both contain seasonal variation. However, the esti-
mation problems differ in that, since S(t) is the result of a
resistant smoother, nonresistant-linear smoothers may be
applied directly to S(t).

The STSR smooth of S(t), t= I N begins by adding
six values to the beginning and six values to the end of
S(t), using the seasonal-component prediction procedure
(SCP) described in the next section. This allows the trend
smooth of S(t), which loses six values at each end, to
return N values. The extended S(t) is then smoothed by
QLSS, the linear smoother of FTS. (See the subsection
on first-trend smooth.) A moving average of length 2 is
then applied to the result in order to center the output at
integer values of time. This smooth is then subtracted
from S(t) to form a new estimate of the seasonal.

Seasonal Component Prediction (SCP)

There are two cases where SABL needs to extend (i.e.,
predict) the seasonal estimate. S(t), forward and backward:

I. The first seasonal estimate that results from applying
Fl'S. then SS. and then STSR has II values missing
at each end. These are supplied by SCP before
applying TS the first time.

2. STSR requires that S(t) be extended by six values at
each end.

SCP extrapolates each monthly series, separately, to
provide the extended values. For example, suppose the
seasonal has been estimated from January 1961 to Decem-
ber 1969 and six additional values are needed at each
end: A July 1960 prediction is achieved by extrapolating
the July seasonal series one step backward. Since no
more than II values are needed in either case, each
monthly series does not need to be extrapolated by more
than one step.

The extrapolation rule for predicting backward will be
described. The forward rule is completely analogous. Let
a1, a2, and a3 be the first three values of a monthly series
at positions 1, 2, and 3. The goal is to provide a value,
a0, for position 0. Each of the following three predictors
could serve this purpose:

I. A horizontal extrapolation of a1, giving the prediction
a1.

2. A linear extrapolation of a and giving the
prediction 2a1 —a2.

3. A linear extrapolation using the least squares line fit
to a a;. giving the prediction (4a
2a3)13.

The median of these three predictions is the estimate of a0.

Trend Smooth (TS)

The trend-smoother (IS) estimates the trend by smooth-
ing the raw trend, Z(t)—S(t), where S(t) is an estimate of
the seasonal resulting from SS followed by STSR. Like
the first-trend smooth (FTS) TS must be designed to
guard against outliers. Unlike FTS, TS does not need to
be designed to remove all variation at seasonal frequen-
cies, since most or all of the seasonal will have been
removed by the subtraction of S(t). TS does need to be
designed to go to the ends of the series in order to have a
trend estimate at all time points. t=l N.

Like Fl'S. IS begins by subtracting a line fit by TILT
and then smoothing the residuals with a moving median
of length 12. Unlike ETS, the moving median is extended
to the ends. Let a1 be the values of the residuals.
•The leftmost value of the moving median of 12 is the

median of a1 which is centered at position 6.5.
The extended-median smooth, at position k+.5 for

5, is the median of a1 02krn The extension
for the other end is completely analogous.

Next, a moving average of 2 is taken to yield smooths
h2 A smooth, b1, at position I is achieved using
end-value rule G2. (See the subsection on seasonal
smooth.) This smooth consists of the average of the
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extended median smooth at position 1.5 and the linear
extrapolation to position 0.5 of the moving-average smooth
at positions 2 and 3. A smooth at position N is achieved
in an analogous manner. These results are now further
smoothed by applying the smoother 4(3RSR)2. twice to
b1, ..., (See the subsection on seasonal smooth.)

The concept of a trend assumes underlying long-term
smooth behavior. Based on this idea, the output of
4(3RSR)2, twice, which will be denoted as c1, ..., is

further smoothed by fitting quadratic polynomials to
blocks of IS values. This smoother is similar to the first
linear smoother in FTS but does not employ the constraint
tiliat completely eliminates variation at seasonal frequen-
cies. Since both of the filters previously used in IS are
resistant to outlying observations, a moving average can
be safely employed on their output. Let ..., be

the values resulting from the quadratic-polynomial smooth.
Thus, consists of the fitted value of the quadratic fit to
the block of 15 values of c3, ..., centered at posi-
tion j. The following procedure is used to extend this
smooth to the ends. Let e1, ..., e15 be the fitted values of
a quadratic-polynomial fit to c1, ..., c15. Let ft, ..., f15
denote the result of splicing e1, ..., e15 into ..., d15,
using cosine weights. That is,

for I � 7

f( I —())il, + for 8 < IS

where A completely analo-
gous splice is performed at the other end, resulting in

..., The reason for the splice is to allow a
smooth transition from to d, in going from the ends into
the interior of the smooth. The final linear smooth is
f1, . . ., fI5, . . ., . . .,

We started with the residuals a1 aN from the fitted
line and successively applied moving medians. 4(3RSR)2,
twice, and a linear smooth, which resulted in the smooth
f1, ..., The residuals are now smoothed using this
same sequence of three smoothers, and the smoothed
residuals are then added tofj. This is another instance of
twicing. which has the intent of recovering from the
residuals some effects which might be absent from f,.
These smoothed values are now added to the line fit at
the initial stage of IS to produce the output of IS.

Variations in the Amount of Smoothing

The amount of smoothing done at each stage of the
SABL decomposition has been chosen on the basis of
decomposition results for several time series, including
those described in this paper. However, in other cases,
more or less smoothing, by any one of the filters, may be
desirable. This can be achieved by—

I. Increasing or decreasing the lengths of
the smoothers, which increases or decreases, respec-
tively. the amount of smoothing.
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2. Repeatedly applying a smoother, which increases
the amount of smoothing.

3. Repeatedly doing twicing. which decreases the
amount of smoothing.

The portable software being developed to carry out the
SABL operations will provide options for the amount of
smoothing.

SELECTION OF A POWER TRANSFORMATION TO
REMOVE THE DEPENDENCE OF SEASONAL ON

TREND

The Nonadditive Model

When the amplitudes of the seasonal oscillations are a
function of trend, the use of a power transformation,
described in the first and third subsections of the introduc-
tion. has the potential to remove or reduce the lack of
stability. In the model (2). the seasonal is made up of a
stable seasonal S(t) and an unstable seasonal (S(t)-S(.))
(T(t)—T(.)), which has oscillations with amplitudes depend-
ing on the level of the trend. it should be emphasized
that, while we are prepared to accept this model for the
purpose of finding a power transformation, it would
typically be too crude for the purpose of performing
seasonal adjustment. For seasonal adjustment. SABL
allows for more complex changes in the seasonal pattern.
described in the section on the SABL decomposition.

Durbin and Murphy [91 have also used a combined
additive and multiplicative model. However, rather than
attempting to remove the multiplicative part by a transfor-
mation, they fit the model and use it as a basis of their
seasonal adjustment procedure. Removing multiplicative
terms in models by a power transformation has been
utilized in other areas of statistics. (See [2; 6]). In these
cases, however, the models are completely specified,
including assumptions about error terms. In our case, the
trend and seasonal are estimated by resistant smoothing
operations, rather than by specific parametric forms, in
order to have a large amount of flexibility. The probabilis-
tic structure of the error terms is not specified, since it is
unlikely that the usual assumptions, such as independence,
would hold.

