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A SURVEY AND COMPARATIVE ANALYSIS OF
VARIOUS METHODS OF SEASONAL ADJUSTMENT

John Kuiper
University of Ottawa

HISTORICAL DEVELOPMENT OF SEASONAL
ADJUSTMENT TECHNIQUES

The unobserved component model assumes that a
time series consists of three parts: A trend-cycle
component a seasonal component and an irreg-
ular component 4,. If this relationship is assumed to
be additive, the statistical model may be written as

=

where i= 1, . .., 12 indicates the months and 5=1, ..
n, the years. (For more details, see [51].)

The methods used for seasonal adjustment by earlier
research workers were adaptations of this model. For
example, the filters of Buys Ballot [9] were used in
early studies. (See [17; 18].)

The ratio-to-moving-average method was developed
during the 1920's by Frederick R. Macaulay at the
National Bureau of Economic Research. It was found
that, for most economic time series, a multiplicative
relationship between the three components holds. (See
[25].)

Abraham Wald [50] developed the moving-ampli-
tude method to overcome shortcomings of the then
current methods. His method requires that the seasonal
pattern, i.e., the proportionality relationship between
the seasonal factors for the months within a year, re-
mains stable. However, he allows for relatively rapid
changes in the seasonal amplitude. Wald's method is
described in detail by Godfrey and Karreman [16].
The method was generalised by Zaycoff [53] Tinbergen
[43] applied these methods to time series for the
Netherlands and found that they both gave superior
results relative to then common methods. Mender-
shausen [29] gives a detailed description of work on
seasonal adjustment, especially Wald's method.

An extensive survey of the historical development of
seasonal adjustment methods is presented in BarOn
[111.

SEASONAL ADJUSTMENT METHODS
STUDIED

From the outset, it was decided to limit this study to
methods currently used by government agencies.

The methods which were analyzed are described in
the following sections. They are the census X—11
method; Statistics Canada X—11; the Bunnan method,
used by the Bank of England; the method of the Euro-
pean Economic Communities; the Berlin method, used
by the DIW (Deutsches Institut für Wirtschaftsfor-
schung) and the Statistisches Bundesamt in Wies-
baden4 and the method of the Dutch Central Planning
Bureau.

The seasonal factor method of the Bureau of Labor
Statistics is quite similar to the X—11 method. It was
excluded from this study because BLS now uses the
X—11 method. It is described in [47].

Regression methods were used in the early 1960's by
the Deutsche Bundesbank. They have recently been
used experimentally at the Board of Governors of the
Federal Reserve System. (See [42].) The British Cen-
tral Statistical Office developed a regression technique
that was used by the Department of Employment from
1969 to 1972. (See [6; 13].) This method allows for
mixed adjustment, i.e., a combination of additive and
multiplicative adjustment.

Box and Jenkins [4] have applied time series
methods to seasonal adjustment. The Box-Jenkins ap-
proach has been used extensively by Brewer. (See [5].
Alsosee [10; 11;44].)

Both the regression and the Box-Jenkins approach
require careful analysis of each individual series. These
methods are, thus, not suitable for use as the standard
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method of adjustment for a government statistical
agency, but they may be useful for the adjustment of a
limited number of important series.

Dc Vos [49] has applied ARIMA models to estimate
the trend cycle component of the series of Dutch male
unemployment. In his adjustment method, he also in-
cludes the number of days with a maximum temper-
ature below zero.

X—11 Method

Census method II was developed by the U.S. Bu-
reau of the Census. It is based on the ratio-to-moving-
average method. By switching to a computer program
in 1954, large-scale adjustment of time-series became
practicable. Census method II differs from the earlier
method, because it estimates the trend-cycle, seasonal,
and irregular components using several iterations, an
adjustment for trading-day variations, and an adjust-
ment for extreme values. Both an additive and a multi-
plicative version are available.

The census method II programme became stable by
the end of 1961. The X—11 variant of the programme
has been in current use since 1965. It is a modification
of earlier Bureau of the Census programmes and is
described in [46]. Also see [28; 52].)

Because this program is well-known, only a brief
description will be given. The trend cycle component of
the series is removed with a 9-, 13-, or 23-term Hender-
son moving average. The 9-term average is used for
smooth series and the 23-term filter for highly irregular
series (those with a preliminary I/C ratio of 3.5 and
over). The seasonal factors are calculated with a [3, 3]
filter in the first round and with a [3, 5] filter in the
second round.

The limit, used to eliminate extreme values corn-
pletely, is 2.5. Between and 2.5u graduated
weights are used.

Statistics Canada X—11

The moving-average methods employed by the X—11
programme require data for up to 3 additional years
before the symmetric filters may be applied. This
necessitates the use of asymmetric filters for the last
observations of a time series.

In January 1975, Statistics Canada introduced a
modification of the X—11 method that is used for the
seasonal adjustment of about 60 of the more important
Canadian Labor Force Survey series. It consists of
enlarging the original time series by 1 additional year,
with forecasts from ARIMA models. The method is
described in [12]. This modification resulted in im-
proved estimates of the current seasonal factors, based
on a comparison with the stable factors, calculated

SECTION ft

when 3 years of additional observations have become
available.

Burman Method

This method was developed by J. P. Burman at the
Bank of England. It is fully described in [7]. Both an
additive anda multiplicative option are available. The
multiplicative option is based on converting the series
to natural logarithms.

A 13-term weighted average is subtracted from the
series to eliminate the trend. This filter was developed
by Burman and has weights (—0.0331, —0.0208, 0.0152,
0.0755, 0.1462, 0.2039, Harmonic analysis on
successive blocks of 12 terms of the SI series is then
performed. The amplitudes are smoothed. Linear corn-
l)inations of these smoothed amplitudes give the pre-
liminary seasonal factors. Extreme trend values may
be replaced by a weighted average of the neighbouring
terms (Six at each side). The preliminary adjusted
series is extrapolated by a Box-Jenkins approach
(0, 1, 1) or (0, 2, 2) model to give six more terms at
the end and six more terms at the beginning. Using
these ternis, one obtains the trend and seasonal factors
for the end ternis. These. terms are then used to extend
the original unadjusted series, and this series is used
to (letelmine the final seasonal pattern in a second
iteration.

The Burinan method replaces extremes above 2.5u
and uses graduated weights and 2.5u. An
option is available to omit the replacement of extremes
and the extrapolation of the original series. Extrap-
olation is suppressed when a large number of extremes
have been identified in the end terms.

The Method of the European Communities

The EEC method, also known as the SEABIRD
method, was developed by Bongard and Mesnage at the
Statistical Office of the European Communities. As a
supra national agency, the EEC obtains most of its
statistical series from member countries, the data may
have been adjusted, using different procedures, or may
still be in an unadjusted form. They require a method
which has to be universal, i.e., capable of effectively ad-
justing the widest possible variety of economic time
series, and robust, i.e., manual intervention, either be-
fore or after adjustment, should not be required.
Furthermore, because the primary use of the adjusted
series is for economic analysis, it emphasizes the ad-
justment of the most recent data. A detailed descrip-
tion is given in [30].

As a first step, extreme values are eliminated. The
second step applies the Bongard 19-term filter [2] to
the raw data, modified for extreme values. The method
assumes that the seasonal pattern (PSN) is relatively
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stable in time, but the magnitude of the seasonal fluc-
tuation, measured by the coefficient of expansion 8, may
change rapidly. The seasonal component is, thus, writ-
ten as

8=6.PSN
A first estimate of PSN is obtained by, eliminating

the irregular component from the SI series. The value
of 6 is then calculated as

—

PSN for the end terms are obtained by
repeating the last value calculated. The values of 8 are
extrapolated by regressing 8 on T.

The calculations are repeated once with the restric-
tion that no new estimate of the seasonal pattern is
made.

Recently, the EEC has developed a new method
called DAINTIES, which will replace SEABIRD.
(See [3; 31].)

The Berlin Method

This method is, like the EEC method, primarily used
for current analysis. Thus, revisions to the current ad-
justed observations are minimized. It is described in
[36]. The version presently in use is ASA III. (See
[34; 35].)

The Berlin method assumes an additive relationship
between the trend-cycle, seasonal, and irregular com-
ponent. Observations identified as extremes are first
eliminated. An observation is considered to be extreme
if it exceeds based on the 24 previous observations,
and is replaced by the value of 2c7. This implies that
once an extreme has been replaced, the new observation
will remain unchanged.

The trend and the seasonal component are obtained
using filters which have been estimated in such a way
that their transfer functions have, as far as possible,
optimal spectral properties. The transfer function for
the trend filter should be near one for low frequencies

and should be approximately zero for the other

frequencies while the transfer function for

the seasonal component should equal to one at seasonal
frequencies (A=jir/6, j= 1, 2, . . . 6) and be approxi-
mately equal to zero at all other frequencies.

The trend filters consist of polynomials of up to de-
gree 3, together, in some cases, with trigonometric func-
tions of a length of 36 or 60 months to represent a
cyclical pattern. The seasonal filters are estimated with
harmonic analysis using 11 trigonometric base func-
tions. The trend filters use between 34 and 39 observa-
tions (27 to 34 for end terms), while the seasonal filters

use either 47 or 59 observations (36 or 48 for end
terms). The filters are applied asymmetrically over the
full length of the time series. For example, several
trend filters of length 36 are used that estimate the
25th, 27th, or 29th observation. The seasonal component
filter with length 47 estimates the 24th observation, and
the one with length 59, the 36th observation.

