This PDF is a selection from an out-of-print volume from the National Bureau of Economic Research

Volume Title: Higher Education and Earnings: College as an Investment and Screening Device

Volume Author/Editor: Paul J. Taubman, Terence Wales

Volume Publisher: NBER

Volume ISBN: 0-07-010121-3

Volume URL: http://www.nber.org/books/taub74-1

Publication Date: 1974

Chapter Title: Education on a Screening Device

Chapter Author: Paul J. Taubman, Terence Wales

Chapter URL: http://www.nber.org/chapters/c3655

Chapter pages in book: (p. 153 - 174)
In Chapter 1, we hypothesized that a possible role of education is as a credential, license, or screen. By this we mean that entry into some high-paying occupations is not free to all, but generally requires that a person of a given skill level also possess a minimum level of educational attainment. In this chapter we consider reasons why firms might use education as a screening device, and we develop and implement a test for the existence of screening. If screening based on education occurs, then a person with more education earns more income partly because he is allowed to hold a high-paying job. Concomitantly, some people with low educational attainment who also want and could manage the high-paying jobs are excluded from them. Thus, part of the income differential attributed to education arises from an income redistribution due to restricted entry and not to an increase in skills. This implies that the returns to society from educational programs may be overestimated by conventional measures.¹

A general assumption made in most research in the human-capital area is that each person is paid a (real) wage rate equal to his marginal product (less any costs for general training). Although this conclusion is valid in a perfectly competitive world, some deviations from competition, such as the existence of costs of obtaining information, may invalidate it. A firm may have knowledge about the marginal productivity of some factors of production; for example, a manager can determine that all models of a particular machine will produce 100 units of ou-

¹However, if education is not available for screening, other sorting devices have to be used, but should they be less expensive than education, the social rate of return will be overestimated.

9. Education as a Screening Device
Higher education and earnings

Put per hour. People, however, cannot generally be classified into types that produce specific numbers of units of output, because a person’s productivity level depends upon a complex set of inherited and acquired skills. Further, not only are individual skills difficult to identify and measure, but various skills also are more useful in some occupations than others. These last two points are illustrated by the occupational regressions using both the Wolfe-Smith and NBER-TH samples. For example, the coefficients on mental ability and education are greater in the managerial and professional occupations than in the white-collar or blue-collar occupations. Moreover, as reported in Chapter 8, these variables, plus measures of family and personal characteristics, explain less than 30 percent of the earnings variance in any of our occupations. Thus, either luck or some other unmeasured variables are very important determinants of earnings in the occupations.

Even though an employer might find it impossible to predict in advance the marginal productivity of any worker in all possible positions in his firm, the competitive outcome could result if a trial-and-error procedure were followed. That is, the firm could pay a piece rate for each position and could allow individuals to fill the positions they desired. There are such jobs as fruit picker and some sales positions that are based on a piecwork system, but most occupations are not. Instead, most positions pay a person a fixed amount each hour, day, week, month, or year, and indeed there may be good economic reasons for paying these fixed sums per period. If the output is produced by an assembly line or other team of workers or if there is no directly observable physical output, it may be extremely difficult or costly to measure the output of each worker. But, in any event, firms agree to hire people for at least a limited time and pay them these fixed sums regardless of how well or how poorly they perform. Firms therefore have some incentive to try to hire people whose marginal product will be at least equal to the wage payment. Of course, workers also have an incentive to perform, since firms will try to fire those whose marginal product can be judged to be less than the wage (after training periods are over). Moreover, because of union rules or the expenses associated with hiring and firing, there is often an explicit relative skill in the firm.

Beckner (1972) and many other researchers find a positive relationship between skill and earnings. Some jobs are based on a piecework system, but most occupations are not. Instead, most positions pay a person a fixed amount each hour, day, week, month, or year, and indeed there may be good economic reasons for paying these fixed sums per period. If the output is produced by an assembly line or other team of workers or if there is no directly observable physical output, it may be extremely difficult or costly to measure the output of each worker. But, in any event, firms agree to hire people for at least a limited time and pay them these fixed sums regardless of how well or how poorly they perform. Firms therefore have some incentive to try to hire people whose marginal product will be at least equal to the wage payment. Of course, workers also have an incentive to perform, since firms will try to fire those whose marginal product can be judged to be less than the wage (after training periods are over). Moreover, because of union rules or the expenses associated with hiring and firing, there is often an explicit relative skill in the firm.

Beckner (1972) and many other researchers find a positive relationship between skill and earnings. Some jobs are based on a piecework system, but most occupations are not. Instead, most positions pay a person a fixed amount each hour, day, week, month, or year, and indeed there may be good economic reasons for paying these fixed sums per period. If the output is produced by an assembly line or other team of workers or if there is no directly observable physical output, it may be extremely difficult or costly to measure the output of each worker. But, in any event, firms agree to hire people for at least a limited time and pay them these fixed sums regardless of how well or how poorly they perform. Firms therefore have some incentive to try to hire people whose marginal product will be at least equal to the wage payment. Of course, workers also have an incentive to perform, since firms will try to fire those whose marginal product can be judged to be less than the wage (after training periods are over). Moreover, because of union rules or the expenses associated with hiring and firing, there is often an explicit relative skill in the firm.