We might have stayed closer to a standard statistical
model by treating Z(t) as a month-by-year two-way table
and finding the power transformation that minimizes
Tukey's one degree of freedom term for nonadditivity
[211. This, however, would have treated the trend as a
step function that is constant for 12-month intervals rather
than as a continuous process.

Estimation of Trend and Stable Seasonal for the
Nonadditive Model

The estimate. T(t). of the trend. t&). in model (2) is
taken to be the result of applying the first-trend smooth,
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vrs, to Z(t), a power transformation of the data. The
stable seasonal, S(t), in the model is estimated by S(t) in
the following manner. Let S(k), for k=1, ..., 12, be the
midmean of the k-th monthly series of Z(t)—T(i). That is,
S(k) is the midmean of the values Z(k+ 12j)—T(k+ 12]) for
j=0, ..., where is the number of times the
k-th month occurs. Since the series length is not
necessarily a multiple of 12, the nk are not necessarily
equal. The midmean is used, since it provides a resistant
location estimate for each of the 12 monthly series. Now
5(z), for :=13, ..., N, is just taken to be a periodic
extension of 5(k) fork=l, ..., 12. That is, S(k+12j)=S(k)
for j=l,-. . .,

Fitting the Nonadditive Model

The parameter, p, of the power transformation is chosen
by doing a linear regression of

Y(t)=Z(t)—S(t)-—T(t) on X(,)=(S(f)—S(.)) (T(z).—T(.))

for a set of values of p and selecting that value of p
which minimizes r2. Since outliers may distort the results
of the regression and since errors can have unsymmetric
distributions, we employ a resistant regression procedure
that applies different weighting schemes to the positive
and negative residuals.

The first step in fitting

Y(t)=/31+/31X(t)+e(t)

is to estimate and by and using TILT (the
robust regression algorithm described in the subsection on
first-trend smooth). The residuals are

e(1)=

Let s be the median of the positive e(t). Then, each
positive e(t) is adjusted by taking

ife(t) 3s

e(t)=3s if e(t) > 3s

The negative residuals are adjusted in a similar manner,
using the median of the negative e(z). Adjusted Y(t) are
then defined by

Y(t)=e(t)+/31+/3,X(t)

Thus, this procedure amounts to a one-step, two-sided
huberizing of the residuals. An ordinary least squares
regression of Y(t) on X(t) provides the desired r2 value.

In figure 5 the values of r2 are plotted for a grid of
powers, —1.5(0.5)1.5, for each of three series: U.S.
money supply (Ml), U.S. manufacturing shipments,
and AT&T toll revenues. The transformation that Ipini-
mizes r2 in each case is—

If the €(r) in model (3) were independent normal
variables with zero mean and constant variance, then the
F-distribution could be used to test the significance of the
regressions. It is, however, highly unlikely that these
assumptions are valid for the €(1). The operations used to
define Y(t) and X(r) will tend to produce €(f) that are
correlated. Furthermore, the e(t) will often have a skewed
distribution. However statistical significance is only one
criterion for judging the usefulness of a transformation.
We are more concerned with the practical magnitude of
seasonal instability than with whether or not the instability
is statistically significant. For example, a small value of r2
for I may be highly statistically significant when, for
practical purposes, the stability of the seasonal for I

may be so near to that for untransformed data that the
transformation is unwarranted. For this reason, graphical
displays, described in the following section, also play a
role in the choice of a transformation.

GRAPHICAL METHODS FOR ASSESSING THE
DECOMPOSITION INTO TREND, SEASONAL, AND

IRREGULAR

Description of Boxplots

In the subsequent sections, it will be useful to have a
graphical summary of the sample, or empirical, distribution
of a set of numbers. The quantities that will be used to
summarize the distribution are the midmean, the semi-
midmeans, and the adjacent values. The midmean of a set
of values is defined to be the average of the order
statistics between the upper and lower quartiles. The
upper (lower) semi-midmean is defined to be the midmean
of the observations greater (less) than the median. We
shall use the midmean and semi-midmeans in place of the
more usual median and quartiles. Neither set of statistics
is distorted by a small fraction of outliers, but the
midmean and semi-midmeans have somewhat greater
stability, since they typically involve averaging more order
statistics. In addition, they perform better on data with
many repeated values (e.g., 2, 2, 3, 3, 3, 5, 5, 6, 6, 6).

Let one step equal 1.5 times the upper semi-midmean
minus the lower semi-midmean. The upper (lower)
adjacent value is the largest (smallest) observation that
is within one step of the upper (lower) semi-midmean.
All observations that are either greater than the upper
adjacent value or less than the lower adjacent value are
referred to as outside.

The distribution is summarized graphically by a box-
plot [22J, several of which are shown in figure 16. Each
boxplot identifies the upper (lower) adjacent value as the
upper (lower) dotted horizontal line; the upper (lower)
semi-midmean as the upper (lower) edge of the box; and
the midmean as the horizontal line inside the box with an
"xj'. Outside values are shown individually. In figure 16.
each is identified by year.
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Simultaneous Plotting of Data and Components

Plotting the three components against time—connected
and vertical line plots—In plotting a time series, W(t),
against time, we are plotting a sequence against equally
spaced values of the abscissa. In such a situation, two
plotting techniques are considered; we may want to use
either technique, or both, depending on the needs. The
first is to connect successive points of (1, W(r)) by straight
lines, as in the top plot of figure 6; we shall term this the
"connected plot." The second is to portray (t, W(t)) by a
vertical line, where the other endpoint (t, 11) is appropri-
ately chosen, as in the bottom plot of figure 6, where u=0.
We shall term this the 'vertical line plot."

As mentioned [5], the vertical-line plot ena-
bles one to perceive each individual value, since the line
is not a fat character such as " and, thus, allows high
resolution along the horizontal axis. Figure 6 shows 204
points in each plot. In contrast. the connected plot may
not allow sufficient appreciation of individual values. As
seen in figure 6. which shows the irregular component,
1(z). for log manufacturing shipments. the connected plot
does not tell us whether a spike consists of one or many
values. The vertical line plot seems more satisfactory for
this noisy series, where appreciating patterns of successive
values are relatively unimportant.

However, the vertical line plot sacrifices some of the
visual perception of connectivity of successive values,
and, in some cases, we lose an appreciation of a
pattern, defined by a group of values. Such patterns
are often appreciated better in the connected plot.
Figure 7 illustrates this for log money supply. The
pattern is less striking in the vertical line plot, where
the highest values of each year protrude and dominate
the plot at the expense of the seasonal pattern and the
lowest values of each year.

In figure 8, the seasonal component for log manufac-
turing shipments is displayed by both connected and
vertical line plots. In displaying a seasonal component,
there may be some advantage to using both techniques.
It seems important to display individual values since
the seasonal component is not necessarily smooth from
t to (1+ 1) (although it is usually smooth from I to
(1+ 12)). However, the vertical line plot underemphas-
izes values close to zero.