The trend-cycle component is estimated from the
original series, corrected for extreme values. The sea-
sonal component is estimated after the trend-cycle has
been identified.

Berlin ASA—Ill is now used for about 300 monthly
series which require a total of 47 different combina-
tions of filters.

The filter selected is the one that minimizes the sum
of squared derivations between the spectrum of the
original series and that of the adjusted series at all but
the seasonal frequencies.

Central Planning Bureau Method

The Central Planning Bureau method allows for
both additive and multiplicative seasonal influences.
rrhe method is an adaptation of a hand method which
was used for mitany years by the Central Planning Bu-
reaii. It is used mainly for adjusting quarterly series
but is now also used by the Bureau of Statistics for
the monthly unemployment series. The procedure is
related to the Wald method [50]. (For a detailed de-
scription, see [19].)

The CPB method assmnes that the trend-cycle, sea-
sonal and irregular components are related additively
and that the seasonal component may be repre-
sented as the product of a seasonal factor and a
mnultiplicator i.e.,

=

'rhe seasonal factor represents exogenous influences
(such as the weather, holidays, etc.) which have an ef-
fect on both the direction and size of the seasonal com-
ponent, while the multiplicator represents endogenous
influences affecting the size of the seasonal component
only.

The seasonal factors are measured separately for
each month and are fitted to a second degree polynomi-

= + a +

For most time series, the multiplicator may be esti-
mated as a linear relationship

(1—A)

where T is the average trend-cycle component for the
mid-year (i.e., when t is 0). The value of A lies in the
interval

The seasonal component will, therefore, be inde-
1)endent of the level of the series when A=0 (i.e., com-
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plete additivity), while with A= 1, a multiplicative re-
lationship holds.

For certain volatile stock variables, such as unem-
ployed, this linear relationship may not be sufficiently
general to describe the series adequately. In t.hese cases,
the multiplicator is assumed to be a function of both
the level and the relative change in the trend. The rela-
ship estimated, after transformation, is

T41/T—l
mij=exp [b1{ln

1+b2
7'max/T±b2

where is the trend value for which m4, reaches its
maximum.

The trend and seasonal component are estimated
iteratively. In the first round, a 12-term moving aver-
age, is used to determine the trend that is replaced dur-
ing four later iterations by the 15-term Spencer.

Before each iteration, irregulars above are con-
sidered as extremes and eliminated.

TIME SERIES USED

The results obt.ained from seasonally adjusting two
series, U.S. total employed and U.S. total unemployed.
will be reported. The period covered is from January
1953 to December 1975.

Total employed is a relatively smooth series whh a
1—percent absolute month-to-month variation, while
total unemployed is highly volatile, with a
absolute month-to-month variation.

In addition to these two series, fifteen other series
were analyzed. Because it was found that the analytical
results for these series were very similar to those ob-
tained for total employed and total unemployed, the
relevant summary measures have not been included.

COMPARISONS OF SEASONAL ADJUSTMENT
METHODS

The major difficulty in making comparisons between
adjustment methods is that actual series have unknown
composition. An experimental technique of generating
artificial series and analysing the decomposition has
been adopted in several studies. (See [16; 18].)

A difficulty with this approach is that the choice of
generating mechanism of the components may in itself
favor certain methods, because the underlying model
used in the adjustment process was also used in gen-
erating the artificial series. In this study, only pub-
lished series were used.

Fase, Koning, and Volgenant [15] have compared
the seasonal adjustment for four published Dutch
series and one generated series, using nine seasonal ad-
justmnent methods, including the X—11, Burman, CPB,
and EEC methods. Fry [48] has compared the results
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from several seasonal adjustment methods on one
series, the monthly money stock (Ml).

Choice Between Additive and Multiplicative
Adjustment

The X—11 and Burman methods require that either
additive or multiplicative adjustment be selected. Be-
cause most series, especially for the post war period,
are better represented by a multiplicative pattern,
there has been a tendency to use this method with-
out checking if the additive option might be more
appropriate.

Recently, model selection routines have been sug-
gested that test both options. (For a description of
work in Great Britain, see [13; 22].) Model selection
routines are also used at Statistics Canada and the
Bureau of Labor Statistics.

The following model test was applied. A SI series
was obtained by subtracting a [12, 2] trend from the
original series. A trend was then fitted to 7-year spans,
i.e..

S!=a+bt+e
If only the slope coefficient is significant, multiplica-

tive adjustment is suggested, and additive adjustment
in the reverse case. If both the intercept and slope co-
efficient are significant a mixed adjustment technique
would be appropriate.

The t-values for the period July 1953—June 1975 are
presented in table 1. The results show that multiplica-
tive adjustment would have been appropriate for the
unemployment series up to 1970, with a shift to mixed
adjustment after 1970.

The employment series might have been adjusted
with a mixed model during the full period.

Because no clear pattern of either additivity or mul-
tiplicat.ivit.y was shown, it was decided to include both
options for the X—11 and Burman programme in the
comparison of seasonal adjustment methods for these
series.

It should be mentioned that the BLS obtains the
seasonally adjusted total employed and total unem-
ployed by aggregating component series. The additive
option of X—11 method is used for males 16—19 years
old and for females 16—19 years old, while the multi-
plicative option is used for the other components.

Summary Measures Used

The summary measures presented in this section are
used to determine the extent to which there are signifi-
cant differences between the various methods of season-
al adjustment analyzed.

They were calculated for the full period (1953—75)
for the historical period (1956—72), for which the sea-
sonal factors may be considered to be final in a statisti-

KI
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Table 1. t-VALUES FOR MODEL TEST FOR 7-YEAR SPANS

Years

Employed Unemployed

Intercept Slope Intercept Slope

1953-59
1954-60
1955-61
1956-62
1957-63
1958-64
1959-65
1960-66
1961-67
1962-68
1963-69
1964-70
1965-71
1966-72
1967-73
1968-74
1969-75

2.0
3.8

3
5

1.1

1.9
3.1

4.4
8.3
8.8
8.2

6.3
4.6

.9

1.2

2.0

3.1

5.2
1.3

.3

.2

.8

1.7

2.7
3.4
3.7
4.3
3.3
4.4
3.1

.0

2.1

2.4

1.2
.0

.1

.4

.5

2.0
1.5
1.5

2.0
.5

.3

1.9
2.4
2.4
2.5

.7

1.6

0.8
2.4
2.8
1.9
1.1

3.6
5.2
6.8
7.9
3.4
3.6

.3
1.4
2.0
1.9
2.0
5.1

Note: Additional tabular materials and computer printouts are available from the author upon request.

Table 2. AVERAGE ABSOLUTE MONTH-TO-MONTH PERCENTAGE CHANGE

Method 1953-75 1956-72 1973-75 1975

X-1 1 Additive
X-1 1 Arima Additive
Burman Additive
Berlin
CPB

EEC

Xli Multiplicative
X-11 Arima Multiplicative
Burman Multiplicative
Raw series

X-1 1 Additive
X-11 Arima Additive
Burman Additive
Berlin
CPB

EEC
X-11 Multiplicative
X-1i Arima Multiplicative
Burman Multiplicative
Raw series

Employed

0.32
.32
.33
.30
.32

.32

.32
.32
.33
.92

0.31
.31

.32
.29
.32

.32

.31

.31

32
.93

0.27
.25

.26
.27
.27

.29

.27

.25

.26

.91

0.25
.20
.20
.24
.24
34
.24

.18

.21

.75

Unemployed

3.56
3.55
3.83
3.55
3.60
3.58
3.66
3.66
3.87
9o0

3.34
3.34
3.37
3.31
3.38
3.20
3.38
338
3.51
9.15

2.60
2.48
2.77
2.96
2.84
3.50
3.29
3.25
3.39
7.91

1.40
1.18

1.19
1.05
190
3.26
3.06
2.99
347
3.70
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cal sense; and for the current period (1973—75). Where
applicable, the calculations were also performed for
individual years of the current period (1973, 1974, and
1975).

Average absolute month-to-month percentage
change—The average absolute month-to-month per-
centage change indicates to what extent the series has
been smoothed by seasonal adjustment.

These percentages changes are presented in table 2
for the periods 1953—75, 1956—72, 1973-75, and sepa-
rately for 1975.

The reduction in the average absolute month-to-
month change is about the same for all methods for the
historical period (1956—72), but significant differences
are shown for the current period (1973—75). The differ-
ences for 1975 are the most striking.

Correlation coefficient—The correlation coefficients
between the adjusted series for the historical period,
the current period, and for 1975 are presented in table
3 for employed and in table 4 for unemployed.

For the historical period, the correlation coefficients
are very close to one, while, for the current period, di-
vergences occur, especially in the series of unemployed.

Inequality coefficient—A second measure which
was used to describe the differences between seasonal
adjustment methods is the inequality coefficient. This
coefficient was used by Fuse, Koning, and Volgenant
[15]. It quantifies differences between the estimated
seasonal components. It is defined as the ratio of the
average absolute difference between two methods of
adjustment to the original series, multiplied by
100, i.e.,

The statistic has a minimum value of zero when two
adjustment procedures provide an identical seasonally
adjusted series.

Inequality coefficients for all nine procedures are
presented in table 5 for employed and table 6 for un-
employed for the periods 1956—72, 1973—75 and for
1975. The results show very clearly that the differences
between the seasonally adjusted series are relatively
small for the historical period but that there are sig-
nificant differences for the current period and espe-
cially for 1975.

Relative contribution of components to variance
in original series—The relative contribution of the
irregular, trend cycle and seasonal, component to the
variance in the original series is widely used for
analysis. This table is included in the summary meas-
ures table (pt. F) of the X—11 programme.