What, for example, is the marginal product of a bureaucrat?
Education as a screening device

There are many ways in which firms can perform such sorting and matching. One way is to administer tests to measure skill levels, and another is to observe performance on a simpler job. Firms can also use such characteristics as neatness, sex, age, and so forth, as indicators of a person's productivity. Another possible signal is education, upon which this chapter will focus.

Before proceeding with the discussion of education as a signaling or screening device, several comments are in order. Many people have long maintained that the United States has been, and is increasingly becoming, a country concerned with credentials, with education being one of the major credentials (Miller & Reissman, 1969). While economists are predisposed to find a rational explanation for business behavior, as for example in the preceding discussion, the use of education may be dictated partially by snobbery, ignorance, or irrational prejudices. Distinguishing between rational and irrational behavior is important, but since our test for the existence of screening is not based on the assumption of rational firm behavior, we have no way of knowing whether such behavior prevails.

Second, it should be recognized that our screening model does not imply that education is a license absolutely required for a position. If firms, while sorting and matching people, do not get enough applicants with the preferred education to fill positions, some people with less education will be accepted. Moreover, the number of such people accepted as, say, managers will depend on the business demand for managers and the
supply of college graduates to this occupation, both of which are likely to fluctuate over time. While it is possible in some time period for no one to be accepted whose education is too low, our test for screening requires some people with less than the normal amount of education to be working in the occupations in which education is used as a screening device.

Let us suppose that firms have a number of sorting devices available to match persons and positions. Each sorting method entails direct costs such as salaries of personnel interviewers and indirect costs such as mistakes made on the job. In a more formal sense, the firm should consider as the indirect costs the expected difference between the wage payments and the marginal product of all people who will be hired for a position by a given sorting method. For any particular job, the firm should adopt the sorting method that is cheapest to use, but of course the method may differ for different jobs. Suppose that successful performance in, say, the managerial occupation depends upon the individual’s possessing a complex set of talents and skills, including intelligence, leadership, and judgment. Firms might attempt to develop and use tests for these skills in recruiting people for the particular occupation. But the development of tests and the examination of recruits can be expensive and may not be very useful if the appropriate skills are not easily measured and mistakes on the job are expensive.

Suppose, however, that firms either know (from past experience) or believe that educational attainment is correlated with the necessary complex of skills. This does not mean that all college graduates and no high school graduates have the necessary skills, but that a significantly larger percentage of college graduates are so endowed. Thus, to save on hiring costs, firms may decide to use information on educational attainment available at a near-zero cost as a preliminary screening device. Other criteria may also be used in hiring a person, and retention and especially promotion may well depend on performance on the job.

1If the firm is risk-averse, it might also consider the variance in the mistakes.
2It is likely that in past decades high school was the screening level for high-paying jobs, as indeed it may be now for some types of lower-paying jobs.
3See Arrow’s recent paper (1972) for a rigorous theoretical treatment of some of the problems involved in hypothesizing that education is used as a filtering device.
The case for screening based on education can be thought of as one of market failure arising from the cost of obtaining knowledge. Some people with whom we have discussed this argument believe that the expenses associated with hiring people (based on, say, a formula predicting who could finish college) would be small enough—given the proportion of earnings differentials we attribute below to screening, and the small return to a college degree—to make it profitable for some rational firms that rely heavily on the high-paying occupations to hire many (or only) high school graduates. Since these firms would have lower costs and higher profits, they would expand, and other firms would stop paying a premium to college graduates, and the screen would be eroded.

There are several responses to this argument. First, even if the screening function were to vanish in the long run, its consequences would be observable before then. Second, even when there is a profit to be made by discovering and exploiting available information, the actual discovery may not occur for many years. Thus, the use of education as a screening device is certainly not a proposition which should be rejected out of hand.

As a corroborative bit of evidence, we note that in the last few years so-called diploma mills have become a matter of concern to the educational community. For a fee, these schools grant diplomas by mail without requiring attendance or much, if any, work. Consequently, it is difficult to see how these schools
could be adding much to a person's level of skills. Yet the fact that people are willing to pay the fees suggests that the diploma is useful to them, and clearly one possibility is that it is useful in passing an educational screen. It is also worth noting that the uproar over the diploma mills has not come from businesses that feel cheated, but from the more respectable members of the academic community. In addition, casual evidence—such as newspaper advertisements that list a college diploma as a prerequisite—suggests the existence of screening. However, this is far from conclusive, since many jobs may, in fact, require specialized knowledge attainable only in college.9

Because these suggestions are not in any way conclusive, it is necessary to construct a more formal test for the existence of screening. Before doing this, we shall define more precisely the concept of screening itself. Screening based on educational attainment occurs when, because of lack of educational attainment, a person is excluded from an occupation in which he would have a higher marginal product or higher (discounted) earnings. This definition introduces the idea of different occupations or jobs—a necessary concept because if a person's marginal product and wage rate do not differ across occupations, then he cannot be excluded on the basis of his education from all occupations in which his marginal product would be highest.