We prefer to use the connected plot to display trend,
as in figures I, 2, and 3, since we want to emphasize
the pattern of successive points and since the smooth-
ness in the sequence reduces the need for perceiving
the individual values.

In summary, vertical line plots are useful when—

I. We want to appreciate individual values.
2. The sequence being plotted is noisy and regular

patterns are not strong or do not need to be
appreciated.

Connected plots are useful when—

I. We want to appreciate patterns, defined by groups
of successive points.

2. Perceiving individual points is not important.
3. The sequence tends to be smooth.

The change in the variability through time—The vari-
ation in each of the three components may be used as a
measure of their relative importance in determining the
behavior of the series. The X—I 1 [23] procedure meas-
ures the variation of a component as the sum of the
absolute values of its first differences. This, however,
seems inappropriate for characterizing the variation in
the seasonal component, where the amplitudes would
seem to be the most important indicator of variation.
We, instead, consider how much of the change in the
series, over the course of a year, is contributed by
each component. Thus, it seems natural to compare the
largest value minus the smallest value occurring, during
the year, for each component, and this leads to the use
of a moving range of length 12 as the measure of
variability for each component.

To display the change in the variability through time,
the three moving ranges for trend, seasonal, and irregu-
lar can be simultaneously plotted. The trend and irregu-
lar-moving ranges are smoothed by an altered version
of IS (see the subsection on trend smooth), in which
the moving median length is changed to 24 and the
quadratic smooth length is changed to 21.

Figure 9 shows moving ranges for the log of money
supply. The trend increases in influence through time;
the seasonal and irregular components are both rather
stable with the level of the seasonal well above that for
the irregular. Figure 10 shows moving ranges for log
manufacturing shipments. Here, the seasonal compo-
nent contributes the most to the variation of the series.

Comparing overall variability of the three compo-
nents—The distribution of the values of each of the
three moving ranges is summarized by boxplots in
figure 11 for log manufacturing shipments. The distribu-
tion of the seasonal component is detailed further by
plotting the midmean of each of its 12 monthly series
minus the minimum midmean. The predominant effect
of the seasonal component is seen in figure 10, but the
tightness of the distribution of the seasonal moving
ranges in comparison to those of the trend and irregular
is also clearly seen in figure 11.

Raw and smooth seasonals—The smoothing of the
seasonal is a critical factor in the seasonal adjustment
process, because the smoothed seasonal values are
subtracted from the data to form the seasonally adjusted
series. A seasonal smoother should be flexible enough
to follow changes in the seasonal pattern while still
being resistant to deviant observations. The seasonal
smooth in the SABL decomposition filters the raw
seasonal, which is equal to the seasonal plus the
irregular. To check the performance of the final smooth,
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Figure 5. R-SQUARED VALUES FOR VARIOUS POWERS
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Figure 6. LOG MANUFACTURING SHIPMENTS, BY IRREGULAR
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Figure 10. COMPONENTS OF LOG MANUFACTURING SHIPMENTS, BY VARIABILITY
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the raw values are plotted together with the smoothed
values for each monthly series. For example, figure 12
shoWS the raw seasonal and the smoothed seasonal
from SABL for November for log manufacturing ship-
ments. Because the seasonal smoother in SABL has
been designed to be resistant to outliers, the smoothed
values are not affected by the outliers.

Plots of Trend: First, Second, and Third Differences of
Trend Against Time

Figures 1 and 2 indicate the overall movement of the
trend, but local variability in the trend cannot be
readily appreciated, because the long-term change in
the trend is large compared to its variability. The first,
second, and third differences of the trend permit better
understanding of local properties. These differences are
shown in figure 13 for the logarithm of manufacturing
shipments. A lack of smoothness at about 8 positions
from each end of the series is apparent in figure 13,
suggesting that the trend-estimation procedure (TS) may
not be sufficiently smooth in the vicinity of the splice.

Seasonal amplitude summary and seasonal trend
smooth—The plots of S(i) against time (figs. I and 2) and
the plot of the moving range of 5(i) against time (fig. 10)

enable us to gain some appreciation of how the seasonal
oscillations change through time. However, since the
instabilities that are removable by transformation generally
change in a smooth way and since it is amplitudes, upon
which we wish to focus, a useful plot for assessing the
need or effect of transformation is to present a smoothed
summary of the amplitudes. This is done in figure 14 for
two different versions of the seasonal component for log
manufacturing shipments: the seasonal used in the bottom
plot has the seasonal trend smooth removed by STSR.
while that in the top plot does not. Each display shows a
12-point moving maximum of S(t). a 12-point moving
minimum, and a QLSS smooth (see the subsection on
first-trend smooth). followed by a moving average of
length 2. of the absolute values ofS(t) plotted as the solid
curve without vertical marks. The month in which the
maximum or minimum occurs is identified whenever the
month changes: in figure 14. the maximum and minimum
always occur in June and July. respectively.

In each plot of figure 14, the curve with the vertical
marks is again a QLSS smooth, followed by a moving
average of length 2, of the seasonal component that
aids in detecting leakage of trend into the seasonal. By
comparing this QLSS smooth of the seasonal with the
moving maximum and minimum, we can see whether
any' trend is present that is large, compared to the
oscillations of the seasonal. There is a small amount of
trend in the seasonal, resulting from SABL without

SECTION V

STSR, as shown in the top plot. When STSR is used,
the seasonal shows no trend at all.

Monthly seasonal plots—The seasonal amplitude plots,
discussed in the previous section, enable us to appreciate
the overall kind of instability that occurs when the
seasonal amplitudes increase with the level of the series.
But, other, more subtle, kinds of nonremovable instabili-
ties may occur and must be recognized for complete
appreciation of the seasonal pattern. Such instabilities
involve changes in the levels of the cycles, often in
different ways, as a result of a change, through time, in
the mechanism that causes the seasonal behavior. How-
ever, in plots 5(t) versus t, it is difficult to perceive the
behavior of a particular month, since our eyes cannot
readily pick out, e.g., the January values. The behavior of
the individual monthly series of the seasonal component
can be assessed by displaying each series on the same
graph, as in figure 15. Such a monthly seasonal plot
allows the magnitudes of changes across the years of
each monthly series to be compared with the amplitude of
the seasonal oscillations. For each month, the midmean is
shown as a horizontal line; each successive yearly value
for that month is shown as a vertical line, emanating from
the midmean.

Figure 15 shows the seasonal component of log-manu-
facturing shipments plotted in this manner. Noticeable
changes in the yearly patterns are the decreases during
each of the months (January, February, April, October,
and December) and the increases during March, May,
June, and July. The changes within several of these
months are not negligible compared with the change from
month-to-month, indicating an evolution of the seasonal
pattern of manufacturing shipments over years.