The contributions to between month variance are
presented in table 7 for the historical period (1956—
72) and the current period (1973-75).

This table shows that the relative contribution of

each component is very similar in the historical period
but that divergences occur during the current period.

Average duration of run—The average duration
of run was used to check that the irregulars may be
considered to have been generated by a random proc-
ess. (See [21].) It should be noted that an oscillatory
series may be generated when a moving average of
a random series is taken (the Slutsky-Yule effect).
(See [41].)

This measure was calculated for the irregulars
(after extremes were removed). Table 8 gives a sum-
mary for 1953—75, 1956—72, and 1973—75. The expected
value of this statistic for the full period is 1.50 with
95 percent confidence limits of 1.40 and 1.61. For a
3—year period, the expected value is 1.48, with con-
fidence limits of 1.23 and 1.86.

The Berlin method is the only procedure which falls
outside these limits, except for the employed during
the historical period.

Optimal properties of seasonal adjustment—As an
alternative to the summary measures used in this sec-
tion, one might determine to what extent optimal
properties of seasonal adjustment are met. (For this
approach, see [26; 27].)

Spectral Analysis

In many studies, an evaluation of seasonal adjust-
ment procedures has been undertaken in spectral
terms. (See [20; 24; 32; 33; 39; 40; 45]; for a discus-
sion of spectral analysis in terms of the time domain,
see [14].)

A spectral evaluation of the seasonally adjusted
series was performed for the methods analyzed. One
of the spectral requirements is that seasonal peaks, in
the spectrum of the original series, should be removed
in the spectrum of the seasonally adjusted series. Also,
phase shifts should not occur. The power density
spectra for the adjusted series were quite similar. All
exhibited, to some extent, dips at the seasonal fre-
quencies. Therefore, it was not practicable to discrimi-
nate between the procedures on the basis of the spec-
tral criteria.

Stability of the Seasonal Component

One of the important properties of a seasonal ad-
justment procedure is that the preliminary estimate of
the seasonal factors be relatively close to the final esti-
mate.

To test the extent to which the seasonal component
changes when additional observations become avail-
able, the seasonal factors for the current year were
compared with the seasonal factors calculated when 3
additional years of data have become available. At that
time, the seasonal factors may be considered final.
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Table 7. RELATIVE CONTRIBUTION OF COMPONENTS TO BETWEEN-MONTH VARIANCE IN
ORIGINAL SERIES

Method
1956-72 1973-75

T S T S

xii Additive

Employed

79 36 88.5 4.3 6.3 89.4
X-11 Arima Additive 7.9 3.6 88.5 4.0 5.7 90.3

9urman Additive 8.4 3.4 88.2 4.9 5.8 89.3

Berlin 7.5 3.3 89.2 4.9 5.5 89.6

CPB 9.1 3.4 87.5 4.9 6.2 88.9

EEC 9.1 3.3 87.6 6.6 4.9 88.5
x-1 1 Multiplicative 8.2 3.6 88.2 4.3 5.9 89.8
X-i1 Arima Multiplicative 8.2 3.6 88.2 3.7 5.6 90.7

Burman Multiplicative

x-11 Additive

8.9 3.3 87.9 4.8 5.5 89.7

Unemployed

7.8 4.5 87.7 6.6 10.0 83.4
x-1 1 Arima Additive 7.7 4.5 87.8 5.5 9.2 85.3
Burman Additive 8.7 3.8 87.4 6.7 9.8 83.5
Berlin 8.8 3.4 87.8 14.7 12.3 73.0
CPB 9.3 3.5 87.2 8.1 9.8 82.1

EEC 8.8 3.4 87.8 10.0 5.7 84.3
X.11 Muliplicative 8.4 3.9 87.7 9.0 6.0 85.0
X-11 Arima Multiplicative 8.4 3.9 87.7 8.2 6.2 85.6
Burman Multiplicative 10.4 3.2 86.3 8.5 5.5 86.0
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Table 8. AVERAGE DURATION OF RUN FOR IRREGULARS, EXCLUDING EXTREMES

Method 1953-75 1956-72 1973-75

Employed

Xii Additive 1.44 1.43 1.35

X-1 1 Arima Additive 1.46 1.43 1.46

Burman Additive 1.50 1.47 1.6?

Berlin 1.61 1.52 2.33
CPB 1.57 1.54 1.84

EEC 1.52 1.47 1.84

X-11 Multiplicative 1.47 1.43 1.59

Xii Arima Multiplicative 1.47 1.43 1.59
Burman Multiplicative

Xii Additive

.

1.47 1.47 1.52

Unemployed

1.38 1.36 1.52
X-i1 Arima Additive 1.40 1.36 1.67
Burman Additive 1.57 1.57 1.46
Berlin 1.87 1.90 1.94
CPB 1.60 1.60 1.67

EEC 1.56 1.56 1.40

X-11 Multiplicative 1.34 1.36 1.25

X-1 1 Arima Multiplicative 1 .36 1 .36 1.40
Burman Multiplicative 1.56 1.52 1.52

Table 9. STABILITY INDICATORS

,

Method

Employed Unemployed

Mean algebraic
difference

Mean absolute
difference

Mean algebraic
difference

Mean absolute
difference

Seasonal factors

X-11 Additive
Xii Arima Additive
Burman Additive
EEC

Seasonal ratios

X-11 Multiplicative
Xii Arima Multiplicative
Burman Multiplicative

0.060
.043
.064
.091

0.114
.072
.097

.

0.102
.083
.104
.129

0.160
.121

.142

0.031
.017
.040
.046

0.927
.491

1.164

0.062
.052
.070
.083

1.692
1.387
1.812

SECTION II
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The differences in the seasonal factors were aver-
aged for each month separately for 10 years to exclude
random fluctuations. The period covered was 1963 to
1972. The average deviation is a measure of the bias
and the mean absolute deviation, a measure of the dis-
persion.

The mean absolute values for the 12 months are pre-
sented in table 9. The calculations were not available
for the Berlin and the CPB methods.

The results shown that the X—11 ARIMA method
performs best on the criterium of stability of the sea-
sonal component. The percentage reduction in the bias
(mean a'gebraic difference) was 33 percent for em-
ployed and 46 percent for unemployed, while the re-
duct.ion in dispersion (mean absolute differences) was
21 percent for the employed and 19 percent for the
unemployed. The B urman method performed slightly
better than the X—11 for the employed but performed
worse for the unemployed. The EEC method showed
the largest revisions.

Elimination of Extremes

As discussed in the section "Seasonal Adjustment
Methods Studied," the various procedures determine
extremes quite differently.

The number of extremes identified be a function
of the u limit above which an irregular is considered
to be an outlier.

The method of replacement will have an effect on
the irregulars after replacement of extremes. For ex-
ample, the Berlin method replaces extremes by the
value of 2u, while the Burman and X—11 methods re-
place the extreme by an average of those neighbouring
irregulars that were not identified as extremes.

Table 10 gives a summary of the extreme adjust-
ments made for the historical (1956—72) and the cur-
rent period (1973—75). Table 11 compares the irregulars
for both of these periods. In this table, the RMS for all
irregulars, for those without extreme adjustment and
those with extreme adjustment, is shown.

The results of this analysis cannot be used to rank
the seasonal adjustment procedures studied. However,
they give one of the reasons why adjustment proce-
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dures may differ substantially in some cases. When two
seasonal adjustment methods use the same procedure to
replace extremes. the one with the lower number of
extremes will be more appropriate. This criterium may
be used in the choice between multiplicative and addi-
tive adjustment.

Method of Calculation

The analysis was performed using the MATOP soft-
ware package. (See [23].) This package includes sub-
routines for all seasonal adjustment procedures used
in this study with the exception of the Berlin method.
The trend, seasonal and irregular components, as well
as the extremes, for the adjusted series are retained in
memory and, thus, remain available for subsequent
analysis.

CONCLUSION

It was found that the seasonal adjustment proce-
clures studied tend to give a similar adjustment for the
historical period (the part of the series excluding the
first and last 3 years) but that the adjustment for the
current period (the last 3 years) may be quite differ-
ent.

Because the adjustment for the current period is the
most important for policy analysis, it may be useful,
when adjusting the more important series, to compare
the results obtained with more than one niethod, espe-
cially when an additive or multiplicative option must
be selected.

This is also suggested by Kendall and Stuart who
stated, "Our general recommendation would be to try
several methods and to choose the one which appears
to give the most reasonable results" [21].

The extent to which preliminary seasonal factors are
revised when new data becomes available is an im-

consideration for policy analysis. Using this
criteriurn, the X—11 ARIMA method performed best.
It should be noted that the procedure projects the un-
adjusted series for a period of 12 months. Therefore, it
is possible to use the extrapolated series together with
other seasonal adjustment procedures.

r

35
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33

34
34
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Table 10. EXTREME VALUES

Method
1956-72 1973-75

Number RMS Number RMS

Xli Additive

Employed

35 0.305 7 0.300
Xi 1 Arima Additive 32 .319 9 .255
Burman Additive 8 .405 3 .176
Berlin 0 (X) 0 (X)
CPB 24 .146 5 .156

EEC 2 .461 0 (X)
Xii Multiplicative 32 .318 6 .292

X-11 Arima Multiplicative 32 .318 9 .216
Burman Multiplicative

X-llAdditive

8 .419 1 089

Unemployed

36 0.171 8 0.250
X.1 1 Arima Additive 37 .169 7 .216
Burman Additive 6 .229 3 .262
Berlin 1 .871 2 1.345
CPB 24 .087 5 .245
EEC 2 .262 0 (X)
Xii Multiplicative 36 .152 7 .322
X-11 Arima Multiplicative 34 .157 8 .241

Burman Multiplicative 10 .188 2 .399

X Not applicable.
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COMMENTS ON "A SURVEY AND COMPARATIVE ANALYSIS OF VARIOUS
METHODS OF SEASONAL ADJUSTMENT" BY JOHN KUIPER

J. P. Burman
Bank of England

INTRODUCTION

It might be thought somewhat embarrassing for me
to act as a discussant of a paper which compares my
own seasonal adjustment method with those of others.
But my method has been around for 11 years, and I
feel that it is now old enough to take care of itself.
Changing the metaphor, the present state of the art
may be compared with that of the early Christian
Church: The dominant stream of orthodox theology—
the X—l1 method, of course—and a number of heresies.
The heretics are each sure t.hat they are right, and there
is a dialogue of the deaf amongst them and between
them and the orthodox theologians.