The test for screening thus involves comparing the actual and expected fractions of people in different occupations at various education levels. If the actual fraction of people in the high-paying occupations is less than the expected fraction at low levels of education, but not at high ones, and if the occupations are ones in which we might a priori expect some screening, this suggests that screening is, in fact, present.

The initial step in determining the expected distribution is to estimate the potential income that any individual could earn in various occupations. If we then assume that the individual chooses the occupation that yields the highest income, we can estimate the distribution of individuals over occupations that would prevail with free entry. If we assume further that the

9In addition, firms may hire people at low hierarchical positions to sort people for high-level positions. Individuals with low education may be able to master the low-level job but not the high-level one; hence, firms would not be willing to hire them at all.
potential earnings in an occupation are equal to a person's marginal product in that occupation, we can estimate the portion of observed educational earnings differences due to skills produced by education and the portion due to screening.

Assume that there are \(n \) occupations and that for each individual, earnings in occupation \(i \) (\(y_i \)) are determined by a set of characteristics (\(X \)) as follows:

\[
y_i = X\beta_i + u_i \quad i = 1, n \quad (9-1)
\]

where \(u_i \) is a random disturbance and \(\beta_i \) is a vector of coefficients for occupation \(i \). If all the variables (\(X \)) that influence income in a systematic way are observable, we can estimate the potential earnings of any individual in the \(i \)th occupation by substituting his \(X \) values in Eq. (9-1). As long as we can ignore the random-disturbance term, our model predicts that all individuals with identical \(X \) characteristics will choose the same occupation if occupational choice is based on maximum earnings.\(^9\)

Is it proper to ignore the error term? If the disturbance is interpreted as a chance or luck factor about which the individual has no knowledge when he is making his decision, then we are justified in ignoring it when comparing potential income and occupational choice unless there is differential risk and people are not neutral toward risk. Also, if the disturbance term is the same in all occupations for an individual, then even if he is aware of the disturbance, the rankings of occupations by earnings will not change. In either of these cases, the expected distribution of individuals over occupations can be readily determined simply by evaluating Eq. (9-1) for each occupation for the known \(X \)'s and selecting the maximum income. In this case,

\(^9\)Of course, any individual has only one occupation, but we can estimate a separate equation for each occupation based on the people in that occupation. The problems involved in this method are discussed below.

\(^11\)This result holds only because we assume that occupational choice depends solely on income. If the choice also depends on nonpecuniary factors valued differently by various individuals, then all individuals need not choose the same occupation. This problem is ignored in the following discussion, since it does not present any difficulties as far as our test for screening is concerned. See, however, the section below on risk aversion.
as just noted, all individuals with a given set of characteristics will be in one occupation.\footnote{All people with a given education level need not be in the same occupation. Other variables in \(X \), in addition to education, can affect occupational choice.}

The problem is more complicated if one does not want to ignore the random-disturbance terms or interpret them in this way. If the \(j \)th individual is aware of his disturbance terms and if they differ by occupation, the incomes that must be compared are \(X_j \beta_i + u_j \) and not just \(X_j \beta_i \). Since we do not know the \(u_j \), we cannot determine which occupation a particular person will choose, but by making various assumptions about the distribution of the error terms, we can estimate the probability that a person with a given set of \(X \)'s will choose a particular occupation. An important question concerning the error terms is whether they are correlated for the \(j \)th individual over the various occupations. In some instances, a person will know that his particular job is paying him more than he could expect if working for another firm in the same or a different occupation. For example, a person would know if he married the boss's daughter, or if he had stumbled into a good job offer. Indeed, the theory of information costs in job search would lead to the occupational distribution described by Eq. (9-2).\footnote{For an analysis of the effects of job-search costs on employment choice, see Holt (1970).}

When the errors arise for these types of reasons, we can assume that the disturbances are not correlated over occupations. A much more important explanation for the errors, however, is that there are some \(X \)'s we have not been able to measure or hold constant. If these \(X \)'s are important income determinants in different occupations, then the regression errors will be correlated across such occupations. We discuss below the importance of a non-zero-covariance of errors across occupations.

Assume for the moment that errors are not correlated over occupations and that the errors in each occupation are normally distributed. Then the probability that an individual chooses the \(m \)th occupation is given by\footnote{Eq. (9-2) also holds for nonnormal distributions.}

\[
P_m = \int_{0}^{\infty} f_m(z) \prod_{i \neq m} F_i(z) \, dz \tag{9-2}
\]
where \(F_m(z) \) is the cumulative normal density and \(f_m(z) \) is the normal density function with mean \(Y_m \) and variance \(\sigma_m^2 \). Basically, \(P_m \) is the sum of all products representing the probability that potential income in the mth occupation takes on a certain value, times the probability that all other potential incomes, given by \(P_f(z) \), are less than this value. Unfortunately, \(P_m \) cannot be expressed in a simpler form even if the means and variances of all the incomes are known. However, an approximation to \(P_m \) can be obtained by numerical integration. Since an equation analogous to Eq. (9-2) holds for every occupation, we can obtain estimates of the distribution of individuals by occupation.