Boxplots of seasonal residuals.—The monthly seasonal
plot reveals sufficiently detailed information about sea-
sonal cycles to allow an understanding of changes in the
seasonal component, when they exist. It is useful, how-
ever, to summarize the variation in each monthly series.
This is done in figure 16 by making a boxplot of each
monthly series of the seasonal residuals. The seasonal
residuals are defined to be the values of the seasonal
component, with the midmean of each monthly series
subtracted from the series. The monthly midmeans are
adequately displayed in figure IS. Plotting residuals from
these midmeans allows more effective comparison of the
variability of the monthly series. Since month-of-the-year
is a circular variable with the end (December) immediately
preceding the beginning (January), the months January.
February, and March are plotted twice to permit better
appreciation of the shape of the cycle at the beginning
and end of the year. Figure 16 clearly shows that the
seasonal component is most variable in December and
somewhat more variable in April, June, and July than in
the other months.

Parallel plots of seasonal and seasonal residuals—It is
useful to have a display that presents the yearly cycles
intact in such a way that overall behavior and change.
through time, can be appreciated. Plots of S(r) versus

w

Plots of Seasonal
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Figure 12. SEASONAL FOR LOG MANUFACTURING SHIPMENTS
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Figure 14. SEASONAL AMPLITUDE PLOTS FOR LOG MANUFACTURING SHIPMENTS
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Figure 16. BOXPLOTS, SEASONAL RESIDUALS OF LOG MANUFACTURING SHIPMENTS
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present yearly cycles intact and allow us to compare the
general levels of the cycles, but difficulty in identifying
individual months interferes with a full appreciation of
shape. In the parallel plot of figure 17. we leave yearly
cycles intact and also identify individual months. Each
row shows 15 months of data, with January. February.
and March of the following year included to allow better
appreciation of shape at the beginning and end of the
row. To assist in identifying the curves, the last digit of
each year is plotted.

Tukey [22] has described an important principle in
displaying data. To appreciate departures from an overall
or gross effect it is useful to plot residuals from the effect.
This serves as an enlarger, blowing up the residual
behavior and allowing better recognition of its properties.
This has been done in figure 18, by making a parallel plot
of the seasonal residuals.

In Figure 17, the parallel plot for the seasonal compo-
nent of log money supply shows emerging peaks in April
and July. The residual parallel plot of figure 18 shows this
emergence more clearly and also displays an evolution
from peak to trough in February.

Circle plots of seasonal and seasonal residuals—It is
also desirable to plot the seasonal component in a two-
way display so that the yearly cycles are treated in the
same manner as the 12 monthly series, as is done when
numerical values are shown in a two-way table. An
attempt at achieving such' symmetry is the circle plot of
figure 19. The years are rows and the months are columns.
The circle areas are proportional to the absolute values of
the seasonal component of log money supply. Negative
values are designated by a slanted line inside the circle.
Again, each row contains .15 months to allow better
appreciation of shape at the beginning and end of the row.

There is less symmetry in the perception of rows and
columns of figure 19 than one might have thought, even
though the circle centers are equally spaced across rows
and across columns. We tend to see the display as
forming columns, because we tend to organize the diagram
by grouping together similar symbols. This kind of percep-
tual, visual organization has been intensively studied by
Gestalt psychologists (see [II]). The lesson to be learned
is that we need to expend some effort to appreciate fully
the effects in both rows and columns in circle plots. That
is, we can expect, in the sense of Julesz [15], to have td
utilize cognitive processes rather than relying solely on
visual perception to interpret such displays.

As with the parallel plots, it is useful here also to plot
the seasonal residuals to allow appreciation of departures
from overall or gross effects. This is done in figure 20.
The changes, through time, of each monthly series now
become more apparent, but the magnitude of the changes
is not easily compared to the amplitude of the seasonal
oscillations.

Plots of Irregular

Spectrum and autoassociation of the irregular—The
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leakage of seasonal into the irregular can, in some cases,
be revealed by the plot of irregular against time. But
seasonal oscillations may be obscured by variation at
other frequencies. Looking at spectra and autocorrelations
can greatly assist in revealing seasonal oscillations in the
irregular. As a measure of autocorrelation at a given lag,
we shall use the square of a robust estimate [10] of the
correlation coefficient times the sign of the estimate and
refer to it as the autoassociation. Figure 2l shows the
spectrum and some autoassociations for the irregular
component of the square root of toll revenues. The
autoassociations show a pattern with a period of 3 months.
The specturm peaks at one cycle per 3 months. These
periodicities suggest that some seasonal has indeed leaked
into the irregular.

Monthly distributions of the irregular—The
tion and spectrum plots in figure 21 aid in detecting
seasonal in irregular but do not give information about the
shape of this seasonal contamination. This is done in
figure 22. using a variant of the boxplot. The distribution
of each monthly series of the irregular is summarized by
the same statistics described in the subsection On the
description of boxplots, but the plotting technique differs
in that each box is collapsed into a solid vertical line, the
middle horizontal line is removed, and the successive
monthly midmeans are connected by straight lines. This
plotting variant is used, because we are less concerned
with comparing month-to-month variability and more con-
cerned with detecting a pattern in the monthly midmeans;
thus, the pattern in the midmeans is emphasized by
connecting them. This may be contrasted with figure 16,
where the goal was to compare variability.

The nature of the seasonal leakage into the irregular
component for square-root toll revenues is seen in figure
22 by the pattern of peaking nearly every 3 months. This
leakage had been detected by the spectrum and autoasso-
ciations in figure 21. But, comparison of figure 22 with
figure 23, which shows boxplots of the seasonal, reveals
that this leakage is small in magnitude. compared to the
variation of the seasonal component. Figure 22 also
conveys information about the dependence of the spread
of the irregular on the month-of-the-year and information
about outliers.

Smoothed-moving quantiles—Trend can leak into the
irregular if the trend smoother is not sufficiently flexible.
Vertical line plots of the irregular, e.g., figures I and 2,
may reveal such leakage. But, if the trend in the irregular
is small compared to the total variability of the irregular,
leakage is more easily seen in a smoothed version of the
irregular. In figure 24, the middle curve consists of the
irregular smoothed two times by an altered version of TS
(see the subsection on trend smooth) in which the moving
median length is changed to 24, and the quadratic smooth
length is changed to 21. The second smoothing of the first
smooth is done to further reduce the variability in the
final smoothed curve. To aid in comparing the magnitude
of the trend present in this smoothed irregular, with the
variability of the irregular, and to gain information about

w
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Figure 18. PARALLEL PLOTS, SEASONAL RESIDUALS OF LOG MONEY SUPPLY
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Figure 20. CIRCLE PLOTS, SEASONAL RESIDUALS OF LOG MONEY SUPPLY
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Figure 22. IRREGULAR OF SQUARE-ROOT TOLL REVENUES, BY MONTH

H

A 20

P1

10
0
H

E

S

A 0

A

I
g

0
U

I
S

O -20

V
A

E
S

Figure 23. SEASONAL OF SQUARE-ROOT TOLL REVENUES

-10

227

H

H

E

A 20
N

S

E

H

I 10
0
H

E

A
N

S

A 0
0
J

A
C

E

N

I
-10

S

0
U

I

D -20
E

V
A
L

U

E

S

J F H A H J J A S 0 N 0 J F H

MONTH

7,

J F H A H J J A S 0 N 0 J F H

MONTH



S

M

0
0
I
H

E

0

R

E

G

U

L
A
R

S
E

A
S

0
N

A
L

-0.035

0.016

R

R

E

6

A

R -0.025

228

Figure 24. IRREGULAR OF LOG MONEY SUPPLY
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the change in the distribution of the irregular, through
time, other smoothed moving quantiles are also plotted.
The upper and lower curves of figure 24 are moving
upper and lower quartiles, respectively, of length 13 that
are then smoothed two times with this same altered
version of IS. Figure 24 shows the described moving
statistics for the irregular of log money supply. No trend
is obvious in the irregular, but its variability seems to be
increasing, with time.