The deafness arises from the lack of agreement on
objective criteria for judging the quality of the ad-
justments to a series, a lack which, I hope very
strongly, that this conference will be able to remedy.
A of effort has been spent on the development of
new and complicated methods, which seem to have arbi-
trary elements in them, because the authors have not
taken us step-by-step through the processes that led
them to introduce these-I may have been guilty of this
myself.

FEATURES OF METHODS

The paper before us gives a brief description of five
methods. I would like to concentrate on their important
features and differences. Every procedure can be divided
conceptually into trend-removal and smoothing—with
an intermediate stage in the case of the Bank of Eng-
land (Burman) method of choosing the smoothing
average. Table 1 sets out the stages for four of the
methods. Three of them use various symmetric aver-
ages for trend-removal, but, in contrast, the BERLIN
method [6] has an asymmetric 23-term average. How-
ever, I do not believe that the differences in trend-
removal are the major cause of differences in the final
results: Any differences in the spectral properties of
the filters at low frequencies will be attenuated at the
smoothing stage.

What matters most are—

1. The choice of additive, multiplicative or mixed
model;

2. The method of smoothing the SI series;
3. The treatment of extremes.
The mixed model of the Dutch Planning Bureau

(CPB) avoids the choice in (1), but the large number
of parameters causes problems. The CPB reduce these
by assuming a fixed ratio between the additive and
multiplicative components and a deterministic evolution
of the seasonal pattern.

The manner of smoothing determines the flexibility
of the method. X—11 method uses a (3) {5) year smooth-
ing on the final round. EEC splits the seasonal into a
normalised pattern (PSN), smoothed over 5 years, and
a scaling factor, estimated over 1 year; thus, it is con-
siderably more flexible than the X—11 method. Conse-
quently, the seasonal adjustments for a given month
are generally more erratic than those of the X—11
method, and they do not sum to approximately zero
over a year. For the BERLIN method, the smoothing
average covers 45 months (again asymmetric), which
would make this method more flexible than the X—11
method. The CPB model, with its deterministic func-
tion for moving seasonality, is apparently fitted over
periods of 8 years.

In contrast to the foregoing methods, the Burman
method has variable smoothing. For each of the 11
harmonics, it selects from the following: Fixed, ex-
ponential smoothing with a ratio of 0.9, 0.8, or 0.7,
{3) (5) and {5}. In practice, this method is usually less
flexible than the X—11 method because most of the
components are smoothed by longer averages than
(3) (5).

The treatment of extremes varies a good deal. For
example,

X—11 treats all extremes in isolation, with taper-
ing weights between 1.5 and 2.5 sigma (estimated
iteratively). Burman tapers between 2.0 and 2.5
sigma, allowing for the effect of isolated extremes
on the trend and for interaction between two ad-
jacent extremes [4].
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EEC deals with isolated extremes but has also an
elaborate system of successive truncations (MOT-
ARD).

COMPARISON OF RESULTS

Professor Kuiper has obviously devoted a great deal
of effort to developing a system of programs for carry-
ing out simultaneous tests; but, I am sorry that he has
not found time to do more tests or to analyse more than
two series. I am sure he would agree that generalisa-
tions cannot be made from one or two series, and I
understand he plans to add comparisons for a number
of other series before publication.

The tables showing the variance contributions of T, S,
and I and the MCD's tell us something about each
series, but they provide no inforniation to help in rank-
ing the methods of seasonal adjustment. The inequality
coefficients show the close relation between the X—11
additive and Burman additive and also between the
corresponding multiplicative methods. CPB stands
next closest to these two groups; BERLIN (being ad-
ditive) is closer to the additives X—11 and Burman;
and EEC is closer to their multiplicative versions (be-
cause of its scaling factor). But, what use are we to
make of these family relationships l

A cursory look at the tables of the irregular com-
ponent show runs of the same sign near the end of the
unemployment series for the BERLIN method and, to
a lesser extent, CPB. The BERLIN method has a dis-
tinctly high average length of run over the series
(as Kuiper points out), suggesting something unsatis-
faétory in its trend filter.

One objective test is to use spectral analysis to detect
residual seasonality in the adjusted series: The paper
contains two examples, and I hope that more will be
added. The difficulty is to devise a numerical test of
whether the peaks have been removed and a measure
of the loss of power at nonseasonal frequencies. (The
discussions by Tukey on [5] and Wecker on [7] show
that the latter cannot be completely avoided.) More
simply, the sequence of irregulars for each month can
be tested for nonrandomness. Stability can be meas-
ured by the extent of revisions in the latest year or two
when the series is up-dated. Obviously, there is a trade-
off between these tests: The more flexible the method,
the more likely that it will pass the simple residual
seasonality test, but the larger the revisions will tend
to be.

Professor Kuipe.r kindly supplied me with the 15
series he obtained from the NBER, and we have done
some comparisons between X—11 and Burman methods.
Using a von Neumann test for residual seasonality on
the 15 series, the Burman method had only 6 months
out of 180 significantly nonrandom at the 5-percent
level—less than the 9 to be expected by chance. The

SECTION II

X—11 method should show even fewer on this test be-
cause of its greater flexibility. We also looked at the
autocorrelation structure of the first differences of
seven of the seasonally adjusted series—those with a
relatively significant seasonal pattern and not too
noisy. (Where the seasonal adjustments indicated a
multiplicative model, a logarithmic transformation
was made.) The results for r,, are given in table 2.
All but one of the series has a small negative auto-
correlation, suggesting slight overadjustment., and in
5 out of 6 cases, the Burman method shows the smaller
negative figure. The positive figure for retail sales is
mentioned in the following section.

We also tested the size of revisions of the seasonals
for the seven series. The adjusted figures for the pen-
ultimate year were compared with those obtained from
running the series with the last year omitted. The re-
sults in table 3 slightly favour the Burman method in
four of the seven series.

An extreme example of differences between the
methods is in housing starts, a very noisy series: The
Burman method finds only one of the eleven harmonics
is moving, the first cosine term. Nevertheless, its ad-
justed series passes the residual seasonality test in all
12 months. This and similar results with the Consumer
Price Index support findings [7] that a fixed determi-
nistic seasonal pattern is sufficient for these two series.

It might be possible to estimate the trade-off between
maximum flexibility and minimum revisions, using an
objective forecasting technique such as the Box-
Jenkins. The steps would be

1. Seasonally adjust and forecast the adjustments,
for example. 6 months ahead.

2. Fit a Box-Jenkins nonseasonal model to the ad-
justed series and forecast it 6 months ahead.

3. Combine these two forecasts to project the orig-
inal series and find the mean forecasting error.

If, with a wide lunge of series, one method of seasonal
adjustment led to smaller mean forecasting than
another method, the former could be said, unequiv-
ocally, to be superior. The thought behind this is that,
if a method was too flexible, it would impart noise to
the forecast seasonal adjustments; if not flexible
enough, it would fail to pick up genuine changes of
pattern.

For the seven series selected, we fitted Box-Jenkins
models to the X—1l and Burman adjusted series. From
a range of models fitted, we. chose a common one for
both verisions of each series. The results are in table
4.

For all except retail sales, the fit of the models is
very poor (after differencing), so that both sets of fore-
cast errors are. large; but on the basis of this limited
evidence, the X—l1 method does better than the Bur-
man method. However, earlier work on 60 simulated
series, on which I reported at a seminar in Amsterdam
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jji April 1976, suggested that on average the two I digress for a moment to discuss a general prop-
methods performed equally well. erty of seasonal adjustment filters. All of the methods

The good fit of the AR model for retail sales seems considered earlier consist of a two-sided filter which is
to result from a damped 3—month cycle in the adjusted approximately linear. The filters are not symmetric,
series. Presumably, this is due to imperfect length-of- except for the middle terms of the series, but all except
rionth adjustment of 4- and 5-week periods; this those for the BERLIN method have the following
feature cannot be picked lip by the seasonal adjust- property: The application of the process to the re-
1nent as the 4- and 5-week periods shift around. The verse of a series produces the reverse of the original
fact that r,2> 0 for this series may be due to masking seasonally adjusted series. This may be called weak
of negative autocorrelation by the approximate 3- symmetry.
monthly cycle. Returning to Brewer's one-sided filter, we see that,

The results of this section are conflicting: Two tests instead of backcasting and then forecasting, we could
suggest that the Burman method is flexible enough and have reversed the order, i.e., finding an EFF at the
that the X—11 method is slightly over-adjusting. The end of the series instead of at the beginning. A
third favours the X—11 method. weighted average of the two estimates of the adjusted

series provides a filter with weak symmetry.