When there are only two occupations, the problem can be expressed in an alternative form that provides some additional insight. Let the two occupations be 1 and 2, with mean incomes \(\bar{Y}_1 \) and \(\bar{Y}_2 \) such that \(\bar{Y}_1 < \bar{Y}_2 \). We are interested in determining the fraction of people the population for whom \(\bar{Y}_1 \) will be greater than \(\bar{Y}_2 \). If earnings in both occupations are normally distributed, then \(\bar{Y}_3 = \bar{Y}_1 - \bar{Y}_2 \) will also be distributed normally. To find the probability that \(\bar{Y}_3 \) is nonnegative, we need to integrate from zero to infinity the normal curve with mean \(\bar{Y}_1 - \bar{Y}_2 \) and variance \(\sigma_1^2 + \sigma_2^2 - 2\sigma_{12} \). In the normal distribution, half the people are found to the right, and half to the left, of the mean. Thus, if the mean of \(\bar{Y}_3 \) were zero, that is, if \(\bar{Y}_1 \) equaled \(\bar{Y}_2 \), then half the people would choose each occupation, but if \(\bar{Y}_1 \) were less than \(\bar{Y}_2 \), fewer than half the people would choose 1. For a given variance of \(\bar{Y}_3 \) and mean income in occupation 2, the proportion that will choose occupation 1 will decrease as \(\bar{Y}_1 - \bar{Y}_2 \) falls. Also, for a given \(\bar{Y}_1 - \bar{Y}_2 \), the proportion that will choose 1 will decrease as the variance of \(\bar{Y}_3 \) decreases.

This formulation also is useful in assessing the importance of the assumption of a zero correlation of the errors over occupations. Assuming that the errors in each occupation are indepen-
dent is the same as assuming that σ_{12} is zero. If, however, some variable X_1, whose coefficient is of the same sign in both occupations, is omitted, then σ_{12} will be positive and we shall overestimate the variance of Y_2 and the fraction of people in occupation 1, which has the lower mean earnings. Thus, if we improperly ignore positive values for σ_{12}, we will bias the tests against acceptance of the hypothesis of screening. On the other hand, if σ_{12} is negative because the coefficient of an omitted X is positive in one occupation and negative in another, then the test we use will be biased in favor of accepting screening. Such a bias might arise if, for example, initiative and independence were rewarded in the managerial category while their opposites were rewarded in white-collar or blue-collar jobs. We judge the positive correlation to be more likely. Now let us drop the assumption of only two occupations. When there are many occupations, the problem becomes intractable computationally if we assume that the distributions are not independent. That is, suppose that there is a positive correlation between the u's for an individual across occupations. In this case, the expression for the probability that an individual will choose a given occupation cannot be written in a simplified form such as Eq. (9-2), but must be expressed as a multiple integral, the evaluation of which, although possible numerically, would be very tedious. However, this is not a serious problem, since the independence assumption does not seem unreasonable, and as shown above, it biases the results in the direction of rejecting the screening hypothesis.

Before we present the results of our calculations, two points should be considered. First, if some occupation-education cells are empty, we cannot estimate \hat{Y} in these cells. For example, in the NBER-TH sample there are no individuals with Ph.D.'s in the blue-collar, white-collar, or service occupations. Thus, the calculations given below are based on the assumption that all occupations are open to those at the high school, some-college, and B.A. education levels, but that at the graduate levels—which will not be studied—some occupations are irrelevant. Second, we are assuming that the individual's occupational choice depends only on the monetary income he can expect to earn. If occupational choice depends also on such factors as nonmonetary returns and fringe benefits not included in money income and if these vary across occupations, then our
ero. If, however, some same sign in both oc-
positive and we shall tion of people in oc-
earnings. Thus, if we we will bias the tests reening. On the other
ent of an omitted X is in another, then the ting screening. Such ve and independence while their opposites ar jobs. We judge the w let us drop the as-
t there are many oc-
be computationally if independent. That is, a between the u’s for case, the expression \int choose a given oc-
form such as Eq. integral, the evalu-
ally, would be very obelem, since the in-
reasonable, and as direction of rejecting ulations, two points ition-education cells ells. For example, in als with Ph.D.’s in upations. Thus, the assumption that all school, some-college, e graduate levels-
tions are irrelevant. dual’s occupational he can expect to on such factors as not included in upations, then our expected distributions will be inaccurate. This problem is dis-
cussed in more detail below.

We consider first the results for 1969 for the seven broad oc-
upational groups discussed in Chapter 8. The occupational regres-
sions used for this purpose are those discussed in the preceeding chapter, except that they include as an additional in-
dependent variable the residual from 1955.16

Table 9-1 contains the expected and actual occupational dis-
butions for the high school, some-college, and B.A. education cat-
egories, together with the means and standard deviations of the corresponding earnings levels.17 The entries in column 4 are the differences between the expected and the actual percentage of people in each occupation at each of three educational levels. The most striking result is that for the high school group, the ac-
tual fractions of people in the three lowest-paying occupations are considerably greater than the expected fractions. In the some-college group, the same pattern is found, though less pro-
nounced numerically, and for the undergraduate-degree hold-
ers, the actual and expected distributions are essentially the same in the lowest-paying occupations.