A GRAPHICAL COMPARISON OF SABL AND X-11

It is natural to ask how any new seasonal adjustment
procedure, e.g., SABL, compares with the existing stand-
ard, X—ll. Unfortunantely, no clear-cut and generally
accepted guidelines exist as a basis for such a comparison.
Some properties of SABL and X—l I were contrasted in
the subsection on a comparison of SABL and other
methods, but a careful comparison of two seasonal adjust-
ment methods requires detailed examination of many
more facets of the adjustments. A detailed comparison of
SABL and X—l I is in progress and will be the subject of
a future paper. However, in order to give users a basic
feel for the similarities and differences between the two
methods, we present a preliminary graphical comparison
of the components of manufacturing shipments from
SABL and X—lI.

In making this first comparison, manufacturing ship-
ments is the data series selected for two reasons. First, it
has a rather regular seasonal pattern. Second, the power
transformation (log) selected for that series by SABL
leads to a natural and simple comparison with X—l I.
using the X—l I multiplicative model and the logs of the
X—1 1 'components in the comparison. Figures 2 and '25

show the data and three components from SABL and X-.
II, respectively, for log manufacturing shipments.

SABL is designed with the same philosophy as X—l I.
Hence, one might expect (and, indeed, hope) the season.
ally adjusted series T(t)+I(r)=Z(t)—S(t) from the two
decompositions would be similar for well-behaved data
with a regular seasonal pattern. The trend and irregular,
however, can differ considerably, depending on how much
of the middle- and high-frequency variation is allowed
into the trend. The sequences of nonlinear and linear
filters, used by SABL, tend to result in a smoother trend
than that formed by X—l I, and an irregular which has
occasional sequences of values with the same sign. Corn-
panson of figures 2 and 25 shows that the trend from
SABL is smoother than from X—ll, while the SABL
irregular shows more structure.

Figures 15 and 26 show the seasonal components of
log-manufacturing shipments from SABL and X—l I, re-

spectively, using the monthly seasonal plot. A finer
comparison is offered in figure 27, where the differences
(SABL minus X—I I) of the seasonal components are
plotted. Note that the range of this difference plot is
smaller by a factor of 5 than for the seasonal plot. The 12
monthly midmeans of the differences are near zero, with
the exception of July for which the SABL estimate is
lower than the X—l I estimate in the earlier years. The
differences for September are large, compared to those
for, e.g., March and April. In addition, the first two
January values are much larger for SABL than for X—l 1.

In summary, this very modest comparison for a rela-
tively stable series indicates good general agreement
between SABL and X—l I in the level of the seasonal
components. Differences in the shapes of evolving sea-
sonal patterns are' evident and need to be examined in
greater detail to determine their causes.
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The significant properties of SABL, the seasonal adjust-
ment procedure developed by the authors, are described
in the title of the paper. The first property is robustness,
namely the property of being insensitive to small depar-
tures from the assumptions.

ROBUSTNESS AND RESISTANCE

In the context of seasonal adjustment, it seems wisest
to make few assumptions anyway, and it would be more
precise to describe the procedure as resistant. Resistance
is the property of being insensitive to gross perturbations
of a small part of the data. This is essentially a numerical
property, related to continuity. It is more widely useful
than robustness, which is a statistical property and can
only properly be defined in well-specified contexts.

There are two main ways of constructing resistant
procedures. In the first, one starts with a conventional,
perhaps nonresistant, procedure that is used to obtain a
trial fit to the data. Data points that deviate widely from
this trial fit are inspected to determine whether. they are
valid. The trial fit is then modified by downweighting any
suspect data points. In some versions, the modified fit is
used as it stands; in others, it is regarded as a new trial
fit, and the process is repeated until no further substantial
change occurs. The identification and downweighting of
stray data points may of course be done algorithmically,
according to mathematical criteria. In the context of
estimating the location of a single sample, the M— and m—
estimates described and studied by Andrew et al [2] are
of this form, and Beaton and Tukey [3] give such an
algorithm for polynomial regression.

This approach has a serious, though not fatal, weakness,
that is pointed out by the authors. It is that there are
unusual, but not unheard-of situations, where one deviant
data point in a particularly sensitive position may, if the
trial fit is not resistant, distort the trial fit to the extent
that the deviant point is not identified. Since the easiest
way to implement this approach is often to use a least-
squares method to obtain the trial fit and since least
squares methods are notably nonresistant, this is a major
drawback. The use of the median, rather than the mean,
as the trial value in M— and in— estimates is one way to
avoid this problem. (See Andrews et al [2]). Finding
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appropriate resistant trial fits is often difficult with more
highly structured data. An example is given by Andrews
[I] for the multiple regression problem.

The second approach to the construction of resistant
algorithms is the one adopted in SABL. The first step of
each phase is designed to produee a first fit (or smooth)
that is resistant to deviant values. Subsequent steps work
to refine this fit (in this case, by further smoothing
operations) but do not use the original data values. The
later steps may, thus, be sophisticated nonresistant algo-
rithms (such as the cubic-pass-seasonal-stop filter used in
SABL) without damaging the overall resistance of the
procedure. In contrast with the first approach, in SABL,
the iterations are designed to improve the separation of
the fit into trend plus seasonal, rather than to improve the
identification of deviant data points.

GRAPHICAL DISPLAYS

The second notable feature of SABL is the battery of
graphical displays available to its users. Some of these are
conventional, such as the graphs of the trend and seasonal
and irregular components produced by SABL. The two-
way array of circles used as an alternative display of the
seasonal component is a more continuous variant of the
coded plots used by Tukey [6] and others. As the authors
point out, its usefulness is less than might have been
expected because of the tendency of the eye to follow
columns rather than rows. This defect might have been
avoided by separating the rows a little.

The graphs of moving statistics (moving range, maxi-
mum, etc.) are valuable ways of describing the behavior
of the various components as a function of time. I must,
however, put in a plea for graphs that are less sensitive to
the fluctuations in extreme values. The graph of moving
average absolute seasonal components for log manufactur-
ing shipments (fig. 16 in SABL) shows far less variability
than the moving range (fig. 13). The moving range appears
to be just the June-July difference, which is not necessarily
very representative of the magnitude of the seasonal
variation for a whole year.