SEASONAL ADJUSTMENT BASED ON
MODELING CONCLUSION

I now wish to discuss a very different method of
seasonal adjustment using Box-Jenkins models, partly
based on [2]. Assume that an ARIMA seasonal model

.
can be fitted to the series

LOokjil(r at. the five methods compared in Kuiper's
l)aper, it seems to inc that—

.

1. The rationale of the EEC niethod is quite clear
.(apart from the truncation procedure for dealing

(8 = period of seasonality) with extremes called but it produces
seasonal patterns considerably more erratic than

Brewer showed that, if this is expressed as a poiy- the X—11 method.
nomial (possibly zero) and partial fractions, the latter 2. The rationale of the CPB method is clear, but it
can be divided into trendlike and seasonallike terms. assumes deterministic moving seasonality. It
The real positive roots of 4'(x) = 0 generate sets of s seems doubtful whether this can respond to rapid
roots of = 0: each set contains a real positive changes of pattern as well as the X—11 method.
root and (8—1) complex roots, corresponding to the 3. I do not understand the rationale of the BERLIN
seasonal frequencies. The former is naturally associated method with its asymmetric filters.
with the trend; and the latter, with the seasonal corn- 4. There seems to be no evidence that the X—11
ponent. But, any negative or complex roots of (x) method is not flexible enough; if anything, it is
= 0 produce sets of roots of = 0 that do not sometimes too flexible. The problems that several
correspond to seasonal frequencies and, thus, would countries have had recently with unemployment
more naturally be associated with the trend. series stem mainly from the use of the Multipli-

The polynomial represents the transient or irregular cative X—11 method: This was indistinguish-
component that can be combined with the trend to give able from the additive model when unemployment
an adjusted series. The partition into seasonal and was low, but the seasonality has shown itself at
nonseasonal components at time t depends on that at least partly additive with high unemployment.
previous times, but it becomes unique and obvious in Therefore, I feel that there is little justification
the eventual forecast function. (See the app. for de- for methods more flexible than the X—11 method
tails.) Brewer, therefore, suggests that after model (e.g., the EEC and BERLIN methods).
estimation, backeasting should be used to provide an 5. The advantage claimed for the Burman method
EFF at the start of the series, and then forward fore- over the X—11 method is that it offers an admit.-
casting provides estimates of the seasonal and non- tedly crude and suboptimal, but automatic, way
seasonal components up to time t. But, this makes the of choosing from a range of alternative models.
seasonal adjustment filter entirely one-sided (except for The disadvantage is that, on occasion, the choice
the effect of the later terms in the backcasting; this is of model changes as a result of an annual up-date.
negligible for long series). Brewer, therefore, recom- 6. But, if direct use of Box-Jenkins models on a
mended a complex and somewhat arbitrary way of large scale proves feasible, the signal extraction
making the filter two-sided. I have shown (in unpub- methods described in [1; 7] might be. better than
lished correspondence) that his extension gives a filter any of the traditional moving average methods.
that asymptotically has not the right properties for 7. In any case, we need more comparative, objective
seasonal adjustment. tests on a large number of economic series.
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APPENDIX

BOX-JENKINS MODELS FOR SEASONAL ADJUSTMENT

if D = 2, the seasonal pattern changes linearly, the sum
of the changes over 8 observations is zero, and the sum
of the levels in some specific set of 8 observations (e.g.,
calendar years) is zero. If we change the zero condi-
tion from the calendar year to some other year, the
constant term in the trend EFF changes, but the total
EFF remains the same.

Brewer's proposal is that, when the model param-
eters have been estimated, it should be used for back-
casting from the end of the series to provide an EFF
at the beginning.' This can then be partitioned into
seasonal component and adjusted series and used as a
starting point for the recurrence relations:

d(B) = =Oa(B)at
8(B)21(t)

But, this approach gives a one-sided filter for seasonal
adjustment, whereas nearly all of the classic methods
have weak symmetry. (Here we depart from Brewer.)
It seems logical to make another estimate of the ad-
justed series by using the forward EFF as 'the starting
point for partitioning and backeasting to obtain
another version of the adjusted series. The forward and
backward versions can then be combined by a linearly
weighted average to give a weakly symmetric estimate.

If and are the forward and backward ad-
justed series, the former starts with the EFF at
and the latter with the EFF at

+
(N = the nuni-

her of observations, q* q + sQ). The final adjusted
series is

Again following Brewer, the operators for the seasonal
component and the adjusted series imply recurrence
relations which need to be started up. If we estimate
the parameters by least squares or Ml, the eventual
forecast function (EFF) satisfies

The parameters may be estimated by constrained least
squares (setting . . . =a0 and ey4,
=ey+2. . . where et is the backcasting error).
Alternatively, they may be estimated by ML, which
gives estimates

. . since these de-
pend only on the 0 parameters and not on the observa-
tions, = eN+2 etc. Thus, in both cases,
weak symmetry is preserved.

'That Is, estimating e, from

81

Consider the IMA model

e(B)
aj

where

=

A.s Brewer [2] has shown, this model can be split up
uniquely into a polynomial (zero if it is bottom heavy)
and two groups of partial fractions, i.e.,

(A-i)

where

The first part is a transient or irregular component, the
second represents the trend, and the third, the seasonal
component. The first two parts can be combined to give
the seasonally adjusted series

®g(B) e8(B)
d(B) ÷ 8(B)

(A-2)

This formulation in terms of the sum of three compo-
nents (T+S+I) can be translated into an equivalent
filter for the adjustment process, i.e.,

®G(B)d(B)8(B)
d(B)e(B)

A 3
= e(B) (-)

where
q*+t

(B) =0 [i> q + Qs]

since

a
and a of (8—1) seasonals that are

polynomials of degree (D—1). If D1, the breakdown
is unique, since the seasonal pattern of the EFF is
fixed, and the sum of the 8 elements is zero. If D>i,
the breakdown is not unique but in a trivial way; e.g.,
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Table A-i. COMPARISON OF MAIN STEPS IN FOUR SEASONAL ADJUSTMENT METHODS

X Not applicable.

'Steps which create nonlinearity in the filters.

L

I'

BUI

th
Rei

Ml
Shi

Ne

Step X-1 1 EEC Seabird Bank of England Berlin

Model Additive or
multiplicative (ratios).

Additive only.
Multiplicative assumed
covered by rapid adjustment
of scaling factor. (See
below.)

Additive or multiplicative
(log transform).

Additive.

Trend
removal

9-, 13-, or 23-term
weighted average (at
2d iteration).
Symmetric, end terms
lost

19-term weighted average.
Symmetric in central part,
skew for end terms.

13-term weighted average
(except 1st harmonic that
uses 25-term weighted and
13-term unweighted
averages). Symmetric, end
terms lost.

Regression of cubic (plus
harmonic variables) fitted
to 23 observations, 12
before and 10 after the
term being estimated.

Components
of pattern

l2monthsconstrained
to sum to zero.

11 harmonics (excluding
insignificant ones).'

11 harmonics. 11 harmonics (excluding
insignif icant ones).'

choice of
smoothing

(X) (X) Pooled Von Neumann ratio
as criterion of moving
pattern.

(X)

Smoothing
seasonals

[3] [31 1st round.
[31 (51 2d round.

(5] Fixed or exponential
(A = 0.9, 0.8, or 0.7)
or [3] [5] or [5].

Regression of 11 harmonic
variables (plus 5th-degree
polynomial) fitted to 45
observations, 23 before
and 21 after the term
being estimated.

Special
feature

(X) Seasonal split into pattern
(moving 5-year average) and
scaling factor (moving
12-month average).'

(X) (X)

Extremes
replaced

Graduated weights
between 1.5 and 2.5
sigma.'

Effect of extremes muted
by various steps with
truncation.' Also, extremes
identified and given zero
weight.'

Graduated weights between
2.0 and 2.5 sigma.'

Identified by comparison
with previous 24 terms.
Replaced by upper/lower
bound of selected
confidence interval.

Quarterly
version

Yes No Yes Yes

Trading-day
adjustment

Yes No Not included but has been
used in separate program.

No
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Table A-2. SEASONAL AUTOCORRELATION IN ADJUSTED SERIES

Series Model X-1 1 BUR

Unemployed
Retail sales

Ml
Shipments:

All manufacturing
Durables
Nondurables

New orders

A
M

M

M

M

M

M

.0.22
.03

-.17

-.10
-.18
-.07
-.14

-0.05
-

-.10

-.10
-.07

-.02
-.11

— Entry represents zero.

Table A-3. MEAN ABSOLUTE REVISIONS IN LATEST YEAR

Series Xi 1 BUR

Unemployment
Retail sales
Ml, deposits
Shipments:

Manufacturing
Durables
Nondurables

New orders

0.097
155.5
179.5

195.9
126.8
93.2

246.8

0.093
161.8
1538

181.9
174.0
105.3
237.1

Table A-4. COMPARISON OF MODEL FORECASTING ERRORS

.

Series

Box-
.

Jenkins
model

Percent variance1
.

explained

Mean

absolute
forecast

error

Xii BUR Xii BUR

Unemployed
Retail sales

Ml, deposits
Shipments:

All manufacturing
Durables
Nondurables

New orders

(2,1,0)
(2,1,0)
(1,1,0)

(1,1,3)
(1,1,3)
(1,1,3)
(2,1,1)

12.5
47.8

4.4

6.3
8.5

10.4
11.1

8.4
44.1

4.4

6.0
7.3

11.0
13.4

1.10
823

1376

2636
893

1755
1253

1.26
840

1839

4080
2017
1903
1371

After differencing.
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It might be thought that the forecasting and back-
casting could be iterated, but a little thought shows
that it is unnecessary for the IMA models. After fore-
casting and backcasting once, the first forward step
(calculating a1) does not depend on L1, etc., but
only on etc., which are the same as before.