In general, then, under the assumptions of free entry and in-
come maximization, very few people at any education level included in our sample would choose the blue-collar, white-
collar, or service occupations. In practice, however, a substan-
tial fraction (39 percent) of high school graduates, a smaller frac-
tion (17 percent) of the some-college group, and only 4 percent of the B.A. holders enter these occupations. Since the discrep-
ancy between the expected and actual distributions is directly related to education, we conclude tentatively that education it-
self is being used as a screening device to prevent those with low educational attainment from entering the high-paying oc-
upations.

We find a pattern of differences between expected and actual

16The reason for including this residual is that it represents “individual effects” (that persist over time) which, if omitted, would invalidate the assumption that errors are independent across occupations.

17These means differ slightly from those in Table 4-2, since in these we exclude individuals who in 1969 did not report the educational achievement of their fathers. The standard deviations are calculated after removing the effects of all variables included in our equations.
Higher education and earnings 164

<table>
<thead>
<tr>
<th>TABLE 9-1 Expected and actual distributions of individuals, by education and occupation, 1969</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Number of people</td>
</tr>
<tr>
<td>(1)</td>
</tr>
<tr>
<td>High school</td>
</tr>
<tr>
<td>Professional</td>
</tr>
<tr>
<td>Technical</td>
</tr>
<tr>
<td>Sales</td>
</tr>
<tr>
<td>Blue-collar</td>
</tr>
<tr>
<td>Service</td>
</tr>
<tr>
<td>White-collar</td>
</tr>
<tr>
<td>Managerial</td>
</tr>
<tr>
<td>Some college</td>
</tr>
<tr>
<td>Professional</td>
</tr>
<tr>
<td>Technical</td>
</tr>
<tr>
<td>Sales</td>
</tr>
<tr>
<td>Blue-collar</td>
</tr>
<tr>
<td>Service</td>
</tr>
<tr>
<td>White-collar</td>
</tr>
<tr>
<td>Managerial</td>
</tr>
<tr>
<td>B.A.</td>
</tr>
<tr>
<td>Professional</td>
</tr>
<tr>
<td>Technical</td>
</tr>
<tr>
<td>Sales</td>
</tr>
<tr>
<td>Blue-collar</td>
</tr>
<tr>
<td>Service</td>
</tr>
<tr>
<td>White-collar</td>
</tr>
<tr>
<td>Managerial</td>
</tr>
</tbody>
</table>

The expected always exceeds the actual percentage by about 10 to 15 percent in the technical and sales occupations, while in the professional occupation the expected percentage is too high in all but the B.A. group. In the managerial occupation the expected percentage falls short of the actual by a substantial amount except at the high school level, where the two percentages are approximately equal. These consistent fractions within the high-paying occupations that is not as readily explainable. The expected always exceeds the actual percentage by about 10 to 15 percent in the technical and sales occupations, while in the professional occupation the expected percentage is too high in all but the B.A. group. In the managerial occupation the expected percentage falls short of the actual by a substantial amount except at the high school level, where the two percentages are approximately equal. These consistent
differences at all education levels might be explained by a combination of risk- and status-related nonmonetary rewards.

A risk-averse individual may select his occupation on the basis of the variance of income as well as the mean. Column 6 of Table 9-1 presents the (conditional) standard error of earnings for each occupation and education level, which we interpret as a measure of risk. Since the standard errors in column 6 are positively correlated with mean earnings in column 5, our estimates of the expected fractions for the low-paying occupations may be too small for any particular education level. But unless high school graduates are more averse to risk, this does not explain the differences between actual and expected fractions that prevail across education levels, since occupational standard errors do not differ much by education. If there are differences in risk preference, then our previous estimates of the rate of return to education would be biased upward, because an income-determining characteristic correlated with education would not have been held constant.

The differences in column 4 could also arise because of nonpecuniary rewards that vary by occupation. We would expect status, one form of nonmonetary return, to be highest for the managerial group, in which case our method will underestimate the fraction of people expected in the managerial category. Since the actual does exceed the expected percentage by about 20 percentage points at the some-college and bachelor's-degree levels, the extremely small difference at the high school level can be interpreted as limitations imposed by screening. Further, a much higher percentage (43 percent) of the people in the owner-manager group were owners at the high school level than at other education levels. Owners cannot be screened out of working for themselves if they can raise financial capital, which was available to those in our sample through the Veterans Administration.

The status and risk arguments may help to explain some of the actual occupational choices, but they do not necessarily weaken the evidence supporting the screening hypothesis.

This assumes that education does not make people more willing to bear risk.
There are, however, some other possible objections to the test for screening that must be considered.