The boxplots of the seasonal components are also
useful in giving a quick visual summary of the overall
shape and the consistency of the seasonal variation.
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However, they need to be viewed together with the
related plot of the irregular; for instance, a comparison of
figures 25 and 24 of SABL suggests that the months in
which the irregular is most variable are those where the
seasonal component is least variable. Whatever the impli-
cations of behavior, such as this, it would be easier to
detect if the graphs could be combined in some way.

AIMS OF SEASONAL ADJUSTMENT

Durbin and Murphy identify two distinct aims in
seasonal adjustments.

Seasonal adjustment has two main aspects, namely the
historical adjustment of past data using all the data
available, and the current adjustment of each new
observation. From a practical point of view the latter
aspect is more important since it is the currently
adjusted values which are most relevant for policy
purposes.

SABL is concerned mainly with historical adjustment.
It does produce a seasonal component and a seasonally
adjusted component at the ends of the data, but they are
found according to some apparently rather arbitrary rules.
The various options that are available to the user are also
selected on the basis of the performance of SABL in
historical adjustment in the case of the intial power
transformation of the data that is entirely appropriate.
Various forms of smoothing are also available, and the
adequacy of any choice must be judged from diagnostic
graphical displays that are necessarily dominated by the
body of the data. However, each choice of smoothing
carries with it a rule for obtaining end values, and it is
not clear that a choice that appears to be satisfactory in
the body of the data would necessarily be associated with
a good end-value rule. It would be desirable to see some
assessment of the degree of matching of end-value rules.
Some comments made by the authors, for example, with
respect to the sine function splicing of the end values of
the trend component, suggest that there may be some
problems.

OTHER PROBLEMS AND OTHER METHODS

The authors describe a number of checks for leakage,
which is the appearance of an effect that should be
confined to one component in another. I would like to
suggest one more form of leakage that deserves some
attention, and that is leakage of the irregular component
into the seasonal component. The authors state that the

seasonal smoother should be flexible enough to follow
changes in the seasonal pattern while still being resistant
to deviant observations." In addition, the seasonal
smoother should be no more flexible than is necessary to
follow changes in the seasonal pattern, which is a different
requirement from being resistant to deviant observations.

The danger of such leakage is not the gross bias that
may occur from other forms of leakage but that the
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computed seasonal component may be more variable than
is necessary. This is a particular problem in current
adjustment, since currently adjusted values are updated as
new data become available. If there is leakage of the
irregular component into the seasonal component, these
modifications will be larger than necessary, which reduces
the value of the current seasonally adjusted data.

The appropriate level of firmness of thern seasonal
smoother may be found from the spectrum of the de-
trended data (seasonal plus irregular). If the seasonal
pattern were, in fact, constant, the peaks in the spectrum
at the fundamental seasonal frequency and its harmonics
would be as narrow as possible (being images of the
spectral window if a conventional quadratic spectrum
estimate is used; see [4, ch. 7]). In this case, the smoother
may be as firm as possible and should just replace each
monthly value by a (resistant) estimate of location of the
values for that month. If the seasonal pattern were to
vary, these peaks in the spectrum would be wider than the
minimum, and the additional width would indicate the
bands of frequencies surrounding the seasonal frequencies
that contain the seasonal effect. In this case, the seasonal
smoother should be chosen to have a transfer function that
passes power at those frequencies but annihilates or
satisfactorily attenuates all others. If it passes power at
more frequencies than is necessary, it will allow more of
the irregular to leak into the seasonal component than is
necessary.

Diagnosis of this problem, after the fact, is not easy.
The spectrum of the irregular component usually shows
troughs at the seasonal frequencies. (See, for instance,
fig. 23.) This merely indicates the widths of the bands
from which power has been removed (and passed into the
seasonal component) but not whether there was seasonal
power across those bands in the first place. The spectrum
of the seasonal component is not normally computed and
would presumably just show power across the same
bands. Only in extreme cases would the true seasonal
peaks be narrow enough to be distinguished.

MORE COMPLEX SEASONAL BEHAVIOR

My final comment relates to the problem of seasonal
adjustment, in general, and not specifically to SABL.
Figure 1 shows a series with a strong seasonal component.
It is not of economic origin, being actually the height of
the ozone column at Arosa, Switzerland. There is essen-
tially no trend in the data, at least in comparison with the
magnitude of the seasonal variation. Figure 2 shows
boxplots (familiar to readers of SABL but constructed
here from medians and quartiles) for the monthly series.
The graphs show a very clear seasonal effect, not only in
the location of the values for each month but also in the
scale. Furthermore, the correlation between values in
adjacent months also varies seasonally.

Such complex seasonal dependence should presumably
be considered in making seasonal adjustments. For in-
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Figure 1. HEIGHT OF OZONE COLUMN AT AROSA, SWITZERLAND
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stance, the low variability of the summer months means
that a trend smoother should place more weight on those
than on the winter months. The seasonal variation in the
correlation structure has more obscure implications.

Is it enough, however, to correct for the seasonal
dependence of the mean? To be fully deseasonalized,
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should the seasonal dependence of the scale also be
removed and by what form of adjustment? Or, should we
merely be careful to quote seasonally dependent scale
estimates along with seasonally adjusted values? In such
a series, the whole issue of seasonal adjustment seems to
be a more difficult problem.

I
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ABSTRACT

The graphical methods presented in the paper discussed are found to be of value
for assessing the significance of seasonal and trend patterns and for judging the
quality of a seasonal decomposition. The new seasonal adjustment procedure,
SABL, is evaluated for the results it produces and its simplicity of application.
Initial reaction is positive on both counts, but more comparisons with other
methods are requested in order that adequate judgements can be made.

INTRODUCTION

The paper by Cleveland. Dunn, and Terpenning. as I

see it, makes valuable contributions in three areas. One
area is methods of display of trends and seasonal compo-
nents, however arrived at. in such a way as to facilitate
comprehension of individual component patterns and their
relative importance. Second is the provision of tools for
determining whether a decomposition was well done in
the sense of the usual objectives described in the following
discussion. Third. a new method of achieving decomposi-
tion of seasonal time series is given. I shall discuss these
three areas in the order given, since I feel that the first
two are a necessary context for discussing the method.
Although of the graphs facilitate both pattern com-
prehension and evaluation of the quality of the decompo-
sition, I feel that the emphasis varies from one graph to
another, and the conceptual viewpoints are sufficiently
distinct so that it is useful to discuss some graphs from
both points of view. Figure numbers given refer to figures
in the paper being discussed.

COMPREHENSION OF THE COMPONENTS

The first plots one thinks of in this area are the
connected plots and vertical line plots of the overall
series, the trend components. and the seasonal compo-
nent. as in figures 1—3. While I agree. in general. with
their comments on the circumstances under which each
type of plot is useful, a vertical line plot of the trend
might reveal something about turning point locations.
Vertical line plots of first differences of the trend, as in
figure 15, are certainly helpful in this regard. They give
particular emphasis to periods of boom and bust. Higher
order trend differences speak more to smoothness and
presence or absence of certain frequency components

and, thus, seem more relevant to evaluation of the
decomposition.