EXTENSION TO AR MODELS

The following changes are necessary:

1. The seasonal AR function in $(B) has to be par-
t.itioned between trend and seasonal: if it is of the

SECTION II

form (1— the real positive root goes with
the trend and the (8—1) complex roots with the
seasonal. If P = 2, the two roots nearest unity go
with the trend and the remaining 2(8—1) roots
with the seasonal; but, if there are no roots very
close to unity, it is not clear what to do.

2. The EFF of the two components are still d(B)
and 8(B), but these are only reached asymptoti.
cally as the AR portion dies away, instead of in
a finite number of steps.
It is possible that iteration of forecasting and
backcasting alternately will be useful, because a1
depends on 2,, etc.
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COMMENTS ON "A SURVEY AND COMPARATIVE ANALYSIS OF VARIOUS
METHODS OF SEASONAL ADJUSTMENT" BY JOHN KUIPER

Estela Bee Dagum
Statistics Canada

In his thorough and interesting study on the com-
parison of various methods of seasonal adjustment offi-
cially adopted by Statistical Bureaux,' Professor
Kuiper reaches the following conclusions:

1. There are no significant differences among the
seasonally adjusted values obtained by each
method for the total period of the series analysed
(1953—75). This is shown in the corresponding
tables of inequality coefficients, correlation co-
efficients, and summary measures.

2. There are significant differences in the current
seasonally adjusted values (1975) produced by
the various methods as shown in the tables of
inequality coefficients and correlation coefficients.2
To 'a lesser degree, this is also found to be true
for the seasonally adjusted figures of the last 3
years of observations.

3. The smallest mean algebraic error and mean abso-
lute error in the current seasonal factors is ob-
tained by the X—11 ARIMA method' that I
developed for statistics Canada, as shown in the
table of stability indicators.

I will comment on these three points and show that
they are not exclusive of the series considered but are
the results of the underlying basic assumptions of the
methods surveyed. These methods belong to the class
that estimates the seasonal component by purely me-

'The methods analysed are: (1) the U.S. Bureau of the Cen-
SUS method II X—11 variant; (2) StatIstics Canada X—11
ARIMA method; (3) Burman method of the Bank of England;
(4) Berlin method, ASA—lI; (5) the method of the Statistical
Office of the European Economic Communities of Brussels, and
(6) the method of the Dutch Central Planning Bureau.

2The current seasonally adjusted values were obtained by
applying current seasonal factors from data to December 1975
and not seasonal factor forecasts.

'The total error is defined as the difference between the cur-
rent seasonal factor a4', and the estimate of the same seasonal
factor when the series is enlarged with 3 more years of obser-
vations, The two statistics chosen to determine which of

the methods generates better current seasonal factors are the
mean algebraic error and the mean absolute error.

chanical procedures and not on the basis of a causal
explanation of the seasonal variation.

The time series probabilistic model of these methods
is the classical one known in the theory of stochastic
processes as error model. (see [1; 3].)

In an error model, the generating mechanism of a
time series is assumed to be composed of a systematic
component (sometimes called signal) that is a com-
pletely determined function of time f(t) and a random
component (the noise) "t that obeys a probability law.
The random element is supposed to be purely random,
i.e., identically distributed with constant mean, con-
stant variance, and zero autocorrelation.

The signal of the observed time series, like the ran-
dom element., is not observable, and assumptions must
be made concerning its behaviour.

In general, two types of functions of time ale as-
sumed by these methods. One is a polynomial of fairly
low degree which fulfills the assumption that the eco-
nomic phenomenon moves slowly, smoothly, and pro-
gressively through time (the trend). The other is a
linear combination of sines and cosines of different
amplitudes and frequencies (representing cyclical oscil-
lations), strictly periodic or not (the cycle and the
seasonality).

When the systematic part is assumed to be approxi-
mated closely by simple functions of time over the en-
tire range of the series, the statistical technique used
is that of regression analysis (the classical least squares
theory).

The methods surveyed, however, make the assump-
tion that, although the signal is a smooth function of
time, it cannot be approximated well by simple func-
tions over the entire range. Therefore, they use the sta-
tistical technique of smoothing.

The general basis for most smoothing procedures is
to fit a polynomial to 2n +1 successive observations and
use this fitted polynomial to estimate the trend cycle at
the middle value. Since the estimates of the parameters

Dr. E. B. Dagum is the chief of the Seasonal Ad-
justment and Time-Series Staff at Statistics
Canada.
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of the polynomial are linear in the observed values, say
the smoothed series has the form,

(1) I ..., T—n

The (1) is a moving weighted average of the ob-
served values where the ci's are constant weights, n is
a positive integer, 2n+ 1 is the span of the average. It
is called moving, because the weights are moved one
position to the right relative to the to obtain succes-
sive smoothed values.

The process of fitting a polynomial by the moving
average technique consists of determining the weights
c that are functions of the length of the moving aver-
age, 2n+ 1, and the degree of the polynomial to be
fitted, e.g., p. For a given p, the variance of the
smoothed series decreases with increasing n, and, for a.
given n, the variance goes up with increasing p [1, p.
54]). The methods surveyed fix p for each systematic
component and let the n vary. Therefore, depending on
the n, some methods are more flexible than others.
Although this does not affect their historical per-
formance, it indeed introduces differences in 'their cur-
rent performance.

The basic properties of moving averages are: (a)
Scale preservation, (b) superposition principle, and
(c) time invariance.

The property of scale preservation means that if the
original series is amplified by a given constant, the
smoot.hed series 1 will be amplified by the same fac-
tor.

The superposition principle means that if two time
series are added together and presented as the input to
the given moving average, then the output will be the
sum of the two smoothed time series that would have
resulted from using the original series as inputs to the
moving average separately. That is +
= + Ye', where the superscript a indicates that a
moving average has been applied to the original series.4

Properties (a) and (b) are a consequence of the fact
that moving averages are linear transformations (often
called smoothing linear filters).

The time invariant property means that if two inputs
to the moving average are the same except for a rela-
tive time displacement then the outputs will also be
the same except for the time displacement, i.e. if

then (Xt+a)°=Zt+k. In other words, no mat-
ter what time in history a given input is presented to
the filter, it will always respond in the same way. Its
behaviour does not change with time.

The methods surveyed apply symmetric filters to
estimate the' components that fall in the middle of their

'In practise, however, the equality is not fulfilled by the
methods analysed because of nonlinearities introduced at differ-
ent stages of the calculations, for example, in the replacement
of the extreme values.

span, e.g., 2n+ 1, and asymmetric filters to the 'n— first
and last observations.5

The sum of the weights of both kinds of filters equals
one; therefore, the mean of the original series is un-
changed in the filtering process.6

It is desirable in filter design that the filter does not
displace, in time, the components of the output relative
to the input, i.e., the filter should not introduce phase
shifts.

The symmetric moving averages have a phase shift
function that is equal to zero or ± fl. A phase shift of
±11 is interpreted as a reversal of polarity of a sinusoid
which means that its maxima are turned into minima
and vice versa.

For practical purposes, however, symmetric moving
averages act as though the phase shift is null. This is
because the sinusoids t.hat have a phase shift of ± 180°
lfl tile filtering process are cycles of short periodicities
(annual or less) and moving averages tend to suppress
or significantly reduce their presence in the output.

On the other hand, the asymmetric filters introduce
phase shifts for most of the components of the original
time series.'

Aside from the fact that the asymmetric filters of
these methods are bound to introduce phase shifts, the
functions not affected by these filters are different from
those corresponding to the symmetric filters.

In effect, the symmetric moving averages that are
applied to estimate the trend—cycle component repro-
duce the middle observation of a third-degree poly-
nomial within the span of the filter. rule fact that the
trend is assumed to follow a cubic over an interval of
short duration (one or two years approximately) makes
the assumptions of these niet.hods quite adequate for
the historical adjustment of a large class of economic
time series.

The same conclusions are valid for the symm.etric
filters that estimate the seasonal component; they can
fit closely a local linearly moving seasonality. These

°The only exception being the Berlin method ASA—Il that
applies an asymmetric fiter for trend-cycle removal but with a
weighting scheme based on a third degree polynomial.

6The sum of the weights of a filter determines the ratio of
the mean of the smoothed series to the mean of the original
series, assuming that these means are computed over periods
long enough to insure stable results.

' necessary and sufficient condition for a linear filter to
have a phase shift function $(X)=O for all X is that its trans-
fer function be real valued and nonnegative definite for all X•
Symmetric filters have real valued, but not necessarily
negative, transfer functions which lead to the possibility that
$(x)=±II for some frequencies. A digital filter with (real
valued) weights {°k :k=o, ± 1, . . .} is said to be nonnegative
definite if, for every positive integer n and complex number
a6, ko, ±1,... ±n, we have rk:najafr.c)s>o [4, pp. 206—

207].
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methods assume that the seasonal pattern changes grad-
ually with only occasional reversals in direction.8

For current estimation, however, more rigid patterns
of behaviour are assumed, namely, a straight line rep-
resenting the trend cycle and a stable seasonality. These
more restrictive assumptions generally produce syste-
inatic errors in the current seasonally adjusted values
that are gradually corrected as the series is enlarged by
inserting more years of observations.