First, for the conclusion on screening to be meaningful, those with little education must be capable of working in the high-paying occupations. Clearly, some people with just a high school education are so capable, since over 60 percent of the high school group are employed in the managerial, technical, sales, or professional groups (although very few are in the last named).20

Second, the differences between expected and actual distributions reflect any existing entry restrictions or immobilities and any deviations from the principle of income maximization in addition to the type of screening mentioned above. But unless there are reasons to suppose that such factors are correlated with education, they cannot explain or justify the findings in Table 9-1.

Third, the earnings data used in the calculations are for individuals whose average age is 47 years. To the extent that lifetime earnings follow widely diverse patterns in different occupations at different education levels, the use of income from only one year may be an inappropriate indicator of lifetime earnings. However, the relative positions of occupations in terms of mean income and variance are fairly constant from 1955 to 1969, and as shown below, we also find evidence of screening in 1955. Furthermore, screening is hypothesized to take place when individuals first enter the job market, whereas the expected distributions calculated above refer to individuals at the average age of 47. Now, it might be argued that even if there were no initial job screening, many people might enter the white-collar, blue-collar, and service occupations at first simply because they involve well-defined, straightforward jobs and then move into other occupations such as sales and managerial in later years. However, it is hard to believe that such voluntary occupational switches into preferred jobs do not occur by the age of 47.

Fourth, suppose that the blue-collar, white-collar, and service occupations were substantially overrepresented in our sample

20Of course, the high school graduates employed in the lower-paying occupations may actually have less ability, but our calculations adjust income for the effects of ability.

21Except for the population-based regressions from more representative samples.
objections to the test to be meaningful, those if working in the high
people with just a high
over 60 percent of the
managerial, technical,
very few are in the last
pected and actual distri-
tions or immobiljtjes
income maximization
mentioned above. But
that such factors are
explain or justify the
ulations are for indi-
the extent that life-
terns in different oc-
the use of income from
indicator, of lifetime
ons of occupations in
fairly constant from
also find evidence of
is hypothesized to
job market, whereas
ve refer to individuals
be argued that even if
people might enter
occupations at first
straightforward jobs
as sales and mana-
believe that such vol-
red jobs do not occur
ite-collar, and service
ented in our sample

lower-paying occupations
just income for the effects

at the high school level. Then the actual distributions in the
population in these occupations could approximate our es-
timates even if no screening were practiced. There are two
reasons for believing that nonrepresentativeness is not a
serious problem. First, if the actual sample distribution differs
from that of the population because the sample consists of
more able (or otherwise better-endowed) people, then the ex-
pected sample distribution will differ in a corresponding man-
ner from the expected population distribution. Second, there is
no reason to suspect that the low-paying occupations are over-
sampled at the high school level, a condition that is required to
be consistent with our observed results.

Fifth, there may be nonmonetary rewards other than status
that differ by occupation. Suppose, for example, that those in
the blue-collar, white-collar, and service occupations prefer (at-
tach a value to) working in these jobs as compared with any
others and choose their occupation on the basis of the monetary
and nonmonetary returns. Because we have ignored the non-
monetary aspects in the calculations given above,21 these ex-
pected distributions will underestimate the number of people
in the blue-collar, white-collar, and service occupations. It
would appear, then, that by assigning the appropriate mone-
tary value to the privilege of working in the blue-collar, white-
collar, and service occupations, we can explain the discrep-
ancies between the actual and expected distributions in these oc-
cupations without relying at all on the screening hypothesis.

There are, however, a number of problems with this explana-
tion. If we assign to all education levels the same nonpecuniary
reward that allows us to explain the actual distribution of peo-
ple at the high school level, we will overestimate the expected
number of people in the low-paying occupations at the some-
college and B.A. levels. Second, this argument ignores the possi-
bility that those in the high-paying occupations may them-
selves be receiving a nonmonetary reward due to better work-
ing conditions or status differences.

Moreover, it should be recognized that if nonmonetary re-
turns differ by occupation, it must also be argued that the
monetary returns to education used in calculating rates of re-
turn overstate the total rate of return to education because the

21Except for pre-college teachers.
high school category contains the largest proportion of people in the low-paying occupations.

The final, and most important, qualification to the test for screening is that the calculations are based on the assumption that there are no unmeasured occupation-specific skills. Since we can only observe an individual in one occupation, we calculate his expected earnings in other occupations from the mean and variance of people with the same set of measured characteristics, for example, education, ability, and age. Unfortunately, these measured characteristics explain only a small portion of the variance in earnings in the various occupations. Some of the unexplained variance undoubtedly occurs because of luck or other temporary factors, but the rest occurs because some types of skills, talents, and abilities have not been measured. For simplicity, if all these unmeasured skills are represented by a single variable X, then in the implementation of the test for screening we are assuming that the mean and variance of X are the same in each occupation.