Though seasonal amplitude plots. figure 16. are dis-
cussed in terms of evaluating the success of an amplitude-
stabilizing transformation, they would provide an equally
successful characterization of the untransformed series. 1

was particularly impressed by the effectiveness of the
transposed seasonal vertical line plots in figure 17 in
revealing the character of the changes in the seasonal
pattern and their relationship to the overall seasonal
pattern. The 2-year parallel plots of the seasonal compo-
nent in figures 18 and 19 are good displays of seasonal
pattern for any year but not as good on its evolution as
they stand. I thought they were improved by omitting
every other line and drawing each curve centered on its
mean value, a feat easily accomplished with some tracing
paper. Since the seasonal is smoothed to produce only
minor changes from year-to-year. the character of the
change is emphasized more by the omissions. The mean
lines give a better reference to the eye to see the pattern.
Figure 20 seems redundant and less effective than the
transposed plots. The circle plots are an interesting idea,
but my eyes read area and fail to note the line reading
negative. Hence. I get an absolute value plot from them.
I would like to see all the types of plots for one series.
Assessing the contribution of the various displays is
difficult when different series aie used to illustrate different
points.

The box plots of figures 2i. 24. and 25 address a topic
of interest to Tiao and myself. the variability of different
months. The relative variability of the seasonal and
irregular components in the different months is immedi-
ately evident here. Our work indicates that differences in
variability from month-to-month might well call for differ-
ent models for different months.

Finally, the relative importance of seasonal trend and

237



238

irregular components is well described by the plots of
variability comparisons using moving ranges. The box
plots of the variation in the trend seasonal and irregular
components are also valuable for this purpose.

VALIDITY OF THE DECOMPOSITION

Most lists of objectives for seasonal decomposition
procedures take me through a two-level process of concep-
tualization. First, there is the ideal seasonal series and,

secondly, there are the permitted departures from it to

allow for reality. This ideal series displays underlying
concepts of trend and seasonality. in the time domain,
the series has a linear or low-order polynomial trend. For
monthly series, the seasonal component has the same
relative values of the different months each year. in the
frequency domain, the trend power is largely in the low
frequencies and tapers off smoothly in the seasonal range.
The seasonal power is concentrated at the seasonal
frequencies (1/12, 2/12 6112). The noise, or irregular
component, is uncorrelated, or white noise.

it is in this context that statements of objectives, such
as—

I. The trend component should appear trendlike
2. The seasonal component should be seasonal
3. The irregular component should look irregular

make some sense. A second, but closely related, class of
objectives are that—

I. The trend should not contain elements of the sea-
sonal or irregular (it should be smooth and without
periodic components in the seasonal range).

2. The seasonal should not contain elements of the
trend or irregular (it should be smooth from year-to-
year and have zero average).

3. The irregular should not contain elements of the
trend or seasonal.

Even at this ideal level, there is some potential conflict
between time domain and frequency domain conceptuali-
zations. A trigonometric series of finite length does not
consist precisely of spikes at the given frequencies, and
one does not need to restrict the representation of trend
to polynomials over the span of the series to achieve a
smooth spectrum in which low frequencies predominate.

This leads, naturally, to my second level of conceptual-
ization. Trends generally refuse to follow a low-order
polynomial for any great length of time. One only needs
to observe the series discussed in the paper under review.
Thus, the spectral definition of trend is emphasized. In
the time domain, smoothness is emphasized. Whether or
not continuous first derivatives are desirable depends on
the usefulness of turning point analysis. A substantial
amount of power in the seasonal domain is permitted. It
has also been found that seasonal patterns do not repeat
exactly from year-to-year. Here is additional reason for

SECTION V

the seasonal spectrum to spread out from the Strictly
seasonal frequencies. In the time domain, a phase shift
among the frequency components is permitted from year-
to-year or, equivalently, the relative monthly values
change from year-to-year.

A third class of objectives is related to these discrepan.
cies between the ideal and real series. These can be
summarized as follows:

I. The trend estimate should follow the real trend.
2. The seasonal should follow the real seasonal.

A large part of discussions about the adequacy of
seasonal adjustments can be viewed in terms of how
much deviation from the ideal components is appropriate
or how the real differs from the ideal. The remainder of
these discussions is about two goals not yet mentioned
and not raised to any degree in this paper. One is that
seasonal adjustment should not affect predictions. Trend
predictions from the trend component or adjusted series
should not differ from the trend component of overall
predictions. This problem is closely related to the handling
of end effects. In general, parametric approaches have an
advantage here. The other objective is that relationships
between series should not be distorted by seasonal adjust-
ments.

Considerable attention has been given to frequency
domain criteria for the results of decomposition proce-
dures. (See [5: 15: 17; 19].) Plots of the power spectrum
of the trend estimate and of the seasonal estimate are
often made. Cross-power spectra of the original series
and the seasonally adjusted series or of the original series
and its components yield coherence and phase plots.
These are used to indicate how much of the power of the
original series was transferred to each component at
various frequencies and how much phase or lead-lag
distortion may be present in the components. Though
helpful. these tools have not proved entirely satisfactory.
One reason is the uncertainty about objectives mentioned
previously. How smooth should a trend be? How fast can
a seasonal pattern change? Each of these has implications
in the frequency domain. The difficulty of assessing the
impact of deviations from ideal patterns in the frequency
domain on the actual estimates has led to more than one
call for time domain strategies. Further, the results in [5]
reconfirm the inconsistency in frequency and time domain
criteria. in an artificial series, where optimal estimates in
the minimum mean squared error sense were obtained for
the components, dips in the trend spectrum at the seasonal
frequencies were obtained that are not consistent with the
idea of having the smooth trend spectrum in this range.
Thus, the optimal trend spectrum is not uniquely defined.

The graphical methods presented in the paper under
discussion are a welcome addition to our techniques for
resolving decomposition issues. Although a few compari-
sons of SABL with X—l I are made here, these methods
have not yet been fully tried on several competing versions
of estimates or placed along side spectral comparisons.
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Hence, their real power to reveal the information desired
cannot yet be fully appreciated. The discussion which
follows is largely an underlining of the strengths of
particular graphs.