Since the implicit functions calculated by the sym-
metric filters of these methods are different from those
corresponding to the asymmetric filters, the historical
seasonal adjustment will always differ significantly
from the current one, except for the trivial (non-
existent) case of series with a constant trend cycle and
a stable seasonality.

There will also be significant differences among the
current estimates obtained by the various methods.
These differences will be more apparent for those series
that are highly irregular or have extreme values present
in the most recent years. This is due to the short length
of the asymmetric filters that does not allow a sig-
nificant reduction in the variance of the. smoothed
series and to the fact that these methods use different
procedures and sigma limits for the replacement of the
outliers.

The third finding of Kuiper's study, i.e., the smallest
total error in the current seasonal factors is produced
by the X—11 ARIMA method, is also explainable by
the basic properties of this method.

The X—11 ARIMA generates seasonal factor fore-
casts from the combination of two filters: (1) The
filters of autoregressive integrated moving averages
(ARIMA) models to forecast raw data and (2) the
filters of census II X—11 variant to seasonally adjust
current observations. (See [4].)

This procedure proved to be superior to the. X—11
program in the sense that the size of the total error in
the monthly forecasts and also in the current seasonal
factors (measured by the monthly absolute means) was
significantly smaller for the 12 months, and the same

Series with abrupt or rapid changes in the seasonal varia-
tion cannot be seasonally adjusted prnperly. Sudden changes in
the seasonal amplitude can be found, for example, in agricul-
tural series, where the leveL varies considerably from year to
year, and in series such as unemployment, which undergo rapid
changes in composition when the economy changes from ex-
pansion to recession and back to expansion.
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happened for the bias (measured by the monthly alge-
braic means).

The main reasons for significant reductions in the
total error of the seasonal factor forecasts and current
seasonal factors are that—

1. The seasonal factor forecasts of X—11 ARIMA
are obtained from forecasted raw data, whereas
the X-11 method forecasts from estimated sea-
sonal factors; it is well known that the seasonal
factors for the last 3 years are less reliable.

2. The forecasting filter of the X—11 method is the
same for all series, while in the ARIMA models,
the forecasting filters depend on the model chosen
and the parameter estimates. The ARIMA filters
are very flexible and are able to pick up the most
recent movements of the series.

3. The trend-cycle estimate for the last observation
is made with the central weights of the Hender-
son's moving averages (the same for the centered
12-term moving average) which are capable of
reproducing a cubic in their time interval. This
is very important for years with turning points,
since the X—11 program applies the asymmetric
weights of 'the Henderson method that only esti-
mate well a linear trend cycle.

4. The replacement of the extreme values for the
last 2 years àf data is improved. In effect, by add-
ing 1. more year of data (with no extremes, since
they are forecasts), a better estimate of the vari-
ance of the irregulars is obtained.

5. The sets of weights, applied to the seasonal irreg-
ular ratios (differences) are closer to the central
weights, and, thus, the moving be
estimated with more accuracy.

Although Kuiper's analysis was made for the current
seasonal factors, I obtained similar results for the
seasonal factor forecasts. The mean algebraic error and
the mean absolute error were reduced by approximately
40 percent and 20 percent with respect to those of
X—11 method. Moreover, the Wilcoxon-signed-rank
test indicated that the differences for each month were
significant and in favor of X—11 ARIMA method.

This is a very important conclusion, especially if one
takes into account that producers of current seasonally
adjusted data tend to use the seasonal factor forecasts
more often than to rerun the series each time that a
new observation is added to it.
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APPENDIX

STATISTICS CANADA X-11 ARIMA METHOD OF SEASONAL ADJUSTMENT

Introduction

The Statistics Canada X—11 ARIMA method of
seasonal adjustment is a modified version of the Bu-
reau of the Census method II X—i1 variant that con-
sists of enlarging unadjusted series with 1 year of
forecasted raw data and then seasonally adjusting the
enlarged series with the X—11 program. (See [4].)
The forecasts of the raw data are made by ARIMA
(autoregressive integrated moving averages) models
of the Box-Jenkins type that have been identified and
fitted to the original series.

The seasonal factor forecasts are, thus, obtained
from the forecasted raw data and their estimation ro-
suits from the combination of two filters: (1) The fil-
ters of ARIMA models to forecast raw data and (2)
the filters of the X—11 program to seasonally adjust
current observations.

This new technique produces seasonal factor fore-
casts and current seasonal factor superior to those of
the census method II X—11 in the sense that the mean
absolute error and the mean algebraic error of the
seasonal factors is significantly smaller for the 12
months.

When applied to Canadian and U.S. series, the re-
duction found was about 40 percent in the bias and 20
percent in the absolute value of the total error. An-
other advantage of the X—11 ARIMA is that if cur-
rent seasonal factors are used to obtain current season-
ally adjusted data, there is no need to revise the series
more than twice. For many series, just one revision
will produce seasonal factors that are final in a sta-
tistical sense.

The X—11 ARIMA also provides a univariate time
series model that describes the behaviour of the unad-
justed series. Confidence intervals can be constructed
for the original observations, and, since the one-step
forecast is an unbiased minimum mean square error
forecast, it can be used by producers of raw data as a
benchmark for the last available figure.

The Forecasting Filters of ARIMA Models and
Their Properties

The ARIMA models used for forecasting the unad-

justed series are of the general multiplicative type
[2], i.e.,

(A-i)

where 8 denotes the periodicity of the seasonal compo-
nent (equal to 12 for monthly series); B denotes the
backward operator, i.e., = i; B'Zg

= (1— B)d is the ordinary difference operator of
order d; I) = (1 is the seasonal difference op.

V I

erator of order D; (B) and i',. (B') are stationary
autoregressive operators (they are polynomials in B
of degree p and in B' of degree P, respectively);
®q(B) and OQ(B') are invertible moving-average op-
erators (they are polynomials in B of degree g and in
B' of degree Q, respectively); and a1 is a purely ran-
dom process.

The general multiplicative model (A-i) is said to be
of order (p,d,q) (P,D,Q),. Its forecasting function
can be expressed in different forms. For computational
purpose, the difference equation form is the most use-
f iii. Thus, at time t+ 1, the ARIMA model (1) may
be written

. . -

(A-2)

where 7Th—p+8.P+d+8.D and n=q+8.Q;
is the general autoregressive opera-

tor; and 7r(B) = eQ (B) is the general moving
average operator. For example, if the ARIMA model
is of order (2,1,1) (0,1,1)12 the difference equation
form that generates the observations + i is

—Oat+z_j (A-3)

Standing at origin t, to make a forecast of
the conditional expectation of (A-2) is taken at time
t with the following assumptions:

1>0 (A-4)
0, 1>0 (A.5)

where is the conditional expectation of Z,+4
taken at origin t. Thus, the forecasts for each
lead time are computed from previous observed Z's,
previous forecasts of Z's, and current and previous
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SECTION II

random shocks a's. The unknown a's are replaced by
zeroes.

In general, if the moving average operator
is of degree the forecast equa-

tions for Z,(1), Zg(q+s.Q) will depend

directly on the a's, but forecasts at longer lead times

will not. The latter will receive indirectly the impact
A

the a's by means of the previous forecasts. In effec,t,
s.Q + 1) will depend on the q+ s.Q previous Z,

that, in turn, will depend on the a's.
From the point of view of studying the nature of

the forecasts, it is important to consider the explicit
form of the forecasting function. For l>n—q+8.Q,
the conditional expectation of (A-2) at time t is

I, A
—. . =0 l>m (A-6)

and the solution of this difference equation is

2,(l) +bçtf1(l) +...
+b")1f")1 1>ri—m (A-I)

This function is called the eventual forecast function,
eventual because, when it supplies the forecasts
only for lead times l>n—im. In (A-I), f0(l), f,(l),
fm_i(l) are functions of the lead time 1, and, in gener-
al, they include polynomials, exponent1ials, sines and
cosines, and products of these functions. For a given
origin t, the coefficients are constants applying for
all lead time 1, but they change from one origin to
the next, adapting themselves to the particular part
of the series being considered. It is important to point
out that it is the general autoregressive operator
defined above that determines the mathematical form
of the forecasts function, i.e., the nature of the f's. In
other words, it determines whether the forecasting
function is to be a polynomial, a mixture of sines and
cosines, a mixture of exponentials, or some combina-
tions of these functions. The ARIMA forecasts are.
minimum mean square error forecasts and can be
easily updated as new raw values become available.

In the context of the X—11 ARIMA, the forecasts
should follow the general movement of the series.

In my experience with Canadian and U.S. economic
time series, I found that the ARIMA models

chosen must fit the data well and produce forecasts for
each of the last 3 years with a mean absolute error
smaller than 5 percent for well-behaved series (e.g.,
employed men, over 20 years old) and smaller than 10

percent for volatile series (e.g., unemployed women,
16—19 years old.) The smaller the forecasting error,
the better. This is particularly true for the forecasting
error of the first 6 months, given the way they will be
treated by the X—l1 filters.

Since ARIMA models are robust, the identification
is often good for several years. However, they should

be checked when an extra year of data becomes avail-
able to insure that the most recent movements of the
series are properly followed by the model.

The Seasonal Adjustment Filters of the U.S. Bureau
of Census Method II X—11 Program

The Bureau of the Census program is summarized
in [6] and described fully in [7].

The main steps of this method for obtaining the sea-
sonally adjusted series are as follows:'

1. Compute the ratios between the original series
and a centered 12-term moving average (2 X 12-

term moving average, i.e., 2-term average of a
12-term average) as a first estimate of the sea-

onal and irregular components.
2. Apply a weighted 5-term moving average to each

month separately (a 3 X 3-term moving aver-
age) to obtain an estimate of the seasonal fac-
tors.