If X is more important for performance in one occupation than in others, we would expect both the effect of X on earnings to be higher in this occupation and more people with high X values to choose employment in this occupation. But unless X is correlated with education, we will underestimate or overestimate the potential earnings in the various occupations equally at each education level and will obtain an equal “misallocation” of people at all education levels. (We would not call such a misallocation evidence of screening.) Suppose, however, that both X and education are highly rewarded in a particular occupation; then the average error that arises from using the mean earnings of people in an occupation to estimate the potential earnings there of people in other occupations will be correlated with education. For example, suppose that high school graduates who are managers have compensated for their lack of education by being innately more able (in a broad sense not measured here) than other high school graduates and college graduates who are managers. Then, as long as this ability is an important and recompensed characteristic of a manager, we would assign in our calculations too high an earnings figure to high school graduates who were not managers and would improperly conclude that screening existed.

We have no way of determining the importance of the omit-
portion of people

tion to the test for
on the assumption
pecific skills. Since
one occupation, we
occupations from the
me set of measured
ility, and age. Unfor-
opy occurs because
rest occurs because
ies have not been
measured skills are
the implementation
that the mean and
ion.

in one occupation
fect of X on earnings
people with high X
ion. But unless X is
estimate or overes-
occupations equally
ual "misallocation"
ld not call such a
ose, however, that
in a particular oc-
om using the mean
imate the potential
s will be correlated
high school gradua-
r their lack of edu-
 broad sense not
 duates and college
as this ability is an
 of a manager, we
arnings figure to
agers and would
rtime of the omit-
ed variables, nor do we know of any studies that would be in-
formative. Nevertheless, if the calculations had been performed
with census data, mental ability would have been an obvious
candidate for the omitted (occupation-specific) variable. In-
 deed, in our equations we do find that mathematical ability has
a bigger effect on earnings than do other variables in the
higher-paying occupations. The omitted-variable argument
would lead us to expect the fraction of people at each education
level in the managerial occupation to be larger the higher the
ability level, and to expect high school graduates who were
managers to be more able on the average than other high school
graduates. Analysis of our sample indicates that both these ex-
pectations are borne out, but that the effects are not pro-
nounced. For example, the mean ability level of managers is .47
and .62 for high school and college graduates, respectively,
while the corresponding means for all high school and college
graduates are .43 and .60. Consequently, to the extent that the
omission of other occupation-specific skills follows the same
pattern as that of mental ability, the problems caused by their
omission may not be serious.

We consider very briefly now the results for 1955. Table 9-2
contains the expected and actual distributions for 1955, calcu-
lated in the same manner as were those for 1969. Subject to the
same qualifications, these results tend to support the screening
hypothesis. The differences between the actual and expected
percentages in the blue-collar, white-collar, and service occupa-
tions combined are about 40 percent, 12 percent, and 0 percent
for the high school, some-college, and B.A. categories, respec-
tively. Thus, as in 1969, people are apparently being screened

22Those in the top fifth receive a score of .9, and each successive fifth declines
by .2.

23Two general points should be made concerning the comparability of the two
years. First, as mentioned in Chapter 8, the occupational classifications may
differ slightly because the 1955 categories were determined by aggregating each
individual's description of his job into broad groups, whereas in 1969 each in-
dividual selected the broad occupation that included his job. In particular, the
distinction between the technical and professional groups may differ consider-
ably between samples. Second, the number of individuals in a particular educa-
tional group will differ in 1955 and 1969, since about 7 percent of the sample at-
tained more education in this period, and since there was a 10 percent response
variation on education.
TABLE 9-2

<table>
<thead>
<tr>
<th>Occupation/Level</th>
<th>Number of People</th>
<th>Percentage</th>
<th>Mean Income Per Month</th>
</tr>
</thead>
<tbody>
<tr>
<td>Professional</td>
<td>292</td>
<td>13.2%</td>
<td>$529</td>
</tr>
<tr>
<td>Blue-collar</td>
<td>298</td>
<td>13.1%</td>
<td>$529</td>
</tr>
<tr>
<td>Sales</td>
<td>294</td>
<td>13.0%</td>
<td>$529</td>
</tr>
<tr>
<td>White-collar</td>
<td>296</td>
<td>13.0%</td>
<td>$529</td>
</tr>
<tr>
<td>Technical</td>
<td>297</td>
<td>13.0%</td>
<td>$529</td>
</tr>
<tr>
<td>Managerial</td>
<td>298</td>
<td>13.0%</td>
<td>$529</td>
</tr>
<tr>
<td>Some college</td>
<td>299</td>
<td>13.0%</td>
<td>$529</td>
</tr>
<tr>
<td>BA.</td>
<td>300</td>
<td>13.0%</td>
<td>$529</td>
</tr>
</tbody>
</table>

TABLE 9-3

Higher education and earnings 170
who in their early years are in the professional, technical, and sales occupations.

We can use these estimates of expected distributions to determine what income differentials attributable to education would have been in the absence of screening. Such returns are of interest because they represent the extent to which those presented earlier reflect increases in productivity, rather than "discrimination" in the job market. To calculate returns to education, we weight the earnings differences due to education in various occupations by the expected distribution of people across occupations. These returns are upper bounds to those that would actually occur because they do not allow for income levels to adjust as the occupational distributions change.24

In Table 9-3 we present the percentages by which earnings in the some-college and B.A. categories exceed high school earnings for the actual and expected distributions for 1955 and 1969. In 1955, the earnings differentials due to education under the assumption of no entry barriers are only about one-half to one-third as large as the actual ones. In 1969, the expected differentials are about one-half as large as the actual ones. This suggests that screening accounts for a substantial portion of educational earnings differentials. The implications of this for rates of return to education are discussed below.