Trend Assessment

The smoothness of a trend can be seen directly in a
connected plot of the trend, but differences between
closely related estimates could be seen more readily in
the amplitude of line plots of their second differences.
These, of course, translate directly into rates of slope
change. Third differences are harder to interpret and
show some indication of generating confusion rather than
yielding simplicity in figure 15. A power spectrum of the
second difference would reveal just as much about pres-
ence of seasonal frequencies as a power spectrum of the
third difference. The autocorrelation function may also
provide information on the presence of seasonal frequen-
cies. Coherence plots will reflect the smoothness of the
estimate and degree to which the low-frequency behavior
in a series is captured in the trend estimate, but I would
agree with the authors that time domain representation of
the trend and its differences is more useful. Phase shift is
more complicated. Although zero-phase shift, at all fre-
quencies, seems desirable, and it is best seen in a phase
shift plot, it is difficult to tell what departures from this
mean. Plots of the first difference of the original and
adjusted series might be helpful. When comparing two
adjustment procedures, the first difference plots of both
trend estimates would provide an interesting comparison
in this regard. Stephensen and Farr [19] showed, in a
simulated series, more phase shift between the original
series and true trend component than between the original
series and the estimated trend component. One wonders
how the first different plots of the true trend and estimated
trend components would have compared. Another ap-
proach would be to generate two correlated series and
see if the decomposition recovers the correct relationship,
as in [21].

One thing to keep in mind when using additive stochas-
tic models, such as the ones appearing in [5; 19], is that
simulating a seasonal with a model in shift operators of
degree 12 and fitting a series with such a model are not
precisely the same. Such a model is consistent with a
seasonal component having the property that moving
averages of width 12 give a value of zero. However,
simulated seasonal component series may deviate from
this considerably and thus be defined as having trend
components by a subsequent smoothing process. Perhaps
these stochastic component models do not
reflect our ideas about seasonality. When one is simply
forecasting the sum of the seasonal and trend of the
series, as in Box and Jenkins [I] or Thompson and Tiao
[20], such decomposition issues become irrelevant, and
the overall models are perfectly adequate.

Seasonal Assessment

The seasonal estimate is evaluated in two kinds of
ways. First, what does its subtraction from the total
series leave behind? Does the seasonally adjusted series
still contain seasonal effects? This kind of evaluation goes
hand-in-hand with trend studies. Does the spectrum of the
second difference of the adjusted series reveal seasonal
effects? Second, the seasonal estimate itself may be
examined. The smoothness of year-to-year changes in the
seasonal pattern may be seen in the transposed plots and
2-year plots mentioned under interpretation of the seasonal
pattern. Trend leakage is usually studied by 12-term plus
2-term moving averages, often referred to as centered l2-
term moving averages. The authors here have adopted a
24-point weighted average with a 12-point uniform average
spliced at the ends. To this is added a 12-point moving
maximum and corresponding moving minimum. Thus, the
importance of some trend leakage, relative to the overall
seasonal amplitude, is presented. No criteria for how
much leakage is too mtich are suggested. Perhaps the
ratio of these values to the trend values would be helpful
if the adjusted series is the objective of the analysis.

Irregular Assessment

Computing the autocorrelations or power spectrum of
the irregular to detect seasonal components is fairly
standard procedure. Figure 24 shows midmeans and semi-
midmeans revealing the strength of the seasonal pattern
and the variability' attributable to each month. The moving
quartiles and averages of the irregular to detect trend are
also useful. The need for a special filter for this purpose
is not clear. The trend filter contained in SABL should
serve equally well. The box plots of the irregular for the
different months offer valuable insight concerning whether
the decomposition gives a uniformly accurate summary of
the behavior of the series for each month.

One important means of assessing the relationship
between series is to relate the residuals of a model for
one to the values or residuals of another. In this regard,
the phase properties of residual estimates become impor-
tant. Though Rosenblatt {l7] generated some phase-shift
plots for irregulars, little attention has been given to this
topic, since no one knows just what they should look
like. The simulation approach of Grether and Nerlove [5]
would allow coherence and phase plots of estimated
versus true irregular components. Vertical line plots of
the estimated and true irregulars could provide additional
information. As mentioned earlier, pairs of simulated
series could also be analyzed.

Comparisons of Adjustment Methods

Any method of evaluating a single seasonal adjustment
procedure can, of course, be used to compare procedures.
However, when comparing adjustment methods, one has
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the opportunity to generate differences between corre-
sponding component estimates. If vertical line plots of
trend or seasonal component differences were scaled to
represent percent of the trend range, some perspective on
the importance of the differences would then be achieved.
An average of the two trend curves might be used to get
the denominator. The differences might also be divided
by the difference between some of appropriate upper and
lower percentile points of the irregulars. This would
indicate if the variability of the estimates between methods
was in line with the estimate variability suggested by the
irregulars of a single decomposition.

THE SABL PROCEDURE

How should SABL be judged? The principal objectives
of a seasonal adjustment procedure are to produce satis-
factory estimates of the seasonal and trend components.
Properties of these have been discussed. The plots pre-
sented in the paper for SABL decomposition of several
series look quite good. The authors emphasized robustness
against outliers, and the irregular plots indicate that some
large values and short groups of such values were ignored.
The slight peculiarities at the end of one series, seen in
figure 15. are the only hint of need for further adjustments.

Though the evidence presented here indicates this is a
good procedure. much more remains to be done. The
authors tell us that more comparisons with X—l I results
are planned. There are indications that the performance
of adjustment techniques based on successive applications
of given filters may vary according to the overall structure
of the observed series in Cleveland and Tiao [3]. Hence.
it would be well to select several series with rather
different autocorrelation structures for comparisons. Para-
metric models could also be used on these series. Compar-
isons with parametric methods near the ends of the series
would be particularly interesting, since the prediction
formulas implied by the models are used to a greater
extent there. I would also like to see how the end
estimates would change if the X—l 1 or SABL programs

SECTION V

were applied to a series that had first been forecasted for
a year by the methods of Box and Jenkins. The filters
used in SABL are such that study by linear approximation
as has been done with X—l I, does not appear reasonable.

My impression is that this program would be slightly
harder to use than X—l I but not too much. It is more
complicated, but the kinds of decisions required are
similar. Is this smooth enough or should another itera.
tion be used? Is a trend filter of width 15 or 21
appropriate? This kind of decision is required at more
stages of SABL. I could imagine an interactive version of
SABL with the results of each stage displayed on a video
terminal. One could say on," "one more time," or,
perhaps, "use the wider filter next time." Decomposition
by parametric models requires a model fitting process that
is often less straightforward than either X—l I or SABL.

The use of additive stochastic models presumes not
only a model-fitting process but resolution of severe
identification problems. The discussion in Cleveland [2]
suggests that, by maximizing certain error variance ratios
to give smooth estimates, the range of models is reduced
considerably. Perhaps, any of the permissible models
would do well, since they will differ generally only in
moving average parameters. Defining the appropriate
space within which the values would be selected is not
easy. However, a nonlinear least squares routine could be
used to get a model. The autocorrelation function of a
component model with specific parameter values would
be generated. This would be compared with the autocor-
relation function with the model identified for the overall
series and the parameter values of the component model
adjusted to arrive at a match of the autocorrelation
functions.

In any case, an evaluation problem remains. There are
no theoretical results that say a specific set of filters or a
specific class of models is good for all series and for all
purposes. Thus, any series should be subjected to multiple
techniques of analysis. Perhaps, the tools are now avail-
able to make intelligent judgements concerning the best
decomposition for a given purpose.
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