3. Compute a centered 12-term moving average of
the preliminary factors in (2) for the entire
series. To obtain the six missing values at either
end of this average, repeat the first (last) avail-
able moving average value six times. Adjust the
factors to add to 12 (approximately) over any
12-month period by dividing the centered 12-term
average into the factors.

4. Divide the seasonal factor estimates into the sea-
sonal irregular (SI) ratios to obtain an estimate
of the irregular component.

5. Compute a moving 5-yeai' standard deviation (a)
of the estimates of the irregular component and
test the irregulars in the central year of the 5-year
period against 2.Sa. Remove values beyond 2.5a
as extreme and recompute the moving 5-year a.

Assign a zero weight to irregulars beyond 2.5a
and a weight of 1 (full weight) to irregulars
within 1.5ii. Assign a linearly graduated weight
between 0 and 1 to irregulars between 2.5a
and 1.5u.

6. For the first 2 years, the a limits computed for
the third year are used; for the last 2 years, the a
limits computed for the third-from-end year are
used. To replace an extreme ratio in either of the
two beginning or ending years, the average of the
ratio times its weight and the three nearest full-
weight. ratios for that month is taken.

7. Apply a weighted 7-term moving average to the
SI ratios with extreme values replaced for each
month separately to estimate preliminary sea-
sonal factors.

8. Repeat step (3).

9. To obtain a preliminary seasonally adjusted series
divide (8) into the original series.

It is assumed that the relationship among the time series
components is multiplicative. For au additive model, the words
"difference" and "subtracting" are substituted for "ratio" and
"dividing."
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10. Apply a 9-, 13-, or 23-term Henderson moving
average to the seasonally adjusted series and
divide the resulting trend cycle into the original
series to give a second estimate of the SI ratios.

11. Apply a weighted 7-term moving average (3 X 5-

term moving average) to each month separately,
to obtain a second estimate of the seasonal com-
ponent. Compute estimates of seasonal factors one
year ahead by the formula

+ 1/2 (SM

where j = 1, 2,. . ., 12 denotes the. month and t, the
year.
Repeat step (3).
Divide these final seasonal factors into the orig-
inal series to obtain the seasonally adjusted series.

Allan Young [8], using a linear approximation of
the census method II, arrives at the conclusion that a
145-term moving average is needed to estimate one
seasonal factor with central weights if the trend-cycle
component is adjusted with a 13-term Henderson mov-
ing average. The first and last 72 seasonal factors (6
years) are estimated using sets of asymmetrical end
weights. It is important to point out, however, that the
weights given to the more distant observations are very
small, and, therefore, the moving average can be very
well approximated by taking one-half of the total num-
ber of terms plus one. Thus, if a 145-term moving aver-
age is used to estimate the seasonal factor of the cen-
tral observation, a good approximation is obtained
with only 73 terms, i.e., 6 years of observations. This
means that the seasonal factor estimates from unad-
justed series that have observations ending at least 3
years later can be considered final in the sense that
they will not change significantly when new observa-
tions are added to the raw data.

The forecasting function specified in step (11) for
each monthly seasonal factor forecasts perfectly if the
seasonal factors are relatively constant through the
years (stable seasonal pattern). However, if the sea-
sonal pattern is evolving through time, with a trend
that is linear within the span of the moving average
used to estimate the seasonal pattern, a bias is easily
introduced. Months for which the seasonal factors tend
to decrease will have a forecasted seasonal factor larger
than expected. The opposite will happen for those
months in which the seasonal factors tend to increase.
Moreover, the size of the bias will be larger, the larger
the of the line followed by the seasonal factors.
It is evident then that in the case of linearly evolving
seasonality, the seasonal factor forecasts for some
months will have larger biases than others.

In the X—11 ARIMA, the unadjusted series is en-
larged with 1 more year of data (forecasted values).
Consequently, the .X—11 program estimates the compo-
nents with better filters.

The trend cycle is no longer estimated with the end
weights of the centered 12-term and Henderson moving
averages but with their central weights. This means
that the Henderson filters will not miss a turning point
at the end of series, since the central weights of these
filters minimize the sum of the squares of the third
difference of the trend-cycle curve.

The end weights applied to the seasonal factors are
closer to the central weights and can reproduce a local
linearly moving seasonality with less error. In effect,
for the 3 x 3-term moving averages, its forecasting
filter is now 0.185, 0.407, and 0.407 instead of — 0.056,
0.148, 0.426, and 0.481. Similarly, the weights of 3 X 3-

term moving average for the current seasonal factors
are now only one step ahead of its central weights.

In the case of the 3 X 5-term moving average, its
forecasting filter is 0.150, 0.283, 0.283, and 0.283 in-
stead of — 0.034, 0.134, 0.300, 0.300, and 0.300. Observe
that the new forecasting filters are those that the X—11
program apply for current seasonal factors, and none
of their weights is negative.

Because of their longer filtering intervals for given
cutoff frequencies. smothing filters, having negative
weights beyond the positive central values, tend to
stretch too far the implicit, assumption in filtering that
the periodicities present at the time for which the
filtered variable is estimated are unchanged in ampli-
tmide and phase during the filtering interval.

The replacement of the extreme values for the last
year of observed data is also improved. In effect. by
adding 1 more year of values with no extremes, since
they are forecasts, a better estimate of t.he residuals is
obtained.

Design of the Experiment and Conclusions

The X—11 ARIMA has been tested with Canadian
and U.S. economic time series. Two statistics were
chosen to determine which of the two methods, X—1i
ARIMA or X—11, generates better current seasonal
factors and forecasts, namely—

1. The mean algebraic error of the current and fore-
casted seasonal factors for each month.

2. The mean absolute error of the current and fore-
casted seasonal factors for each month.

The method giving the lowest stat.istics is considered
the best. The Wilcoxon-signed-rank test was applied to
matched pairs of statistics (1) •and (2), obtained from
current and forecasted seasonal factors given by both
procedures to determine whether the differences are due
to chance variations or whether they are really sig-
nificant. Since an improvement would mean low sta-
tistics (1) and (2), a one-sided test of the null hy.
pothesis H0 (zero difference) versus the alternative H1
cutoff frequencies, smothing filters having negative
(positive difference) was applied at a 5 percent level
of significance.

12.
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To obtain statistics (1) and (2) corresponding to
the seasonal factor forecasts given by each method for
the series, I proceed as follows (the same was done
for the current seasonal factors):

1. Estimate the one-step seasonal factor forecast
for each month =1, 2,..., 12 and year

1=1963, 1964,.. ., 1975. (The superscript denotes
the last year available of an unadjusted series
with a minimum of 7 years of monthly data. In
my case, I used data from 1953.)

2. Estimate the seasonal factor for each month
j= 1, 2,..., 12 and year i= 1963, 1964,..., 1972
from an unadjusted series ending in year i + 3.
(According to the type of filter used by census
method II X—11 variant, this seasonal factor can
be considered final in the sense that it will not
change significantly when more observations are
added to the original series.)

3. Define eq — as the total error in the
seasonal factor forecasts.

4. For each series, build a double entry table of t.he
e's defined in (3).

5. For each double entry table of the e's, calcu-
late—

The results from the Wilcoxon-signed-rank test in.
dicated that the seasonal factor forecasts obtained from
X—11 ARIMA were superior to those produced by cen-
sus method II X—11 variant [4]. The same conclusions
applied to the current seasonal factors Statistics
Canada X-11 ARIMA was officially adopted by Sta-
tistics Canada in January 1975 for the seasonal ad.
justment of the main labour force series.

In its present versions, this new method is not fully
mechanized. The user should be able to identify, for
each series, an ARIMA model that fits the data well
and produces reasonable forecasts according to the
general guidelines mentioned in section (2). The iden-
tified model is checked only once a year and usually
not changed for at least 3 years.

Since there is a class of simple ARIMA models that
fit and forecast well a large number of series. I am
presently working on the selections of a limited num-
ber of ARIMA models to be able to fully automate this
procedure.

a. The mean algebraic error for each month, i.e.,

1/n2 eij,j=1,2,.. .,12.
b. 'rho mean absolute error for each month, i.e.,

2,. ., 12.
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RESPONSE TO DISCUSSANTS

John Kuiper
University of Ottawa

I-

The main conclusion of my paper is that the sea-
sonal adjustment methods studied tend to give similar
results during the historical period but that significant
differences may occur during the current period (the
last 3 years) and especially during the last year.

Based on the performance for each criterion evalu-
ated, one can, thus, rank the methods. However, I did
not feel justified to make such a ranking, because it
would have required an aggregation over the various
measures used to evaluate the quality of seasonal ad-
justment. In any case, a ranking based on two series
would be inappropriate but, in my opinion, so would a
ranking based on the 15 series made available for this
conference, as suggested by Burman.

One of the measures used to evaluate the quality of
the seasonal factors for the last year (i.e., the pre-

liminary factors) is the stability indicator. Fancy and
Zeller used the indicator to measure dispersion. The
bias is measured by the statistic

where k indicates the year for which factor
differences are taken and m the month.

It appears that Fase took differences between the pre-
liminary and first revised seasonal factors (calculated
with 12 additional observations), while I took differ-
ences over 3 years, because the seasonal factors tend
toward stability at that point. Also note that the bias
will be relatively more significant when moving sea-
sonality is present, which occurred in both series
studied during the recent period.
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