<table>
<thead>
<tr>
<th>Earnings differen</th>
<th>Actual</th>
<th>Expected</th>
</tr>
</thead>
<tbody>
<tr>
<td>TABLE 9-3 Earnings differentials attributable to education, for actual and expected occupational distributions, 1955 and 1969 (as a percentage of high school income)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1955</td>
<td>1969</td>
</tr>
<tr>
<td>Some college</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B.A.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

24These are unadjusted estimates in that they do not allow for differences in ability, background, age, and so on. Because they are compared with estimates obtained by weighting the same earnings figures by the actual distributions, however, the percentage differences between these two sets of estimates will probably be reasonable approximations to the adjusted income differentials.
The private rate of return to education is higher when screening exists than it would be under conditions of free entry into all jobs. This follows directly from the finding just given that expected income differentials are about one-half to one-third as large as the actual ones, and from the fact that the private costs of education are not likely to change much as a result of screening. Moreover, if firms respond to increases in the supply of educated people by raising the screening level, wages in the high-paying occupations need not adjust. This might explain why the private rate of return to college did not change much from 1939 through 1969.

The social rate of return to education, on the other hand, may or may not be higher when there is screening. The reason for this is that, although educational income differentials are again higher under screening, education also serves to provide firms with information that allows them to reduce sorting costs. Hence, if educational screening were not practiced, additional costs would have to be incurred by firms and by society in order to replace this sorting function of education. Calculation of a social return to education when screening is practiced thus requires that we subtract from costs an amount equal to the cost of the best alternative sorting technique. Hence, the social return may be high even if education does not substantially increase individual productivities. Since we have no evidence on the cost of alternative sorting techniques, we do not present estimates of the social rate of return that would prevail in the absence of screening. We conjecture, however, that this rate is substantially lower than the estimates given earlier in this book, in which no attempt was made to account for screening.

While the purpose of this study is to determine the effect of education on income and to examine the cause of this effect, we feel that it is important to explore briefly the implications of screening for educational policy.

We assume that screening has two major effects—it saves

25The existence of screening will affect opportunity costs because it will increase the number of individuals in the low-paying occupations, thus depressing average earnings of those at low education levels. Hence, when there are only two levels of education, screening will reduce the average earnings of those with low education, but when different levels of education are used as a screen for different jobs, it is not clear whether wages of high school graduates will increase or decrease as a result of screening.
Education as a screening device

Businesses and society some of the costs of sorting people, and it redistributes income. If society is not in favor of such a redistribution, it can use its tax and transfer schemes to undo the effect of screening on the income distribution. Under this scheme, the private individual return to education would be reduced until it equaled the return that would exist if there were no screening. To the extent that individual demand and social supply of education are based on the rate of return, this would reduce the number of people obtaining higher education.

Since determining the exact taxes and transfers to use would be difficult, other approaches should be considered. The problem of redistribution arises when some qualified individuals are not allowed into occupations because of their education level, a practice that is followed because firms save on costs by using the free information on schooling to sort people. This suggests two possibilities: eliminate the informational content of the screen or charge businesses for the information.

The informational content could be eliminated either by not giving firms access to a person's education level or by giving everyone the same education. The problem with the former is that it is unrealistic. There are several objections to the latter. First, if the education were to be similar in nature and quality to that currently given, it would be a very expensive use of resources to achieve the stated purpose. Second, if everyone had the same education, firms either would base their screening on the quality of the education or would have to spend other resources in obtaining information. In either case the resources spent on education would only garner the skill benefits. Finally, it is likely that not everyone would want the same level of education or have the capacity to achieve it.

Alternatively, businesses could be taxed annually for employing educated people. They would then have to weigh these costs against the extra sorting costs in finding the appropriate people among the less educated. We would expect some additional hireings among the less educated as well as a partial sharing of this tax (through a reduction in income) by the educated. Both these shifts would tend to reduce the return on education toward the one implied by perfect competition.

As noted above, one effect of screening is to reduce sorting costs for individual firms. However, society as a whole pays for
these costs by devoting resources to higher education, whereas if there were no screening, alternative sorting policies would have to be developed by firms. Presumably, employers, looking for specific employee characteristics in different occupations, would develop tests to provide information on these characteristics. Alternatively, the testing would not necessarily have to be developed and administered by individual firms, but could be done by one or a few centralized agencies or even by the government itself. This type of sorting procedure would probably be cheaper in terms of resource cost than using the educational system.

Finally, society could consider the redistributive return as equivalent to a monopoly return on a product that it supplied. Under this interpretation, the government could capture the excess return by substantially raising the tuition components of the investment cost. Such a scheme could be accompanied by an educational-loan plan, so that educational opportunity would be made available to all, and those who achieved an education would not receive an excess return due to entry restrictions into certain occupations.